2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_dev_init_params(struct ata_device *dev,
65 u16 heads, u16 sectors);
66 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
67 static void ata_dev_xfermask(struct ata_device *dev);
69 static unsigned int ata_unique_id = 1;
70 static struct workqueue_struct *ata_wq;
72 int atapi_enabled = 1;
73 module_param(atapi_enabled, int, 0444);
74 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
77 module_param(atapi_dmadir, int, 0444);
78 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
81 module_param_named(fua, libata_fua, int, 0444);
82 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
84 MODULE_AUTHOR("Jeff Garzik");
85 MODULE_DESCRIPTION("Library module for ATA devices");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_VERSION);
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
100 * Inherited from caller.
103 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
122 fis[13] = tf->hob_nsect;
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
140 * Inherited from caller.
143 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
158 tf->hob_nsect = fis[13];
161 static const u8 ata_rw_cmds[] = {
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
188 ATA_CMD_WRITE_FUA_EXT
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
195 * Examine the device configuration and tf->flags to calculate
196 * the proper read/write commands and protocol to use.
201 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
207 int index, fua, lba48, write;
209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
215 index = dev->multi_count ? 0 : 8;
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
219 index = dev->multi_count ? 0 : 8;
221 tf->protocol = ATA_PROT_DMA;
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
248 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
267 static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
280 static const struct ata_xfer_ent {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
301 * Matching XFER_* value, 0 if no match found.
303 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
318 * Return matching xfer_mask for @xfer_mode.
324 * Matching xfer_mask, 0 if no match found.
326 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
328 const struct ata_xfer_ent *ent;
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
340 * Return matching xfer_shift for @xfer_mode.
346 * Matching xfer_shift, -1 if no match found.
348 static int ata_xfer_mode2shift(unsigned int xfer_mode)
350 const struct ata_xfer_ent *ent;
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
362 * Determine string which represents the highest speed
363 * (highest bit in @modemask).
369 * Constant C string representing highest speed listed in
370 * @mode_mask, or the constant C string "<n/a>".
372 static const char *ata_mode_string(unsigned int xfer_mask)
374 static const char * const xfer_mode_str[] = {
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
400 static const char *sata_spd_string(unsigned int spd)
402 static const char * const spd_str[] = {
407 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
409 return spd_str[spd - 1];
412 void ata_dev_disable(struct ata_device *dev)
414 if (ata_dev_enabled(dev)) {
415 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
421 * ata_pio_devchk - PATA device presence detection
422 * @ap: ATA channel to examine
423 * @device: Device to examine (starting at zero)
425 * This technique was originally described in
426 * Hale Landis's ATADRVR (www.ata-atapi.com), and
427 * later found its way into the ATA/ATAPI spec.
429 * Write a pattern to the ATA shadow registers,
430 * and if a device is present, it will respond by
431 * correctly storing and echoing back the
432 * ATA shadow register contents.
438 static unsigned int ata_pio_devchk(struct ata_port *ap,
441 struct ata_ioports *ioaddr = &ap->ioaddr;
444 ap->ops->dev_select(ap, device);
446 outb(0x55, ioaddr->nsect_addr);
447 outb(0xaa, ioaddr->lbal_addr);
449 outb(0xaa, ioaddr->nsect_addr);
450 outb(0x55, ioaddr->lbal_addr);
452 outb(0x55, ioaddr->nsect_addr);
453 outb(0xaa, ioaddr->lbal_addr);
455 nsect = inb(ioaddr->nsect_addr);
456 lbal = inb(ioaddr->lbal_addr);
458 if ((nsect == 0x55) && (lbal == 0xaa))
459 return 1; /* we found a device */
461 return 0; /* nothing found */
465 * ata_mmio_devchk - PATA device presence detection
466 * @ap: ATA channel to examine
467 * @device: Device to examine (starting at zero)
469 * This technique was originally described in
470 * Hale Landis's ATADRVR (www.ata-atapi.com), and
471 * later found its way into the ATA/ATAPI spec.
473 * Write a pattern to the ATA shadow registers,
474 * and if a device is present, it will respond by
475 * correctly storing and echoing back the
476 * ATA shadow register contents.
482 static unsigned int ata_mmio_devchk(struct ata_port *ap,
485 struct ata_ioports *ioaddr = &ap->ioaddr;
488 ap->ops->dev_select(ap, device);
490 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
491 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
493 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
494 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
496 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
499 nsect = readb((void __iomem *) ioaddr->nsect_addr);
500 lbal = readb((void __iomem *) ioaddr->lbal_addr);
502 if ((nsect == 0x55) && (lbal == 0xaa))
503 return 1; /* we found a device */
505 return 0; /* nothing found */
509 * ata_devchk - PATA device presence detection
510 * @ap: ATA channel to examine
511 * @device: Device to examine (starting at zero)
513 * Dispatch ATA device presence detection, depending
514 * on whether we are using PIO or MMIO to talk to the
515 * ATA shadow registers.
521 static unsigned int ata_devchk(struct ata_port *ap,
524 if (ap->flags & ATA_FLAG_MMIO)
525 return ata_mmio_devchk(ap, device);
526 return ata_pio_devchk(ap, device);
530 * ata_dev_classify - determine device type based on ATA-spec signature
531 * @tf: ATA taskfile register set for device to be identified
533 * Determine from taskfile register contents whether a device is
534 * ATA or ATAPI, as per "Signature and persistence" section
535 * of ATA/PI spec (volume 1, sect 5.14).
541 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
542 * the event of failure.
545 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
547 /* Apple's open source Darwin code hints that some devices only
548 * put a proper signature into the LBA mid/high registers,
549 * So, we only check those. It's sufficient for uniqueness.
552 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
553 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
554 DPRINTK("found ATA device by sig\n");
558 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
559 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
560 DPRINTK("found ATAPI device by sig\n");
561 return ATA_DEV_ATAPI;
564 DPRINTK("unknown device\n");
565 return ATA_DEV_UNKNOWN;
569 * ata_dev_try_classify - Parse returned ATA device signature
570 * @ap: ATA channel to examine
571 * @device: Device to examine (starting at zero)
572 * @r_err: Value of error register on completion
574 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
575 * an ATA/ATAPI-defined set of values is placed in the ATA
576 * shadow registers, indicating the results of device detection
579 * Select the ATA device, and read the values from the ATA shadow
580 * registers. Then parse according to the Error register value,
581 * and the spec-defined values examined by ata_dev_classify().
587 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
591 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
593 struct ata_taskfile tf;
597 ap->ops->dev_select(ap, device);
599 memset(&tf, 0, sizeof(tf));
601 ap->ops->tf_read(ap, &tf);
606 /* see if device passed diags */
609 else if ((device == 0) && (err == 0x81))
614 /* determine if device is ATA or ATAPI */
615 class = ata_dev_classify(&tf);
617 if (class == ATA_DEV_UNKNOWN)
619 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
625 * ata_id_string - Convert IDENTIFY DEVICE page into string
626 * @id: IDENTIFY DEVICE results we will examine
627 * @s: string into which data is output
628 * @ofs: offset into identify device page
629 * @len: length of string to return. must be an even number.
631 * The strings in the IDENTIFY DEVICE page are broken up into
632 * 16-bit chunks. Run through the string, and output each
633 * 8-bit chunk linearly, regardless of platform.
639 void ata_id_string(const u16 *id, unsigned char *s,
640 unsigned int ofs, unsigned int len)
659 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
660 * @id: IDENTIFY DEVICE results we will examine
661 * @s: string into which data is output
662 * @ofs: offset into identify device page
663 * @len: length of string to return. must be an odd number.
665 * This function is identical to ata_id_string except that it
666 * trims trailing spaces and terminates the resulting string with
667 * null. @len must be actual maximum length (even number) + 1.
672 void ata_id_c_string(const u16 *id, unsigned char *s,
673 unsigned int ofs, unsigned int len)
679 ata_id_string(id, s, ofs, len - 1);
681 p = s + strnlen(s, len - 1);
682 while (p > s && p[-1] == ' ')
687 static u64 ata_id_n_sectors(const u16 *id)
689 if (ata_id_has_lba(id)) {
690 if (ata_id_has_lba48(id))
691 return ata_id_u64(id, 100);
693 return ata_id_u32(id, 60);
695 if (ata_id_current_chs_valid(id))
696 return ata_id_u32(id, 57);
698 return id[1] * id[3] * id[6];
703 * ata_noop_dev_select - Select device 0/1 on ATA bus
704 * @ap: ATA channel to manipulate
705 * @device: ATA device (numbered from zero) to select
707 * This function performs no actual function.
709 * May be used as the dev_select() entry in ata_port_operations.
714 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
720 * ata_std_dev_select - Select device 0/1 on ATA bus
721 * @ap: ATA channel to manipulate
722 * @device: ATA device (numbered from zero) to select
724 * Use the method defined in the ATA specification to
725 * make either device 0, or device 1, active on the
726 * ATA channel. Works with both PIO and MMIO.
728 * May be used as the dev_select() entry in ata_port_operations.
734 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
739 tmp = ATA_DEVICE_OBS;
741 tmp = ATA_DEVICE_OBS | ATA_DEV1;
743 if (ap->flags & ATA_FLAG_MMIO) {
744 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
746 outb(tmp, ap->ioaddr.device_addr);
748 ata_pause(ap); /* needed; also flushes, for mmio */
752 * ata_dev_select - Select device 0/1 on ATA bus
753 * @ap: ATA channel to manipulate
754 * @device: ATA device (numbered from zero) to select
755 * @wait: non-zero to wait for Status register BSY bit to clear
756 * @can_sleep: non-zero if context allows sleeping
758 * Use the method defined in the ATA specification to
759 * make either device 0, or device 1, active on the
762 * This is a high-level version of ata_std_dev_select(),
763 * which additionally provides the services of inserting
764 * the proper pauses and status polling, where needed.
770 void ata_dev_select(struct ata_port *ap, unsigned int device,
771 unsigned int wait, unsigned int can_sleep)
773 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
774 ap->id, device, wait);
779 ap->ops->dev_select(ap, device);
782 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
789 * ata_dump_id - IDENTIFY DEVICE info debugging output
790 * @id: IDENTIFY DEVICE page to dump
792 * Dump selected 16-bit words from the given IDENTIFY DEVICE
799 static inline void ata_dump_id(const u16 *id)
801 DPRINTK("49==0x%04x "
811 DPRINTK("80==0x%04x "
821 DPRINTK("88==0x%04x "
828 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
829 * @id: IDENTIFY data to compute xfer mask from
831 * Compute the xfermask for this device. This is not as trivial
832 * as it seems if we must consider early devices correctly.
834 * FIXME: pre IDE drive timing (do we care ?).
842 static unsigned int ata_id_xfermask(const u16 *id)
844 unsigned int pio_mask, mwdma_mask, udma_mask;
846 /* Usual case. Word 53 indicates word 64 is valid */
847 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
848 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
852 /* If word 64 isn't valid then Word 51 high byte holds
853 * the PIO timing number for the maximum. Turn it into
856 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
858 /* But wait.. there's more. Design your standards by
859 * committee and you too can get a free iordy field to
860 * process. However its the speeds not the modes that
861 * are supported... Note drivers using the timing API
862 * will get this right anyway
866 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
869 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
870 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
872 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
876 * ata_port_queue_task - Queue port_task
877 * @ap: The ata_port to queue port_task for
879 * Schedule @fn(@data) for execution after @delay jiffies using
880 * port_task. There is one port_task per port and it's the
881 * user(low level driver)'s responsibility to make sure that only
882 * one task is active at any given time.
884 * libata core layer takes care of synchronization between
885 * port_task and EH. ata_port_queue_task() may be ignored for EH
889 * Inherited from caller.
891 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
896 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
899 PREPARE_WORK(&ap->port_task, fn, data);
902 rc = queue_work(ata_wq, &ap->port_task);
904 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
906 /* rc == 0 means that another user is using port task */
911 * ata_port_flush_task - Flush port_task
912 * @ap: The ata_port to flush port_task for
914 * After this function completes, port_task is guranteed not to
915 * be running or scheduled.
918 * Kernel thread context (may sleep)
920 void ata_port_flush_task(struct ata_port *ap)
926 spin_lock_irqsave(&ap->host_set->lock, flags);
927 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
928 spin_unlock_irqrestore(&ap->host_set->lock, flags);
930 DPRINTK("flush #1\n");
931 flush_workqueue(ata_wq);
934 * At this point, if a task is running, it's guaranteed to see
935 * the FLUSH flag; thus, it will never queue pio tasks again.
938 if (!cancel_delayed_work(&ap->port_task)) {
939 DPRINTK("flush #2\n");
940 flush_workqueue(ata_wq);
943 spin_lock_irqsave(&ap->host_set->lock, flags);
944 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
945 spin_unlock_irqrestore(&ap->host_set->lock, flags);
950 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
952 struct completion *waiting = qc->private_data;
958 * ata_exec_internal - execute libata internal command
959 * @dev: Device to which the command is sent
960 * @tf: Taskfile registers for the command and the result
961 * @cdb: CDB for packet command
962 * @dma_dir: Data tranfer direction of the command
963 * @buf: Data buffer of the command
964 * @buflen: Length of data buffer
966 * Executes libata internal command with timeout. @tf contains
967 * command on entry and result on return. Timeout and error
968 * conditions are reported via return value. No recovery action
969 * is taken after a command times out. It's caller's duty to
970 * clean up after timeout.
973 * None. Should be called with kernel context, might sleep.
