x86: switch 64-bit to generic find_first_bit
[linux-2.6] / drivers / net / cpmac.c
1 /*
2  * Copyright (C) 2006, 2007 Eugene Konev
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/moduleparam.h>
22
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/types.h>
28 #include <linux/delay.h>
29 #include <linux/version.h>
30
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/skbuff.h>
35 #include <linux/mii.h>
36 #include <linux/phy.h>
37 #include <linux/phy_fixed.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
40 #include <asm/gpio.h>
41
42 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
43 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
44 MODULE_LICENSE("GPL");
45 MODULE_ALIAS("platform:cpmac");
46
47 static int debug_level = 8;
48 static int dumb_switch;
49
50 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
51 module_param(debug_level, int, 0444);
52 module_param(dumb_switch, int, 0444);
53
54 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
55 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
56
57 #define CPMAC_VERSION "0.5.0"
58 /* frame size + 802.1q tag */
59 #define CPMAC_SKB_SIZE          (ETH_FRAME_LEN + 4)
60 #define CPMAC_QUEUES    8
61
62 /* Ethernet registers */
63 #define CPMAC_TX_CONTROL                0x0004
64 #define CPMAC_TX_TEARDOWN               0x0008
65 #define CPMAC_RX_CONTROL                0x0014
66 #define CPMAC_RX_TEARDOWN               0x0018
67 #define CPMAC_MBP                       0x0100
68 # define MBP_RXPASSCRC                  0x40000000
69 # define MBP_RXQOS                      0x20000000
70 # define MBP_RXNOCHAIN                  0x10000000
71 # define MBP_RXCMF                      0x01000000
72 # define MBP_RXSHORT                    0x00800000
73 # define MBP_RXCEF                      0x00400000
74 # define MBP_RXPROMISC                  0x00200000
75 # define MBP_PROMISCCHAN(channel)       (((channel) & 0x7) << 16)
76 # define MBP_RXBCAST                    0x00002000
77 # define MBP_BCASTCHAN(channel)         (((channel) & 0x7) << 8)
78 # define MBP_RXMCAST                    0x00000020
79 # define MBP_MCASTCHAN(channel)         ((channel) & 0x7)
80 #define CPMAC_UNICAST_ENABLE            0x0104
81 #define CPMAC_UNICAST_CLEAR             0x0108
82 #define CPMAC_MAX_LENGTH                0x010c
83 #define CPMAC_BUFFER_OFFSET             0x0110
84 #define CPMAC_MAC_CONTROL               0x0160
85 # define MAC_TXPTYPE                    0x00000200
86 # define MAC_TXPACE                     0x00000040
87 # define MAC_MII                        0x00000020
88 # define MAC_TXFLOW                     0x00000010
89 # define MAC_RXFLOW                     0x00000008
90 # define MAC_MTEST                      0x00000004
91 # define MAC_LOOPBACK                   0x00000002
92 # define MAC_FDX                        0x00000001
93 #define CPMAC_MAC_STATUS                0x0164
94 # define MAC_STATUS_QOS                 0x00000004
95 # define MAC_STATUS_RXFLOW              0x00000002
96 # define MAC_STATUS_TXFLOW              0x00000001
97 #define CPMAC_TX_INT_ENABLE             0x0178
98 #define CPMAC_TX_INT_CLEAR              0x017c
99 #define CPMAC_MAC_INT_VECTOR            0x0180
100 # define MAC_INT_STATUS                 0x00080000
101 # define MAC_INT_HOST                   0x00040000
102 # define MAC_INT_RX                     0x00020000
103 # define MAC_INT_TX                     0x00010000
104 #define CPMAC_MAC_EOI_VECTOR            0x0184
105 #define CPMAC_RX_INT_ENABLE             0x0198
106 #define CPMAC_RX_INT_CLEAR              0x019c
107 #define CPMAC_MAC_INT_ENABLE            0x01a8
108 #define CPMAC_MAC_INT_CLEAR             0x01ac
109 #define CPMAC_MAC_ADDR_LO(channel)      (0x01b0 + (channel) * 4)
110 #define CPMAC_MAC_ADDR_MID              0x01d0
111 #define CPMAC_MAC_ADDR_HI               0x01d4
112 #define CPMAC_MAC_HASH_LO               0x01d8
113 #define CPMAC_MAC_HASH_HI               0x01dc
114 #define CPMAC_TX_PTR(channel)           (0x0600 + (channel) * 4)
115 #define CPMAC_RX_PTR(channel)           (0x0620 + (channel) * 4)
116 #define CPMAC_TX_ACK(channel)           (0x0640 + (channel) * 4)
117 #define CPMAC_RX_ACK(channel)           (0x0660 + (channel) * 4)
118 #define CPMAC_REG_END                   0x0680
119 /*
120  * Rx/Tx statistics
121  * TODO: use some of them to fill stats in cpmac_stats()
122  */
123 #define CPMAC_STATS_RX_GOOD             0x0200
124 #define CPMAC_STATS_RX_BCAST            0x0204
125 #define CPMAC_STATS_RX_MCAST            0x0208
126 #define CPMAC_STATS_RX_PAUSE            0x020c
127 #define CPMAC_STATS_RX_CRC              0x0210
128 #define CPMAC_STATS_RX_ALIGN            0x0214
129 #define CPMAC_STATS_RX_OVER             0x0218
130 #define CPMAC_STATS_RX_JABBER           0x021c
131 #define CPMAC_STATS_RX_UNDER            0x0220
132 #define CPMAC_STATS_RX_FRAG             0x0224
133 #define CPMAC_STATS_RX_FILTER           0x0228
134 #define CPMAC_STATS_RX_QOSFILTER        0x022c
135 #define CPMAC_STATS_RX_OCTETS           0x0230
136
137 #define CPMAC_STATS_TX_GOOD             0x0234
138 #define CPMAC_STATS_TX_BCAST            0x0238
139 #define CPMAC_STATS_TX_MCAST            0x023c
140 #define CPMAC_STATS_TX_PAUSE            0x0240
141 #define CPMAC_STATS_TX_DEFER            0x0244
142 #define CPMAC_STATS_TX_COLLISION        0x0248
143 #define CPMAC_STATS_TX_SINGLECOLL       0x024c
144 #define CPMAC_STATS_TX_MULTICOLL        0x0250
145 #define CPMAC_STATS_TX_EXCESSCOLL       0x0254
146 #define CPMAC_STATS_TX_LATECOLL         0x0258
147 #define CPMAC_STATS_TX_UNDERRUN         0x025c
148 #define CPMAC_STATS_TX_CARRIERSENSE     0x0260
149 #define CPMAC_STATS_TX_OCTETS           0x0264
150
151 #define cpmac_read(base, reg)           (readl((void __iomem *)(base) + (reg)))
