2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Pedro Roque : Fast Retransmit/Recovery.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
56 * J Hadi Salim: ECN support
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
100 #define FLAG_ECE 0x40 /* ECE in this ACK */
101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118 /* Adapt the MSS value used to make delayed ack decision to the
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
123 struct inet_connection_sock *icsk = inet_csk(sk);
124 const unsigned int lss = icsk->icsk_ack.last_seg_size;
127 icsk->icsk_ack.last_seg_size = 0;
129 /* skb->len may jitter because of SACKs, even if peer
130 * sends good full-sized frames.
132 len = skb_shinfo(skb)->gso_size ? : skb->len;
133 if (len >= icsk->icsk_ack.rcv_mss) {
134 icsk->icsk_ack.rcv_mss = len;
136 /* Otherwise, we make more careful check taking into account,
137 * that SACKs block is variable.
139 * "len" is invariant segment length, including TCP header.
141 len += skb->data - skb_transport_header(skb);
142 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143 /* If PSH is not set, packet should be
144 * full sized, provided peer TCP is not badly broken.
145 * This observation (if it is correct 8)) allows
146 * to handle super-low mtu links fairly.
148 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150 /* Subtract also invariant (if peer is RFC compliant),
151 * tcp header plus fixed timestamp option length.
152 * Resulting "len" is MSS free of SACK jitter.
154 len -= tcp_sk(sk)->tcp_header_len;
155 icsk->icsk_ack.last_seg_size = len;
157 icsk->icsk_ack.rcv_mss = len;
161 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 static void tcp_incr_quickack(struct sock *sk)
169 struct inet_connection_sock *icsk = inet_csk(sk);
170 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174 if (quickacks > icsk->icsk_ack.quick)
175 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 void tcp_enter_quickack_mode(struct sock *sk)
180 struct inet_connection_sock *icsk = inet_csk(sk);
181 tcp_incr_quickack(sk);
182 icsk->icsk_ack.pingpong = 0;
183 icsk->icsk_ack.ato = TCP_ATO_MIN;
186 /* Send ACKs quickly, if "quick" count is not exhausted
187 * and the session is not interactive.
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
192 const struct inet_connection_sock *icsk = inet_csk(sk);
193 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198 if (tp->ecn_flags & TCP_ECN_OK)
199 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204 if (tcp_hdr(skb)->cwr)
205 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215 if (tp->ecn_flags & TCP_ECN_OK) {
216 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218 /* Funny extension: if ECT is not set on a segment,
219 * it is surely retransmit. It is not in ECN RFC,
220 * but Linux follows this rule. */
221 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222 tcp_enter_quickack_mode((struct sock *)tp);
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229 tp->ecn_flags &= ~TCP_ECN_OK;
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235 tp->ecn_flags &= ~TCP_ECN_OK;
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
245 /* Buffer size and advertised window tuning.
247 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
250 static void tcp_fixup_sndbuf(struct sock *sk)
252 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253 sizeof(struct sk_buff);
255 if (sk->sk_sndbuf < 3 * sndmem)
256 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261 * All tcp_full_space() is split to two parts: "network" buffer, allocated
262 * forward and advertised in receiver window (tp->rcv_wnd) and
263 * "application buffer", required to isolate scheduling/application
264 * latencies from network.
265 * window_clamp is maximal advertised window. It can be less than
266 * tcp_full_space(), in this case tcp_full_space() - window_clamp
267 * is reserved for "application" buffer. The less window_clamp is
268 * the smoother our behaviour from viewpoint of network, but the lower
269 * throughput and the higher sensitivity of the connection to losses. 8)
271 * rcv_ssthresh is more strict window_clamp used at "slow start"
272 * phase to predict further behaviour of this connection.
273 * It is used for two goals:
274 * - to enforce header prediction at sender, even when application
275 * requires some significant "application buffer". It is check #1.
276 * - to prevent pruning of receive queue because of misprediction
277 * of receiver window. Check #2.
279 * The scheme does not work when sender sends good segments opening
280 * window and then starts to feed us spaghetti. But it should work
281 * in common situations. Otherwise, we have to rely on queue collapsing.
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
287 struct tcp_sock *tp = tcp_sk(sk);
289 int truesize = tcp_win_from_space(skb->truesize) >> 1;
290 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
292 while (tp->rcv_ssthresh <= window) {
293 if (truesize <= skb->len)
294 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
304 struct tcp_sock *tp = tcp_sk(sk);
307 if (tp->rcv_ssthresh < tp->window_clamp &&
308 (int)tp->rcv_ssthresh < tcp_space(sk) &&
309 !tcp_memory_pressure) {
312 /* Check #2. Increase window, if skb with such overhead
313 * will fit to rcvbuf in future.
315 if (tcp_win_from_space(skb->truesize) <= skb->len)
316 incr = 2 * tp->advmss;
318 incr = __tcp_grow_window(sk, skb);
321 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
323 inet_csk(sk)->icsk_ack.quick |= 1;
328 /* 3. Tuning rcvbuf, when connection enters established state. */
330 static void tcp_fixup_rcvbuf(struct sock *sk)
332 struct tcp_sock *tp = tcp_sk(sk);
333 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335 /* Try to select rcvbuf so that 4 mss-sized segments
336 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 while (tcp_win_from_space(rcvmem) < tp->advmss)
341 if (sk->sk_rcvbuf < 4 * rcvmem)
342 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
345 /* 4. Try to fixup all. It is made immediately after connection enters
348 static void tcp_init_buffer_space(struct sock *sk)
350 struct tcp_sock *tp = tcp_sk(sk);
353 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354 tcp_fixup_rcvbuf(sk);
355 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356 tcp_fixup_sndbuf(sk);
358 tp->rcvq_space.space = tp->rcv_wnd;
360 maxwin = tcp_full_space(sk);
362 if (tp->window_clamp >= maxwin) {
363 tp->window_clamp = maxwin;
365 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366 tp->window_clamp = max(maxwin -
367 (maxwin >> sysctl_tcp_app_win),
371 /* Force reservation of one segment. */
372 if (sysctl_tcp_app_win &&
373 tp->window_clamp > 2 * tp->advmss &&
374 tp->window_clamp + tp->advmss > maxwin)
375 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378 tp->snd_cwnd_stamp = tcp_time_stamp;
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
384 struct tcp_sock *tp = tcp_sk(sk);
385 struct inet_connection_sock *icsk = inet_csk(sk);
387 icsk->icsk_ack.quick = 0;
389 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391 !tcp_memory_pressure &&
392 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
400 /* Initialize RCV_MSS value.
401 * RCV_MSS is an our guess about MSS used by the peer.
402 * We haven't any direct information about the MSS.
403 * It's better to underestimate the RCV_MSS rather than overestimate.
404 * Overestimations make us ACKing less frequently than needed.
405 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407 void tcp_initialize_rcv_mss(struct sock *sk)
409 struct tcp_sock *tp = tcp_sk(sk);
410 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412 hint = min(hint, tp->rcv_wnd / 2);
413 hint = min(hint, TCP_MIN_RCVMSS);
414 hint = max(hint, TCP_MIN_MSS);
416 inet_csk(sk)->icsk_ack.rcv_mss = hint;
419 /* Receiver "autotuning" code.
421 * The algorithm for RTT estimation w/o timestamps is based on
422 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425 * More detail on this code can be found at
426 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427 * though this reference is out of date. A new paper
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432 u32 new_sample = tp->rcv_rtt_est.rtt;
438 if (new_sample != 0) {
439 /* If we sample in larger samples in the non-timestamp
440 * case, we could grossly overestimate the RTT especially
441 * with chatty applications or bulk transfer apps which
442 * are stalled on filesystem I/O.
444 * Also, since we are only going for a minimum in the
445 * non-timestamp case, we do not smooth things out
446 * else with timestamps disabled convergence takes too
450 m -= (new_sample >> 3);
452 } else if (m < new_sample)
455 /* No previous measure. */
459 if (tp->rcv_rtt_est.rtt != new_sample)
460 tp->rcv_rtt_est.rtt = new_sample;
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465 if (tp->rcv_rtt_est.time == 0)
467 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
469 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
472 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473 tp->rcv_rtt_est.time = tcp_time_stamp;
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477 const struct sk_buff *skb)
479 struct tcp_sock *tp = tcp_sk(sk);
480 if (tp->rx_opt.rcv_tsecr &&
481 (TCP_SKB_CB(skb)->end_seq -
482 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487 * This function should be called every time data is copied to user space.
488 * It calculates the appropriate TCP receive buffer space.
490 void tcp_rcv_space_adjust(struct sock *sk)
492 struct tcp_sock *tp = tcp_sk(sk);
496 if (tp->rcvq_space.time == 0)
499 time = tcp_time_stamp - tp->rcvq_space.time;
500 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
503 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505 space = max(tp->rcvq_space.space, space);
507 if (tp->rcvq_space.space != space) {
510 tp->rcvq_space.space = space;
512 if (sysctl_tcp_moderate_rcvbuf &&
513 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514 int new_clamp = space;
516 /* Receive space grows, normalize in order to
517 * take into account packet headers and sk_buff
518 * structure overhead.
523 rcvmem = (tp->advmss + MAX_TCP_HEADER +
524 16 + sizeof(struct sk_buff));
525 while (tcp_win_from_space(rcvmem) < tp->advmss)
528 space = min(space, sysctl_tcp_rmem[2]);
529 if (space > sk->sk_rcvbuf) {
530 sk->sk_rcvbuf = space;
532 /* Make the window clamp follow along. */
533 tp->window_clamp = new_clamp;
539 tp->rcvq_space.seq = tp->copied_seq;
540 tp->rcvq_space.time = tcp_time_stamp;
543 /* There is something which you must keep in mind when you analyze the
544 * behavior of the tp->ato delayed ack timeout interval. When a
545 * connection starts up, we want to ack as quickly as possible. The
546 * problem is that "good" TCP's do slow start at the beginning of data
547 * transmission. The means that until we send the first few ACK's the
548 * sender will sit on his end and only queue most of his data, because
549 * he can only send snd_cwnd unacked packets at any given time. For
550 * each ACK we send, he increments snd_cwnd and transmits more of his
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
555 struct tcp_sock *tp = tcp_sk(sk);
556 struct inet_connection_sock *icsk = inet_csk(sk);
559 inet_csk_schedule_ack(sk);
561 tcp_measure_rcv_mss(sk, skb);
563 tcp_rcv_rtt_measure(tp);
565 now = tcp_time_stamp;
567 if (!icsk->icsk_ack.ato) {
568 /* The _first_ data packet received, initialize
569 * delayed ACK engine.
571 tcp_incr_quickack(sk);
572 icsk->icsk_ack.ato = TCP_ATO_MIN;
574 int m = now - icsk->icsk_ack.lrcvtime;
576 if (m <= TCP_ATO_MIN / 2) {
577 /* The fastest case is the first. */
578 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579 } else if (m < icsk->icsk_ack.ato) {
580 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581 if (icsk->icsk_ack.ato > icsk->icsk_rto)
582 icsk->icsk_ack.ato = icsk->icsk_rto;
583 } else if (m > icsk->icsk_rto) {
584 /* Too long gap. Apparently sender failed to
585 * restart window, so that we send ACKs quickly.
587 tcp_incr_quickack(sk);
591 icsk->icsk_ack.lrcvtime = now;
593 TCP_ECN_check_ce(tp, skb);
596 tcp_grow_window(sk, skb);
599 static u32 tcp_rto_min(struct sock *sk)
601 struct dst_entry *dst = __sk_dst_get(sk);
602 u32 rto_min = TCP_RTO_MIN;
604 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605 rto_min = dst_metric(dst, RTAX_RTO_MIN);
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610 * routine either comes from timestamps, or from segments that were
611 * known _not_ to have been retransmitted [see Karn/Partridge
612 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613 * piece by Van Jacobson.
614 * NOTE: the next three routines used to be one big routine.
615 * To save cycles in the RFC 1323 implementation it was better to break
616 * it up into three procedures. -- erics
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 struct tcp_sock *tp = tcp_sk(sk);
621 long m = mrtt; /* RTT */
623 /* The following amusing code comes from Jacobson's
624 * article in SIGCOMM '88. Note that rtt and mdev
625 * are scaled versions of rtt and mean deviation.
626 * This is designed to be as fast as possible
627 * m stands for "measurement".
629 * On a 1990 paper the rto value is changed to:
630 * RTO = rtt + 4 * mdev
632 * Funny. This algorithm seems to be very broken.
633 * These formulae increase RTO, when it should be decreased, increase
634 * too slowly, when it should be increased quickly, decrease too quickly
635 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 * does not matter how to _calculate_ it. Seems, it was trap
637 * that VJ failed to avoid. 8)
642 m -= (tp->srtt >> 3); /* m is now error in rtt est */
643 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
645 m = -m; /* m is now abs(error) */
646 m -= (tp->mdev >> 2); /* similar update on mdev */
647 /* This is similar to one of Eifel findings.
648 * Eifel blocks mdev updates when rtt decreases.
649 * This solution is a bit different: we use finer gain
650 * for mdev in this case (alpha*beta).
651 * Like Eifel it also prevents growth of rto,
652 * but also it limits too fast rto decreases,
653 * happening in pure Eifel.
658 m -= (tp->mdev >> 2); /* similar update on mdev */
660 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
661 if (tp->mdev > tp->mdev_max) {
662 tp->mdev_max = tp->mdev;
663 if (tp->mdev_max > tp->rttvar)
664 tp->rttvar = tp->mdev_max;
666 if (after(tp->snd_una, tp->rtt_seq)) {
667 if (tp->mdev_max < tp->rttvar)
668 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669 tp->rtt_seq = tp->snd_nxt;
670 tp->mdev_max = tcp_rto_min(sk);
673 /* no previous measure. */
674 tp->srtt = m << 3; /* take the measured time to be rtt */
675 tp->mdev = m << 1; /* make sure rto = 3*rtt */
676 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677 tp->rtt_seq = tp->snd_nxt;
681 /* Calculate rto without backoff. This is the second half of Van Jacobson's
682 * routine referred to above.