976 unsigned ata_exec_internal(struct ata_device *dev,
977 struct ata_taskfile *tf, const u8 *cdb,
978 int dma_dir, void *buf, unsigned int buflen)
980 struct ata_port *ap = dev->ap;
981 u8 command = tf->command;
982 struct ata_queued_cmd *qc;
983 unsigned int tag, preempted_tag;
984 DECLARE_COMPLETION(wait);
986 unsigned int err_mask;
988 spin_lock_irqsave(&ap->host_set->lock, flags);
990 /* initialize internal qc */
992 /* XXX: Tag 0 is used for drivers with legacy EH as some
993 * drivers choke if any other tag is given. This breaks
994 * ata_tag_internal() test for those drivers. Don't use new
995 * EH stuff without converting to it.
997 if (ap->ops->error_handler)
998 tag = ATA_TAG_INTERNAL;
1002 if (test_and_set_bit(tag, &ap->qactive))
1004 qc = ata_qc_from_tag(ap, tag);
1012 preempted_tag = ap->active_tag;
1013 ap->active_tag = ATA_TAG_POISON;
1015 /* prepare & issue qc */
1018 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1019 qc->flags |= ATA_QCFLAG_RESULT_TF;
1020 qc->dma_dir = dma_dir;
1021 if (dma_dir != DMA_NONE) {
1022 ata_sg_init_one(qc, buf, buflen);
1023 qc->nsect = buflen / ATA_SECT_SIZE;
1026 qc->private_data = &wait;
1027 qc->complete_fn = ata_qc_complete_internal;
1031 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1033 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1034 ata_port_flush_task(ap);
1036 spin_lock_irqsave(&ap->host_set->lock, flags);
1038 /* We're racing with irq here. If we lose, the
1039 * following test prevents us from completing the qc
1040 * again. If completion irq occurs after here but
1041 * before the caller cleans up, it will result in a
1042 * spurious interrupt. We can live with that.
1044 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1045 qc->err_mask = AC_ERR_TIMEOUT;
1046 ata_qc_complete(qc);
1048 ata_dev_printk(dev, KERN_WARNING,
1049 "qc timeout (cmd 0x%x)\n", command);
1052 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1056 spin_lock_irqsave(&ap->host_set->lock, flags);
1058 *tf = qc->result_tf;
1059 err_mask = qc->err_mask;
1062 ap->active_tag = preempted_tag;
1064 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1065 * Until those drivers are fixed, we detect the condition
1066 * here, fail the command with AC_ERR_SYSTEM and reenable the
1069 * Note that this doesn't change any behavior as internal
1070 * command failure results in disabling the device in the
1071 * higher layer for LLDDs without new reset/EH callbacks.
1073 * Kill the following code as soon as those drivers are fixed.
1075 if (ap->flags & ATA_FLAG_DISABLED) {
1076 err_mask |= AC_ERR_SYSTEM;
1080 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1086 * ata_pio_need_iordy - check if iordy needed
1089 * Check if the current speed of the device requires IORDY. Used
1090 * by various controllers for chip configuration.
1093 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1096 int speed = adev->pio_mode - XFER_PIO_0;
1103 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1105 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1106 pio = adev->id[ATA_ID_EIDE_PIO];
1107 /* Is the speed faster than the drive allows non IORDY ? */
1109 /* This is cycle times not frequency - watch the logic! */
1110 if (pio > 240) /* PIO2 is 240nS per cycle */
1119 * ata_dev_read_id - Read ID data from the specified device
1120 * @dev: target device
1121 * @p_class: pointer to class of the target device (may be changed)
1122 * @post_reset: is this read ID post-reset?
1123 * @id: buffer to read IDENTIFY data into
1125 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1126 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1127 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1128 * for pre-ATA4 drives.
1131 * Kernel thread context (may sleep)
1134 * 0 on success, -errno otherwise.
1136 static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1137 int post_reset, u16 *id)
1139 struct ata_port *ap = dev->ap;
1140 unsigned int class = *p_class;
1141 struct ata_taskfile tf;
1142 unsigned int err_mask = 0;
1146 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1148 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1151 ata_tf_init(dev, &tf);
1155 tf.command = ATA_CMD_ID_ATA;
1158 tf.command = ATA_CMD_ID_ATAPI;
1162 reason = "unsupported class";
1166 tf.protocol = ATA_PROT_PIO;
1168 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1169 id, sizeof(id[0]) * ATA_ID_WORDS);
1172 reason = "I/O error";
1176 swap_buf_le16(id, ATA_ID_WORDS);
1179 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1181 reason = "device reports illegal type";
1185 if (post_reset && class == ATA_DEV_ATA) {
1187 * The exact sequence expected by certain pre-ATA4 drives is:
1190 * INITIALIZE DEVICE PARAMETERS
1192 * Some drives were very specific about that exact sequence.
1194 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1195 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1198 reason = "INIT_DEV_PARAMS failed";
1202 /* current CHS translation info (id[53-58]) might be
1203 * changed. reread the identify device info.
1215 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1216 "(%s, err_mask=0x%x)\n", reason, err_mask);
1220 static inline u8 ata_dev_knobble(struct ata_device *dev)
1222 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1226 * ata_dev_configure - Configure the specified ATA/ATAPI device
1227 * @dev: Target device to configure
1228 * @print_info: Enable device info printout
1230 * Configure @dev according to @dev->id. Generic and low-level
1231 * driver specific fixups are also applied.
1234 * Kernel thread context (may sleep)
1237 * 0 on success, -errno otherwise
1239 static int ata_dev_configure(struct ata_device *dev, int print_info)
1241 struct ata_port *ap = dev->ap;
1242 const u16 *id = dev->id;
1243 unsigned int xfer_mask;
1246 if (!ata_dev_enabled(dev)) {
1247 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1248 ap->id, dev->devno);
1252 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1254 /* print device capabilities */
1256 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1257 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1258 id[49], id[82], id[83], id[84],
1259 id[85], id[86], id[87], id[88]);
1261 /* initialize to-be-configured parameters */
1262 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1263 dev->max_sectors = 0;
1271 * common ATA, ATAPI feature tests
1274 /* find max transfer mode; for printk only */
1275 xfer_mask = ata_id_xfermask(id);
1279 /* ATA-specific feature tests */
1280 if (dev->class == ATA_DEV_ATA) {
1281 dev->n_sectors = ata_id_n_sectors(id);
1283 if (ata_id_has_lba(id)) {
1284 const char *lba_desc;
1287 dev->flags |= ATA_DFLAG_LBA;
1288 if (ata_id_has_lba48(id)) {
1289 dev->flags |= ATA_DFLAG_LBA48;
1293 /* print device info to dmesg */
1295 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1296 "max %s, %Lu sectors: %s\n",
1297 ata_id_major_version(id),
1298 ata_mode_string(xfer_mask),
1299 (unsigned long long)dev->n_sectors,
1304 /* Default translation */
1305 dev->cylinders = id[1];
1307 dev->sectors = id[6];
1309 if (ata_id_current_chs_valid(id)) {
1310 /* Current CHS translation is valid. */
1311 dev->cylinders = id[54];
1312 dev->heads = id[55];
1313 dev->sectors = id[56];
1316 /* print device info to dmesg */
1318 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1319 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1320 ata_id_major_version(id),
1321 ata_mode_string(xfer_mask),
1322 (unsigned long long)dev->n_sectors,
1323 dev->cylinders, dev->heads, dev->sectors);
1329 /* ATAPI-specific feature tests */
1330 else if (dev->class == ATA_DEV_ATAPI) {
1331 rc = atapi_cdb_len(id);
1332 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1333 ata_dev_printk(dev, KERN_WARNING,
1334 "unsupported CDB len\n");
1338 dev->cdb_len = (unsigned int) rc;
1340 /* print device info to dmesg */
1342 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s\n",
1343 ata_mode_string(xfer_mask));
1346 ap->host->max_cmd_len = 0;
1347 for (i = 0; i < ATA_MAX_DEVICES; i++)
1348 ap->host->max_cmd_len = max_t(unsigned int,
1349 ap->host->max_cmd_len,
1350 ap->device[i].cdb_len);
1352 /* limit bridge transfers to udma5, 200 sectors */
1353 if (ata_dev_knobble(dev)) {
1355 ata_dev_printk(dev, KERN_INFO,
1356 "applying bridge limits\n");
1357 dev->udma_mask &= ATA_UDMA5;
1358 dev->max_sectors = ATA_MAX_SECTORS;
1361 if (ap->ops->dev_config)
1362 ap->ops->dev_config(ap, dev);
1364 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1368 DPRINTK("EXIT, err\n");
1373 * ata_bus_probe - Reset and probe ATA bus
1376 * Master ATA bus probing function. Initiates a hardware-dependent
1377 * bus reset, then attempts to identify any devices found on
1381 * PCI/etc. bus probe sem.
1384 * Zero on success, negative errno otherwise.
1387 static int ata_bus_probe(struct ata_port *ap)
1389 unsigned int classes[ATA_MAX_DEVICES];
1390 int tries[ATA_MAX_DEVICES];
1391 int i, rc, down_xfermask;
1392 struct ata_device *dev;
1396 for (i = 0; i < ATA_MAX_DEVICES; i++)
1397 tries[i] = ATA_PROBE_MAX_TRIES;
1402 /* reset and determine device classes */
1403 for (i = 0; i < ATA_MAX_DEVICES; i++)
1404 classes[i] = ATA_DEV_UNKNOWN;
1406 if (ap->ops->probe_reset) {
1407 rc = ap->ops->probe_reset(ap, classes);
1409 ata_port_printk(ap, KERN_ERR,
1410 "reset failed (errno=%d)\n", rc);
1414 ap->ops->phy_reset(ap);
1416 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1417 if (!(ap->flags & ATA_FLAG_DISABLED))
1418 classes[i] = ap->device[i].class;
1419 ap->device[i].class = ATA_DEV_UNKNOWN;
1425 for (i = 0; i < ATA_MAX_DEVICES; i++)
1426 if (classes[i] == ATA_DEV_UNKNOWN)
1427 classes[i] = ATA_DEV_NONE;
1429 /* read IDENTIFY page and configure devices */
1430 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1431 dev = &ap->device[i];
1434 dev->class = classes[i];
1436 if (!ata_dev_enabled(dev))
1439 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1443 rc = ata_dev_configure(dev, 1);
1448 /* configure transfer mode */
1449 rc = ata_set_mode(ap, &dev);
1455 for (i = 0; i < ATA_MAX_DEVICES; i++)
1456 if (ata_dev_enabled(&ap->device[i]))
1459 /* no device present, disable port */
1460 ata_port_disable(ap);
1461 ap->ops->port_disable(ap);
1468 tries[dev->devno] = 0;
1471 sata_down_spd_limit(ap);
1474 tries[dev->devno]--;
1475 if (down_xfermask &&
1476 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1477 tries[dev->devno] = 0;
1480 if (!tries[dev->devno]) {
1481 ata_down_xfermask_limit(dev, 1);
1482 ata_dev_disable(dev);
1489 * ata_port_probe - Mark port as enabled
1490 * @ap: Port for which we indicate enablement
1492 * Modify @ap data structure such that the system
1493 * thinks that the entire port is enabled.
1495 * LOCKING: host_set lock, or some other form of
1499 void ata_port_probe(struct ata_port *ap)
1501 ap->flags &= ~ATA_FLAG_DISABLED;
1505 * sata_print_link_status - Print SATA link status
1506 * @ap: SATA port to printk link status about
1508 * This function prints link speed and status of a SATA link.
1513 static void sata_print_link_status(struct ata_port *ap)
1515 u32 sstatus, scontrol, tmp;
1517 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1519 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1521 if (ata_port_online(ap)) {
1522 tmp = (sstatus >> 4) & 0xf;
1523 ata_port_printk(ap, KERN_INFO,
1524 "SATA link up %s (SStatus %X SControl %X)\n",
1525 sata_spd_string(tmp), sstatus, scontrol);
1527 ata_port_printk(ap, KERN_INFO,
1528 "SATA link down (SStatus %X SControl %X)\n",
1534 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1535 * @ap: SATA port associated with target SATA PHY.
1537 * This function issues commands to standard SATA Sxxx
1538 * PHY registers, to wake up the phy (and device), and
1539 * clear any reset condition.
1542 * PCI/etc. bus probe sem.
1545 void __sata_phy_reset(struct ata_port *ap)
1548 unsigned long timeout = jiffies + (HZ * 5);
1550 if (ap->flags & ATA_FLAG_SATA_RESET) {
1551 /* issue phy wake/reset */
1552 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1553 /* Couldn't find anything in SATA I/II specs, but
1554 * AHCI-1.1 10.4.2 says at least 1 ms. */
1557 /* phy wake/clear reset */
1558 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1560 /* wait for phy to become ready, if necessary */
1563 sata_scr_read(ap, SCR_STATUS, &sstatus);
1564 if ((sstatus & 0xf) != 1)
1566 } while (time_before(jiffies, timeout));
1568 /* print link status */
1569 sata_print_link_status(ap);
1571 /* TODO: phy layer with polling, timeouts, etc. */
1572 if (!ata_port_offline(ap))
1575 ata_port_disable(ap);
1577 if (ap->flags & ATA_FLAG_DISABLED)
1580 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1581 ata_port_disable(ap);
1585 ap->cbl = ATA_CBL_SATA;
1589 * sata_phy_reset - Reset SATA bus.
1590 * @ap: SATA port associated with target SATA PHY.
1592 * This function resets the SATA bus, and then probes
1593 * the bus for devices.