152 #define cpmac_write(base, reg, val)     (writel(val, (void __iomem *)(base) + \
153                                                 (reg)))
154
155 /* MDIO bus */
156 #define CPMAC_MDIO_VERSION              0x0000
157 #define CPMAC_MDIO_CONTROL              0x0004
158 # define MDIOC_IDLE                     0x80000000
159 # define MDIOC_ENABLE                   0x40000000
160 # define MDIOC_PREAMBLE                 0x00100000
161 # define MDIOC_FAULT                    0x00080000
162 # define MDIOC_FAULTDETECT              0x00040000
163 # define MDIOC_INTTEST                  0x00020000
164 # define MDIOC_CLKDIV(div)              ((div) & 0xff)
165 #define CPMAC_MDIO_ALIVE                0x0008
166 #define CPMAC_MDIO_LINK                 0x000c
167 #define CPMAC_MDIO_ACCESS(channel)      (0x0080 + (channel) * 8)
168 # define MDIO_BUSY                      0x80000000
169 # define MDIO_WRITE                     0x40000000
170 # define MDIO_REG(reg)                  (((reg) & 0x1f) << 21)
171 # define MDIO_PHY(phy)                  (((phy) & 0x1f) << 16)
172 # define MDIO_DATA(data)                ((data) & 0xffff)
173 #define CPMAC_MDIO_PHYSEL(channel)      (0x0084 + (channel) * 8)
174 # define PHYSEL_LINKSEL                 0x00000040
175 # define PHYSEL_LINKINT                 0x00000020
176
177 struct cpmac_desc {
178         u32 hw_next;
179         u32 hw_data;
180         u16 buflen;
181         u16 bufflags;
182         u16 datalen;
183         u16 dataflags;
184 #define CPMAC_SOP                       0x8000
185 #define CPMAC_EOP                       0x4000
186 #define CPMAC_OWN                       0x2000
187 #define CPMAC_EOQ                       0x1000
188         struct sk_buff *skb;
189         struct cpmac_desc *next;
190         dma_addr_t mapping;
191         dma_addr_t data_mapping;
192 };
193
194 struct cpmac_priv {
195         spinlock_t lock;
196         spinlock_t rx_lock;
197         struct cpmac_desc *rx_head;
198         int ring_size;
199         struct cpmac_desc *desc_ring;
200         dma_addr_t dma_ring;
201         void __iomem *regs;
202         struct mii_bus *mii_bus;
203         struct phy_device *phy;
204         char phy_name[BUS_ID_SIZE];
205         int oldlink, oldspeed, oldduplex;
206         u32 msg_enable;
207         struct net_device *dev;
208         struct work_struct reset_work;
209         struct platform_device *pdev;
210         struct napi_struct napi;
211 };
212
213 static irqreturn_t cpmac_irq(int, void *);
214 static void cpmac_hw_start(struct net_device *dev);
215 static void cpmac_hw_stop(struct net_device *dev);
216 static int cpmac_stop(struct net_device *dev);
217 static int cpmac_open(struct net_device *dev);
218
219 static void cpmac_dump_regs(struct net_device *dev)
220 {
221         int i;
222         struct cpmac_priv *priv = netdev_priv(dev);
223         for (i = 0; i < CPMAC_REG_END; i += 4) {
224                 if (i % 16 == 0) {
225                         if (i)
226                                 printk("\n");
227                         printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
228                                priv->regs + i);
229                 }
230                 printk(" %08x", cpmac_read(priv->regs, i));
231         }
232         printk("\n");
233 }
234
235 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
236 {
237         int i;
238         printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
239         for (i = 0; i < sizeof(*desc) / 4; i++)
240                 printk(" %08x", ((u32 *)desc)[i]);
241         printk("\n");
242 }
243
244 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
245 {
246         int i;
247         printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
248         for (i = 0; i < skb->len; i++) {
249                 if (i % 16 == 0) {
250                         if (i)
251                                 printk("\n");
252                         printk(KERN_DEBUG "%s: data[%p]:", dev->name,
253                                skb->data + i);
254                 }
255                 printk(" %02x", ((u8 *)skb->data)[i]);
256         }
257         printk("\n");
258 }
259
260 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
261 {
262         u32 val;
263
264         while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
265                 cpu_relax();
266         cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
267                     MDIO_PHY(phy_id));
268         while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
269                 cpu_relax();
270         return MDIO_DATA(val);
271 }
272
273 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
274                             int reg, u16 val)
275 {
276         while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
277                 cpu_relax();
278         cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
279                     MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
280         return 0;
281 }
282
283 static int cpmac_mdio_reset(struct mii_bus *bus)
284 {
285         ar7_device_reset(AR7_RESET_BIT_MDIO);
286         cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
287                     MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1));
288         return 0;
289 }
290
291 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
292
293 static struct mii_bus cpmac_mii = {
294         .name = "cpmac-mii",
295         .read = cpmac_mdio_read,
296         .write = cpmac_mdio_write,
297         .reset = cpmac_mdio_reset,
298         .irq = mii_irqs,
299 };
300
301 static int cpmac_config(struct net_device *dev, struct ifmap *map)
302 {
303         if (dev->flags & IFF_UP)
304                 return -EBUSY;
305
306         /* Don't allow changing the I/O address */