684 static inline void tcp_set_rto(struct sock *sk)
686 const struct tcp_sock *tp = tcp_sk(sk);
687 /* Old crap is replaced with new one. 8)
690 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 * It cannot be less due to utterly erratic ACK generation made
692 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 * to do with delayed acks, because at cwnd>2 true delack timeout
694 * is invisible. Actually, Linux-2.4 also generates erratic
695 * ACKs in some circumstances.
697 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
699 /* 2. Fixups made earlier cannot be right.
700 * If we do not estimate RTO correctly without them,
701 * all the algo is pure shit and should be replaced
702 * with correct one. It is exactly, which we pretend to do.
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
709 static inline void tcp_bound_rto(struct sock *sk)
711 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
715 /* Save metrics learned by this TCP session.
716 This function is called only, when TCP finishes successfully
717 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
719 void tcp_update_metrics(struct sock *sk)
721 struct tcp_sock *tp = tcp_sk(sk);
722 struct dst_entry *dst = __sk_dst_get(sk);
724 if (sysctl_tcp_nometrics_save)
729 if (dst && (dst->flags & DST_HOST)) {
730 const struct inet_connection_sock *icsk = inet_csk(sk);
733 if (icsk->icsk_backoff || !tp->srtt) {
734 /* This session failed to estimate rtt. Why?
735 * Probably, no packets returned in time.
738 if (!(dst_metric_locked(dst, RTAX_RTT)))
739 dst->metrics[RTAX_RTT - 1] = 0;
743 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
745 /* If newly calculated rtt larger than stored one,
746 * store new one. Otherwise, use EWMA. Remember,
747 * rtt overestimation is always better than underestimation.
749 if (!(dst_metric_locked(dst, RTAX_RTT))) {
751 dst->metrics[RTAX_RTT - 1] = tp->srtt;
753 dst->metrics[RTAX_RTT - 1] -= (m >> 3);
756 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
760 /* Scale deviation to rttvar fixed point */
765 if (m >= dst_metric(dst, RTAX_RTTVAR))
766 dst->metrics[RTAX_RTTVAR - 1] = m;
768 dst->metrics[RTAX_RTTVAR-1] -=
769 (dst_metric(dst, RTAX_RTTVAR) - m)>>2;
772 if (tp->snd_ssthresh >= 0xFFFF) {
773 /* Slow start still did not finish. */
774 if (dst_metric(dst, RTAX_SSTHRESH) &&
775 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
776 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
777 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
778 if (!dst_metric_locked(dst, RTAX_CWND) &&
779 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
780 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
781 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
782 icsk->icsk_ca_state == TCP_CA_Open) {
783 /* Cong. avoidance phase, cwnd is reliable. */
784 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
785 dst->metrics[RTAX_SSTHRESH-1] =
786 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
787 if (!dst_metric_locked(dst, RTAX_CWND))
788 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
790 /* Else slow start did not finish, cwnd is non-sense,
791 ssthresh may be also invalid.
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
795 if (dst_metric(dst, RTAX_SSTHRESH) &&
796 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
797 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
798 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
801 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
802 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
803 tp->reordering != sysctl_tcp_reordering)
804 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
809 /* Numbers are taken from RFC3390.
811 * John Heffner states:
813 * The RFC specifies a window of no more than 4380 bytes
814 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
815 * is a bit misleading because they use a clamp at 4380 bytes
816 * rather than use a multiplier in the relevant range.
818 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
820 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
823 if (tp->mss_cache > 1460)
826 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
828 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831 /* Set slow start threshold and cwnd not falling to slow start */
832 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
834 struct tcp_sock *tp = tcp_sk(sk);
835 const struct inet_connection_sock *icsk = inet_csk(sk);
837 tp->prior_ssthresh = 0;
839 if (icsk->icsk_ca_state < TCP_CA_CWR) {
842 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
843 tp->snd_cwnd = min(tp->snd_cwnd,
844 tcp_packets_in_flight(tp) + 1U);
845 tp->snd_cwnd_cnt = 0;
846 tp->high_seq = tp->snd_nxt;
847 tp->snd_cwnd_stamp = tcp_time_stamp;
848 TCP_ECN_queue_cwr(tp);
850 tcp_set_ca_state(sk, TCP_CA_CWR);
855 * Packet counting of FACK is based on in-order assumptions, therefore TCP
856 * disables it when reordering is detected
858 static void tcp_disable_fack(struct tcp_sock *tp)
860 /* RFC3517 uses different metric in lost marker => reset on change */
862 tp->lost_skb_hint = NULL;
863 tp->rx_opt.sack_ok &= ~2;
866 /* Take a notice that peer is sending D-SACKs */
867 static void tcp_dsack_seen(struct tcp_sock *tp)
869 tp->rx_opt.sack_ok |= 4;
872 /* Initialize metrics on socket. */
874 static void tcp_init_metrics(struct sock *sk)
876 struct tcp_sock *tp = tcp_sk(sk);
877 struct dst_entry *dst = __sk_dst_get(sk);
884 if (dst_metric_locked(dst, RTAX_CWND))
885 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
886 if (dst_metric(dst, RTAX_SSTHRESH)) {
887 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
888 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
889 tp->snd_ssthresh = tp->snd_cwnd_clamp;
891 if (dst_metric(dst, RTAX_REORDERING) &&
892 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
893 tcp_disable_fack(tp);
894 tp->reordering = dst_metric(dst, RTAX_REORDERING);
897 if (dst_metric(dst, RTAX_RTT) == 0)
900 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
903 /* Initial rtt is determined from SYN,SYN-ACK.
904 * The segment is small and rtt may appear much
905 * less than real one. Use per-dst memory
906 * to make it more realistic.
908 * A bit of theory. RTT is time passed after "normal" sized packet
909 * is sent until it is ACKed. In normal circumstances sending small
910 * packets force peer to delay ACKs and calculation is correct too.
911 * The algorithm is adaptive and, provided we follow specs, it
912 * NEVER underestimate RTT. BUT! If peer tries to make some clever
913 * tricks sort of "quick acks" for time long enough to decrease RTT
914 * to low value, and then abruptly stops to do it and starts to delay
915 * ACKs, wait for troubles.
917 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
918 tp->srtt = dst_metric(dst, RTAX_RTT);
919 tp->rtt_seq = tp->snd_nxt;
921 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
922 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
923 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
927 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
929 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
930 tp->snd_cwnd_stamp = tcp_time_stamp;
934 /* Play conservative. If timestamps are not
935 * supported, TCP will fail to recalculate correct
936 * rtt, if initial rto is too small. FORGET ALL AND RESET!
938 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
940 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
941 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945 static void tcp_update_reordering(struct sock *sk, const int metric,
948 struct tcp_sock *tp = tcp_sk(sk);
949 if (metric > tp->reordering) {
952 tp->reordering = min(TCP_MAX_REORDERING, metric);
954 /* This exciting event is worth to be remembered. 8) */
956 mib_idx = LINUX_MIB_TCPTSREORDER;
957 else if (tcp_is_reno(tp))
958 mib_idx = LINUX_MIB_TCPRENOREORDER;
959 else if (tcp_is_fack(tp))
960 mib_idx = LINUX_MIB_TCPFACKREORDER;
962 mib_idx = LINUX_MIB_TCPSACKREORDER;
964 NET_INC_STATS_BH(mib_idx);
965 #if FASTRETRANS_DEBUG > 1
966 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
967 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
971 tp->undo_marker ? tp->undo_retrans : 0);
973 tcp_disable_fack(tp);
977 /* This procedure tags the retransmission queue when SACKs arrive.
979 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
980 * Packets in queue with these bits set are counted in variables
981 * sacked_out, retrans_out and lost_out, correspondingly.
983 * Valid combinations are:
984 * Tag InFlight Description
985 * 0 1 - orig segment is in flight.
986 * S 0 - nothing flies, orig reached receiver.
987 * L 0 - nothing flies, orig lost by net.
988 * R 2 - both orig and retransmit are in flight.
989 * L|R 1 - orig is lost, retransmit is in flight.
990 * S|R 1 - orig reached receiver, retrans is still in flight.
991 * (L|S|R is logically valid, it could occur when L|R is sacked,
992 * but it is equivalent to plain S and code short-curcuits it to S.
993 * L|S is logically invalid, it would mean -1 packet in flight 8))
995 * These 6 states form finite state machine, controlled by the following events:
996 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
997 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
998 * 3. Loss detection event of one of three flavors:
999 * A. Scoreboard estimator decided the packet is lost.
1000 * A'. Reno "three dupacks" marks head of queue lost.
1001 * A''. Its FACK modfication, head until snd.fack is lost.
1002 * B. SACK arrives sacking data transmitted after never retransmitted
1003 * hole was sent out.
1004 * C. SACK arrives sacking SND.NXT at the moment, when the
1005 * segment was retransmitted.
1006 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1008 * It is pleasant to note, that state diagram turns out to be commutative,
1009 * so that we are allowed not to be bothered by order of our actions,
1010 * when multiple events arrive simultaneously. (see the function below).
1012 * Reordering detection.
1013 * --------------------
1014 * Reordering metric is maximal distance, which a packet can be displaced
1015 * in packet stream. With SACKs we can estimate it:
1017 * 1. SACK fills old hole and the corresponding segment was not
1018 * ever retransmitted -> reordering. Alas, we cannot use it
1019 * when segment was retransmitted.
1020 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1021 * for retransmitted and already SACKed segment -> reordering..
1022 * Both of these heuristics are not used in Loss state, when we cannot
1023 * account for retransmits accurately.
1025 * SACK block validation.
1026 * ----------------------
1028 * SACK block range validation checks that the received SACK block fits to
1029 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1030 * Note that SND.UNA is not included to the range though being valid because
1031 * it means that the receiver is rather inconsistent with itself reporting
1032 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1033 * perfectly valid, however, in light of RFC2018 which explicitly states
1034 * that "SACK block MUST reflect the newest segment. Even if the newest
1035 * segment is going to be discarded ...", not that it looks very clever
1036 * in case of head skb. Due to potentional receiver driven attacks, we
1037 * choose to avoid immediate execution of a walk in write queue due to
1038 * reneging and defer head skb's loss recovery to standard loss recovery
1039 * procedure that will eventually trigger (nothing forbids us doing this).
1041 * Implements also blockage to start_seq wrap-around. Problem lies in the
1042 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1043 * there's no guarantee that it will be before snd_nxt (n). The problem
1044 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1047 * <- outs wnd -> <- wrapzone ->
1048 * u e n u_w e_w s n_w
1050 * |<------------+------+----- TCP seqno space --------------+---------->|
1051 * ...-- <2^31 ->| |<--------...
1052 * ...---- >2^31 ------>| |<--------...
1054 * Current code wouldn't be vulnerable but it's better still to discard such
1055 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1056 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1057 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1058 * equal to the ideal case (infinite seqno space without wrap caused issues).
1060 * With D-SACK the lower bound is extended to cover sequence space below
1061 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1062 * again, D-SACK block must not to go across snd_una (for the same reason as
1063 * for the normal SACK blocks, explained above). But there all simplicity
1064 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1065 * fully below undo_marker they do not affect behavior in anyway and can
1066 * therefore be safely ignored. In rare cases (which are more or less
1067 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1068 * fragmentation and packet reordering past skb's retransmission. To consider
1069 * them correctly, the acceptable range must be extended even more though
1070 * the exact amount is rather hard to quantify. However, tp->max_window can
1071 * be used as an exaggerated estimate.
1073 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1074 u32 start_seq, u32 end_seq)
1076 /* Too far in future, or reversed (interpretation is ambiguous) */
1077 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1080 /* Nasty start_seq wrap-around check (see comments above) */
1081 if (!before(start_seq, tp->snd_nxt))
1084 /* In outstanding window? ...This is valid exit for D-SACKs too.
1085 * start_seq == snd_una is non-sensical (see comments above)
1087 if (after(start_seq, tp->snd_una))
1090 if (!is_dsack || !tp->undo_marker)
1093 /* ...Then it's D-SACK, and must reside below snd_una completely */
1094 if (!after(end_seq, tp->snd_una))
1097 if (!before(start_seq, tp->undo_marker))
1101 if (!after(end_seq, tp->undo_marker))
1104 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1105 * start_seq < undo_marker and end_seq >= undo_marker.
1107 return !before(start_seq, end_seq - tp->max_window);
1110 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1111 * Event "C". Later note: FACK people cheated me again 8), we have to account
1112 * for reordering! Ugly, but should help.
1114 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1115 * less than what is now known to be received by the other end (derived from
1116 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1117 * retransmitted skbs to avoid some costly processing per ACKs.