1596 * PCI/etc. bus probe sem.
1599 void sata_phy_reset(struct ata_port *ap)
1601 __sata_phy_reset(ap);
1602 if (ap->flags & ATA_FLAG_DISABLED)
1608 * ata_dev_pair - return other device on cable
1611 * Obtain the other device on the same cable, or if none is
1612 * present NULL is returned
1615 struct ata_device *ata_dev_pair(struct ata_device *adev)
1617 struct ata_port *ap = adev->ap;
1618 struct ata_device *pair = &ap->device[1 - adev->devno];
1619 if (!ata_dev_enabled(pair))
1625 * ata_port_disable - Disable port.
1626 * @ap: Port to be disabled.
1628 * Modify @ap data structure such that the system
1629 * thinks that the entire port is disabled, and should
1630 * never attempt to probe or communicate with devices
1633 * LOCKING: host_set lock, or some other form of
1637 void ata_port_disable(struct ata_port *ap)
1639 ap->device[0].class = ATA_DEV_NONE;
1640 ap->device[1].class = ATA_DEV_NONE;
1641 ap->flags |= ATA_FLAG_DISABLED;
1645 * sata_down_spd_limit - adjust SATA spd limit downward
1646 * @ap: Port to adjust SATA spd limit for
1648 * Adjust SATA spd limit of @ap downward. Note that this
1649 * function only adjusts the limit. The change must be applied
1650 * using sata_set_spd().
1653 * Inherited from caller.
1656 * 0 on success, negative errno on failure
1658 int sata_down_spd_limit(struct ata_port *ap)
1660 u32 sstatus, spd, mask;
1663 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1667 mask = ap->sata_spd_limit;
1670 highbit = fls(mask) - 1;
1671 mask &= ~(1 << highbit);
1673 spd = (sstatus >> 4) & 0xf;
1677 mask &= (1 << spd) - 1;
1681 ap->sata_spd_limit = mask;
1683 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1684 sata_spd_string(fls(mask)));
1689 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1693 if (ap->sata_spd_limit == UINT_MAX)
1696 limit = fls(ap->sata_spd_limit);
1698 spd = (*scontrol >> 4) & 0xf;
1699 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1701 return spd != limit;
1705 * sata_set_spd_needed - is SATA spd configuration needed
1706 * @ap: Port in question
1708 * Test whether the spd limit in SControl matches
1709 * @ap->sata_spd_limit. This function is used to determine
1710 * whether hardreset is necessary to apply SATA spd
1714 * Inherited from caller.
1717 * 1 if SATA spd configuration is needed, 0 otherwise.
1719 int sata_set_spd_needed(struct ata_port *ap)
1723 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1726 return __sata_set_spd_needed(ap, &scontrol);
1730 * sata_set_spd - set SATA spd according to spd limit
1731 * @ap: Port to set SATA spd for
1733 * Set SATA spd of @ap according to sata_spd_limit.
1736 * Inherited from caller.
1739 * 0 if spd doesn't need to be changed, 1 if spd has been
1740 * changed. Negative errno if SCR registers are inaccessible.
1742 int sata_set_spd(struct ata_port *ap)
1747 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1750 if (!__sata_set_spd_needed(ap, &scontrol))
1753 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1760 * This mode timing computation functionality is ported over from
1761 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1764 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1765 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1766 * for PIO 5, which is a nonstandard extension and UDMA6, which
1767 * is currently supported only by Maxtor drives.
1770 static const struct ata_timing ata_timing[] = {
1772 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1773 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1774 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1775 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1777 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1778 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1779 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1781 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1783 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1784 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1785 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1787 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1788 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1789 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1791 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1792 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1793 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1795 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1796 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1797 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1799 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1804 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1805 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1807 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1809 q->setup = EZ(t->setup * 1000, T);
1810 q->act8b = EZ(t->act8b * 1000, T);
1811 q->rec8b = EZ(t->rec8b * 1000, T);
1812 q->cyc8b = EZ(t->cyc8b * 1000, T);
1813 q->active = EZ(t->active * 1000, T);
1814 q->recover = EZ(t->recover * 1000, T);
1815 q->cycle = EZ(t->cycle * 1000, T);
1816 q->udma = EZ(t->udma * 1000, UT);
1819 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1820 struct ata_timing *m, unsigned int what)
1822 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1823 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1824 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1825 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1826 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1827 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1828 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1829 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1832 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1834 const struct ata_timing *t;
1836 for (t = ata_timing; t->mode != speed; t++)
1837 if (t->mode == 0xFF)
1842 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1843 struct ata_timing *t, int T, int UT)
1845 const struct ata_timing *s;
1846 struct ata_timing p;
1852 if (!(s = ata_timing_find_mode(speed)))
1855 memcpy(t, s, sizeof(*s));
1858 * If the drive is an EIDE drive, it can tell us it needs extended
1859 * PIO/MW_DMA cycle timing.
1862 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1863 memset(&p, 0, sizeof(p));
1864 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1865 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1866 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1867 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1868 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1870 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1874 * Convert the timing to bus clock counts.
1877 ata_timing_quantize(t, t, T, UT);
1880 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1881 * S.M.A.R.T * and some other commands. We have to ensure that the
1882 * DMA cycle timing is slower/equal than the fastest PIO timing.
1885 if (speed > XFER_PIO_4) {
1886 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1887 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1891 * Lengthen active & recovery time so that cycle time is correct.
1894 if (t->act8b + t->rec8b < t->cyc8b) {
1895 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1896 t->rec8b = t->cyc8b - t->act8b;
1899 if (t->active + t->recover < t->cycle) {
1900 t->active += (t->cycle - (t->active + t->recover)) / 2;
1901 t->recover = t->cycle - t->active;
1908 * ata_down_xfermask_limit - adjust dev xfer masks downward
1909 * @dev: Device to adjust xfer masks
1910 * @force_pio0: Force PIO0
1912 * Adjust xfer masks of @dev downward. Note that this function
1913 * does not apply the change. Invoking ata_set_mode() afterwards
1914 * will apply the limit.
1917 * Inherited from caller.
1920 * 0 on success, negative errno on failure
1922 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
1924 unsigned long xfer_mask;
1927 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1932 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1933 if (xfer_mask & ATA_MASK_UDMA)
1934 xfer_mask &= ~ATA_MASK_MWDMA;
1936 highbit = fls(xfer_mask) - 1;
1937 xfer_mask &= ~(1 << highbit);
1939 xfer_mask &= 1 << ATA_SHIFT_PIO;
1943 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1946 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
1947 ata_mode_string(xfer_mask));
1955 static int ata_dev_set_mode(struct ata_device *dev)
1957 unsigned int err_mask;
1960 dev->flags &= ~ATA_DFLAG_PIO;
1961 if (dev->xfer_shift == ATA_SHIFT_PIO)
1962 dev->flags |= ATA_DFLAG_PIO;
1964 err_mask = ata_dev_set_xfermode(dev);
1966 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
1967 "(err_mask=0x%x)\n", err_mask);
1971 rc = ata_dev_revalidate(dev, 0);
1975 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1976 dev->xfer_shift, (int)dev->xfer_mode);
1978 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1979 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1984 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1985 * @ap: port on which timings will be programmed
1986 * @r_failed_dev: out paramter for failed device
1988 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1989 * ata_set_mode() fails, pointer to the failing device is
1990 * returned in @r_failed_dev.
1993 * PCI/etc. bus probe sem.
1996 * 0 on success, negative errno otherwise
1998 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2000 struct ata_device *dev;
2001 int i, rc = 0, used_dma = 0, found = 0;
2003 /* has private set_mode? */
2004 if (ap->ops->set_mode) {
2005 /* FIXME: make ->set_mode handle no device case and
2006 * return error code and failing device on failure.
2008 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2009 if (ata_dev_enabled(&ap->device[i])) {
2010 ap->ops->set_mode(ap);
2017 /* step 1: calculate xfer_mask */
2018 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2019 unsigned int pio_mask, dma_mask;
2021 dev = &ap->device[i];
2023 if (!ata_dev_enabled(dev))
2026 ata_dev_xfermask(dev);
2028 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2029 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2030 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2031 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2040 /* step 2: always set host PIO timings */
2041 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2042 dev = &ap->device[i];
2043 if (!ata_dev_enabled(dev))
2046 if (!dev->pio_mode) {
2047 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2052 dev->xfer_mode = dev->pio_mode;
2053 dev->xfer_shift = ATA_SHIFT_PIO;
2054 if (ap->ops->set_piomode)
2055 ap->ops->set_piomode(ap, dev);
2058 /* step 3: set host DMA timings */
2059 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2060 dev = &ap->device[i];
2062 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2065 dev->xfer_mode = dev->dma_mode;
2066 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2067 if (ap->ops->set_dmamode)
2068 ap->ops->set_dmamode(ap, dev);
2071 /* step 4: update devices' xfer mode */
2072 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2073 dev = &ap->device[i];
2075 if (!ata_dev_enabled(dev))
2078 rc = ata_dev_set_mode(dev);
2083 /* Record simplex status. If we selected DMA then the other
2084 * host channels are not permitted to do so.
2086 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2087 ap->host_set->simplex_claimed = 1;
2089 /* step5: chip specific finalisation */
2090 if (ap->ops->post_set_mode)
2091 ap->ops->post_set_mode(ap);
2095 *r_failed_dev = dev;
2100 * ata_tf_to_host - issue ATA taskfile to host controller
2101 * @ap: port to which command is being issued
2102 * @tf: ATA taskfile register set
2104 * Issues ATA taskfile register set to ATA host controller,
2105 * with proper synchronization with interrupt handler and
2109 * spin_lock_irqsave(host_set lock)
2112 static inline void ata_tf_to_host(struct ata_port *ap,
2113 const struct ata_taskfile *tf)
2115 ap->ops->tf_load(ap, tf);
2116 ap->ops->exec_command(ap, tf);
2120 * ata_busy_sleep - sleep until BSY clears, or timeout
2121 * @ap: port containing status register to be polled
2122 * @tmout_pat: impatience timeout
2123 * @tmout: overall timeout
2125 * Sleep until ATA Status register bit BSY clears,
2126 * or a timeout occurs.
2131 unsigned int ata_busy_sleep (struct ata_port *ap,
2132 unsigned long tmout_pat, unsigned long tmout)
2134 unsigned long timer_start, timeout;
2137 status = ata_busy_wait(ap, ATA_BUSY, 300);
2138 timer_start = jiffies;
2139 timeout = timer_start + tmout_pat;
2140 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2142 status = ata_busy_wait(ap, ATA_BUSY, 3);
2145 if (status & ATA_BUSY)
2146 ata_port_printk(ap, KERN_WARNING,
2147 "port is slow to respond, please be patient\n");
2149 timeout = timer_start + tmout;
2150 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2152 status = ata_chk_status(ap);
2155 if (status & ATA_BUSY) {
2156 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2157 "(%lu secs)\n", tmout / HZ);
2164 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2166 struct ata_ioports *ioaddr = &ap->ioaddr;
2167 unsigned int dev0 = devmask & (1 << 0);
2168 unsigned int dev1 = devmask & (1 << 1);
2169 unsigned long timeout;
2171 /* if device 0 was found in ata_devchk, wait for its
2175 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2177 /* if device 1 was found in ata_devchk, wait for
2178 * register access, then wait for BSY to clear
2180 timeout = jiffies + ATA_TMOUT_BOOT;
2184 ap->ops->dev_select(ap, 1);
2185 if (ap->flags & ATA_FLAG_MMIO) {
2186 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2187 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2189 nsect = inb(ioaddr->nsect_addr);
2190 lbal = inb(ioaddr->lbal_addr);
2192 if ((nsect == 1) && (lbal == 1))
2194 if (time_after(jiffies, timeout)) {
2198 msleep(50); /* give drive a breather */
2201 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2203 /* is all this really necessary? */
2204 ap->ops->dev_select(ap, 0);
2206 ap->ops->dev_select(ap, 1);
2208 ap->ops->dev_select(ap, 0);
2211 static unsigned int ata_bus_softreset(struct ata_port *ap,
2212 unsigned int devmask)
2214 struct ata_ioports *ioaddr = &ap->ioaddr;
2216 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2218 /* software reset. causes dev0 to be selected */
2219 if (ap->flags & ATA_FLAG_MMIO) {
2220 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2221 udelay(20); /* FIXME: flush */
2222 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2223 udelay(20); /* FIXME: flush */
2224 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2226 outb(ap->ctl, ioaddr->ctl_addr);
2228 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2230 outb(ap->ctl, ioaddr->ctl_addr);
2233 /* spec mandates ">= 2ms" before checking status.
2234 * We wait 150ms, because that was the magic delay used for
2235 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2236 * between when the ATA command register is written, and then
2237 * status is checked. Because waiting for "a while" before
2238 * checking status is fine, post SRST, we perform this magic
2239 * delay here as well.
2241 * Old drivers/ide uses the 2mS rule and then waits for ready
2245 /* Before we perform post reset processing we want to see if
2246 * the bus shows 0xFF because the odd clown forgets the D7
2247 * pulldown resistor.
2249 if (ata_check_status(ap) == 0xFF) {
2250 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2251 return AC_ERR_OTHER;
2254 ata_bus_post_reset(ap, devmask);
2260 * ata_bus_reset - reset host port and associated ATA channel
2261 * @ap: port to reset
2263 * This is typically the first time we actually start issuing
2264 * commands to the ATA channel. We wait for BSY to clear, then
2265 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2266 * result. Determine what devices, if any, are on the channel
2267 * by looking at the device 0/1 error register. Look at the signature
2268 * stored in each device's taskfile registers, to determine if
2269 * the device is ATA or ATAPI.