307         if (map->base_addr != dev->base_addr)
308                 return -EOPNOTSUPP;
309
310         /* ignore other fields */
311         return 0;
312 }
313
314 static void cpmac_set_multicast_list(struct net_device *dev)
315 {
316         struct dev_mc_list *iter;
317         int i;
318         u8 tmp;
319         u32 mbp, bit, hash[2] = { 0, };
320         struct cpmac_priv *priv = netdev_priv(dev);
321
322         mbp = cpmac_read(priv->regs, CPMAC_MBP);
323         if (dev->flags & IFF_PROMISC) {
324                 cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
325                             MBP_RXPROMISC);
326         } else {
327                 cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
328                 if (dev->flags & IFF_ALLMULTI) {
329                         /* enable all multicast mode */
330                         cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
331                         cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
332                 } else {
333                         /*
334                          * cpmac uses some strange mac address hashing
335                          * (not crc32)
336                          */
337                         for (i = 0, iter = dev->mc_list; i < dev->mc_count;
338                              i++, iter = iter->next) {
339                                 bit = 0;
340                                 tmp = iter->dmi_addr[0];
341                                 bit  ^= (tmp >> 2) ^ (tmp << 4);
342                                 tmp = iter->dmi_addr[1];
343                                 bit  ^= (tmp >> 4) ^ (tmp << 2);
344                                 tmp = iter->dmi_addr[2];
345                                 bit  ^= (tmp >> 6) ^ tmp;
346                                 tmp = iter->dmi_addr[3];
347                                 bit  ^= (tmp >> 2) ^ (tmp << 4);
348                                 tmp = iter->dmi_addr[4];
349                                 bit  ^= (tmp >> 4) ^ (tmp << 2);
350                                 tmp = iter->dmi_addr[5];
351                                 bit  ^= (tmp >> 6) ^ tmp;
352                                 bit &= 0x3f;
353                                 hash[bit / 32] |= 1 << (bit % 32);
354                         }
355
356                         cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
357                         cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
358                 }
359         }
360 }
361
362 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
363                                     struct cpmac_desc *desc)
364 {
365         struct sk_buff *skb, *result = NULL;
366
367         if (unlikely(netif_msg_hw(priv)))
368                 cpmac_dump_desc(priv->dev, desc);
369         cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
370         if (unlikely(!desc->datalen)) {
371                 if (netif_msg_rx_err(priv) && net_ratelimit())
372                         printk(KERN_WARNING "%s: rx: spurious interrupt\n",
373                                priv->dev->name);
374                 return NULL;
375         }
376
377         skb = netdev_alloc_skb(priv->dev, CPMAC_SKB_SIZE);
378         if (likely(skb)) {
379                 skb_reserve(skb, 2);
380                 skb_put(desc->skb, desc->datalen);
381                 desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
382                 desc->skb->ip_summed = CHECKSUM_NONE;
383                 priv->dev->stats.rx_packets++;
384                 priv->dev->stats.rx_bytes += desc->datalen;
385                 result = desc->skb;
386                 dma_unmap_single(&priv->dev->dev, desc->data_mapping,
387                                  CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
388                 desc->skb = skb;
389                 desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
390                                                     CPMAC_SKB_SIZE,
391                                                     DMA_FROM_DEVICE);
392                 desc->hw_data = (u32)desc->data_mapping;
393                 if (unlikely(netif_msg_pktdata(priv))) {
394                         printk(KERN_DEBUG "%s: received packet:\n",
395                                priv->dev->name);
396                         cpmac_dump_skb(priv->dev, result);
397                 }
398         } else {
399                 if (netif_msg_rx_err(priv) && net_ratelimit())
400                         printk(KERN_WARNING
401                                "%s: low on skbs, dropping packet\n",
402                                priv->dev->name);
403                 priv->dev->stats.rx_dropped++;
404         }
405
406         desc->buflen = CPMAC_SKB_SIZE;
407         desc->dataflags = CPMAC_OWN;
408
409         return result;
410 }
411
412 static int cpmac_poll(struct napi_struct *napi, int budget)
413 {
414         struct sk_buff *skb;
415         struct cpmac_desc *desc;
416         int received = 0;
417         struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
418
419         spin_lock(&priv->rx_lock);
420         if (unlikely(!priv->rx_head)) {
421                 if (netif_msg_rx_err(priv) && net_ratelimit())
422                         printk(KERN_WARNING "%s: rx: polling, but no queue\n",
423                                priv->dev->name);
424                 netif_rx_complete(priv->dev, napi);
425                 return 0;
426         }
427
428         desc = priv->rx_head;
429         while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
430                 skb = cpmac_rx_one(priv, desc);
431                 if (likely(skb)) {
432                         netif_receive_skb(skb);
433                         received++;
434                 }
435                 desc = desc->next;