1119 static void tcp_mark_lost_retrans(struct sock *sk)
1121 const struct inet_connection_sock *icsk = inet_csk(sk);
1122 struct tcp_sock *tp = tcp_sk(sk);
1123 struct sk_buff *skb;
1125 u32 new_low_seq = tp->snd_nxt;
1126 u32 received_upto = tcp_highest_sack_seq(tp);
1128 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1129 !after(received_upto, tp->lost_retrans_low) ||
1130 icsk->icsk_ca_state != TCP_CA_Recovery)
1133 tcp_for_write_queue(skb, sk) {
1134 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1136 if (skb == tcp_send_head(sk))
1138 if (cnt == tp->retrans_out)
1140 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1143 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1146 if (after(received_upto, ack_seq) &&
1148 !before(received_upto,
1149 ack_seq + tp->reordering * tp->mss_cache))) {
1150 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1151 tp->retrans_out -= tcp_skb_pcount(skb);
1153 /* clear lost hint */
1154 tp->retransmit_skb_hint = NULL;
1156 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1157 tp->lost_out += tcp_skb_pcount(skb);
1158 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1160 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1162 if (before(ack_seq, new_low_seq))
1163 new_low_seq = ack_seq;
1164 cnt += tcp_skb_pcount(skb);
1168 if (tp->retrans_out)
1169 tp->lost_retrans_low = new_low_seq;
1172 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1173 struct tcp_sack_block_wire *sp, int num_sacks,
1176 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1177 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1180 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1183 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1184 } else if (num_sacks > 1) {
1185 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1186 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1188 if (!after(end_seq_0, end_seq_1) &&
1189 !before(start_seq_0, start_seq_1)) {
1192 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1196 /* D-SACK for already forgotten data... Do dumb counting. */
1198 !after(end_seq_0, prior_snd_una) &&
1199 after(end_seq_0, tp->undo_marker))
1205 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1206 * the incoming SACK may not exactly match but we can find smaller MSS
1207 * aligned portion of it that matches. Therefore we might need to fragment
1208 * which may fail and creates some hassle (caller must handle error case
1211 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1212 u32 start_seq, u32 end_seq)
1215 unsigned int pkt_len;
1217 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1218 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1220 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1221 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1223 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1226 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1228 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1229 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1237 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1238 int *reord, int dup_sack, int fack_count)
1240 struct tcp_sock *tp = tcp_sk(sk);
1241 u8 sacked = TCP_SKB_CB(skb)->sacked;
1244 /* Account D-SACK for retransmitted packet. */
1245 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1246 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1248 if (sacked & TCPCB_SACKED_ACKED)
1249 *reord = min(fack_count, *reord);
1252 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1253 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1256 if (!(sacked & TCPCB_SACKED_ACKED)) {
1257 if (sacked & TCPCB_SACKED_RETRANS) {
1258 /* If the segment is not tagged as lost,
1259 * we do not clear RETRANS, believing
1260 * that retransmission is still in flight.
1262 if (sacked & TCPCB_LOST) {
1263 TCP_SKB_CB(skb)->sacked &=
1264 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1265 tp->lost_out -= tcp_skb_pcount(skb);
1266 tp->retrans_out -= tcp_skb_pcount(skb);
1268 /* clear lost hint */
1269 tp->retransmit_skb_hint = NULL;
1272 if (!(sacked & TCPCB_RETRANS)) {
1273 /* New sack for not retransmitted frame,
1274 * which was in hole. It is reordering.
1276 if (before(TCP_SKB_CB(skb)->seq,
1277 tcp_highest_sack_seq(tp)))
1278 *reord = min(fack_count, *reord);
1280 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1281 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1282 flag |= FLAG_ONLY_ORIG_SACKED;
1285 if (sacked & TCPCB_LOST) {
1286 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1287 tp->lost_out -= tcp_skb_pcount(skb);
1289 /* clear lost hint */
1290 tp->retransmit_skb_hint = NULL;
1294 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1295 flag |= FLAG_DATA_SACKED;
1296 tp->sacked_out += tcp_skb_pcount(skb);
1298 fack_count += tcp_skb_pcount(skb);
1300 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1301 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1302 before(TCP_SKB_CB(skb)->seq,
1303 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1304 tp->lost_cnt_hint += tcp_skb_pcount(skb);
1306 if (fack_count > tp->fackets_out)
1307 tp->fackets_out = fack_count;
1309 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1310 tcp_advance_highest_sack(sk, skb);
1313 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1314 * frames and clear it. undo_retrans is decreased above, L|R frames
1315 * are accounted above as well.
1317 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1318 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1319 tp->retrans_out -= tcp_skb_pcount(skb);
1320 tp->retransmit_skb_hint = NULL;
1326 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1327 struct tcp_sack_block *next_dup,
1328 u32 start_seq, u32 end_seq,
1329 int dup_sack_in, int *fack_count,
1330 int *reord, int *flag)
1332 tcp_for_write_queue_from(skb, sk) {
1334 int dup_sack = dup_sack_in;
1336 if (skb == tcp_send_head(sk))
1339 /* queue is in-order => we can short-circuit the walk early */
1340 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1343 if ((next_dup != NULL) &&
1344 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1345 in_sack = tcp_match_skb_to_sack(sk, skb,
1346 next_dup->start_seq,
1353 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1355 if (unlikely(in_sack < 0))
1359 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1362 *fack_count += tcp_skb_pcount(skb);
1367 /* Avoid all extra work that is being done by sacktag while walking in
1370 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1371 u32 skip_to_seq, int *fack_count)
1373 tcp_for_write_queue_from(skb, sk) {
1374 if (skb == tcp_send_head(sk))
1377 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1380 *fack_count += tcp_skb_pcount(skb);
1385 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1387 struct tcp_sack_block *next_dup,
1389 int *fack_count, int *reord,
1392 if (next_dup == NULL)
1395 if (before(next_dup->start_seq, skip_to_seq)) {
1396 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1397 skb = tcp_sacktag_walk(skb, sk, NULL,
1398 next_dup->start_seq, next_dup->end_seq,
1399 1, fack_count, reord, flag);
1405 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1407 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1411 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1414 const struct inet_connection_sock *icsk = inet_csk(sk);
1415 struct tcp_sock *tp = tcp_sk(sk);
1416 unsigned char *ptr = (skb_transport_header(ack_skb) +
1417 TCP_SKB_CB(ack_skb)->sacked);
1418 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1419 struct tcp_sack_block sp[4];
1420 struct tcp_sack_block *cache;
1421 struct sk_buff *skb;
1422 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1424 int reord = tp->packets_out;
1426 int found_dup_sack = 0;
1429 int first_sack_index;
1431 if (!tp->sacked_out) {
1432 if (WARN_ON(tp->fackets_out))
1433 tp->fackets_out = 0;
1434 tcp_highest_sack_reset(sk);
1437 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1438 num_sacks, prior_snd_una);
1440 flag |= FLAG_DSACKING_ACK;
1442 /* Eliminate too old ACKs, but take into
1443 * account more or less fresh ones, they can
1444 * contain valid SACK info.
1446 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1449 if (!tp->packets_out)
1453 first_sack_index = 0;
1454 for (i = 0; i < num_sacks; i++) {
1455 int dup_sack = !i && found_dup_sack;
1457 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1458 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1460 if (!tcp_is_sackblock_valid(tp, dup_sack,
1461 sp[used_sacks].start_seq,
1462 sp[used_sacks].end_seq)) {
1466 if (!tp->undo_marker)
1467 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1469 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1471 /* Don't count olds caused by ACK reordering */
1472 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1473 !after(sp[used_sacks].end_seq, tp->snd_una))
1475 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1478 NET_INC_STATS_BH(mib_idx);
1480 first_sack_index = -1;
1484 /* Ignore very old stuff early */
1485 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1491 /* order SACK blocks to allow in order walk of the retrans queue */
1492 for (i = used_sacks - 1; i > 0; i--) {
1493 for (j = 0; j < i; j++) {
1494 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1495 struct tcp_sack_block tmp;
1501 /* Track where the first SACK block goes to */
1502 if (j == first_sack_index)
1503 first_sack_index = j + 1;
1508 skb = tcp_write_queue_head(sk);
1512 if (!tp->sacked_out) {
1513 /* It's already past, so skip checking against it */
1514 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1516 cache = tp->recv_sack_cache;
1517 /* Skip empty blocks in at head of the cache */
1518 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1523 while (i < used_sacks) {
1524 u32 start_seq = sp[i].start_seq;
1525 u32 end_seq = sp[i].end_seq;
1526 int dup_sack = (found_dup_sack && (i == first_sack_index));
1527 struct tcp_sack_block *next_dup = NULL;
1529 if (found_dup_sack && ((i + 1) == first_sack_index))
1530 next_dup = &sp[i + 1];
1532 /* Event "B" in the comment above. */
1533 if (after(end_seq, tp->high_seq))
1534 flag |= FLAG_DATA_LOST;
1536 /* Skip too early cached blocks */
1537 while (tcp_sack_cache_ok(tp, cache) &&
1538 !before(start_seq, cache->end_seq))
1541 /* Can skip some work by looking recv_sack_cache? */
1542 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1543 after(end_seq, cache->start_seq)) {
1546 if (before(start_seq, cache->start_seq)) {
1547 skb = tcp_sacktag_skip(skb, sk, start_seq,
1549 skb = tcp_sacktag_walk(skb, sk, next_dup,
1552 dup_sack, &fack_count,
1556 /* Rest of the block already fully processed? */
1557 if (!after(end_seq, cache->end_seq))
1560 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1562 &fack_count, &reord,
1565 /* ...tail remains todo... */
1566 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1567 /* ...but better entrypoint exists! */
1568 skb = tcp_highest_sack(sk);
1571 fack_count = tp->fackets_out;
1576 skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1578 /* Check overlap against next cached too (past this one already) */
1583 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1584 skb = tcp_highest_sack(sk);
1587 fack_count = tp->fackets_out;
1589 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1592 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1593 dup_sack, &fack_count, &reord, &flag);
1596 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1597 * due to in-order walk
1599 if (after(end_seq, tp->frto_highmark))
1600 flag &= ~FLAG_ONLY_ORIG_SACKED;
1605 /* Clear the head of the cache sack blocks so we can skip it next time */
1606 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1607 tp->recv_sack_cache[i].start_seq = 0;
1608 tp->recv_sack_cache[i].end_seq = 0;
1610 for (j = 0; j < used_sacks; j++)
1611 tp->recv_sack_cache[i++] = sp[j];
1613 tcp_mark_lost_retrans(sk);
1615 tcp_verify_left_out(tp);
1617 if ((reord < tp->fackets_out) &&
1618 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1619 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1620 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1624 #if FASTRETRANS_DEBUG > 0
1625 BUG_TRAP((int)tp->sacked_out >= 0);
1626 BUG_TRAP((int)tp->lost_out >= 0);
1627 BUG_TRAP((int)tp->retrans_out >= 0);
1628 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1633 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1634 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1636 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1640 holes = max(tp->lost_out, 1U);
1641 holes = min(holes, tp->packets_out);
1643 if ((tp->sacked_out + holes) > tp->packets_out) {
1644 tp->sacked_out = tp->packets_out - holes;
1650 /* If we receive more dupacks than we expected counting segments
1651 * in assumption of absent reordering, interpret this as reordering.
1652 * The only another reason could be bug in receiver TCP.
1654 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1656 struct tcp_sock *tp = tcp_sk(sk);
1657 if (tcp_limit_reno_sacked(tp))
1658 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1661 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1663 static void tcp_add_reno_sack(struct sock *sk)
1665 struct tcp_sock *tp = tcp_sk(sk);
1667 tcp_check_reno_reordering(sk, 0);
1668 tcp_verify_left_out(tp);
1671 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1673 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1675 struct tcp_sock *tp = tcp_sk(sk);
1678 /* One ACK acked hole. The rest eat duplicate ACKs. */
1679 if (acked - 1 >= tp->sacked_out)
1682 tp->sacked_out -= acked - 1;
1684 tcp_check_reno_reordering(sk, acked);
1685 tcp_verify_left_out(tp);
1688 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1693 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1695 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1698 /* F-RTO can only be used if TCP has never retransmitted anything other than
1699 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1701 int tcp_use_frto(struct sock *sk)
1703 const struct tcp_sock *tp = tcp_sk(sk);
1704 const struct inet_connection_sock *icsk = inet_csk(sk);
1705 struct sk_buff *skb;
1707 if (!sysctl_tcp_frto)
1710 /* MTU probe and F-RTO won't really play nicely along currently */
1711 if (icsk->icsk_mtup.probe_size)
1714 if (tcp_is_sackfrto(tp))
1717 /* Avoid expensive walking of rexmit queue if possible */
1718 if (tp->retrans_out > 1)
1721 skb = tcp_write_queue_head(sk);
1722 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1723 tcp_for_write_queue_from(skb, sk) {
1724 if (skb == tcp_send_head(sk))
1726 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1728 /* Short-circuit when first non-SACKed skb has been checked */
1729 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1735 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1736 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1737 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1738 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1739 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1740 * bits are handled if the Loss state is really to be entered (in
1741 * tcp_enter_frto_loss).
1743 * Do like tcp_enter_loss() would; when RTO expires the second time it
1745 * "Reduce ssthresh if it has not yet been made inside this window."
1747 void tcp_enter_frto(struct sock *sk)
1749 const struct inet_connection_sock *icsk = inet_csk(sk);
1750 struct tcp_sock *tp = tcp_sk(sk);
1751 struct sk_buff *skb;
1753 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1754 tp->snd_una == tp->high_seq ||
1755 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1756 !icsk->icsk_retransmits)) {
1757 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1758 /* Our state is too optimistic in ssthresh() call because cwnd
1759 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1760 * recovery has not yet completed. Pattern would be this: RTO,
1761 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1763 * RFC4138 should be more specific on what to do, even though
1764 * RTO is quite unlikely to occur after the first Cumulative ACK
1765 * due to back-off and complexity of triggering events ...
1767 if (tp->frto_counter) {
1769 stored_cwnd = tp->snd_cwnd;
1771 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1772 tp->snd_cwnd = stored_cwnd;
1774 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1776 /* ... in theory, cong.control module could do "any tricks" in
1777 * ssthresh(), which means that ca_state, lost bits and lost_out
1778 * counter would have to be faked before the call occurs. We
1779 * consider that too expensive, unlikely and hacky, so modules
1780 * using these in ssthresh() must deal these incompatibility
1781 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1783 tcp_ca_event(sk, CA_EVENT_FRTO);
1786 tp->undo_marker = tp->snd_una;
1787 tp->undo_retrans = 0;
1789 skb = tcp_write_queue_head(sk);
1790 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1791 tp->undo_marker = 0;
1792 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1793 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1794 tp->retrans_out -= tcp_skb_pcount(skb);
1796 tcp_verify_left_out(tp);
1798 /* Too bad if TCP was application limited */
1799 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1801 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1802 * The last condition is necessary at least in tp->frto_counter case.