2272 * PCI/etc. bus probe sem.
2273 * Obtains host_set lock.
2276 * Sets ATA_FLAG_DISABLED if bus reset fails.
2279 void ata_bus_reset(struct ata_port *ap)
2281 struct ata_ioports *ioaddr = &ap->ioaddr;
2282 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2284 unsigned int dev0, dev1 = 0, devmask = 0;
2286 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2288 /* determine if device 0/1 are present */
2289 if (ap->flags & ATA_FLAG_SATA_RESET)
2292 dev0 = ata_devchk(ap, 0);
2294 dev1 = ata_devchk(ap, 1);
2298 devmask |= (1 << 0);
2300 devmask |= (1 << 1);
2302 /* select device 0 again */
2303 ap->ops->dev_select(ap, 0);
2305 /* issue bus reset */
2306 if (ap->flags & ATA_FLAG_SRST)
2307 if (ata_bus_softreset(ap, devmask))
2311 * determine by signature whether we have ATA or ATAPI devices
2313 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2314 if ((slave_possible) && (err != 0x81))
2315 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2317 /* re-enable interrupts */
2318 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2321 /* is double-select really necessary? */
2322 if (ap->device[1].class != ATA_DEV_NONE)
2323 ap->ops->dev_select(ap, 1);
2324 if (ap->device[0].class != ATA_DEV_NONE)
2325 ap->ops->dev_select(ap, 0);
2327 /* if no devices were detected, disable this port */
2328 if ((ap->device[0].class == ATA_DEV_NONE) &&
2329 (ap->device[1].class == ATA_DEV_NONE))
2332 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2333 /* set up device control for ATA_FLAG_SATA_RESET */
2334 if (ap->flags & ATA_FLAG_MMIO)
2335 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2337 outb(ap->ctl, ioaddr->ctl_addr);
2344 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2345 ap->ops->port_disable(ap);
2350 static int sata_phy_resume(struct ata_port *ap)
2352 unsigned long timeout = jiffies + (HZ * 5);
2353 u32 scontrol, sstatus;
2356 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2359 scontrol = (scontrol & 0x0f0) | 0x300;
2361 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2364 /* Wait for phy to become ready, if necessary. */
2367 if ((rc = sata_scr_read(ap, SCR_STATUS, &sstatus)))
2369 if ((sstatus & 0xf) != 1)
2371 } while (time_before(jiffies, timeout));
2377 * ata_std_probeinit - initialize probing
2378 * @ap: port to be probed
2380 * @ap is about to be probed. Initialize it. This function is
2381 * to be used as standard callback for ata_drive_probe_reset().
2383 * NOTE!!! Do not use this function as probeinit if a low level
2384 * driver implements only hardreset. Just pass NULL as probeinit
2385 * in that case. Using this function is probably okay but doing
2386 * so makes reset sequence different from the original
2387 * ->phy_reset implementation and Jeff nervous. :-P
2389 void ata_std_probeinit(struct ata_port *ap)
2394 sata_phy_resume(ap);
2396 /* init sata_spd_limit to the current value */
2397 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
2398 int spd = (scontrol >> 4) & 0xf;
2399 ap->sata_spd_limit &= (1 << spd) - 1;
2402 /* wait for device */
2403 if (ata_port_online(ap))
2404 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2408 * ata_std_softreset - reset host port via ATA SRST
2409 * @ap: port to reset
2410 * @classes: resulting classes of attached devices
2412 * Reset host port using ATA SRST. This function is to be used
2413 * as standard callback for ata_drive_*_reset() functions.
2416 * Kernel thread context (may sleep)
2419 * 0 on success, -errno otherwise.
2421 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2423 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2424 unsigned int devmask = 0, err_mask;
2429 if (ata_port_offline(ap)) {
2430 classes[0] = ATA_DEV_NONE;
2434 /* determine if device 0/1 are present */
2435 if (ata_devchk(ap, 0))
2436 devmask |= (1 << 0);
2437 if (slave_possible && ata_devchk(ap, 1))
2438 devmask |= (1 << 1);
2440 /* select device 0 again */
2441 ap->ops->dev_select(ap, 0);
2443 /* issue bus reset */
2444 DPRINTK("about to softreset, devmask=%x\n", devmask);
2445 err_mask = ata_bus_softreset(ap, devmask);
2447 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2452 /* determine by signature whether we have ATA or ATAPI devices */
2453 classes[0] = ata_dev_try_classify(ap, 0, &err);
2454 if (slave_possible && err != 0x81)
2455 classes[1] = ata_dev_try_classify(ap, 1, &err);
2458 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2463 * sata_std_hardreset - reset host port via SATA phy reset
2464 * @ap: port to reset
2465 * @class: resulting class of attached device
2467 * SATA phy-reset host port using DET bits of SControl register.
2468 * This function is to be used as standard callback for
2469 * ata_drive_*_reset().
2472 * Kernel thread context (may sleep)
2475 * 0 on success, -errno otherwise.
2477 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2484 if (sata_set_spd_needed(ap)) {
2485 /* SATA spec says nothing about how to reconfigure
2486 * spd. To be on the safe side, turn off phy during
2487 * reconfiguration. This works for at least ICH7 AHCI
2490 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2493 scontrol = (scontrol & 0x0f0) | 0x302;
2495 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2501 /* issue phy wake/reset */
2502 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2505 scontrol = (scontrol & 0x0f0) | 0x301;
2507 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2510 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2511 * 10.4.2 says at least 1 ms.
2515 /* bring phy back */
2516 sata_phy_resume(ap);
2518 /* TODO: phy layer with polling, timeouts, etc. */
2519 if (ata_port_offline(ap)) {
2520 *class = ATA_DEV_NONE;
2521 DPRINTK("EXIT, link offline\n");
2525 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2526 ata_port_printk(ap, KERN_ERR,
2527 "COMRESET failed (device not ready)\n");
2531 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2533 *class = ata_dev_try_classify(ap, 0, NULL);
2535 DPRINTK("EXIT, class=%u\n", *class);
2540 * ata_std_postreset - standard postreset callback
2541 * @ap: the target ata_port
2542 * @classes: classes of attached devices
2544 * This function is invoked after a successful reset. Note that
2545 * the device might have been reset more than once using
2546 * different reset methods before postreset is invoked.
2548 * This function is to be used as standard callback for
2549 * ata_drive_*_reset().
2552 * Kernel thread context (may sleep)
2554 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2560 /* print link status */
2561 sata_print_link_status(ap);
2564 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2565 sata_scr_write(ap, SCR_ERROR, serror);
2567 /* re-enable interrupts */
2568 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2571 /* is double-select really necessary? */
2572 if (classes[0] != ATA_DEV_NONE)
2573 ap->ops->dev_select(ap, 1);
2574 if (classes[1] != ATA_DEV_NONE)
2575 ap->ops->dev_select(ap, 0);
2577 /* bail out if no device is present */
2578 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2579 DPRINTK("EXIT, no device\n");
2583 /* set up device control */
2584 if (ap->ioaddr.ctl_addr) {
2585 if (ap->flags & ATA_FLAG_MMIO)
2586 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2588 outb(ap->ctl, ap->ioaddr.ctl_addr);
2595 * ata_std_probe_reset - standard probe reset method
2596 * @ap: prot to perform probe-reset
2597 * @classes: resulting classes of attached devices
2599 * The stock off-the-shelf ->probe_reset method.
2602 * Kernel thread context (may sleep)
2605 * 0 on success, -errno otherwise.
2607 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2609 ata_reset_fn_t hardreset;
2612 if (sata_scr_valid(ap))
2613 hardreset = sata_std_hardreset;
2615 return ata_drive_probe_reset(ap, ata_std_probeinit,
2616 ata_std_softreset, hardreset,
2617 ata_std_postreset, classes);
2620 int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
2621 unsigned int *classes)
2625 for (i = 0; i < ATA_MAX_DEVICES; i++)
2626 classes[i] = ATA_DEV_UNKNOWN;
2628 rc = reset(ap, classes);
2632 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2633 * is complete and convert all ATA_DEV_UNKNOWN to
2636 for (i = 0; i < ATA_MAX_DEVICES; i++)
2637 if (classes[i] != ATA_DEV_UNKNOWN)
2640 if (i < ATA_MAX_DEVICES)
2641 for (i = 0; i < ATA_MAX_DEVICES; i++)
2642 if (classes[i] == ATA_DEV_UNKNOWN)
2643 classes[i] = ATA_DEV_NONE;
2649 * ata_drive_probe_reset - Perform probe reset with given methods
2650 * @ap: port to reset
2651 * @probeinit: probeinit method (can be NULL)
2652 * @softreset: softreset method (can be NULL)
2653 * @hardreset: hardreset method (can be NULL)
2654 * @postreset: postreset method (can be NULL)
2655 * @classes: resulting classes of attached devices
2657 * Reset the specified port and classify attached devices using
2658 * given methods. This function prefers softreset but tries all
2659 * possible reset sequences to reset and classify devices. This
2660 * function is intended to be used for constructing ->probe_reset
2661 * callback by low level drivers.
2663 * Reset methods should follow the following rules.
2665 * - Return 0 on sucess, -errno on failure.
2666 * - If classification is supported, fill classes[] with
2667 * recognized class codes.
2668 * - If classification is not supported, leave classes[] alone.
2671 * Kernel thread context (may sleep)
2674 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2675 * if classification fails, and any error code from reset
2678 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2679 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2680 ata_postreset_fn_t postreset, unsigned int *classes)
2687 if (softreset && !sata_set_spd_needed(ap)) {
2688 rc = ata_do_reset(ap, softreset, classes);
2689 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2691 ata_port_printk(ap, KERN_INFO, "softreset failed, "
2692 "will try hardreset in 5 secs\n");
2700 rc = ata_do_reset(ap, hardreset, classes);
2702 if (classes[0] != ATA_DEV_UNKNOWN)
2707 if (sata_down_spd_limit(ap))
2710 ata_port_printk(ap, KERN_INFO, "hardreset failed, "
2711 "will retry in 5 secs\n");
2716 ata_port_printk(ap, KERN_INFO,
2717 "hardreset succeeded without classification, "
2718 "will retry softreset in 5 secs\n");
2721 rc = ata_do_reset(ap, softreset, classes);
2727 postreset(ap, classes);
2728 if (classes[0] == ATA_DEV_UNKNOWN)
2735 * ata_dev_same_device - Determine whether new ID matches configured device
2736 * @dev: device to compare against
2737 * @new_class: class of the new device
2738 * @new_id: IDENTIFY page of the new device
2740 * Compare @new_class and @new_id against @dev and determine
2741 * whether @dev is the device indicated by @new_class and
2748 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2750 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2753 const u16 *old_id = dev->id;
2754 unsigned char model[2][41], serial[2][21];
2757 if (dev->class != new_class) {
2758 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2759 dev->class, new_class);
2763 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2764 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2765 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2766 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2767 new_n_sectors = ata_id_n_sectors(new_id);
2769 if (strcmp(model[0], model[1])) {
2770 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2771 "'%s' != '%s'\n", model[0], model[1]);
2775 if (strcmp(serial[0], serial[1])) {
2776 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2777 "'%s' != '%s'\n", serial[0], serial[1]);
2781 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2782 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2784 (unsigned long long)dev->n_sectors,
2785 (unsigned long long)new_n_sectors);
2793 * ata_dev_revalidate - Revalidate ATA device
2794 * @dev: device to revalidate
2795 * @post_reset: is this revalidation after reset?
2797 * Re-read IDENTIFY page and make sure @dev is still attached to
2801 * Kernel thread context (may sleep)
2804 * 0 on success, negative errno otherwise
2806 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2808 unsigned int class = dev->class;
2809 u16 *id = (void *)dev->ap->sector_buf;
2812 if (!ata_dev_enabled(dev)) {
2818 rc = ata_dev_read_id(dev, &class, post_reset, id);
2822 /* is the device still there? */
2823 if (!ata_dev_same_device(dev, class, id)) {
2828 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2830 /* configure device according to the new ID */
2831 rc = ata_dev_configure(dev, 0);
2836 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2840 static const char * const ata_dma_blacklist [] = {
2841 "WDC AC11000H", NULL,
2842 "WDC AC22100H", NULL,
2843 "WDC AC32500H", NULL,
2844 "WDC AC33100H", NULL,
2845 "WDC AC31600H", NULL,
2846 "WDC AC32100H", "24.09P07",
2847 "WDC AC23200L", "21.10N21",
2848 "Compaq CRD-8241B", NULL,
2853 "SanDisk SDP3B", NULL,
2854 "SanDisk SDP3B-64", NULL,
2855 "SANYO CD-ROM CRD", NULL,
2856 "HITACHI CDR-8", NULL,
2857 "HITACHI CDR-8335", NULL,
2858 "HITACHI CDR-8435", NULL,
2859 "Toshiba CD-ROM XM-6202B", NULL,
2860 "TOSHIBA CD-ROM XM-1702BC", NULL,
2862 "E-IDE CD-ROM CR-840", NULL,
2863 "CD-ROM Drive/F5A", NULL,
2864 "WPI CDD-820", NULL,
2865 "SAMSUNG CD-ROM SC-148C", NULL,
2866 "SAMSUNG CD-ROM SC", NULL,
2867 "SanDisk SDP3B-64", NULL,
2868 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2869 "_NEC DV5800A", NULL,
2870 "SAMSUNG CD-ROM SN-124", "N001"
2873 static int ata_strim(char *s, size_t len)
2875 len = strnlen(s, len);
2877 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2878 while ((len > 0) && (s[len - 1] == ' ')) {
2885 static int ata_dma_blacklisted(const struct ata_device *dev)
2887 unsigned char model_num[40];
2888 unsigned char model_rev[16];
2889 unsigned int nlen, rlen;
2892 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2894 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2896 nlen = ata_strim(model_num, sizeof(model_num));
2897 rlen = ata_strim(model_rev, sizeof(model_rev));
2899 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2900 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2901 if (ata_dma_blacklist[i+1] == NULL)
2903 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2911 * ata_dev_xfermask - Compute supported xfermask of the given device
2912 * @dev: Device to compute xfermask for
2914 * Compute supported xfermask of @dev and store it in
2915 * dev->*_mask. This function is responsible for applying all
2916 * known limits including host controller limits, device
2919 * FIXME: The current implementation limits all transfer modes to
2920 * the fastest of the lowested device on the port. This is not
2921 * required on most controllers.