436         }
437
438         priv->rx_head = desc;
439         spin_unlock(&priv->rx_lock);
440         if (unlikely(netif_msg_rx_status(priv)))
441                 printk(KERN_DEBUG "%s: poll processed %d packets\n",
442                        priv->dev->name, received);
443         if (desc->dataflags & CPMAC_OWN) {
444                 netif_rx_complete(priv->dev, napi);
445                 cpmac_write(priv->regs, CPMAC_RX_PTR(0), (u32)desc->mapping);
446                 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
447                 return 0;
448         }
449
450         return 1;
451 }
452
453 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
454 {
455         int queue, len;
456         struct cpmac_desc *desc;
457         struct cpmac_priv *priv = netdev_priv(dev);
458
459         if (unlikely(skb_padto(skb, ETH_ZLEN)))
460                 return NETDEV_TX_OK;
461
462         len = max(skb->len, ETH_ZLEN);
463         queue = skb_get_queue_mapping(skb);
464 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
465         netif_stop_subqueue(dev, queue);
466 #else
467         netif_stop_queue(dev);
468 #endif
469
470         desc = &priv->desc_ring[queue];
471         if (unlikely(desc->dataflags & CPMAC_OWN)) {
472                 if (netif_msg_tx_err(priv) && net_ratelimit())
473                         printk(KERN_WARNING "%s: tx dma ring full\n",
474                                dev->name);
475                 return NETDEV_TX_BUSY;
476         }
477
478         spin_lock(&priv->lock);
479         dev->trans_start = jiffies;
480         spin_unlock(&priv->lock);
481         desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
482         desc->skb = skb;
483         desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
484                                             DMA_TO_DEVICE);
485         desc->hw_data = (u32)desc->data_mapping;
486         desc->datalen = len;
487         desc->buflen = len;
488         if (unlikely(netif_msg_tx_queued(priv)))
489                 printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
490                        skb->len);
491         if (unlikely(netif_msg_hw(priv)))
492                 cpmac_dump_desc(dev, desc);
493         if (unlikely(netif_msg_pktdata(priv)))
494                 cpmac_dump_skb(dev, skb);
495         cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
496
497         return NETDEV_TX_OK;
498 }
499
500 static void cpmac_end_xmit(struct net_device *dev, int queue)
501 {
502         struct cpmac_desc *desc;
503         struct cpmac_priv *priv = netdev_priv(dev);
504
505         desc = &priv->desc_ring[queue];
506         cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
507         if (likely(desc->skb)) {
508                 spin_lock(&priv->lock);
509                 dev->stats.tx_packets++;
510                 dev->stats.tx_bytes += desc->skb->len;
511                 spin_unlock(&priv->lock);
512                 dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
513                                  DMA_TO_DEVICE);
514
515                 if (unlikely(netif_msg_tx_done(priv)))
516                         printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
517                                desc->skb, desc->skb->len);
518
519                 dev_kfree_skb_irq(desc->skb);
520                 desc->skb = NULL;
521 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
522                 if (netif_subqueue_stopped(dev, queue))
523                         netif_wake_subqueue(dev, queue);
524 #else
525                 if (netif_queue_stopped(dev))
526                         netif_wake_queue(dev);
527 #endif
528         } else {
529                 if (netif_msg_tx_err(priv) && net_ratelimit())
530                         printk(KERN_WARNING
531                                "%s: end_xmit: spurious interrupt\n", dev->name);
532 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
533                 if (netif_subqueue_stopped(dev, queue))
534                         netif_wake_subqueue(dev, queue);
535 #else
536                 if (netif_queue_stopped(dev))
537                         netif_wake_queue(dev);
538 #endif
539         }
540 }
541
542 static void cpmac_hw_stop(struct net_device *dev)
543 {
544         int i;
545         struct cpmac_priv *priv = netdev_priv(dev);
546         struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
547
548         ar7_device_reset(pdata->reset_bit);
549         cpmac_write(priv->regs, CPMAC_RX_CONTROL,
550                     cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
551         cpmac_write(priv->regs, CPMAC_TX_CONTROL,
552                     cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
553         for (i = 0; i < 8; i++) {
554                 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
555                 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
556         }
557         cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
558         cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
559         cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
560         cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
561         cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
562                     cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
563 }
564
565 static void cpmac_hw_start(struct net_device *dev)
566 {
567         int i;
568         struct cpmac_priv *priv = netdev_priv(dev);
569         struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
570
571         ar7_device_reset(pdata->reset_bit);
572         for (i = 0; i < 8; i++) {
573                 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
574                 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