1804 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1805 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1806 after(tp->high_seq, tp->snd_una)) {
1807 tp->frto_highmark = tp->high_seq;
1809 tp->frto_highmark = tp->snd_nxt;
1811 tcp_set_ca_state(sk, TCP_CA_Disorder);
1812 tp->high_seq = tp->snd_nxt;
1813 tp->frto_counter = 1;
1816 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1817 * which indicates that we should follow the traditional RTO recovery,
1818 * i.e. mark everything lost and do go-back-N retransmission.
1820 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1822 struct tcp_sock *tp = tcp_sk(sk);
1823 struct sk_buff *skb;
1826 tp->retrans_out = 0;
1827 if (tcp_is_reno(tp))
1828 tcp_reset_reno_sack(tp);
1830 tcp_for_write_queue(skb, sk) {
1831 if (skb == tcp_send_head(sk))
1834 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1836 * Count the retransmission made on RTO correctly (only when
1837 * waiting for the first ACK and did not get it)...
1839 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1840 /* For some reason this R-bit might get cleared? */
1841 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1842 tp->retrans_out += tcp_skb_pcount(skb);
1843 /* ...enter this if branch just for the first segment */
1844 flag |= FLAG_DATA_ACKED;
1846 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1847 tp->undo_marker = 0;
1848 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1851 /* Marking forward transmissions that were made after RTO lost
1852 * can cause unnecessary retransmissions in some scenarios,
1853 * SACK blocks will mitigate that in some but not in all cases.
1854 * We used to not mark them but it was causing break-ups with
1855 * receivers that do only in-order receival.
1857 * TODO: we could detect presence of such receiver and select
1858 * different behavior per flow.
1860 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1861 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1862 tp->lost_out += tcp_skb_pcount(skb);
1865 tcp_verify_left_out(tp);
1867 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1868 tp->snd_cwnd_cnt = 0;
1869 tp->snd_cwnd_stamp = tcp_time_stamp;
1870 tp->frto_counter = 0;
1871 tp->bytes_acked = 0;
1873 tp->reordering = min_t(unsigned int, tp->reordering,
1874 sysctl_tcp_reordering);
1875 tcp_set_ca_state(sk, TCP_CA_Loss);
1876 tp->high_seq = tp->snd_nxt;
1877 TCP_ECN_queue_cwr(tp);
1879 tcp_clear_retrans_hints_partial(tp);
1882 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1884 tp->retrans_out = 0;
1887 tp->undo_marker = 0;
1888 tp->undo_retrans = 0;
1891 void tcp_clear_retrans(struct tcp_sock *tp)
1893 tcp_clear_retrans_partial(tp);
1895 tp->fackets_out = 0;
1899 /* Enter Loss state. If "how" is not zero, forget all SACK information
1900 * and reset tags completely, otherwise preserve SACKs. If receiver
1901 * dropped its ofo queue, we will know this due to reneging detection.
1903 void tcp_enter_loss(struct sock *sk, int how)
1905 const struct inet_connection_sock *icsk = inet_csk(sk);
1906 struct tcp_sock *tp = tcp_sk(sk);
1907 struct sk_buff *skb;
1909 /* Reduce ssthresh if it has not yet been made inside this window. */
1910 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1911 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1912 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1913 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1914 tcp_ca_event(sk, CA_EVENT_LOSS);
1917 tp->snd_cwnd_cnt = 0;
1918 tp->snd_cwnd_stamp = tcp_time_stamp;
1920 tp->bytes_acked = 0;
1921 tcp_clear_retrans_partial(tp);
1923 if (tcp_is_reno(tp))
1924 tcp_reset_reno_sack(tp);
1927 /* Push undo marker, if it was plain RTO and nothing
1928 * was retransmitted. */
1929 tp->undo_marker = tp->snd_una;
1930 tcp_clear_retrans_hints_partial(tp);
1933 tp->fackets_out = 0;
1934 tcp_clear_all_retrans_hints(tp);
1937 tcp_for_write_queue(skb, sk) {
1938 if (skb == tcp_send_head(sk))
1941 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1942 tp->undo_marker = 0;
1943 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1944 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1945 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1946 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1947 tp->lost_out += tcp_skb_pcount(skb);
1950 tcp_verify_left_out(tp);
1952 tp->reordering = min_t(unsigned int, tp->reordering,
1953 sysctl_tcp_reordering);
1954 tcp_set_ca_state(sk, TCP_CA_Loss);
1955 tp->high_seq = tp->snd_nxt;
1956 TCP_ECN_queue_cwr(tp);
1957 /* Abort F-RTO algorithm if one is in progress */
1958 tp->frto_counter = 0;
1961 /* If ACK arrived pointing to a remembered SACK, it means that our
1962 * remembered SACKs do not reflect real state of receiver i.e.
1963 * receiver _host_ is heavily congested (or buggy).
1965 * Do processing similar to RTO timeout.
1967 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1969 if (flag & FLAG_SACK_RENEGING) {
1970 struct inet_connection_sock *icsk = inet_csk(sk);
1971 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1973 tcp_enter_loss(sk, 1);
1974 icsk->icsk_retransmits++;
1975 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1976 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1977 icsk->icsk_rto, TCP_RTO_MAX);
1983 static inline int tcp_fackets_out(struct tcp_sock *tp)
1985 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1988 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1989 * counter when SACK is enabled (without SACK, sacked_out is used for
1992 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1993 * segments up to the highest received SACK block so far and holes in
1996 * With reordering, holes may still be in flight, so RFC3517 recovery
1997 * uses pure sacked_out (total number of SACKed segments) even though
1998 * it violates the RFC that uses duplicate ACKs, often these are equal
1999 * but when e.g. out-of-window ACKs or packet duplication occurs,
2000 * they differ. Since neither occurs due to loss, TCP should really
2003 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2005 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2008 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2010 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2013 static inline int tcp_head_timedout(struct sock *sk)
2015 struct tcp_sock *tp = tcp_sk(sk);
2017 return tp->packets_out &&
2018 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2021 /* Linux NewReno/SACK/FACK/ECN state machine.
2022 * --------------------------------------
2024 * "Open" Normal state, no dubious events, fast path.
2025 * "Disorder" In all the respects it is "Open",
2026 * but requires a bit more attention. It is entered when
2027 * we see some SACKs or dupacks. It is split of "Open"
2028 * mainly to move some processing from fast path to slow one.
2029 * "CWR" CWND was reduced due to some Congestion Notification event.
2030 * It can be ECN, ICMP source quench, local device congestion.
2031 * "Recovery" CWND was reduced, we are fast-retransmitting.
2032 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2034 * tcp_fastretrans_alert() is entered:
2035 * - each incoming ACK, if state is not "Open"
2036 * - when arrived ACK is unusual, namely:
2041 * Counting packets in flight is pretty simple.
2043 * in_flight = packets_out - left_out + retrans_out
2045 * packets_out is SND.NXT-SND.UNA counted in packets.
2047 * retrans_out is number of retransmitted segments.
2049 * left_out is number of segments left network, but not ACKed yet.
2051 * left_out = sacked_out + lost_out
2053 * sacked_out: Packets, which arrived to receiver out of order
2054 * and hence not ACKed. With SACKs this number is simply
2055 * amount of SACKed data. Even without SACKs
2056 * it is easy to give pretty reliable estimate of this number,
2057 * counting duplicate ACKs.
2059 * lost_out: Packets lost by network. TCP has no explicit
2060 * "loss notification" feedback from network (for now).
2061 * It means that this number can be only _guessed_.
2062 * Actually, it is the heuristics to predict lossage that
2063 * distinguishes different algorithms.
2065 * F.e. after RTO, when all the queue is considered as lost,
2066 * lost_out = packets_out and in_flight = retrans_out.
2068 * Essentially, we have now two algorithms counting
2071 * FACK: It is the simplest heuristics. As soon as we decided
2072 * that something is lost, we decide that _all_ not SACKed
2073 * packets until the most forward SACK are lost. I.e.
2074 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2075 * It is absolutely correct estimate, if network does not reorder
2076 * packets. And it loses any connection to reality when reordering
2077 * takes place. We use FACK by default until reordering
2078 * is suspected on the path to this destination.
2080 * NewReno: when Recovery is entered, we assume that one segment
2081 * is lost (classic Reno). While we are in Recovery and
2082 * a partial ACK arrives, we assume that one more packet
2083 * is lost (NewReno). This heuristics are the same in NewReno
2086 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2087 * deflation etc. CWND is real congestion window, never inflated, changes
2088 * only according to classic VJ rules.
2090 * Really tricky (and requiring careful tuning) part of algorithm
2091 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2092 * The first determines the moment _when_ we should reduce CWND and,
2093 * hence, slow down forward transmission. In fact, it determines the moment
2094 * when we decide that hole is caused by loss, rather than by a reorder.
2096 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2097 * holes, caused by lost packets.
2099 * And the most logically complicated part of algorithm is undo
2100 * heuristics. We detect false retransmits due to both too early
2101 * fast retransmit (reordering) and underestimated RTO, analyzing
2102 * timestamps and D-SACKs. When we detect that some segments were
2103 * retransmitted by mistake and CWND reduction was wrong, we undo
2104 * window reduction and abort recovery phase. This logic is hidden
2105 * inside several functions named tcp_try_undo_<something>.
2108 /* This function decides, when we should leave Disordered state
2109 * and enter Recovery phase, reducing congestion window.
2111 * Main question: may we further continue forward transmission
2112 * with the same cwnd?
2114 static int tcp_time_to_recover(struct sock *sk)
2116 struct tcp_sock *tp = tcp_sk(sk);
2119 /* Do not perform any recovery during F-RTO algorithm */
2120 if (tp->frto_counter)
2123 /* Trick#1: The loss is proven. */
2127 /* Not-A-Trick#2 : Classic rule... */
2128 if (tcp_dupack_heurestics(tp) > tp->reordering)
2131 /* Trick#3 : when we use RFC2988 timer restart, fast
2132 * retransmit can be triggered by timeout of queue head.
2134 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2137 /* Trick#4: It is still not OK... But will it be useful to delay
2140 packets_out = tp->packets_out;
2141 if (packets_out <= tp->reordering &&
2142 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2143 !tcp_may_send_now(sk)) {
2144 /* We have nothing to send. This connection is limited
2145 * either by receiver window or by application.
2153 /* RFC: This is from the original, I doubt that this is necessary at all:
2154 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2155 * retransmitted past LOST markings in the first place? I'm not fully sure
2156 * about undo and end of connection cases, which can cause R without L?
2158 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2160 if ((tp->retransmit_skb_hint != NULL) &&
2161 before(TCP_SKB_CB(skb)->seq,
2162 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2163 tp->retransmit_skb_hint = NULL;
2166 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2167 * is against sacked "cnt", otherwise it's against facked "cnt"
2169 static void tcp_mark_head_lost(struct sock *sk, int packets)
2171 struct tcp_sock *tp = tcp_sk(sk);
2172 struct sk_buff *skb;
2177 BUG_TRAP(packets <= tp->packets_out);
2178 if (tp->lost_skb_hint) {
2179 skb = tp->lost_skb_hint;
2180 cnt = tp->lost_cnt_hint;
2182 skb = tcp_write_queue_head(sk);
2186 tcp_for_write_queue_from(skb, sk) {
2187 if (skb == tcp_send_head(sk))
2189 /* TODO: do this better */
2190 /* this is not the most efficient way to do this... */
2191 tp->lost_skb_hint = skb;
2192 tp->lost_cnt_hint = cnt;
2194 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2198 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2199 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2200 cnt += tcp_skb_pcount(skb);
2202 if (cnt > packets) {
2203 if (tcp_is_sack(tp) || (oldcnt >= packets))
2206 mss = skb_shinfo(skb)->gso_size;
2207 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2213 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2214 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2215 tp->lost_out += tcp_skb_pcount(skb);
2216 tcp_verify_retransmit_hint(tp, skb);
2219 tcp_verify_left_out(tp);
2222 /* Account newly detected lost packet(s) */
2224 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2226 struct tcp_sock *tp = tcp_sk(sk);
2228 if (tcp_is_reno(tp)) {
2229 tcp_mark_head_lost(sk, 1);
2230 } else if (tcp_is_fack(tp)) {
2231 int lost = tp->fackets_out - tp->reordering;
2234 tcp_mark_head_lost(sk, lost);
2236 int sacked_upto = tp->sacked_out - tp->reordering;
2237 if (sacked_upto < fast_rexmit)
2238 sacked_upto = fast_rexmit;
2239 tcp_mark_head_lost(sk, sacked_upto);
2242 /* New heuristics: it is possible only after we switched
2243 * to restart timer each time when something is ACKed.
2244 * Hence, we can detect timed out packets during fast
2245 * retransmit without falling to slow start.
2247 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2248 struct sk_buff *skb;
2250 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2251 : tcp_write_queue_head(sk);
2253 tcp_for_write_queue_from(skb, sk) {
2254 if (skb == tcp_send_head(sk))
2256 if (!tcp_skb_timedout(sk, skb))
2259 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2260 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2261 tp->lost_out += tcp_skb_pcount(skb);
2262 tcp_verify_retransmit_hint(tp, skb);
2266 tp->scoreboard_skb_hint = skb;
2268 tcp_verify_left_out(tp);
2272 /* CWND moderation, preventing bursts due to too big ACKs
2273 * in dubious situations.
2275 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2277 tp->snd_cwnd = min(tp->snd_cwnd,
2278 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2279 tp->snd_cwnd_stamp = tcp_time_stamp;
2282 /* Lower bound on congestion window is slow start threshold
2283 * unless congestion avoidance choice decides to overide it.