2926 static void ata_dev_xfermask(struct ata_device *dev)
2928 struct ata_port *ap = dev->ap;
2929 struct ata_host_set *hs = ap->host_set;
2930 unsigned long xfer_mask;
2933 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2934 ap->mwdma_mask, ap->udma_mask);
2936 /* Apply cable rule here. Don't apply it early because when
2937 * we handle hot plug the cable type can itself change.
2939 if (ap->cbl == ATA_CBL_PATA40)
2940 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2942 /* FIXME: Use port-wide xfermask for now */
2943 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2944 struct ata_device *d = &ap->device[i];
2946 if (ata_dev_absent(d))
2949 if (ata_dev_disabled(d)) {
2950 /* to avoid violating device selection timing */
2951 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2952 UINT_MAX, UINT_MAX);
2956 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2957 d->mwdma_mask, d->udma_mask);
2958 xfer_mask &= ata_id_xfermask(d->id);
2959 if (ata_dma_blacklisted(d))
2960 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2963 if (ata_dma_blacklisted(dev))
2964 ata_dev_printk(dev, KERN_WARNING,
2965 "device is on DMA blacklist, disabling DMA\n");
2967 if (hs->flags & ATA_HOST_SIMPLEX) {
2968 if (hs->simplex_claimed)
2969 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2972 if (ap->ops->mode_filter)
2973 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2975 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2976 &dev->mwdma_mask, &dev->udma_mask);
2980 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2981 * @dev: Device to which command will be sent
2983 * Issue SET FEATURES - XFER MODE command to device @dev
2987 * PCI/etc. bus probe sem.
2990 * 0 on success, AC_ERR_* mask otherwise.
2993 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
2995 struct ata_taskfile tf;
2996 unsigned int err_mask;
2998 /* set up set-features taskfile */
2999 DPRINTK("set features - xfer mode\n");
3001 ata_tf_init(dev, &tf);
3002 tf.command = ATA_CMD_SET_FEATURES;
3003 tf.feature = SETFEATURES_XFER;
3004 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3005 tf.protocol = ATA_PROT_NODATA;
3006 tf.nsect = dev->xfer_mode;
3008 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3010 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3015 * ata_dev_init_params - Issue INIT DEV PARAMS command
3016 * @dev: Device to which command will be sent
3017 * @heads: Number of heads
3018 * @sectors: Number of sectors
3021 * Kernel thread context (may sleep)
3024 * 0 on success, AC_ERR_* mask otherwise.
3026 static unsigned int ata_dev_init_params(struct ata_device *dev,
3027 u16 heads, u16 sectors)
3029 struct ata_taskfile tf;
3030 unsigned int err_mask;
3032 /* Number of sectors per track 1-255. Number of heads 1-16 */
3033 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3034 return AC_ERR_INVALID;
3036 /* set up init dev params taskfile */
3037 DPRINTK("init dev params \n");
3039 ata_tf_init(dev, &tf);
3040 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3041 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3042 tf.protocol = ATA_PROT_NODATA;
3044 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3046 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3048 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3053 * ata_sg_clean - Unmap DMA memory associated with command
3054 * @qc: Command containing DMA memory to be released
3056 * Unmap all mapped DMA memory associated with this command.
3059 * spin_lock_irqsave(host_set lock)
3062 static void ata_sg_clean(struct ata_queued_cmd *qc)
3064 struct ata_port *ap = qc->ap;
3065 struct scatterlist *sg = qc->__sg;
3066 int dir = qc->dma_dir;
3067 void *pad_buf = NULL;
3069 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3070 WARN_ON(sg == NULL);
3072 if (qc->flags & ATA_QCFLAG_SINGLE)
3073 WARN_ON(qc->n_elem > 1);
3075 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3077 /* if we padded the buffer out to 32-bit bound, and data
3078 * xfer direction is from-device, we must copy from the
3079 * pad buffer back into the supplied buffer
3081 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3082 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3084 if (qc->flags & ATA_QCFLAG_SG) {
3086 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3087 /* restore last sg */
3088 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3090 struct scatterlist *psg = &qc->pad_sgent;
3091 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3092 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3093 kunmap_atomic(addr, KM_IRQ0);
3097 dma_unmap_single(ap->dev,
3098 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3101 sg->length += qc->pad_len;
3103 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3104 pad_buf, qc->pad_len);
3107 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3112 * ata_fill_sg - Fill PCI IDE PRD table
3113 * @qc: Metadata associated with taskfile to be transferred
3115 * Fill PCI IDE PRD (scatter-gather) table with segments
3116 * associated with the current disk command.
3119 * spin_lock_irqsave(host_set lock)
3122 static void ata_fill_sg(struct ata_queued_cmd *qc)
3124 struct ata_port *ap = qc->ap;
3125 struct scatterlist *sg;
3128 WARN_ON(qc->__sg == NULL);
3129 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3132 ata_for_each_sg(sg, qc) {
3136 /* determine if physical DMA addr spans 64K boundary.
3137 * Note h/w doesn't support 64-bit, so we unconditionally
3138 * truncate dma_addr_t to u32.
3140 addr = (u32) sg_dma_address(sg);
3141 sg_len = sg_dma_len(sg);
3144 offset = addr & 0xffff;
3146 if ((offset + sg_len) > 0x10000)
3147 len = 0x10000 - offset;
3149 ap->prd[idx].addr = cpu_to_le32(addr);
3150 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3151 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3160 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3163 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3164 * @qc: Metadata associated with taskfile to check
3166 * Allow low-level driver to filter ATA PACKET commands, returning
3167 * a status indicating whether or not it is OK to use DMA for the
3168 * supplied PACKET command.
3171 * spin_lock_irqsave(host_set lock)
3173 * RETURNS: 0 when ATAPI DMA can be used
3176 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3178 struct ata_port *ap = qc->ap;
3179 int rc = 0; /* Assume ATAPI DMA is OK by default */
3181 if (ap->ops->check_atapi_dma)
3182 rc = ap->ops->check_atapi_dma(qc);
3187 * ata_qc_prep - Prepare taskfile for submission
3188 * @qc: Metadata associated with taskfile to be prepared
3190 * Prepare ATA taskfile for submission.
3193 * spin_lock_irqsave(host_set lock)
3195 void ata_qc_prep(struct ata_queued_cmd *qc)
3197 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3203 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3206 * ata_sg_init_one - Associate command with memory buffer
3207 * @qc: Command to be associated
3208 * @buf: Memory buffer
3209 * @buflen: Length of memory buffer, in bytes.
3211 * Initialize the data-related elements of queued_cmd @qc
3212 * to point to a single memory buffer, @buf of byte length @buflen.
3215 * spin_lock_irqsave(host_set lock)
3218 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3220 struct scatterlist *sg;
3222 qc->flags |= ATA_QCFLAG_SINGLE;
3224 memset(&qc->sgent, 0, sizeof(qc->sgent));
3225 qc->__sg = &qc->sgent;
3227 qc->orig_n_elem = 1;
3231 sg_init_one(sg, buf, buflen);
3235 * ata_sg_init - Associate command with scatter-gather table.
3236 * @qc: Command to be associated
3237 * @sg: Scatter-gather table.
3238 * @n_elem: Number of elements in s/g table.
3240 * Initialize the data-related elements of queued_cmd @qc
3241 * to point to a scatter-gather table @sg, containing @n_elem
3245 * spin_lock_irqsave(host_set lock)
3248 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3249 unsigned int n_elem)
3251 qc->flags |= ATA_QCFLAG_SG;
3253 qc->n_elem = n_elem;
3254 qc->orig_n_elem = n_elem;
3258 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3259 * @qc: Command with memory buffer to be mapped.
3261 * DMA-map the memory buffer associated with queued_cmd @qc.
3264 * spin_lock_irqsave(host_set lock)
3267 * Zero on success, negative on error.
3270 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3272 struct ata_port *ap = qc->ap;
3273 int dir = qc->dma_dir;
3274 struct scatterlist *sg = qc->__sg;
3275 dma_addr_t dma_address;
3278 /* we must lengthen transfers to end on a 32-bit boundary */
3279 qc->pad_len = sg->length & 3;
3281 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3282 struct scatterlist *psg = &qc->pad_sgent;
3284 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3286 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3288 if (qc->tf.flags & ATA_TFLAG_WRITE)
3289 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3292 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3293 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3295 sg->length -= qc->pad_len;
3296 if (sg->length == 0)
3299 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3300 sg->length, qc->pad_len);
3308 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3310 if (dma_mapping_error(dma_address)) {
3312 sg->length += qc->pad_len;
3316 sg_dma_address(sg) = dma_address;
3317 sg_dma_len(sg) = sg->length;
3320 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3321 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3327 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3328 * @qc: Command with scatter-gather table to be mapped.
3330 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3333 * spin_lock_irqsave(host_set lock)
3336 * Zero on success, negative on error.
3340 static int ata_sg_setup(struct ata_queued_cmd *qc)
3342 struct ata_port *ap = qc->ap;
3343 struct scatterlist *sg = qc->__sg;
3344 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3345 int n_elem, pre_n_elem, dir, trim_sg = 0;
3347 VPRINTK("ENTER, ata%u\n", ap->id);
3348 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3350 /* we must lengthen transfers to end on a 32-bit boundary */
3351 qc->pad_len = lsg->length & 3;
3353 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3354 struct scatterlist *psg = &qc->pad_sgent;
3355 unsigned int offset;
3357 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3359 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3362 * psg->page/offset are used to copy to-be-written
3363 * data in this function or read data in ata_sg_clean.
3365 offset = lsg->offset + lsg->length - qc->pad_len;
3366 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3367 psg->offset = offset_in_page(offset);
3369 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3370 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3371 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3372 kunmap_atomic(addr, KM_IRQ0);
3375 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3376 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3378 lsg->length -= qc->pad_len;
3379 if (lsg->length == 0)
3382 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3383 qc->n_elem - 1, lsg->length, qc->pad_len);
3386 pre_n_elem = qc->n_elem;
3387 if (trim_sg && pre_n_elem)
3396 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3398 /* restore last sg */
3399 lsg->length += qc->pad_len;
3403 DPRINTK("%d sg elements mapped\n", n_elem);
3406 qc->n_elem = n_elem;
3412 * ata_poll_qc_complete - turn irq back on and finish qc
3413 * @qc: Command to complete
3414 * @err_mask: ATA status register content
3417 * None. (grabs host lock)
3420 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3422 struct ata_port *ap = qc->ap;
3423 unsigned long flags;
3425 spin_lock_irqsave(&ap->host_set->lock, flags);
3426 ap->flags &= ~ATA_FLAG_NOINTR;
3428 ata_qc_complete(qc);
3429 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3433 * ata_pio_poll - poll using PIO, depending on current state
3434 * @qc: qc in progress
3437 * None. (executing in kernel thread context)
3440 * timeout value to use
3442 static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
3444 struct ata_port *ap = qc->ap;
3446 unsigned int poll_state = HSM_ST_UNKNOWN;
3447 unsigned int reg_state = HSM_ST_UNKNOWN;
3449 switch (ap->hsm_task_state) {
3452 poll_state = HSM_ST_POLL;
3456 case HSM_ST_LAST_POLL:
3457 poll_state = HSM_ST_LAST_POLL;
3458 reg_state = HSM_ST_LAST;
3465 status = ata_chk_status(ap);
3466 if (status & ATA_BUSY) {
3467 if (time_after(jiffies, ap->pio_task_timeout)) {
3468 qc->err_mask |= AC_ERR_TIMEOUT;
3469 ap->hsm_task_state = HSM_ST_TMOUT;
3472 ap->hsm_task_state = poll_state;
3473 return ATA_SHORT_PAUSE;
3476 ap->hsm_task_state = reg_state;
3481 * ata_pio_complete - check if drive is busy or idle
3482 * @qc: qc to complete
3485 * None. (executing in kernel thread context)
3488 * Non-zero if qc completed, zero otherwise.
3490 static int ata_pio_complete(struct ata_queued_cmd *qc)
3492 struct ata_port *ap = qc->ap;
3496 * This is purely heuristic. This is a fast path. Sometimes when
3497 * we enter, BSY will be cleared in a chk-status or two. If not,
3498 * the drive is probably seeking or something. Snooze for a couple
3499 * msecs, then chk-status again. If still busy, fall back to
3500 * HSM_ST_POLL state.