575         }
576         cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
577
578         cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
579                     MBP_RXMCAST);
580         cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
581         for (i = 0; i < 8; i++)
582                 cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
583         cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
584         cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
585                     (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
586                     (dev->dev_addr[3] << 24));
587         cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
588         cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
589         cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
590         cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
591         cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
592         cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
593         cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
594         cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
595         cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
596
597         cpmac_write(priv->regs, CPMAC_RX_CONTROL,
598                     cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
599         cpmac_write(priv->regs, CPMAC_TX_CONTROL,
600                     cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
601         cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
602                     cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
603                     MAC_FDX);
604 }
605
606 static void cpmac_clear_rx(struct net_device *dev)
607 {
608         struct cpmac_priv *priv = netdev_priv(dev);
609         struct cpmac_desc *desc;
610         int i;
611         if (unlikely(!priv->rx_head))
612                 return;
613         desc = priv->rx_head;
614         for (i = 0; i < priv->ring_size; i++) {
615                 if ((desc->dataflags & CPMAC_OWN) == 0) {
616                         if (netif_msg_rx_err(priv) && net_ratelimit())
617                                 printk(KERN_WARNING "%s: packet dropped\n",
618                                        dev->name);
619                         if (unlikely(netif_msg_hw(priv)))
620                                 cpmac_dump_desc(dev, desc);
621                         desc->dataflags = CPMAC_OWN;
622                         dev->stats.rx_dropped++;
623                 }
624                 desc = desc->next;
625         }
626 }
627
628 static void cpmac_clear_tx(struct net_device *dev)
629 {
630         struct cpmac_priv *priv = netdev_priv(dev);
631         int i;
632         if (unlikely(!priv->desc_ring))
633                 return;
634         for (i = 0; i < CPMAC_QUEUES; i++) {
635                 priv->desc_ring[i].dataflags = 0;
636                 if (priv->desc_ring[i].skb) {
637                         dev_kfree_skb_any(priv->desc_ring[i].skb);
638                         if (netif_subqueue_stopped(dev, i))
639                             netif_wake_subqueue(dev, i);
640                 }
641         }
642 }
643
644 static void cpmac_hw_error(struct work_struct *work)
645 {
646         struct cpmac_priv *priv =
647                 container_of(work, struct cpmac_priv, reset_work);
648
649         spin_lock(&priv->rx_lock);
650         cpmac_clear_rx(priv->dev);
651         spin_unlock(&priv->rx_lock);
652         cpmac_clear_tx(priv->dev);
653         cpmac_hw_start(priv->dev);
654         napi_enable(&priv->napi);
655         netif_start_queue(priv->dev);
656 }
657
658 static irqreturn_t cpmac_irq(int irq, void *dev_id)
659 {
660         struct net_device *dev = dev_id;
661         struct cpmac_priv *priv;
662         int queue;
663         u32 status;
664
665         priv = netdev_priv(dev);
666
667         status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
668
669         if (unlikely(netif_msg_intr(priv)))
670                 printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
671                        status);
672
673         if (status & MAC_INT_TX)
674                 cpmac_end_xmit(dev, (status & 7));
675
676         if (status & MAC_INT_RX) {
677                 queue = (status >> 8) & 7;
678                 if (netif_rx_schedule_prep(dev, &priv->napi)) {
679                         cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
680                         __netif_rx_schedule(dev, &priv->napi);
681                 }
682         }
683
684         cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
685
686         if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS))) {
687                 if (netif_msg_drv(priv) && net_ratelimit())
688                         printk(KERN_ERR "%s: hw error, resetting...\n",
689                                dev->name);
690                 netif_stop_queue(dev);
691                 napi_disable(&priv->napi);
692                 cpmac_hw_stop(dev);
693                 schedule_work(&priv->reset_work);
694                 if (unlikely(netif_msg_hw(priv)))
695                         cpmac_dump_regs(dev);
696         }
697
698         return IRQ_HANDLED;
699 }
700
701 static void cpmac_tx_timeout(struct net_device *dev)
702 {
703         struct cpmac_priv *priv = netdev_priv(dev);
704         int i;
705
706         spin_lock(&priv->lock);
707         dev->stats.tx_errors++;
708         spin_unlock(&priv->lock);
709         if (netif_msg_tx_err(priv) && net_ratelimit())
710                 printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
711         /* 
712          * FIXME: waking up random queue is not the best thing to
713          * do... on the other hand why we got here at all?