2285 static inline u32 tcp_cwnd_min(const struct sock *sk)
2287 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2289 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2292 /* Decrease cwnd each second ack. */
2293 static void tcp_cwnd_down(struct sock *sk, int flag)
2295 struct tcp_sock *tp = tcp_sk(sk);
2296 int decr = tp->snd_cwnd_cnt + 1;
2298 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2299 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2300 tp->snd_cwnd_cnt = decr & 1;
2303 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2304 tp->snd_cwnd -= decr;
2306 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2307 tp->snd_cwnd_stamp = tcp_time_stamp;
2311 /* Nothing was retransmitted or returned timestamp is less
2312 * than timestamp of the first retransmission.
2314 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2316 return !tp->retrans_stamp ||
2317 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2318 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2321 /* Undo procedures. */
2323 #if FASTRETRANS_DEBUG > 1
2324 static void DBGUNDO(struct sock *sk, const char *msg)
2326 struct tcp_sock *tp = tcp_sk(sk);
2327 struct inet_sock *inet = inet_sk(sk);
2329 if (sk->sk_family == AF_INET) {
2330 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2332 NIPQUAD(inet->daddr), ntohs(inet->dport),
2333 tp->snd_cwnd, tcp_left_out(tp),
2334 tp->snd_ssthresh, tp->prior_ssthresh,
2337 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2338 else if (sk->sk_family == AF_INET6) {
2339 struct ipv6_pinfo *np = inet6_sk(sk);
2340 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2342 NIP6(np->daddr), ntohs(inet->dport),
2343 tp->snd_cwnd, tcp_left_out(tp),
2344 tp->snd_ssthresh, tp->prior_ssthresh,
2350 #define DBGUNDO(x...) do { } while (0)
2353 static void tcp_undo_cwr(struct sock *sk, const int undo)
2355 struct tcp_sock *tp = tcp_sk(sk);
2357 if (tp->prior_ssthresh) {
2358 const struct inet_connection_sock *icsk = inet_csk(sk);
2360 if (icsk->icsk_ca_ops->undo_cwnd)
2361 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2363 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2365 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2366 tp->snd_ssthresh = tp->prior_ssthresh;
2367 TCP_ECN_withdraw_cwr(tp);
2370 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2372 tcp_moderate_cwnd(tp);
2373 tp->snd_cwnd_stamp = tcp_time_stamp;
2375 /* There is something screwy going on with the retrans hints after
2377 tcp_clear_all_retrans_hints(tp);
2380 static inline int tcp_may_undo(struct tcp_sock *tp)
2382 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2385 /* People celebrate: "We love our President!" */
2386 static int tcp_try_undo_recovery(struct sock *sk)
2388 struct tcp_sock *tp = tcp_sk(sk);
2390 if (tcp_may_undo(tp)) {
2393 /* Happy end! We did not retransmit anything
2394 * or our original transmission succeeded.
2396 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2397 tcp_undo_cwr(sk, 1);
2398 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2399 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2401 mib_idx = LINUX_MIB_TCPFULLUNDO;
2403 NET_INC_STATS_BH(mib_idx);
2404 tp->undo_marker = 0;
2406 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2407 /* Hold old state until something *above* high_seq
2408 * is ACKed. For Reno it is MUST to prevent false
2409 * fast retransmits (RFC2582). SACK TCP is safe. */
2410 tcp_moderate_cwnd(tp);
2413 tcp_set_ca_state(sk, TCP_CA_Open);
2417 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2418 static void tcp_try_undo_dsack(struct sock *sk)
2420 struct tcp_sock *tp = tcp_sk(sk);
2422 if (tp->undo_marker && !tp->undo_retrans) {
2423 DBGUNDO(sk, "D-SACK");
2424 tcp_undo_cwr(sk, 1);
2425 tp->undo_marker = 0;
2426 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2430 /* Undo during fast recovery after partial ACK. */
2432 static int tcp_try_undo_partial(struct sock *sk, int acked)
2434 struct tcp_sock *tp = tcp_sk(sk);
2435 /* Partial ACK arrived. Force Hoe's retransmit. */
2436 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2438 if (tcp_may_undo(tp)) {
2439 /* Plain luck! Hole if filled with delayed
2440 * packet, rather than with a retransmit.
2442 if (tp->retrans_out == 0)
2443 tp->retrans_stamp = 0;
2445 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2448 tcp_undo_cwr(sk, 0);
2449 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2451 /* So... Do not make Hoe's retransmit yet.
2452 * If the first packet was delayed, the rest
2453 * ones are most probably delayed as well.
2460 /* Undo during loss recovery after partial ACK. */
2461 static int tcp_try_undo_loss(struct sock *sk)
2463 struct tcp_sock *tp = tcp_sk(sk);
2465 if (tcp_may_undo(tp)) {
2466 struct sk_buff *skb;
2467 tcp_for_write_queue(skb, sk) {
2468 if (skb == tcp_send_head(sk))
2470 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2473 tcp_clear_all_retrans_hints(tp);
2475 DBGUNDO(sk, "partial loss");
2477 tcp_undo_cwr(sk, 1);
2478 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2479 inet_csk(sk)->icsk_retransmits = 0;
2480 tp->undo_marker = 0;
2481 if (tcp_is_sack(tp))
2482 tcp_set_ca_state(sk, TCP_CA_Open);
2488 static inline void tcp_complete_cwr(struct sock *sk)
2490 struct tcp_sock *tp = tcp_sk(sk);
2491 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2492 tp->snd_cwnd_stamp = tcp_time_stamp;
2493 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2496 static void tcp_try_keep_open(struct sock *sk)
2498 struct tcp_sock *tp = tcp_sk(sk);
2499 int state = TCP_CA_Open;
2501 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2502 state = TCP_CA_Disorder;
2504 if (inet_csk(sk)->icsk_ca_state != state) {
2505 tcp_set_ca_state(sk, state);
2506 tp->high_seq = tp->snd_nxt;
2510 static void tcp_try_to_open(struct sock *sk, int flag)
2512 struct tcp_sock *tp = tcp_sk(sk);
2514 tcp_verify_left_out(tp);
2516 if (!tp->frto_counter && tp->retrans_out == 0)
2517 tp->retrans_stamp = 0;
2519 if (flag & FLAG_ECE)
2520 tcp_enter_cwr(sk, 1);
2522 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2523 tcp_try_keep_open(sk);
2524 tcp_moderate_cwnd(tp);
2526 tcp_cwnd_down(sk, flag);
2530 static void tcp_mtup_probe_failed(struct sock *sk)
2532 struct inet_connection_sock *icsk = inet_csk(sk);
2534 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2535 icsk->icsk_mtup.probe_size = 0;
2538 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2540 struct tcp_sock *tp = tcp_sk(sk);
2541 struct inet_connection_sock *icsk = inet_csk(sk);
2543 /* FIXME: breaks with very large cwnd */
2544 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2545 tp->snd_cwnd = tp->snd_cwnd *
2546 tcp_mss_to_mtu(sk, tp->mss_cache) /
2547 icsk->icsk_mtup.probe_size;
2548 tp->snd_cwnd_cnt = 0;
2549 tp->snd_cwnd_stamp = tcp_time_stamp;
2550 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2552 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2553 icsk->icsk_mtup.probe_size = 0;
2554 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2557 /* Process an event, which can update packets-in-flight not trivially.
2558 * Main goal of this function is to calculate new estimate for left_out,
2559 * taking into account both packets sitting in receiver's buffer and
2560 * packets lost by network.
2562 * Besides that it does CWND reduction, when packet loss is detected
2563 * and changes state of machine.
2565 * It does _not_ decide what to send, it is made in function
2566 * tcp_xmit_retransmit_queue().
2568 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2570 struct inet_connection_sock *icsk = inet_csk(sk);
2571 struct tcp_sock *tp = tcp_sk(sk);
2572 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2573 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2574 (tcp_fackets_out(tp) > tp->reordering));
2575 int fast_rexmit = 0, mib_idx;
2577 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2579 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2580 tp->fackets_out = 0;
2582 /* Now state machine starts.
2583 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2584 if (flag & FLAG_ECE)
2585 tp->prior_ssthresh = 0;
2587 /* B. In all the states check for reneging SACKs. */
2588 if (tcp_check_sack_reneging(sk, flag))
2591 /* C. Process data loss notification, provided it is valid. */
2592 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2593 before(tp->snd_una, tp->high_seq) &&
2594 icsk->icsk_ca_state != TCP_CA_Open &&
2595 tp->fackets_out > tp->reordering) {
2596 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2597 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2600 /* D. Check consistency of the current state. */
2601 tcp_verify_left_out(tp);
2603 /* E. Check state exit conditions. State can be terminated
2604 * when high_seq is ACKed. */
2605 if (icsk->icsk_ca_state == TCP_CA_Open) {
2606 BUG_TRAP(tp->retrans_out == 0);
2607 tp->retrans_stamp = 0;
2608 } else if (!before(tp->snd_una, tp->high_seq)) {
2609 switch (icsk->icsk_ca_state) {
2611 icsk->icsk_retransmits = 0;
2612 if (tcp_try_undo_recovery(sk))
2617 /* CWR is to be held something *above* high_seq
2618 * is ACKed for CWR bit to reach receiver. */
2619 if (tp->snd_una != tp->high_seq) {
2620 tcp_complete_cwr(sk);
2621 tcp_set_ca_state(sk, TCP_CA_Open);
2625 case TCP_CA_Disorder:
2626 tcp_try_undo_dsack(sk);
2627 if (!tp->undo_marker ||
2628 /* For SACK case do not Open to allow to undo
2629 * catching for all duplicate ACKs. */
2630 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2631 tp->undo_marker = 0;
2632 tcp_set_ca_state(sk, TCP_CA_Open);
2636 case TCP_CA_Recovery:
2637 if (tcp_is_reno(tp))
2638 tcp_reset_reno_sack(tp);
2639 if (tcp_try_undo_recovery(sk))
2641 tcp_complete_cwr(sk);
2646 /* F. Process state. */
2647 switch (icsk->icsk_ca_state) {
2648 case TCP_CA_Recovery:
2649 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2650 if (tcp_is_reno(tp) && is_dupack)
2651 tcp_add_reno_sack(sk);
2653 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2656 if (flag & FLAG_DATA_ACKED)
2657 icsk->icsk_retransmits = 0;
2658 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2659 tcp_reset_reno_sack(tp);
2660 if (!tcp_try_undo_loss(sk)) {
2661 tcp_moderate_cwnd(tp);
2662 tcp_xmit_retransmit_queue(sk);
2665 if (icsk->icsk_ca_state != TCP_CA_Open)
2667 /* Loss is undone; fall through to processing in Open state. */
2669 if (tcp_is_reno(tp)) {
2670 if (flag & FLAG_SND_UNA_ADVANCED)
2671 tcp_reset_reno_sack(tp);
2673 tcp_add_reno_sack(sk);
2676 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2677 tcp_try_undo_dsack(sk);
2679 if (!tcp_time_to_recover(sk)) {
2680 tcp_try_to_open(sk, flag);
2684 /* MTU probe failure: don't reduce cwnd */
2685 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2686 icsk->icsk_mtup.probe_size &&
2687 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2688 tcp_mtup_probe_failed(sk);
2689 /* Restores the reduction we did in tcp_mtup_probe() */
2691 tcp_simple_retransmit(sk);
2695 /* Otherwise enter Recovery state */
2697 if (tcp_is_reno(tp))
2698 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2700 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2702 NET_INC_STATS_BH(mib_idx);
2704 tp->high_seq = tp->snd_nxt;
2705 tp->prior_ssthresh = 0;
2706 tp->undo_marker = tp->snd_una;
2707 tp->undo_retrans = tp->retrans_out;
2709 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2710 if (!(flag & FLAG_ECE))
2711 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2712 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2713 TCP_ECN_queue_cwr(tp);
2716 tp->bytes_acked = 0;
2717 tp->snd_cwnd_cnt = 0;
2718 tcp_set_ca_state(sk, TCP_CA_Recovery);
2722 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2723 tcp_update_scoreboard(sk, fast_rexmit);
2724 tcp_cwnd_down(sk, flag);
2725 tcp_xmit_retransmit_queue(sk);
2728 /* Read draft-ietf-tcplw-high-performance before mucking
2729 * with this code. (Supersedes RFC1323)
2731 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2733 /* RTTM Rule: A TSecr value received in a segment is used to
2734 * update the averaged RTT measurement only if the segment
2735 * acknowledges some new data, i.e., only if it advances the
2736 * left edge of the send window.
2738 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2739 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2741 * Changed: reset backoff as soon as we see the first valid sample.
2742 * If we do not, we get strongly overestimated rto. With timestamps
2743 * samples are accepted even from very old segments: f.e., when rtt=1
2744 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2745 * answer arrives rto becomes 120 seconds! If at least one of segments
2746 * in window is lost... Voila. --ANK (010210)
2748 struct tcp_sock *tp = tcp_sk(sk);
2749 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2750 tcp_rtt_estimator(sk, seq_rtt);
2752 inet_csk(sk)->icsk_backoff = 0;
2756 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2758 /* We don't have a timestamp. Can only use
2759 * packets that are not retransmitted to determine
2760 * rtt estimates. Also, we must not reset the
2761 * backoff for rto until we get a non-retransmitted
2762 * packet. This allows us to deal with a situation
2763 * where the network delay has increased suddenly.
2764 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2767 if (flag & FLAG_RETRANS_DATA_ACKED)
2770 tcp_rtt_estimator(sk, seq_rtt);
2772 inet_csk(sk)->icsk_backoff = 0;
2776 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2779 const struct tcp_sock *tp = tcp_sk(sk);
2780 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2781 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2782 tcp_ack_saw_tstamp(sk, flag);
2783 else if (seq_rtt >= 0)
2784 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2787 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2789 const struct inet_connection_sock *icsk = inet_csk(sk);
2790 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2791 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2794 /* Restart timer after forward progress on connection.
2795 * RFC2988 recommends to restart timer to now+rto.