3502 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3503 if (drv_stat & ATA_BUSY) {
3505 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3506 if (drv_stat & ATA_BUSY) {
3507 ap->hsm_task_state = HSM_ST_LAST_POLL;
3508 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3513 drv_stat = ata_wait_idle(ap);
3514 if (!ata_ok(drv_stat)) {
3515 qc->err_mask |= __ac_err_mask(drv_stat);
3516 ap->hsm_task_state = HSM_ST_ERR;
3520 ap->hsm_task_state = HSM_ST_IDLE;
3522 WARN_ON(qc->err_mask);
3523 ata_poll_qc_complete(qc);
3525 /* another command may start at this point */
3532 * swap_buf_le16 - swap halves of 16-bit words in place
3533 * @buf: Buffer to swap
3534 * @buf_words: Number of 16-bit words in buffer.
3536 * Swap halves of 16-bit words if needed to convert from
3537 * little-endian byte order to native cpu byte order, or
3541 * Inherited from caller.
3543 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3548 for (i = 0; i < buf_words; i++)
3549 buf[i] = le16_to_cpu(buf[i]);
3550 #endif /* __BIG_ENDIAN */
3554 * ata_mmio_data_xfer - Transfer data by MMIO
3555 * @ap: port to read/write
3557 * @buflen: buffer length
3558 * @write_data: read/write
3560 * Transfer data from/to the device data register by MMIO.
3563 * Inherited from caller.
3566 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3567 unsigned int buflen, int write_data)
3570 unsigned int words = buflen >> 1;
3571 u16 *buf16 = (u16 *) buf;
3572 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3574 /* Transfer multiple of 2 bytes */
3576 for (i = 0; i < words; i++)
3577 writew(le16_to_cpu(buf16[i]), mmio);
3579 for (i = 0; i < words; i++)
3580 buf16[i] = cpu_to_le16(readw(mmio));
3583 /* Transfer trailing 1 byte, if any. */
3584 if (unlikely(buflen & 0x01)) {
3585 u16 align_buf[1] = { 0 };
3586 unsigned char *trailing_buf = buf + buflen - 1;
3589 memcpy(align_buf, trailing_buf, 1);
3590 writew(le16_to_cpu(align_buf[0]), mmio);
3592 align_buf[0] = cpu_to_le16(readw(mmio));
3593 memcpy(trailing_buf, align_buf, 1);
3599 * ata_pio_data_xfer - Transfer data by PIO
3600 * @ap: port to read/write
3602 * @buflen: buffer length
3603 * @write_data: read/write
3605 * Transfer data from/to the device data register by PIO.
3608 * Inherited from caller.
3611 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3612 unsigned int buflen, int write_data)
3614 unsigned int words = buflen >> 1;
3616 /* Transfer multiple of 2 bytes */
3618 outsw(ap->ioaddr.data_addr, buf, words);
3620 insw(ap->ioaddr.data_addr, buf, words);
3622 /* Transfer trailing 1 byte, if any. */
3623 if (unlikely(buflen & 0x01)) {
3624 u16 align_buf[1] = { 0 };
3625 unsigned char *trailing_buf = buf + buflen - 1;
3628 memcpy(align_buf, trailing_buf, 1);
3629 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3631 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3632 memcpy(trailing_buf, align_buf, 1);
3638 * ata_data_xfer - Transfer data from/to the data register.
3639 * @ap: port to read/write
3641 * @buflen: buffer length
3642 * @do_write: read/write
3644 * Transfer data from/to the device data register.
3647 * Inherited from caller.
3650 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3651 unsigned int buflen, int do_write)
3653 /* Make the crap hardware pay the costs not the good stuff */
3654 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3655 unsigned long flags;
3656 local_irq_save(flags);
3657 if (ap->flags & ATA_FLAG_MMIO)
3658 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3660 ata_pio_data_xfer(ap, buf, buflen, do_write);
3661 local_irq_restore(flags);
3663 if (ap->flags & ATA_FLAG_MMIO)
3664 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3666 ata_pio_data_xfer(ap, buf, buflen, do_write);
3671 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3672 * @qc: Command on going
3674 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3677 * Inherited from caller.
3680 static void ata_pio_sector(struct ata_queued_cmd *qc)
3682 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3683 struct scatterlist *sg = qc->__sg;
3684 struct ata_port *ap = qc->ap;
3686 unsigned int offset;
3689 if (qc->cursect == (qc->nsect - 1))
3690 ap->hsm_task_state = HSM_ST_LAST;
3692 page = sg[qc->cursg].page;
3693 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3695 /* get the current page and offset */
3696 page = nth_page(page, (offset >> PAGE_SHIFT));
3697 offset %= PAGE_SIZE;
3699 buf = kmap(page) + offset;
3704 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3709 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3711 /* do the actual data transfer */
3712 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3713 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3719 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3720 * @qc: Command on going
3721 * @bytes: number of bytes
3723 * Transfer Transfer data from/to the ATAPI device.
3726 * Inherited from caller.
3730 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3732 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3733 struct scatterlist *sg = qc->__sg;
3734 struct ata_port *ap = qc->ap;
3737 unsigned int offset, count;
3739 if (qc->curbytes + bytes >= qc->nbytes)
3740 ap->hsm_task_state = HSM_ST_LAST;
3743 if (unlikely(qc->cursg >= qc->n_elem)) {
3745 * The end of qc->sg is reached and the device expects
3746 * more data to transfer. In order not to overrun qc->sg
3747 * and fulfill length specified in the byte count register,
3748 * - for read case, discard trailing data from the device
3749 * - for write case, padding zero data to the device
3751 u16 pad_buf[1] = { 0 };
3752 unsigned int words = bytes >> 1;
3755 if (words) /* warning if bytes > 1 */
3756 ata_dev_printk(qc->dev, KERN_WARNING,
3757 "%u bytes trailing data\n", bytes);
3759 for (i = 0; i < words; i++)
3760 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3762 ap->hsm_task_state = HSM_ST_LAST;
3766 sg = &qc->__sg[qc->cursg];
3769 offset = sg->offset + qc->cursg_ofs;
3771 /* get the current page and offset */
3772 page = nth_page(page, (offset >> PAGE_SHIFT));
3773 offset %= PAGE_SIZE;
3775 /* don't overrun current sg */
3776 count = min(sg->length - qc->cursg_ofs, bytes);
3778 /* don't cross page boundaries */
3779 count = min(count, (unsigned int)PAGE_SIZE - offset);
3781 buf = kmap(page) + offset;
3784 qc->curbytes += count;
3785 qc->cursg_ofs += count;
3787 if (qc->cursg_ofs == sg->length) {
3792 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3794 /* do the actual data transfer */
3795 ata_data_xfer(ap, buf, count, do_write);
3804 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3805 * @qc: Command on going
3807 * Transfer Transfer data from/to the ATAPI device.
3810 * Inherited from caller.
3813 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3815 struct ata_port *ap = qc->ap;
3816 struct ata_device *dev = qc->dev;
3817 unsigned int ireason, bc_lo, bc_hi, bytes;
3818 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3820 ap->ops->tf_read(ap, &qc->tf);
3821 ireason = qc->tf.nsect;
3822 bc_lo = qc->tf.lbam;
3823 bc_hi = qc->tf.lbah;
3824 bytes = (bc_hi << 8) | bc_lo;
3826 /* shall be cleared to zero, indicating xfer of data */
3827 if (ireason & (1 << 0))
3830 /* make sure transfer direction matches expected */
3831 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3832 if (do_write != i_write)
3835 __atapi_pio_bytes(qc, bytes);
3840 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3841 qc->err_mask |= AC_ERR_HSM;
3842 ap->hsm_task_state = HSM_ST_ERR;
3846 * ata_pio_block - start PIO on a block
3847 * @qc: qc to transfer block for
3850 * None. (executing in kernel thread context)
3852 static void ata_pio_block(struct ata_queued_cmd *qc)
3854 struct ata_port *ap = qc->ap;
3858 * This is purely heuristic. This is a fast path.
3859 * Sometimes when we enter, BSY will be cleared in
3860 * a chk-status or two. If not, the drive is probably seeking
3861 * or something. Snooze for a couple msecs, then
3862 * chk-status again. If still busy, fall back to
3863 * HSM_ST_POLL state.
3865 status = ata_busy_wait(ap, ATA_BUSY, 5);
3866 if (status & ATA_BUSY) {
3868 status = ata_busy_wait(ap, ATA_BUSY, 10);
3869 if (status & ATA_BUSY) {
3870 ap->hsm_task_state = HSM_ST_POLL;
3871 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3877 if (status & (ATA_ERR | ATA_DF)) {
3878 qc->err_mask |= AC_ERR_DEV;
3879 ap->hsm_task_state = HSM_ST_ERR;
3883 /* transfer data if any */
3884 if (is_atapi_taskfile(&qc->tf)) {
3885 /* DRQ=0 means no more data to transfer */
3886 if ((status & ATA_DRQ) == 0) {
3887 ap->hsm_task_state = HSM_ST_LAST;
3891 atapi_pio_bytes(qc);
3893 /* handle BSY=0, DRQ=0 as error */
3894 if ((status & ATA_DRQ) == 0) {
3895 qc->err_mask |= AC_ERR_HSM;
3896 ap->hsm_task_state = HSM_ST_ERR;
3904 static void ata_pio_error(struct ata_queued_cmd *qc)
3906 struct ata_port *ap = qc->ap;
3908 if (qc->tf.command != ATA_CMD_PACKET)
3909 ata_dev_printk(qc->dev, KERN_WARNING, "PIO error\n");
3911 /* make sure qc->err_mask is available to
3912 * know what's wrong and recover
3914 WARN_ON(qc->err_mask == 0);
3916 ap->hsm_task_state = HSM_ST_IDLE;
3918 ata_poll_qc_complete(qc);
3921 static void ata_pio_task(void *_data)
3923 struct ata_queued_cmd *qc = _data;
3924 struct ata_port *ap = qc->ap;
3925 unsigned long timeout;
3932 switch (ap->hsm_task_state) {
3941 qc_completed = ata_pio_complete(qc);
3945 case HSM_ST_LAST_POLL:
3946 timeout = ata_pio_poll(qc);
3956 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
3957 else if (!qc_completed)
3962 * atapi_packet_task - Write CDB bytes to hardware
3963 * @_data: qc in progress
3965 * When device has indicated its readiness to accept
3966 * a CDB, this function is called. Send the CDB.
3967 * If DMA is to be performed, exit immediately.
3968 * Otherwise, we are in polling mode, so poll
3969 * status under operation succeeds or fails.
3972 * Kernel thread context (may sleep)
3974 static void atapi_packet_task(void *_data)
3976 struct ata_queued_cmd *qc = _data;
3977 struct ata_port *ap = qc->ap;
3980 /* sleep-wait for BSY to clear */
3981 DPRINTK("busy wait\n");
3982 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3983 qc->err_mask |= AC_ERR_TIMEOUT;
3987 /* make sure DRQ is set */
3988 status = ata_chk_status(ap);
3989 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3990 qc->err_mask |= AC_ERR_HSM;
3995 DPRINTK("send cdb\n");
3996 WARN_ON(qc->dev->cdb_len < 12);
3998 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3999 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4000 unsigned long flags;
4002 /* Once we're done issuing command and kicking bmdma,
4003 * irq handler takes over. To not lose irq, we need
4004 * to clear NOINTR flag before sending cdb, but
4005 * interrupt handler shouldn't be invoked before we're
4006 * finished. Hence, the following locking.
4008 spin_lock_irqsave(&ap->host_set->lock, flags);
4009 ap->flags &= ~ATA_FLAG_NOINTR;
4010 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4011 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4012 ap->ops->bmdma_start(qc); /* initiate bmdma */
4013 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4015 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4017 /* PIO commands are handled by polling */
4018 ap->hsm_task_state = HSM_ST;
4019 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4025 ata_poll_qc_complete(qc);
4029 * ata_qc_new - Request an available ATA command, for queueing
4030 * @ap: Port associated with device @dev
4031 * @dev: Device from whom we request an available command structure
4037 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4039 struct ata_queued_cmd *qc = NULL;
4042 /* the last tag is reserved for internal command. */
4043 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4044 if (!test_and_set_bit(i, &ap->qactive)) {
4045 qc = ata_qc_from_tag(ap, i);
4056 * ata_qc_new_init - Request an available ATA command, and initialize it
4057 * @dev: Device from whom we request an available command structure
4063 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4065 struct ata_port *ap = dev->ap;
4066 struct ata_queued_cmd *qc;
4068 qc = ata_qc_new(ap);
4081 * ata_qc_free - free unused ata_queued_cmd
4082 * @qc: Command to complete
4084 * Designed to free unused ata_queued_cmd object
4085 * in case something prevents using it.
4088 * spin_lock_irqsave(host_set lock)
4090 void ata_qc_free(struct ata_queued_cmd *qc)
4092 struct ata_port *ap = qc->ap;
4095 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4099 if (likely(ata_tag_valid(tag))) {
4100 qc->tag = ATA_TAG_POISON;
4101 clear_bit(tag, &ap->qactive);
4105 void __ata_qc_complete(struct ata_queued_cmd *qc)
4107 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4108 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4110 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4113 /* command should be marked inactive atomically with qc completion */
4114 qc->ap->active_tag = ATA_TAG_POISON;
4116 /* atapi: mark qc as inactive to prevent the interrupt handler
4117 * from completing the command twice later, before the error handler
4118 * is called. (when rc != 0 and atapi request sense is needed)
4120 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4122 /* call completion callback */
4123 qc->complete_fn(qc);
4126 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4128 struct ata_port *ap = qc->ap;
4130 switch (qc->tf.protocol) {
4132 case ATA_PROT_ATAPI_DMA:
4135 case ATA_PROT_ATAPI:
4137 if (ap->flags & ATA_FLAG_PIO_DMA)
4150 * ata_qc_issue - issue taskfile to device
4151 * @qc: command to issue to device
4153 * Prepare an ATA command to submission to device.