714          */
715 #ifdef CONFIG_NETDEVICES_MULTIQUEUE
716         for (i = 0; i < CPMAC_QUEUES; i++)
717                 if (priv->desc_ring[i].skb) {
718                         priv->desc_ring[i].dataflags = 0;
719                         dev_kfree_skb_any(priv->desc_ring[i].skb);
720                         netif_wake_subqueue(dev, i);
721                         break;
722                 }
723 #else
724         priv->desc_ring[0].dataflags = 0;
725         if (priv->desc_ring[0].skb)
726                 dev_kfree_skb_any(priv->desc_ring[0].skb);
727         netif_wake_queue(dev);
728 #endif
729 }
730
731 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
732 {
733         struct cpmac_priv *priv = netdev_priv(dev);
734         if (!(netif_running(dev)))
735                 return -EINVAL;
736         if (!priv->phy)
737                 return -EINVAL;
738         if ((cmd == SIOCGMIIPHY) || (cmd == SIOCGMIIREG) ||
739             (cmd == SIOCSMIIREG))
740                 return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd);
741
742         return -EOPNOTSUPP;
743 }
744
745 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
746 {
747         struct cpmac_priv *priv = netdev_priv(dev);
748
749         if (priv->phy)
750                 return phy_ethtool_gset(priv->phy, cmd);
751
752         return -EINVAL;
753 }
754
755 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
756 {
757         struct cpmac_priv *priv = netdev_priv(dev);
758
759         if (!capable(CAP_NET_ADMIN))
760                 return -EPERM;
761
762         if (priv->phy)
763                 return phy_ethtool_sset(priv->phy, cmd);
764
765         return -EINVAL;
766 }
767
768 static void cpmac_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
769 {
770         struct cpmac_priv *priv = netdev_priv(dev);
771
772         ring->rx_max_pending = 1024;
773         ring->rx_mini_max_pending = 1;
774         ring->rx_jumbo_max_pending = 1;
775         ring->tx_max_pending = 1;
776
777         ring->rx_pending = priv->ring_size;
778         ring->rx_mini_pending = 1;
779         ring->rx_jumbo_pending = 1;
780         ring->tx_pending = 1;
781 }
782
783 static int cpmac_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
784 {
785         struct cpmac_priv *priv = netdev_priv(dev);
786
787         if (netif_running(dev))
788                 return -EBUSY;
789         priv->ring_size = ring->rx_pending;
790         return 0;
791 }
792
793 static void cpmac_get_drvinfo(struct net_device *dev,
794                               struct ethtool_drvinfo *info)
795 {
796         strcpy(info->driver, "cpmac");
797         strcpy(info->version, CPMAC_VERSION);
798         info->fw_version[0] = '\0';
799         sprintf(info->bus_info, "%s", "cpmac");
800         info->regdump_len = 0;
801 }
802
803 static const struct ethtool_ops cpmac_ethtool_ops = {
804         .get_settings = cpmac_get_settings,
805         .set_settings = cpmac_set_settings,
806         .get_drvinfo = cpmac_get_drvinfo,
807         .get_link = ethtool_op_get_link,
808         .get_ringparam = cpmac_get_ringparam,
809         .set_ringparam = cpmac_set_ringparam,
810 };
811
812 static void cpmac_adjust_link(struct net_device *dev)
813 {
814         struct cpmac_priv *priv = netdev_priv(dev);
815         int new_state = 0;
816
817         spin_lock(&priv->lock);
818         if (priv->phy->link) {
819                 netif_start_queue(dev);
820                 if (priv->phy->duplex != priv->oldduplex) {
821                         new_state = 1;
822                         priv->oldduplex = priv->phy->duplex;
823                 }
824
825                 if (priv->phy->speed != priv->oldspeed) {
826                         new_state = 1;
827                         priv->oldspeed = priv->phy->speed;
828                 }
829
830                 if (!priv->oldlink) {
831                         new_state = 1;
832                         priv->oldlink = 1;
833                         netif_schedule(dev);
834                 }
835         } else if (priv->oldlink) {
836                 netif_stop_queue(dev);
837                 new_state = 1;
838                 priv->oldlink = 0;
839                 priv->oldspeed = 0;
840                 priv->oldduplex = -1;
841         }
842
843         if (new_state && netif_msg_link(priv) && net_ratelimit())
844                 phy_print_status(priv->phy);
845
846         spin_unlock(&priv->lock);
847 }
848
849 static int cpmac_open(struct net_device *dev)
850 {
851         int i, size, res;
852         struct cpmac_priv *priv = netdev_priv(dev);
853         struct resource *mem;
854         struct cpmac_desc *desc;
855         struct sk_buff *skb;
856
857         mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
858         if (!request_mem_region(mem->start, mem->end - mem->start, dev->name)) {
859                 if (netif_msg_drv(priv))
860                         printk(KERN_ERR "%s: failed to request registers\n",
861                                dev->name);
862                 res = -ENXIO;
863                 goto fail_reserve;
864         }
865
866         priv->regs = ioremap(mem->start, mem->end - mem->start);
867         if (!priv->regs) {
868                 if (netif_msg_drv(priv))
869                         printk(KERN_ERR "%s: failed to remap registers\n",
870                                dev->name);
871                 res = -ENXIO;
872                 goto fail_remap;
873         }
874
875         size = priv->ring_size + CPMAC_QUEUES;