2797 static void tcp_rearm_rto(struct sock *sk)
2799 struct tcp_sock *tp = tcp_sk(sk);
2801 if (!tp->packets_out) {
2802 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2804 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2805 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2809 /* If we get here, the whole TSO packet has not been acked. */
2810 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2812 struct tcp_sock *tp = tcp_sk(sk);
2815 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2817 packets_acked = tcp_skb_pcount(skb);
2818 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2820 packets_acked -= tcp_skb_pcount(skb);
2822 if (packets_acked) {
2823 BUG_ON(tcp_skb_pcount(skb) == 0);
2824 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2827 return packets_acked;
2830 /* Remove acknowledged frames from the retransmission queue. If our packet
2831 * is before the ack sequence we can discard it as it's confirmed to have
2832 * arrived at the other end.
2834 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2836 struct tcp_sock *tp = tcp_sk(sk);
2837 const struct inet_connection_sock *icsk = inet_csk(sk);
2838 struct sk_buff *skb;
2839 u32 now = tcp_time_stamp;
2840 int fully_acked = 1;
2843 u32 reord = tp->packets_out;
2845 s32 ca_seq_rtt = -1;
2846 ktime_t last_ackt = net_invalid_timestamp();
2848 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2849 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2852 u8 sacked = scb->sacked;
2854 /* Determine how many packets and what bytes were acked, tso and else */
2855 if (after(scb->end_seq, tp->snd_una)) {
2856 if (tcp_skb_pcount(skb) == 1 ||
2857 !after(tp->snd_una, scb->seq))
2860 acked_pcount = tcp_tso_acked(sk, skb);
2865 end_seq = tp->snd_una;
2867 acked_pcount = tcp_skb_pcount(skb);
2868 end_seq = scb->end_seq;
2871 /* MTU probing checks */
2872 if (fully_acked && icsk->icsk_mtup.probe_size &&
2873 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2874 tcp_mtup_probe_success(sk, skb);
2877 if (sacked & TCPCB_RETRANS) {
2878 if (sacked & TCPCB_SACKED_RETRANS)
2879 tp->retrans_out -= acked_pcount;
2880 flag |= FLAG_RETRANS_DATA_ACKED;
2883 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2884 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2886 ca_seq_rtt = now - scb->when;
2887 last_ackt = skb->tstamp;
2889 seq_rtt = ca_seq_rtt;
2891 if (!(sacked & TCPCB_SACKED_ACKED))
2892 reord = min(pkts_acked, reord);
2895 if (sacked & TCPCB_SACKED_ACKED)
2896 tp->sacked_out -= acked_pcount;
2897 if (sacked & TCPCB_LOST)
2898 tp->lost_out -= acked_pcount;
2900 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2903 tp->packets_out -= acked_pcount;
2904 pkts_acked += acked_pcount;
2906 /* Initial outgoing SYN's get put onto the write_queue
2907 * just like anything else we transmit. It is not
2908 * true data, and if we misinform our callers that
2909 * this ACK acks real data, we will erroneously exit
2910 * connection startup slow start one packet too
2911 * quickly. This is severely frowned upon behavior.
2913 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2914 flag |= FLAG_DATA_ACKED;
2916 flag |= FLAG_SYN_ACKED;
2917 tp->retrans_stamp = 0;
2923 tcp_unlink_write_queue(skb, sk);
2924 sk_wmem_free_skb(sk, skb);
2925 tcp_clear_all_retrans_hints(tp);
2928 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2929 flag |= FLAG_SACK_RENEGING;
2931 if (flag & FLAG_ACKED) {
2932 const struct tcp_congestion_ops *ca_ops
2933 = inet_csk(sk)->icsk_ca_ops;
2935 tcp_ack_update_rtt(sk, flag, seq_rtt);
2938 if (tcp_is_reno(tp)) {
2939 tcp_remove_reno_sacks(sk, pkts_acked);
2941 /* Non-retransmitted hole got filled? That's reordering */
2942 if (reord < prior_fackets)
2943 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2946 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2948 if (ca_ops->pkts_acked) {
2951 /* Is the ACK triggering packet unambiguous? */
2952 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2953 /* High resolution needed and available? */
2954 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2955 !ktime_equal(last_ackt,
2956 net_invalid_timestamp()))
2957 rtt_us = ktime_us_delta(ktime_get_real(),
2959 else if (ca_seq_rtt > 0)
2960 rtt_us = jiffies_to_usecs(ca_seq_rtt);
2963 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2967 #if FASTRETRANS_DEBUG > 0
2968 BUG_TRAP((int)tp->sacked_out >= 0);
2969 BUG_TRAP((int)tp->lost_out >= 0);
2970 BUG_TRAP((int)tp->retrans_out >= 0);
2971 if (!tp->packets_out && tcp_is_sack(tp)) {
2972 icsk = inet_csk(sk);
2974 printk(KERN_DEBUG "Leak l=%u %d\n",
2975 tp->lost_out, icsk->icsk_ca_state);
2978 if (tp->sacked_out) {
2979 printk(KERN_DEBUG "Leak s=%u %d\n",
2980 tp->sacked_out, icsk->icsk_ca_state);
2983 if (tp->retrans_out) {
2984 printk(KERN_DEBUG "Leak r=%u %d\n",
2985 tp->retrans_out, icsk->icsk_ca_state);
2986 tp->retrans_out = 0;
2993 static void tcp_ack_probe(struct sock *sk)
2995 const struct tcp_sock *tp = tcp_sk(sk);
2996 struct inet_connection_sock *icsk = inet_csk(sk);
2998 /* Was it a usable window open? */
3000 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3001 icsk->icsk_backoff = 0;
3002 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3003 /* Socket must be waked up by subsequent tcp_data_snd_check().
3004 * This function is not for random using!
3007 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3008 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3013 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3015 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3016 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3019 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3021 const struct tcp_sock *tp = tcp_sk(sk);
3022 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3023 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3026 /* Check that window update is acceptable.
3027 * The function assumes that snd_una<=ack<=snd_next.
3029 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3030 const u32 ack, const u32 ack_seq,
3033 return (after(ack, tp->snd_una) ||
3034 after(ack_seq, tp->snd_wl1) ||
3035 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3038 /* Update our send window.
3040 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3041 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3043 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3046 struct tcp_sock *tp = tcp_sk(sk);
3048 u32 nwin = ntohs(tcp_hdr(skb)->window);
3050 if (likely(!tcp_hdr(skb)->syn))
3051 nwin <<= tp->rx_opt.snd_wscale;
3053 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3054 flag |= FLAG_WIN_UPDATE;
3055 tcp_update_wl(tp, ack, ack_seq);
3057 if (tp->snd_wnd != nwin) {
3060 /* Note, it is the only place, where
3061 * fast path is recovered for sending TCP.
3064 tcp_fast_path_check(sk);
3066 if (nwin > tp->max_window) {
3067 tp->max_window = nwin;
3068 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3078 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3079 * continue in congestion avoidance.
3081 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3083 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3084 tp->snd_cwnd_cnt = 0;
3085 tp->bytes_acked = 0;
3086 TCP_ECN_queue_cwr(tp);
3087 tcp_moderate_cwnd(tp);
3090 /* A conservative spurious RTO response algorithm: reduce cwnd using
3091 * rate halving and continue in congestion avoidance.
3093 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3095 tcp_enter_cwr(sk, 0);
3098 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3100 if (flag & FLAG_ECE)
3101 tcp_ratehalving_spur_to_response(sk);
3103 tcp_undo_cwr(sk, 1);
3106 /* F-RTO spurious RTO detection algorithm (RFC4138)
3108 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3109 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3110 * window (but not to or beyond highest sequence sent before RTO):
3111 * On First ACK, send two new segments out.
3112 * On Second ACK, RTO was likely spurious. Do spurious response (response
3113 * algorithm is not part of the F-RTO detection algorithm
3114 * given in RFC4138 but can be selected separately).
3115 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3116 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3117 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3118 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3120 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3121 * original window even after we transmit two new data segments.
3124 * on first step, wait until first cumulative ACK arrives, then move to
3125 * the second step. In second step, the next ACK decides.
3127 * F-RTO is implemented (mainly) in four functions:
3128 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3129 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3130 * called when tcp_use_frto() showed green light
3131 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3132 * - tcp_enter_frto_loss() is called if there is not enough evidence
3133 * to prove that the RTO is indeed spurious. It transfers the control
3134 * from F-RTO to the conventional RTO recovery
3136 static int tcp_process_frto(struct sock *sk, int flag)
3138 struct tcp_sock *tp = tcp_sk(sk);
3140 tcp_verify_left_out(tp);
3142 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3143 if (flag & FLAG_DATA_ACKED)
3144 inet_csk(sk)->icsk_retransmits = 0;
3146 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3147 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3148 tp->undo_marker = 0;
3150 if (!before(tp->snd_una, tp->frto_highmark)) {
3151 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3155 if (!tcp_is_sackfrto(tp)) {
3156 /* RFC4138 shortcoming in step 2; should also have case c):
3157 * ACK isn't duplicate nor advances window, e.g., opposite dir
3160 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3163 if (!(flag & FLAG_DATA_ACKED)) {
3164 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3169 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3170 /* Prevent sending of new data. */
3171 tp->snd_cwnd = min(tp->snd_cwnd,
3172 tcp_packets_in_flight(tp));
3176 if ((tp->frto_counter >= 2) &&
3177 (!(flag & FLAG_FORWARD_PROGRESS) ||
3178 ((flag & FLAG_DATA_SACKED) &&
3179 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3180 /* RFC4138 shortcoming (see comment above) */
3181 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3182 (flag & FLAG_NOT_DUP))
3185 tcp_enter_frto_loss(sk, 3, flag);
3190 if (tp->frto_counter == 1) {
3191 /* tcp_may_send_now needs to see updated state */
3192 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3193 tp->frto_counter = 2;
3195 if (!tcp_may_send_now(sk))
3196 tcp_enter_frto_loss(sk, 2, flag);
3200 switch (sysctl_tcp_frto_response) {
3202 tcp_undo_spur_to_response(sk, flag);
3205 tcp_conservative_spur_to_response(tp);
3208 tcp_ratehalving_spur_to_response(sk);
3211 tp->frto_counter = 0;
3212 tp->undo_marker = 0;
3213 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3218 /* This routine deals with incoming acks, but not outgoing ones. */
3219 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3221 struct inet_connection_sock *icsk = inet_csk(sk);
3222 struct tcp_sock *tp = tcp_sk(sk);
3223 u32 prior_snd_una = tp->snd_una;
3224 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3225 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3226 u32 prior_in_flight;
3231 /* If the ack is newer than sent or older than previous acks
3232 * then we can probably ignore it.
3234 if (after(ack, tp->snd_nxt))
3235 goto uninteresting_ack;
3237 if (before(ack, prior_snd_una))
3240 if (after(ack, prior_snd_una))
3241 flag |= FLAG_SND_UNA_ADVANCED;
3243 if (sysctl_tcp_abc) {
3244 if (icsk->icsk_ca_state < TCP_CA_CWR)
3245 tp->bytes_acked += ack - prior_snd_una;
3246 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3247 /* we assume just one segment left network */
3248 tp->bytes_acked += min(ack - prior_snd_una,
3252 prior_fackets = tp->fackets_out;
3253 prior_in_flight = tcp_packets_in_flight(tp);
3255 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3256 /* Window is constant, pure forward advance.
3257 * No more checks are required.
3258 * Note, we use the fact that SND.UNA>=SND.WL2.
3260 tcp_update_wl(tp, ack, ack_seq);
3262 flag |= FLAG_WIN_UPDATE;
3264 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3266 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3268 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3271 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3273 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3275 if (TCP_SKB_CB(skb)->sacked)
3276 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3278 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3281 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3284 /* We passed data and got it acked, remove any soft error
3285 * log. Something worked...
3287 sk->sk_err_soft = 0;
3288 tp->rcv_tstamp = tcp_time_stamp;
3289 prior_packets = tp->packets_out;
3293 /* See if we can take anything off of the retransmit queue. */
3294 flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3296 if (tp->frto_counter)
3297 frto_cwnd = tcp_process_frto(sk, flag);
3298 /* Guarantee sacktag reordering detection against wrap-arounds */
3299 if (before(tp->frto_highmark, tp->snd_una))
3300 tp->frto_highmark = 0;
3302 if (tcp_ack_is_dubious(sk, flag)) {
3303 /* Advance CWND, if state allows this. */
3304 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3305 tcp_may_raise_cwnd(sk, flag))
3306 tcp_cong_avoid(sk, ack, prior_in_flight);
3307 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3310 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3311 tcp_cong_avoid(sk, ack, prior_in_flight);
3314 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3315 dst_confirm(sk->sk_dst_cache);
3320 icsk->icsk_probes_out = 0;
3322 /* If this ack opens up a zero window, clear backoff. It was
3323 * being used to time the probes, and is probably far higher than
3324 * it needs to be for normal retransmission.
3326 if (tcp_send_head(sk))
3331 if (TCP_SKB_CB(skb)->sacked) {
3332 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3333 if (icsk->icsk_ca_state == TCP_CA_Open)
3334 tcp_try_keep_open(sk);
3338 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3342 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3343 * But, this can also be called on packets in the established flow when
3344 * the fast version below fails.