4154 * This includes mapping the data into a DMA-able
4155 * area, filling in the S/G table, and finally
4156 * writing the taskfile to hardware, starting the command.
4159 * spin_lock_irqsave(host_set lock)
4161 void ata_qc_issue(struct ata_queued_cmd *qc)
4163 struct ata_port *ap = qc->ap;
4165 qc->ap->active_tag = qc->tag;
4166 qc->flags |= ATA_QCFLAG_ACTIVE;
4168 if (ata_should_dma_map(qc)) {
4169 if (qc->flags & ATA_QCFLAG_SG) {
4170 if (ata_sg_setup(qc))
4172 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4173 if (ata_sg_setup_one(qc))
4177 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4180 ap->ops->qc_prep(qc);
4182 qc->err_mask |= ap->ops->qc_issue(qc);
4183 if (unlikely(qc->err_mask))
4188 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4189 qc->err_mask |= AC_ERR_SYSTEM;
4191 ata_qc_complete(qc);
4195 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4196 * @qc: command to issue to device
4198 * Using various libata functions and hooks, this function
4199 * starts an ATA command. ATA commands are grouped into
4200 * classes called "protocols", and issuing each type of protocol
4201 * is slightly different.
4203 * May be used as the qc_issue() entry in ata_port_operations.
4206 * spin_lock_irqsave(host_set lock)
4209 * Zero on success, AC_ERR_* mask on failure
4212 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4214 struct ata_port *ap = qc->ap;
4216 ata_dev_select(ap, qc->dev->devno, 1, 0);
4218 switch (qc->tf.protocol) {
4219 case ATA_PROT_NODATA:
4220 ata_tf_to_host(ap, &qc->tf);
4224 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4225 ap->ops->bmdma_setup(qc); /* set up bmdma */
4226 ap->ops->bmdma_start(qc); /* initiate bmdma */
4229 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4230 ata_qc_set_polling(qc);
4231 ata_tf_to_host(ap, &qc->tf);
4232 ap->hsm_task_state = HSM_ST;
4233 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4236 case ATA_PROT_ATAPI:
4237 ata_qc_set_polling(qc);
4238 ata_tf_to_host(ap, &qc->tf);
4239 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4242 case ATA_PROT_ATAPI_NODATA:
4243 ap->flags |= ATA_FLAG_NOINTR;
4244 ata_tf_to_host(ap, &qc->tf);
4245 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4248 case ATA_PROT_ATAPI_DMA:
4249 ap->flags |= ATA_FLAG_NOINTR;
4250 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4251 ap->ops->bmdma_setup(qc); /* set up bmdma */
4252 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4257 return AC_ERR_SYSTEM;
4264 * ata_host_intr - Handle host interrupt for given (port, task)
4265 * @ap: Port on which interrupt arrived (possibly...)
4266 * @qc: Taskfile currently active in engine
4268 * Handle host interrupt for given queued command. Currently,
4269 * only DMA interrupts are handled. All other commands are
4270 * handled via polling with interrupts disabled (nIEN bit).
4273 * spin_lock_irqsave(host_set lock)
4276 * One if interrupt was handled, zero if not (shared irq).
4279 inline unsigned int ata_host_intr (struct ata_port *ap,
4280 struct ata_queued_cmd *qc)
4282 u8 status, host_stat;
4284 switch (qc->tf.protocol) {
4287 case ATA_PROT_ATAPI_DMA:
4288 case ATA_PROT_ATAPI:
4289 /* check status of DMA engine */
4290 host_stat = ap->ops->bmdma_status(ap);
4291 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4293 /* if it's not our irq... */
4294 if (!(host_stat & ATA_DMA_INTR))
4297 /* before we do anything else, clear DMA-Start bit */
4298 ap->ops->bmdma_stop(qc);
4302 case ATA_PROT_ATAPI_NODATA:
4303 case ATA_PROT_NODATA:
4304 /* check altstatus */
4305 status = ata_altstatus(ap);
4306 if (status & ATA_BUSY)
4309 /* check main status, clearing INTRQ */
4310 status = ata_chk_status(ap);
4311 if (unlikely(status & ATA_BUSY))
4313 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4314 ap->id, qc->tf.protocol, status);
4316 /* ack bmdma irq events */
4317 ap->ops->irq_clear(ap);
4319 /* complete taskfile transaction */
4320 qc->err_mask |= ac_err_mask(status);
4321 ata_qc_complete(qc);
4328 return 1; /* irq handled */
4331 ap->stats.idle_irq++;
4334 if ((ap->stats.idle_irq % 1000) == 0) {
4335 ata_irq_ack(ap, 0); /* debug trap */
4336 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4340 return 0; /* irq not handled */
4344 * ata_interrupt - Default ATA host interrupt handler
4345 * @irq: irq line (unused)
4346 * @dev_instance: pointer to our ata_host_set information structure
4349 * Default interrupt handler for PCI IDE devices. Calls
4350 * ata_host_intr() for each port that is not disabled.
4353 * Obtains host_set lock during operation.
4356 * IRQ_NONE or IRQ_HANDLED.
4359 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4361 struct ata_host_set *host_set = dev_instance;
4363 unsigned int handled = 0;
4364 unsigned long flags;
4366 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4367 spin_lock_irqsave(&host_set->lock, flags);
4369 for (i = 0; i < host_set->n_ports; i++) {
4370 struct ata_port *ap;
4372 ap = host_set->ports[i];
4374 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
4375 struct ata_queued_cmd *qc;
4377 qc = ata_qc_from_tag(ap, ap->active_tag);
4378 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4379 (qc->flags & ATA_QCFLAG_ACTIVE))
4380 handled |= ata_host_intr(ap, qc);
4384 spin_unlock_irqrestore(&host_set->lock, flags);
4386 return IRQ_RETVAL(handled);
4390 * sata_scr_valid - test whether SCRs are accessible
4391 * @ap: ATA port to test SCR accessibility for
4393 * Test whether SCRs are accessible for @ap.
4399 * 1 if SCRs are accessible, 0 otherwise.
4401 int sata_scr_valid(struct ata_port *ap)
4403 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4407 * sata_scr_read - read SCR register of the specified port
4408 * @ap: ATA port to read SCR for
4410 * @val: Place to store read value
4412 * Read SCR register @reg of @ap into *@val. This function is
4413 * guaranteed to succeed if the cable type of the port is SATA
4414 * and the port implements ->scr_read.
4420 * 0 on success, negative errno on failure.
4422 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4424 if (sata_scr_valid(ap)) {
4425 *val = ap->ops->scr_read(ap, reg);
4432 * sata_scr_write - write SCR register of the specified port
4433 * @ap: ATA port to write SCR for
4434 * @reg: SCR to write
4435 * @val: value to write
4437 * Write @val to SCR register @reg of @ap. This function is
4438 * guaranteed to succeed if the cable type of the port is SATA
4439 * and the port implements ->scr_read.
4445 * 0 on success, negative errno on failure.
4447 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4449 if (sata_scr_valid(ap)) {
4450 ap->ops->scr_write(ap, reg, val);
4457 * sata_scr_write_flush - write SCR register of the specified port and flush
4458 * @ap: ATA port to write SCR for
4459 * @reg: SCR to write
4460 * @val: value to write
4462 * This function is identical to sata_scr_write() except that this
4463 * function performs flush after writing to the register.
4469 * 0 on success, negative errno on failure.
4471 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4473 if (sata_scr_valid(ap)) {
4474 ap->ops->scr_write(ap, reg, val);
4475 ap->ops->scr_read(ap, reg);
4482 * ata_port_online - test whether the given port is online
4483 * @ap: ATA port to test
4485 * Test whether @ap is online. Note that this function returns 0
4486 * if online status of @ap cannot be obtained, so
4487 * ata_port_online(ap) != !ata_port_offline(ap).
4493 * 1 if the port online status is available and online.
4495 int ata_port_online(struct ata_port *ap)
4499 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4505 * ata_port_offline - test whether the given port is offline
4506 * @ap: ATA port to test
4508 * Test whether @ap is offline. Note that this function returns
4509 * 0 if offline status of @ap cannot be obtained, so
4510 * ata_port_online(ap) != !ata_port_offline(ap).
4516 * 1 if the port offline status is available and offline.
4518 int ata_port_offline(struct ata_port *ap)
4522 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4528 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4529 * without filling any other registers
4531 static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
4533 struct ata_taskfile tf;
4536 ata_tf_init(dev, &tf);
4539 tf.flags |= ATA_TFLAG_DEVICE;
4540 tf.protocol = ATA_PROT_NODATA;
4542 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4544 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4550 static int ata_flush_cache(struct ata_device *dev)
4554 if (!ata_try_flush_cache(dev))
4557 if (ata_id_has_flush_ext(dev->id))
4558 cmd = ATA_CMD_FLUSH_EXT;
4560 cmd = ATA_CMD_FLUSH;
4562 return ata_do_simple_cmd(dev, cmd);
4565 static int ata_standby_drive(struct ata_device *dev)
4567 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
4570 static int ata_start_drive(struct ata_device *dev)
4572 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
4576 * ata_device_resume - wakeup a previously suspended devices
4577 * @dev: the device to resume
4579 * Kick the drive back into action, by sending it an idle immediate
4580 * command and making sure its transfer mode matches between drive
4584 int ata_device_resume(struct ata_device *dev)
4586 struct ata_port *ap = dev->ap;
4588 if (ap->flags & ATA_FLAG_SUSPENDED) {
4589 struct ata_device *failed_dev;
4590 ap->flags &= ~ATA_FLAG_SUSPENDED;
4591 while (ata_set_mode(ap, &failed_dev))
4592 ata_dev_disable(failed_dev);
4594 if (!ata_dev_enabled(dev))
4596 if (dev->class == ATA_DEV_ATA)
4597 ata_start_drive(dev);
4603 * ata_device_suspend - prepare a device for suspend
4604 * @dev: the device to suspend
4606 * Flush the cache on the drive, if appropriate, then issue a
4607 * standbynow command.
4609 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
4611 struct ata_port *ap = dev->ap;
4613 if (!ata_dev_enabled(dev))
4615 if (dev->class == ATA_DEV_ATA)
4616 ata_flush_cache(dev);
4618 if (state.event != PM_EVENT_FREEZE)
4619 ata_standby_drive(dev);
4620 ap->flags |= ATA_FLAG_SUSPENDED;
4625 * ata_port_start - Set port up for dma.
4626 * @ap: Port to initialize
4628 * Called just after data structures for each port are
4629 * initialized. Allocates space for PRD table.
4631 * May be used as the port_start() entry in ata_port_operations.
4634 * Inherited from caller.
4637 int ata_port_start (struct ata_port *ap)
4639 struct device *dev = ap->dev;
4642 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4646 rc = ata_pad_alloc(ap, dev);
4648 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4652 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4659 * ata_port_stop - Undo ata_port_start()
4660 * @ap: Port to shut down
4662 * Frees the PRD table.
4664 * May be used as the port_stop() entry in ata_port_operations.
4667 * Inherited from caller.
4670 void ata_port_stop (struct ata_port *ap)
4672 struct device *dev = ap->dev;
4674 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4675 ata_pad_free(ap, dev);
4678 void ata_host_stop (struct ata_host_set *host_set)
4680 if (host_set->mmio_base)
4681 iounmap(host_set->mmio_base);
4686 * ata_host_remove - Unregister SCSI host structure with upper layers
4687 * @ap: Port to unregister
4688 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4691 * Inherited from caller.
4694 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4696 struct Scsi_Host *sh = ap->host;
4701 scsi_remove_host(sh);
4703 ap->ops->port_stop(ap);
4707 * ata_host_init - Initialize an ata_port structure
4708 * @ap: Structure to initialize
4709 * @host: associated SCSI mid-layer structure
4710 * @host_set: Collection of hosts to which @ap belongs
4711 * @ent: Probe information provided by low-level driver
4712 * @port_no: Port number associated with this ata_port
4714 * Initialize a new ata_port structure, and its associated
4718 * Inherited from caller.
4721 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4722 struct ata_host_set *host_set,
4723 const struct ata_probe_ent *ent, unsigned int port_no)
4729 host->max_channel = 1;
4730 host->unique_id = ata_unique_id++;
4731 host->max_cmd_len = 12;
4733 ap->flags = ATA_FLAG_DISABLED;
4734 ap->id = host->unique_id;
4736 ap->ctl = ATA_DEVCTL_OBS;
4737 ap->host_set = host_set;
4739 ap->port_no = port_no;
4741 ent->legacy_mode ? ent->hard_port_no : port_no;
4742 ap->pio_mask = ent->pio_mask;
4743 ap->mwdma_mask = ent->mwdma_mask;
4744 ap->udma_mask = ent->udma_mask;
4745 ap->flags |= ent->host_flags;
4746 ap->ops = ent->port_ops;
4747 ap->sata_spd_limit = UINT_MAX;
4748 ap->active_tag = ATA_TAG_POISON;
4749 ap->last_ctl = 0xFF;
4751 INIT_WORK(&ap->port_task, NULL, NULL);
4752 INIT_LIST_HEAD(&ap->eh_done_q);
4754 /* set cable type */
4755 ap->cbl = ATA_CBL_NONE;
4756 if (ap->flags & ATA_FLAG_SATA)
4757 ap->cbl = ATA_CBL_SATA;
4759 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4760 struct ata_device *dev = &ap->device[i];
4763 dev->pio_mask = UINT_MAX;
4764 dev->mwdma_mask = UINT_MAX;
4765 dev->udma_mask = UINT_MAX;
4769 ap->stats.unhandled_irq = 1;
4770 ap->stats.idle_irq = 1;
4773 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4777 * ata_host_add - Attach low-level ATA driver to system
4778 * @ent: Information provided by low-level driver
4779 * @host_set: Collections of ports to which we add
4780 * @port_no: Port number associated with this host
4782 * Attach low-level ATA driver to system.