876         priv->desc_ring = dma_alloc_coherent(&dev->dev,
877                                              sizeof(struct cpmac_desc) * size,
878                                              &priv->dma_ring,
879                                              GFP_KERNEL);
880         if (!priv->desc_ring) {
881                 res = -ENOMEM;
882                 goto fail_alloc;
883         }
884
885         for (i = 0; i < size; i++)
886                 priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
887
888         priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
889         for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
890                 skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE);
891                 if (unlikely(!skb)) {
892                         res = -ENOMEM;
893                         goto fail_desc;
894                 }
895                 skb_reserve(skb, 2);
896                 desc->skb = skb;
897                 desc->data_mapping = dma_map_single(&dev->dev, skb->data,
898                                                     CPMAC_SKB_SIZE,
899                                                     DMA_FROM_DEVICE);
900                 desc->hw_data = (u32)desc->data_mapping;
901                 desc->buflen = CPMAC_SKB_SIZE;
902                 desc->dataflags = CPMAC_OWN;
903                 desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
904                 desc->hw_next = (u32)desc->next->mapping;
905         }
906
907         if ((res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED,
908                                dev->name, dev))) {
909                 if (netif_msg_drv(priv))
910                         printk(KERN_ERR "%s: failed to obtain irq\n",
911                                dev->name);
912                 goto fail_irq;
913         }
914
915         INIT_WORK(&priv->reset_work, cpmac_hw_error);
916         cpmac_hw_start(dev);
917
918         napi_enable(&priv->napi);
919         priv->phy->state = PHY_CHANGELINK;
920         phy_start(priv->phy);
921
922         return 0;
923
924 fail_irq:
925 fail_desc:
926         for (i = 0; i < priv->ring_size; i++) {
927                 if (priv->rx_head[i].skb) {
928                         dma_unmap_single(&dev->dev,
929                                          priv->rx_head[i].data_mapping,
930                                          CPMAC_SKB_SIZE,
931                                          DMA_FROM_DEVICE);
932                         kfree_skb(priv->rx_head[i].skb);
933                 }
934         }
935 fail_alloc:
936         kfree(priv->desc_ring);
937         iounmap(priv->regs);
938
939 fail_remap:
940         release_mem_region(mem->start, mem->end - mem->start);
941
942 fail_reserve:
943         return res;
944 }
945
946 static int cpmac_stop(struct net_device *dev)
947 {
948         int i;
949         struct cpmac_priv *priv = netdev_priv(dev);
950         struct resource *mem;
951
952         netif_stop_queue(dev);
953
954         cancel_work_sync(&priv->reset_work);
955         napi_disable(&priv->napi);
956         phy_stop(priv->phy);
957
958         cpmac_hw_stop(dev);
959
960         for (i = 0; i < 8; i++)
961                 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
962         cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
963         cpmac_write(priv->regs, CPMAC_MBP, 0);
964
965         free_irq(dev->irq, dev);
966         iounmap(priv->regs);
967         mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
968         release_mem_region(mem->start, mem->end - mem->start);
969         priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
970         for (i = 0; i < priv->ring_size; i++) {
971                 if (priv->rx_head[i].skb) {
972                         dma_unmap_single(&dev->dev,
973                                          priv->rx_head[i].data_mapping,
974                                          CPMAC_SKB_SIZE,
975                                          DMA_FROM_DEVICE);
976                         kfree_skb(priv->rx_head[i].skb);
977                 }
978         }
979
980         dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
981                           (CPMAC_QUEUES + priv->ring_size),
982                           priv->desc_ring, priv->dma_ring);
983         return 0;
984 }
985
986 static int external_switch;
987
988 static int __devinit cpmac_probe(struct platform_device *pdev)
989 {
990         int rc, phy_id, i;
991         char *mdio_bus_id = "0";
992         struct resource *mem;
993         struct cpmac_priv *priv;
994         struct net_device *dev;
995         struct plat_cpmac_data *pdata;
996         DECLARE_MAC_BUF(mac);
997
998         pdata = pdev->dev.platform_data;
999
1000         for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1001                 if (!(pdata->phy_mask & (1 << phy_id)))
1002                         continue;
1003                 if (!cpmac_mii.phy_map[phy_id])
1004                         continue;
1005                 break;
1006         }
1007
1008         if (phy_id == PHY_MAX_ADDR) {
1009                 if (external_switch || dumb_switch) {
1010                         struct fixed_phy_status status = {};
1011
1012                         /*
1013                          * FIXME: this should be in the platform code!
1014                          * Since there is not platform code at all (that is,
1015                          * no mainline users of that driver), place it here
1016                          * for now.