3346 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3350 struct tcphdr *th = tcp_hdr(skb);
3351 int length = (th->doff * 4) - sizeof(struct tcphdr);
3353 ptr = (unsigned char *)(th + 1);
3354 opt_rx->saw_tstamp = 0;
3356 while (length > 0) {
3357 int opcode = *ptr++;
3363 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3368 if (opsize < 2) /* "silly options" */
3370 if (opsize > length)
3371 return; /* don't parse partial options */
3374 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3375 u16 in_mss = get_unaligned_be16(ptr);
3377 if (opt_rx->user_mss &&
3378 opt_rx->user_mss < in_mss)
3379 in_mss = opt_rx->user_mss;
3380 opt_rx->mss_clamp = in_mss;
3385 if (opsize == TCPOLEN_WINDOW && th->syn &&
3386 !estab && sysctl_tcp_window_scaling) {
3387 __u8 snd_wscale = *(__u8 *)ptr;
3388 opt_rx->wscale_ok = 1;
3389 if (snd_wscale > 14) {
3390 if (net_ratelimit())
3391 printk(KERN_INFO "tcp_parse_options: Illegal window "
3392 "scaling value %d >14 received.\n",
3396 opt_rx->snd_wscale = snd_wscale;
3399 case TCPOPT_TIMESTAMP:
3400 if ((opsize == TCPOLEN_TIMESTAMP) &&
3401 ((estab && opt_rx->tstamp_ok) ||
3402 (!estab && sysctl_tcp_timestamps))) {
3403 opt_rx->saw_tstamp = 1;
3404 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3405 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3408 case TCPOPT_SACK_PERM:
3409 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3410 !estab && sysctl_tcp_sack) {
3411 opt_rx->sack_ok = 1;
3412 tcp_sack_reset(opt_rx);
3417 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3418 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3420 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3423 #ifdef CONFIG_TCP_MD5SIG
3426 * The MD5 Hash has already been
3427 * checked (see tcp_v{4,6}_do_rcv()).
3439 /* Fast parse options. This hopes to only see timestamps.
3440 * If it is wrong it falls back on tcp_parse_options().
3442 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3443 struct tcp_sock *tp)
3445 if (th->doff == sizeof(struct tcphdr) >> 2) {
3446 tp->rx_opt.saw_tstamp = 0;
3448 } else if (tp->rx_opt.tstamp_ok &&
3449 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3450 __be32 *ptr = (__be32 *)(th + 1);
3451 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3452 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3453 tp->rx_opt.saw_tstamp = 1;
3455 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3457 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3461 tcp_parse_options(skb, &tp->rx_opt, 1);
3465 #ifdef CONFIG_TCP_MD5SIG
3467 * Parse MD5 Signature option
3469 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3471 int length = (th->doff << 2) - sizeof (*th);
3472 u8 *ptr = (u8*)(th + 1);
3474 /* If the TCP option is too short, we can short cut */
3475 if (length < TCPOLEN_MD5SIG)
3478 while (length > 0) {
3479 int opcode = *ptr++;
3490 if (opsize < 2 || opsize > length)
3492 if (opcode == TCPOPT_MD5SIG)
3502 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3504 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3505 tp->rx_opt.ts_recent_stamp = get_seconds();
3508 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3510 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3511 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3512 * extra check below makes sure this can only happen
3513 * for pure ACK frames. -DaveM
3515 * Not only, also it occurs for expired timestamps.
3518 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3519 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3520 tcp_store_ts_recent(tp);
3524 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3526 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3527 * it can pass through stack. So, the following predicate verifies that
3528 * this segment is not used for anything but congestion avoidance or
3529 * fast retransmit. Moreover, we even are able to eliminate most of such
3530 * second order effects, if we apply some small "replay" window (~RTO)
3531 * to timestamp space.
3533 * All these measures still do not guarantee that we reject wrapped ACKs
3534 * on networks with high bandwidth, when sequence space is recycled fastly,
3535 * but it guarantees that such events will be very rare and do not affect
3536 * connection seriously. This doesn't look nice, but alas, PAWS is really
3539 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3540 * states that events when retransmit arrives after original data are rare.
3541 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3542 * the biggest problem on large power networks even with minor reordering.
3543 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3544 * up to bandwidth of 18Gigabit/sec. 8) ]
3547 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3549 struct tcp_sock *tp = tcp_sk(sk);
3550 struct tcphdr *th = tcp_hdr(skb);
3551 u32 seq = TCP_SKB_CB(skb)->seq;
3552 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3554 return (/* 1. Pure ACK with correct sequence number. */
3555 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3557 /* 2. ... and duplicate ACK. */
3558 ack == tp->snd_una &&
3560 /* 3. ... and does not update window. */
3561 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3563 /* 4. ... and sits in replay window. */
3564 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3567 static inline int tcp_paws_discard(const struct sock *sk,
3568 const struct sk_buff *skb)
3570 const struct tcp_sock *tp = tcp_sk(sk);
3571 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3572 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3573 !tcp_disordered_ack(sk, skb));
3576 /* Check segment sequence number for validity.
3578 * Segment controls are considered valid, if the segment
3579 * fits to the window after truncation to the window. Acceptability
3580 * of data (and SYN, FIN, of course) is checked separately.
3581 * See tcp_data_queue(), for example.
3583 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3584 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3585 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3586 * (borrowed from freebsd)
3589 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3591 return !before(end_seq, tp->rcv_wup) &&
3592 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3595 /* When we get a reset we do this. */
3596 static void tcp_reset(struct sock *sk)
3598 /* We want the right error as BSD sees it (and indeed as we do). */
3599 switch (sk->sk_state) {
3601 sk->sk_err = ECONNREFUSED;
3603 case TCP_CLOSE_WAIT:
3609 sk->sk_err = ECONNRESET;
3612 if (!sock_flag(sk, SOCK_DEAD))
3613 sk->sk_error_report(sk);
3619 * Process the FIN bit. This now behaves as it is supposed to work
3620 * and the FIN takes effect when it is validly part of sequence
3621 * space. Not before when we get holes.
3623 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3624 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3627 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3628 * close and we go into CLOSING (and later onto TIME-WAIT)
3630 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3632 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3634 struct tcp_sock *tp = tcp_sk(sk);
3636 inet_csk_schedule_ack(sk);
3638 sk->sk_shutdown |= RCV_SHUTDOWN;
3639 sock_set_flag(sk, SOCK_DONE);
3641 switch (sk->sk_state) {
3643 case TCP_ESTABLISHED:
3644 /* Move to CLOSE_WAIT */
3645 tcp_set_state(sk, TCP_CLOSE_WAIT);
3646 inet_csk(sk)->icsk_ack.pingpong = 1;
3649 case TCP_CLOSE_WAIT:
3651 /* Received a retransmission of the FIN, do
3656 /* RFC793: Remain in the LAST-ACK state. */
3660 /* This case occurs when a simultaneous close
3661 * happens, we must ack the received FIN and
3662 * enter the CLOSING state.
3665 tcp_set_state(sk, TCP_CLOSING);
3668 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3670 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3673 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3674 * cases we should never reach this piece of code.
3676 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3677 __func__, sk->sk_state);
3681 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3682 * Probably, we should reset in this case. For now drop them.
3684 __skb_queue_purge(&tp->out_of_order_queue);
3685 if (tcp_is_sack(tp))
3686 tcp_sack_reset(&tp->rx_opt);
3689 if (!sock_flag(sk, SOCK_DEAD)) {
3690 sk->sk_state_change(sk);
3692 /* Do not send POLL_HUP for half duplex close. */
3693 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3694 sk->sk_state == TCP_CLOSE)
3695 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3697 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3701 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3704 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3705 if (before(seq, sp->start_seq))
3706 sp->start_seq = seq;
3707 if (after(end_seq, sp->end_seq))
3708 sp->end_seq = end_seq;
3714 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3716 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3719 if (before(seq, tp->rcv_nxt))
3720 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3722 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3724 NET_INC_STATS_BH(mib_idx);
3726 tp->rx_opt.dsack = 1;
3727 tp->duplicate_sack[0].start_seq = seq;
3728 tp->duplicate_sack[0].end_seq = end_seq;
3729 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3730 4 - tp->rx_opt.tstamp_ok);
3734 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3736 if (!tp->rx_opt.dsack)
3737 tcp_dsack_set(tp, seq, end_seq);
3739 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3742 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3744 struct tcp_sock *tp = tcp_sk(sk);
3746 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3747 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3748 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3749 tcp_enter_quickack_mode(sk);
3751 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3752 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3754 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3755 end_seq = tp->rcv_nxt;
3756 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3763 /* These routines update the SACK block as out-of-order packets arrive or
3764 * in-order packets close up the sequence space.
3766 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3769 struct tcp_sack_block *sp = &tp->selective_acks[0];
3770 struct tcp_sack_block *swalk = sp + 1;
3772 /* See if the recent change to the first SACK eats into
3773 * or hits the sequence space of other SACK blocks, if so coalesce.
3775 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3776 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3779 /* Zap SWALK, by moving every further SACK up by one slot.
3780 * Decrease num_sacks.
3782 tp->rx_opt.num_sacks--;
3783 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3785 4 - tp->rx_opt.tstamp_ok);
3786 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3790 this_sack++, swalk++;
3794 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3795 struct tcp_sack_block *sack2)
3799 tmp = sack1->start_seq;
3800 sack1->start_seq = sack2->start_seq;
3801 sack2->start_seq = tmp;
3803 tmp = sack1->end_seq;
3804 sack1->end_seq = sack2->end_seq;
3805 sack2->end_seq = tmp;
3808 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3810 struct tcp_sock *tp = tcp_sk(sk);
3811 struct tcp_sack_block *sp = &tp->selective_acks[0];
3812 int cur_sacks = tp->rx_opt.num_sacks;
3818 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3819 if (tcp_sack_extend(sp, seq, end_seq)) {
3820 /* Rotate this_sack to the first one. */
3821 for (; this_sack > 0; this_sack--, sp--)
3822 tcp_sack_swap(sp, sp - 1);
3824 tcp_sack_maybe_coalesce(tp);
3829 /* Could not find an adjacent existing SACK, build a new one,
3830 * put it at the front, and shift everyone else down. We
3831 * always know there is at least one SACK present already here.
3833 * If the sack array is full, forget about the last one.
3835 if (this_sack >= 4) {
3837 tp->rx_opt.num_sacks--;
3840 for (; this_sack > 0; this_sack--, sp--)
3844 /* Build the new head SACK, and we're done. */
3845 sp->start_seq = seq;
3846 sp->end_seq = end_seq;
3847 tp->rx_opt.num_sacks++;
3848 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3849 4 - tp->rx_opt.tstamp_ok);
3852 /* RCV.NXT advances, some SACKs should be eaten. */
3854 static void tcp_sack_remove(struct tcp_sock *tp)
3856 struct tcp_sack_block *sp = &tp->selective_acks[0];
3857 int num_sacks = tp->rx_opt.num_sacks;
3860 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3861 if (skb_queue_empty(&tp->out_of_order_queue)) {
3862 tp->rx_opt.num_sacks = 0;
3863 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3867 for (this_sack = 0; this_sack < num_sacks;) {
3868 /* Check if the start of the sack is covered by RCV.NXT. */
3869 if (!before(tp->rcv_nxt, sp->start_seq)) {
3872 /* RCV.NXT must cover all the block! */
3873 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3875 /* Zap this SACK, by moving forward any other SACKS. */
3876 for (i=this_sack+1; i < num_sacks; i++)
3877 tp->selective_acks[i-1] = tp->selective_acks[i];
3884 if (num_sacks != tp->rx_opt.num_sacks) {
3885 tp->rx_opt.num_sacks = num_sacks;
3886 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3888 4 - tp->rx_opt.tstamp_ok);
3892 /* This one checks to see if we can put data from the
3893 * out_of_order queue into the receive_queue.
3895 static void tcp_ofo_queue(struct sock *sk)
3897 struct tcp_sock *tp = tcp_sk(sk);
3898 __u32 dsack_high = tp->rcv_nxt;
3899 struct sk_buff *skb;
3901 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3902 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3905 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3906 __u32 dsack = dsack_high;
3907 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3908 dsack_high = TCP_SKB_CB(skb)->end_seq;
3909 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3912 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3913 SOCK_DEBUG(sk, "ofo packet was already received \n");
3914 __skb_unlink(skb, &tp->out_of_order_queue);
3918 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3919 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3920 TCP_SKB_CB(skb)->end_seq);
3922 __skb_unlink(skb, &tp->out_of_order_queue);
3923 __skb_queue_tail(&sk->sk_receive_queue, skb);
3924 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3925 if (tcp_hdr(skb)->fin)
3926 tcp_fin(skb, sk, tcp_hdr(skb));
3930 static int tcp_prune_ofo_queue(struct sock *sk);
3931 static int tcp_prune_queue(struct sock *sk);
3933 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3935 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3936 !sk_rmem_schedule(sk, size)) {
3938 if (tcp_prune_queue(sk) < 0)
3941 if (!sk_rmem_schedule(sk, size)) {
3942 if (!tcp_prune_ofo_queue(sk))
3945 if (!sk_rmem_schedule(sk, size))
3952 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3954 struct tcphdr *th = tcp_hdr(skb);
3955 struct tcp_sock *tp = tcp_sk(sk);
3958 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3961 __skb_pull(skb, th->doff * 4);
3963 TCP_ECN_accept_cwr(tp, skb);
3965 if (tp->rx_opt.dsack) {
3966 tp->rx_opt.dsack = 0;
3967 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3968 4 - tp->rx_opt.tstamp_ok);
3971 /* Queue data for delivery to the user.
3972 * Packets in sequence go to the receive queue.
3973 * Out of sequence packets to the out_of_order_queue.
3975 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3976 if (tcp_receive_window(tp) == 0)
3979 /* Ok. In sequence. In window. */
3980 if (tp->ucopy.task == current &&
3981 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3982 sock_owned_by_user(sk) && !tp->urg_data) {
3983 int chunk = min_t(unsigned int, skb->len,
3986 __set_current_state(TASK_RUNNING);
3989 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3990 tp->ucopy.len -= chunk;
3991 tp->copied_seq += chunk;
3992 eaten = (chunk == skb->len && !th->fin);
3993 tcp_rcv_space_adjust(sk);
4001 tcp_try_rmem_schedule(sk, skb->truesize))
4004 skb_set_owner_r(skb, sk);
4005 __skb_queue_tail(&sk->sk_receive_queue, skb);
4007 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4009 tcp_event_data_recv(sk, skb);
4011 tcp_fin(skb, sk, th);
4013 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4016 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4017 * gap in queue is filled.