4785 * PCI/etc. bus probe sem.
4788 * New ata_port on success, for NULL on error.
4791 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4792 struct ata_host_set *host_set,
4793 unsigned int port_no)
4795 struct Scsi_Host *host;
4796 struct ata_port *ap;
4801 if (!ent->port_ops->probe_reset &&
4802 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4803 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4808 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4812 host->transportt = &ata_scsi_transport_template;
4814 ap = ata_shost_to_port(host);
4816 ata_host_init(ap, host, host_set, ent, port_no);
4818 rc = ap->ops->port_start(ap);
4825 scsi_host_put(host);
4830 * ata_device_add - Register hardware device with ATA and SCSI layers
4831 * @ent: Probe information describing hardware device to be registered
4833 * This function processes the information provided in the probe
4834 * information struct @ent, allocates the necessary ATA and SCSI
4835 * host information structures, initializes them, and registers
4836 * everything with requisite kernel subsystems.
4838 * This function requests irqs, probes the ATA bus, and probes
4842 * PCI/etc. bus probe sem.
4845 * Number of ports registered. Zero on error (no ports registered).
4848 int ata_device_add(const struct ata_probe_ent *ent)
4850 unsigned int count = 0, i;
4851 struct device *dev = ent->dev;
4852 struct ata_host_set *host_set;
4855 /* alloc a container for our list of ATA ports (buses) */
4856 host_set = kzalloc(sizeof(struct ata_host_set) +
4857 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4860 spin_lock_init(&host_set->lock);
4862 host_set->dev = dev;
4863 host_set->n_ports = ent->n_ports;
4864 host_set->irq = ent->irq;
4865 host_set->mmio_base = ent->mmio_base;
4866 host_set->private_data = ent->private_data;
4867 host_set->ops = ent->port_ops;
4868 host_set->flags = ent->host_set_flags;
4870 /* register each port bound to this device */
4871 for (i = 0; i < ent->n_ports; i++) {
4872 struct ata_port *ap;
4873 unsigned long xfer_mode_mask;
4875 ap = ata_host_add(ent, host_set, i);
4879 host_set->ports[i] = ap;
4880 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4881 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4882 (ap->pio_mask << ATA_SHIFT_PIO);
4884 /* print per-port info to dmesg */
4885 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
4886 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
4887 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4888 ata_mode_string(xfer_mode_mask),
4889 ap->ioaddr.cmd_addr,
4890 ap->ioaddr.ctl_addr,
4891 ap->ioaddr.bmdma_addr,
4895 host_set->ops->irq_clear(ap);
4902 /* obtain irq, that is shared between channels */
4903 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4904 DRV_NAME, host_set))
4907 /* perform each probe synchronously */
4908 DPRINTK("probe begin\n");
4909 for (i = 0; i < count; i++) {
4910 struct ata_port *ap;
4913 ap = host_set->ports[i];
4915 DPRINTK("ata%u: bus probe begin\n", ap->id);
4916 rc = ata_bus_probe(ap);
4917 DPRINTK("ata%u: bus probe end\n", ap->id);
4920 /* FIXME: do something useful here?
4921 * Current libata behavior will
4922 * tear down everything when
4923 * the module is removed
4924 * or the h/w is unplugged.
4928 rc = scsi_add_host(ap->host, dev);
4930 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
4931 /* FIXME: do something useful here */
4932 /* FIXME: handle unconditional calls to
4933 * scsi_scan_host and ata_host_remove, below,
4939 /* probes are done, now scan each port's disk(s) */
4940 DPRINTK("host probe begin\n");
4941 for (i = 0; i < count; i++) {
4942 struct ata_port *ap = host_set->ports[i];
4944 ata_scsi_scan_host(ap);
4947 dev_set_drvdata(dev, host_set);
4949 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4950 return ent->n_ports; /* success */
4953 for (i = 0; i < count; i++) {
4954 ata_host_remove(host_set->ports[i], 1);
4955 scsi_host_put(host_set->ports[i]->host);
4959 VPRINTK("EXIT, returning 0\n");
4964 * ata_host_set_remove - PCI layer callback for device removal
4965 * @host_set: ATA host set that was removed
4967 * Unregister all objects associated with this host set. Free those
4971 * Inherited from calling layer (may sleep).
4974 void ata_host_set_remove(struct ata_host_set *host_set)
4976 struct ata_port *ap;
4979 for (i = 0; i < host_set->n_ports; i++) {
4980 ap = host_set->ports[i];
4981 scsi_remove_host(ap->host);
4984 free_irq(host_set->irq, host_set);
4986 for (i = 0; i < host_set->n_ports; i++) {
4987 ap = host_set->ports[i];
4989 ata_scsi_release(ap->host);
4991 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4992 struct ata_ioports *ioaddr = &ap->ioaddr;
4994 if (ioaddr->cmd_addr == 0x1f0)
4995 release_region(0x1f0, 8);
4996 else if (ioaddr->cmd_addr == 0x170)
4997 release_region(0x170, 8);
5000 scsi_host_put(ap->host);
5003 if (host_set->ops->host_stop)
5004 host_set->ops->host_stop(host_set);
5010 * ata_scsi_release - SCSI layer callback hook for host unload
5011 * @host: libata host to be unloaded
5013 * Performs all duties necessary to shut down a libata port...
5014 * Kill port kthread, disable port, and release resources.
5017 * Inherited from SCSI layer.
5023 int ata_scsi_release(struct Scsi_Host *host)
5025 struct ata_port *ap = ata_shost_to_port(host);
5029 ap->ops->port_disable(ap);
5030 ata_host_remove(ap, 0);
5037 * ata_std_ports - initialize ioaddr with standard port offsets.
5038 * @ioaddr: IO address structure to be initialized
5040 * Utility function which initializes data_addr, error_addr,
5041 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5042 * device_addr, status_addr, and command_addr to standard offsets
5043 * relative to cmd_addr.
5045 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5048 void ata_std_ports(struct ata_ioports *ioaddr)
5050 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5051 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5052 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5053 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5054 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5055 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5056 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5057 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5058 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5059 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5065 void ata_pci_host_stop (struct ata_host_set *host_set)
5067 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5069 pci_iounmap(pdev, host_set->mmio_base);
5073 * ata_pci_remove_one - PCI layer callback for device removal
5074 * @pdev: PCI device that was removed
5076 * PCI layer indicates to libata via this hook that
5077 * hot-unplug or module unload event has occurred.
5078 * Handle this by unregistering all objects associated
5079 * with this PCI device. Free those objects. Then finally
5080 * release PCI resources and disable device.
5083 * Inherited from PCI layer (may sleep).
5086 void ata_pci_remove_one (struct pci_dev *pdev)
5088 struct device *dev = pci_dev_to_dev(pdev);
5089 struct ata_host_set *host_set = dev_get_drvdata(dev);
5091 ata_host_set_remove(host_set);
5092 pci_release_regions(pdev);
5093 pci_disable_device(pdev);
5094 dev_set_drvdata(dev, NULL);
5097 /* move to PCI subsystem */
5098 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5100 unsigned long tmp = 0;
5102 switch (bits->width) {
5105 pci_read_config_byte(pdev, bits->reg, &tmp8);
5111 pci_read_config_word(pdev, bits->reg, &tmp16);
5117 pci_read_config_dword(pdev, bits->reg, &tmp32);
5128 return (tmp == bits->val) ? 1 : 0;
5131 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5133 pci_save_state(pdev);
5134 pci_disable_device(pdev);
5135 pci_set_power_state(pdev, PCI_D3hot);
5139 int ata_pci_device_resume(struct pci_dev *pdev)
5141 pci_set_power_state(pdev, PCI_D0);
5142 pci_restore_state(pdev);
5143 pci_enable_device(pdev);
5144 pci_set_master(pdev);
5147 #endif /* CONFIG_PCI */
5150 static int __init ata_init(void)
5152 ata_wq = create_workqueue("ata");
5156 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5160 static void __exit ata_exit(void)
5162 destroy_workqueue(ata_wq);
5165 module_init(ata_init);
5166 module_exit(ata_exit);
5168 static unsigned long ratelimit_time;
5169 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5171 int ata_ratelimit(void)
5174 unsigned long flags;
5176 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5178 if (time_after(jiffies, ratelimit_time)) {
5180 ratelimit_time = jiffies + (HZ/5);
5184 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5190 * ata_wait_register - wait until register value changes
5191 * @reg: IO-mapped register
5192 * @mask: Mask to apply to read register value
5193 * @val: Wait condition
5194 * @interval_msec: polling interval in milliseconds
5195 * @timeout_msec: timeout in milliseconds
5197 * Waiting for some bits of register to change is a common
5198 * operation for ATA controllers. This function reads 32bit LE
5199 * IO-mapped register @reg and tests for the following condition.
5201 * (*@reg & mask) != val
5203 * If the condition is met, it returns; otherwise, the process is
5204 * repeated after @interval_msec until timeout.
5207 * Kernel thread context (may sleep)
5210 * The final register value.
5212 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5213 unsigned long interval_msec,
5214 unsigned long timeout_msec)
5216 unsigned long timeout;
5219 tmp = ioread32(reg);
5221 /* Calculate timeout _after_ the first read to make sure
5222 * preceding writes reach the controller before starting to
5223 * eat away the timeout.
5225 timeout = jiffies + (timeout_msec * HZ) / 1000;
5227 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5228 msleep(interval_msec);
5229 tmp = ioread32(reg);
5236 * libata is essentially a library of internal helper functions for
5237 * low-level ATA host controller drivers. As such, the API/ABI is
5238 * likely to change as new drivers are added and updated.
5239 * Do not depend on ABI/API stability.
5242 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5243 EXPORT_SYMBOL_GPL(ata_std_ports);
5244 EXPORT_SYMBOL_GPL(ata_device_add);
5245 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5246 EXPORT_SYMBOL_GPL(ata_sg_init);
5247 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5248 EXPORT_SYMBOL_GPL(__ata_qc_complete);
5249 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5250 EXPORT_SYMBOL_GPL(ata_tf_load);
5251 EXPORT_SYMBOL_GPL(ata_tf_read);
5252 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5253 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5254 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5255 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5256 EXPORT_SYMBOL_GPL(ata_check_status);
5257 EXPORT_SYMBOL_GPL(ata_altstatus);
5258 EXPORT_SYMBOL_GPL(ata_exec_command);
5259 EXPORT_SYMBOL_GPL(ata_port_start);
5260 EXPORT_SYMBOL_GPL(ata_port_stop);
5261 EXPORT_SYMBOL_GPL(ata_host_stop);
5262 EXPORT_SYMBOL_GPL(ata_interrupt);
5263 EXPORT_SYMBOL_GPL(ata_qc_prep);
5264 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5265 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5266 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5267 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5268 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5269 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5270 EXPORT_SYMBOL_GPL(ata_port_probe);
5271 EXPORT_SYMBOL_GPL(sata_set_spd);
5272 EXPORT_SYMBOL_GPL(sata_phy_reset);
5273 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5274 EXPORT_SYMBOL_GPL(ata_bus_reset);
5275 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5276 EXPORT_SYMBOL_GPL(ata_std_softreset);
5277 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5278 EXPORT_SYMBOL_GPL(ata_std_postreset);
5279 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5280 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5281 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5282 EXPORT_SYMBOL_GPL(ata_dev_classify);
5283 EXPORT_SYMBOL_GPL(ata_dev_pair);
5284 EXPORT_SYMBOL_GPL(ata_port_disable);
5285 EXPORT_SYMBOL_GPL(ata_ratelimit);
5286 EXPORT_SYMBOL_GPL(ata_wait_register);
5287 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5288 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5289 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5290 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5291 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5292 EXPORT_SYMBOL_GPL(ata_scsi_release);
5293 EXPORT_SYMBOL_GPL(ata_host_intr);
5294 EXPORT_SYMBOL_GPL(sata_scr_valid);
5295 EXPORT_SYMBOL_GPL(sata_scr_read);
5296 EXPORT_SYMBOL_GPL(sata_scr_write);
5297 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5298 EXPORT_SYMBOL_GPL(ata_port_online);
5299 EXPORT_SYMBOL_GPL(ata_port_offline);
5300 EXPORT_SYMBOL_GPL(ata_id_string);
5301 EXPORT_SYMBOL_GPL(ata_id_c_string);
5302 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5304 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5305 EXPORT_SYMBOL_GPL(ata_timing_compute);
5306 EXPORT_SYMBOL_GPL(ata_timing_merge);
5309 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5310 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5311 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5312 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5313 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5314 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5315 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5316 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5317 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5318 #endif /* CONFIG_PCI */
5320 EXPORT_SYMBOL_GPL(ata_device_suspend);
5321 EXPORT_SYMBOL_GPL(ata_device_resume);
5322 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5323 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5325 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5326 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5327 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);