1017                          */
1018                         phy_id = 0;
1019                         status.link = 1;
1020                         status.duplex = 1;
1021                         status.speed = 100;
1022                         fixed_phy_add(PHY_POLL, phy_id, &status);
1023                 } else {
1024                         printk(KERN_ERR "cpmac: no PHY present\n");
1025                         return -ENODEV;
1026                 }
1027         }
1028
1029         dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1030
1031         if (!dev) {
1032                 printk(KERN_ERR "cpmac: Unable to allocate net_device\n");
1033                 return -ENOMEM;
1034         }
1035
1036         platform_set_drvdata(pdev, dev);
1037         priv = netdev_priv(dev);
1038
1039         priv->pdev = pdev;
1040         mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1041         if (!mem) {
1042                 rc = -ENODEV;
1043                 goto fail;
1044         }
1045
1046         dev->irq = platform_get_irq_byname(pdev, "irq");
1047
1048         dev->open               = cpmac_open;
1049         dev->stop               = cpmac_stop;
1050         dev->set_config         = cpmac_config;
1051         dev->hard_start_xmit    = cpmac_start_xmit;
1052         dev->do_ioctl           = cpmac_ioctl;
1053         dev->set_multicast_list = cpmac_set_multicast_list;
1054         dev->tx_timeout         = cpmac_tx_timeout;
1055         dev->ethtool_ops        = &cpmac_ethtool_ops;
1056         dev->features |= NETIF_F_MULTI_QUEUE;
1057
1058         netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1059
1060         spin_lock_init(&priv->lock);
1061         spin_lock_init(&priv->rx_lock);
1062         priv->dev = dev;
1063         priv->ring_size = 64;
1064         priv->msg_enable = netif_msg_init(debug_level, 0xff);
1065         memcpy(dev->dev_addr, pdata->dev_addr, sizeof(dev->dev_addr));
1066
1067         snprintf(priv->phy_name, BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
1068
1069         priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link, 0,
1070                                 PHY_INTERFACE_MODE_MII);
1071         if (IS_ERR(priv->phy)) {
1072                 if (netif_msg_drv(priv))
1073                         printk(KERN_ERR "%s: Could not attach to PHY\n",
1074                                dev->name);
1075                 return PTR_ERR(priv->phy);
1076         }
1077
1078         if ((rc = register_netdev(dev))) {
1079                 printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
1080                        dev->name);
1081                 goto fail;
1082         }
1083
1084         if (netif_msg_probe(priv)) {
1085                 printk(KERN_INFO
1086                        "cpmac: device %s (regs: %p, irq: %d, phy: %s, "
1087                        "mac: %s)\n", dev->name, (void *)mem->start, dev->irq,
1088                        priv->phy_name, print_mac(mac, dev->dev_addr));
1089         }
1090         return 0;
1091
1092 fail:
1093         free_netdev(dev);
1094         return rc;
1095 }
1096
1097 static int __devexit cpmac_remove(struct platform_device *pdev)
1098 {
1099         struct net_device *dev = platform_get_drvdata(pdev);
1100         unregister_netdev(dev);
1101         free_netdev(dev);
1102         return 0;
1103 }
1104
1105 static struct platform_driver cpmac_driver = {
1106         .driver.name = "cpmac",
1107         .driver.owner = THIS_MODULE,
1108         .probe = cpmac_probe,
1109         .remove = __devexit_p(cpmac_remove),
1110 };
1111
1112 int __devinit cpmac_init(void)
1113 {
1114         u32 mask;
1115         int i, res;
1116
1117         cpmac_mii.priv = ioremap(AR7_REGS_MDIO, 256);
1118
1119         if (!cpmac_mii.priv) {
1120                 printk(KERN_ERR "Can't ioremap mdio registers\n");
1121                 return -ENXIO;
1122         }
1123
1124 #warning FIXME: unhardcode gpio&reset bits
1125         ar7_gpio_disable(26);
1126         ar7_gpio_disable(27);
1127         ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1128         ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1129         ar7_device_reset(AR7_RESET_BIT_EPHY);
1130
1131         cpmac_mii.reset(&cpmac_mii);
1132
1133         for (i = 0; i < 300000; i++)
1134                 if ((mask = cpmac_read(cpmac_mii.priv, CPMAC_MDIO_ALIVE)))
1135                         break;
1136                 else
1137                         cpu_relax();
1138
1139         mask &= 0x7fffffff;
1140         if (mask & (mask - 1)) {
1141                 external_switch = 1;
1142                 mask = 0;
1143         }
1144
1145         cpmac_mii.phy_mask = ~(mask | 0x80000000);
1146         snprintf(cpmac_mii.id, MII_BUS_ID_SIZE, "0");
1147
1148         res = mdiobus_register(&cpmac_mii);
1149         if (res)
1150                 goto fail_mii;
1151
1152         res = platform_driver_register(&cpmac_driver);
1153         if (res)
1154                 goto fail_cpmac;
1155
1156         return 0;
1157
1158 fail_cpmac:
1159         mdiobus_unregister(&cpmac_mii);
1160
1161 fail_mii:
1162         iounmap(cpmac_mii.priv);
1163
1164         return res;
1165 }
1166
1167 void __devexit cpmac_exit(void)
1168 {
1169         platform_driver_unregister(&cpmac_driver);
1170         mdiobus_unregister(&cpmac_mii);
1171         iounmap(cpmac_mii.priv);
1172 }
1173
1174 module_init(cpmac_init);
1175 module_exit(cpmac_exit);