4019 if (skb_queue_empty(&tp->out_of_order_queue))
4020 inet_csk(sk)->icsk_ack.pingpong = 0;
4023 if (tp->rx_opt.num_sacks)
4024 tcp_sack_remove(tp);
4026 tcp_fast_path_check(sk);
4030 else if (!sock_flag(sk, SOCK_DEAD))
4031 sk->sk_data_ready(sk, 0);
4035 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4036 /* A retransmit, 2nd most common case. Force an immediate ack. */
4037 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
4038 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4041 tcp_enter_quickack_mode(sk);
4042 inet_csk_schedule_ack(sk);
4048 /* Out of window. F.e. zero window probe. */
4049 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4052 tcp_enter_quickack_mode(sk);
4054 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4055 /* Partial packet, seq < rcv_next < end_seq */
4056 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4057 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4058 TCP_SKB_CB(skb)->end_seq);
4060 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4062 /* If window is closed, drop tail of packet. But after
4063 * remembering D-SACK for its head made in previous line.
4065 if (!tcp_receive_window(tp))
4070 TCP_ECN_check_ce(tp, skb);
4072 if (tcp_try_rmem_schedule(sk, skb->truesize))
4075 /* Disable header prediction. */
4077 inet_csk_schedule_ack(sk);
4079 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4080 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4082 skb_set_owner_r(skb, sk);
4084 if (!skb_peek(&tp->out_of_order_queue)) {
4085 /* Initial out of order segment, build 1 SACK. */
4086 if (tcp_is_sack(tp)) {
4087 tp->rx_opt.num_sacks = 1;
4088 tp->rx_opt.dsack = 0;
4089 tp->rx_opt.eff_sacks = 1;
4090 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4091 tp->selective_acks[0].end_seq =
4092 TCP_SKB_CB(skb)->end_seq;
4094 __skb_queue_head(&tp->out_of_order_queue, skb);
4096 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4097 u32 seq = TCP_SKB_CB(skb)->seq;
4098 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4100 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4101 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4103 if (!tp->rx_opt.num_sacks ||
4104 tp->selective_acks[0].end_seq != seq)
4107 /* Common case: data arrive in order after hole. */
4108 tp->selective_acks[0].end_seq = end_seq;
4112 /* Find place to insert this segment. */
4114 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4116 } while ((skb1 = skb1->prev) !=
4117 (struct sk_buff *)&tp->out_of_order_queue);
4119 /* Do skb overlap to previous one? */
4120 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4121 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4122 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4123 /* All the bits are present. Drop. */
4125 tcp_dsack_set(tp, seq, end_seq);
4128 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4129 /* Partial overlap. */
4130 tcp_dsack_set(tp, seq,
4131 TCP_SKB_CB(skb1)->end_seq);
4136 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4138 /* And clean segments covered by new one as whole. */
4139 while ((skb1 = skb->next) !=
4140 (struct sk_buff *)&tp->out_of_order_queue &&
4141 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4142 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4143 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4147 __skb_unlink(skb1, &tp->out_of_order_queue);
4148 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4149 TCP_SKB_CB(skb1)->end_seq);
4154 if (tcp_is_sack(tp))
4155 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4159 /* Collapse contiguous sequence of skbs head..tail with
4160 * sequence numbers start..end.
4161 * Segments with FIN/SYN are not collapsed (only because this
4165 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4166 struct sk_buff *head, struct sk_buff *tail,
4169 struct sk_buff *skb;
4171 /* First, check that queue is collapsible and find
4172 * the point where collapsing can be useful. */
4173 for (skb = head; skb != tail;) {
4174 /* No new bits? It is possible on ofo queue. */
4175 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4176 struct sk_buff *next = skb->next;
4177 __skb_unlink(skb, list);
4179 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4184 /* The first skb to collapse is:
4186 * - bloated or contains data before "start" or
4187 * overlaps to the next one.
4189 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4190 (tcp_win_from_space(skb->truesize) > skb->len ||
4191 before(TCP_SKB_CB(skb)->seq, start) ||
4192 (skb->next != tail &&
4193 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4196 /* Decided to skip this, advance start seq. */
4197 start = TCP_SKB_CB(skb)->end_seq;
4200 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4203 while (before(start, end)) {
4204 struct sk_buff *nskb;
4205 unsigned int header = skb_headroom(skb);
4206 int copy = SKB_MAX_ORDER(header, 0);
4208 /* Too big header? This can happen with IPv6. */
4211 if (end - start < copy)
4213 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4217 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4218 skb_set_network_header(nskb, (skb_network_header(skb) -
4220 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4222 skb_reserve(nskb, header);
4223 memcpy(nskb->head, skb->head, header);
4224 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4225 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4226 __skb_insert(nskb, skb->prev, skb, list);
4227 skb_set_owner_r(nskb, sk);
4229 /* Copy data, releasing collapsed skbs. */
4231 int offset = start - TCP_SKB_CB(skb)->seq;
4232 int size = TCP_SKB_CB(skb)->end_seq - start;
4236 size = min(copy, size);
4237 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4239 TCP_SKB_CB(nskb)->end_seq += size;
4243 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4244 struct sk_buff *next = skb->next;
4245 __skb_unlink(skb, list);
4247 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4250 tcp_hdr(skb)->syn ||
4258 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4259 * and tcp_collapse() them until all the queue is collapsed.
4261 static void tcp_collapse_ofo_queue(struct sock *sk)
4263 struct tcp_sock *tp = tcp_sk(sk);
4264 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4265 struct sk_buff *head;
4271 start = TCP_SKB_CB(skb)->seq;
4272 end = TCP_SKB_CB(skb)->end_seq;
4278 /* Segment is terminated when we see gap or when
4279 * we are at the end of all the queue. */
4280 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4281 after(TCP_SKB_CB(skb)->seq, end) ||
4282 before(TCP_SKB_CB(skb)->end_seq, start)) {
4283 tcp_collapse(sk, &tp->out_of_order_queue,
4284 head, skb, start, end);
4286 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4288 /* Start new segment */
4289 start = TCP_SKB_CB(skb)->seq;
4290 end = TCP_SKB_CB(skb)->end_seq;
4292 if (before(TCP_SKB_CB(skb)->seq, start))
4293 start = TCP_SKB_CB(skb)->seq;
4294 if (after(TCP_SKB_CB(skb)->end_seq, end))
4295 end = TCP_SKB_CB(skb)->end_seq;
4301 * Purge the out-of-order queue.
4302 * Return true if queue was pruned.
4304 static int tcp_prune_ofo_queue(struct sock *sk)
4306 struct tcp_sock *tp = tcp_sk(sk);
4309 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4310 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4311 __skb_queue_purge(&tp->out_of_order_queue);
4313 /* Reset SACK state. A conforming SACK implementation will
4314 * do the same at a timeout based retransmit. When a connection
4315 * is in a sad state like this, we care only about integrity
4316 * of the connection not performance.
4318 if (tp->rx_opt.sack_ok)
4319 tcp_sack_reset(&tp->rx_opt);
4326 /* Reduce allocated memory if we can, trying to get
4327 * the socket within its memory limits again.
4329 * Return less than zero if we should start dropping frames
4330 * until the socket owning process reads some of the data
4331 * to stabilize the situation.
4333 static int tcp_prune_queue(struct sock *sk)
4335 struct tcp_sock *tp = tcp_sk(sk);
4337 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4339 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4341 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4342 tcp_clamp_window(sk);
4343 else if (tcp_memory_pressure)
4344 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4346 tcp_collapse_ofo_queue(sk);
4347 tcp_collapse(sk, &sk->sk_receive_queue,
4348 sk->sk_receive_queue.next,
4349 (struct sk_buff *)&sk->sk_receive_queue,
4350 tp->copied_seq, tp->rcv_nxt);
4353 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4356 /* Collapsing did not help, destructive actions follow.
4357 * This must not ever occur. */
4359 tcp_prune_ofo_queue(sk);
4361 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4364 /* If we are really being abused, tell the caller to silently
4365 * drop receive data on the floor. It will get retransmitted
4366 * and hopefully then we'll have sufficient space.
4368 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4370 /* Massive buffer overcommit. */
4375 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4376 * As additional protections, we do not touch cwnd in retransmission phases,
4377 * and if application hit its sndbuf limit recently.
4379 void tcp_cwnd_application_limited(struct sock *sk)
4381 struct tcp_sock *tp = tcp_sk(sk);
4383 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4384 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4385 /* Limited by application or receiver window. */
4386 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4387 u32 win_used = max(tp->snd_cwnd_used, init_win);
4388 if (win_used < tp->snd_cwnd) {
4389 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4390 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4392 tp->snd_cwnd_used = 0;
4394 tp->snd_cwnd_stamp = tcp_time_stamp;
4397 static int tcp_should_expand_sndbuf(struct sock *sk)
4399 struct tcp_sock *tp = tcp_sk(sk);
4401 /* If the user specified a specific send buffer setting, do
4404 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4407 /* If we are under global TCP memory pressure, do not expand. */
4408 if (tcp_memory_pressure)
4411 /* If we are under soft global TCP memory pressure, do not expand. */
4412 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4415 /* If we filled the congestion window, do not expand. */
4416 if (tp->packets_out >= tp->snd_cwnd)
4422 /* When incoming ACK allowed to free some skb from write_queue,
4423 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4424 * on the exit from tcp input handler.
4426 * PROBLEM: sndbuf expansion does not work well with largesend.
4428 static void tcp_new_space(struct sock *sk)
4430 struct tcp_sock *tp = tcp_sk(sk);
4432 if (tcp_should_expand_sndbuf(sk)) {
4433 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4434 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4435 demanded = max_t(unsigned int, tp->snd_cwnd,
4436 tp->reordering + 1);
4437 sndmem *= 2 * demanded;
4438 if (sndmem > sk->sk_sndbuf)
4439 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4440 tp->snd_cwnd_stamp = tcp_time_stamp;
4443 sk->sk_write_space(sk);
4446 static void tcp_check_space(struct sock *sk)
4448 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4449 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4450 if (sk->sk_socket &&
4451 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4456 static inline void tcp_data_snd_check(struct sock *sk)
4458 tcp_push_pending_frames(sk);
4459 tcp_check_space(sk);
4463 * Check if sending an ack is needed.
4465 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4467 struct tcp_sock *tp = tcp_sk(sk);
4469 /* More than one full frame received... */
4470 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4471 /* ... and right edge of window advances far enough.
4472 * (tcp_recvmsg() will send ACK otherwise). Or...
4474 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4475 /* We ACK each frame or... */
4476 tcp_in_quickack_mode(sk) ||
4477 /* We have out of order data. */
4478 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4479 /* Then ack it now */
4482 /* Else, send delayed ack. */
4483 tcp_send_delayed_ack(sk);
4487 static inline void tcp_ack_snd_check(struct sock *sk)
4489 if (!inet_csk_ack_scheduled(sk)) {
4490 /* We sent a data segment already. */
4493 __tcp_ack_snd_check(sk, 1);
4497 * This routine is only called when we have urgent data
4498 * signaled. Its the 'slow' part of tcp_urg. It could be
4499 * moved inline now as tcp_urg is only called from one
4500 * place. We handle URGent data wrong. We have to - as
4501 * BSD still doesn't use the correction from RFC961.
4502 * For 1003.1g we should support a new option TCP_STDURG to permit
4503 * either form (or just set the sysctl tcp_stdurg).
4506 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4508 struct tcp_sock *tp = tcp_sk(sk);
4509 u32 ptr = ntohs(th->urg_ptr);
4511 if (ptr && !sysctl_tcp_stdurg)
4513 ptr += ntohl(th->seq);
4515 /* Ignore urgent data that we've already seen and read. */
4516 if (after(tp->copied_seq, ptr))
4519 /* Do not replay urg ptr.
4521 * NOTE: interesting situation not covered by specs.
4522 * Misbehaving sender may send urg ptr, pointing to segment,
4523 * which we already have in ofo queue. We are not able to fetch
4524 * such data and will stay in TCP_URG_NOTYET until will be eaten
4525 * by recvmsg(). Seems, we are not obliged to handle such wicked
4526 * situations. But it is worth to think about possibility of some
4527 * DoSes using some hypothetical application level deadlock.
4529 if (before(ptr, tp->rcv_nxt))
4532 /* Do we already have a newer (or duplicate) urgent pointer? */
4533 if (tp->urg_data && !after(ptr, tp->urg_seq))
4536 /* Tell the world about our new urgent pointer. */
4539 /* We may be adding urgent data when the last byte read was
4540 * urgent. To do this requires some care. We cannot just ignore
4541 * tp->copied_seq since we would read the last urgent byte again
4542 * as data, nor can we alter copied_seq until this data arrives
4543 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4545 * NOTE. Double Dutch. Rendering to plain English: author of comment
4546 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4547 * and expect that both A and B disappear from stream. This is _wrong_.
4548 * Though this happens in BSD with high probability, this is occasional.
4549 * Any application relying on this is buggy. Note also, that fix "works"
4550 * only in this artificial test. Insert some normal data between A and B and we will
4551 * decline of BSD again. Verdict: it is better to remove to trap
4554 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4555 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4556 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4558 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4559 __skb_unlink(skb, &sk->sk_receive_queue);
4564 tp->urg_data = TCP_URG_NOTYET;
4567 /* Disable header prediction. */
4571 /* This is the 'fast' part of urgent handling. */
4572 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4574 struct tcp_sock *tp = tcp_sk(sk);
4576 /* Check if we get a new urgent pointer - normally not. */
4578 tcp_check_urg(sk, th);
4580 /* Do we wait for any urgent data? - normally not... */
4581 if (tp->urg_data == TCP_URG_NOTYET) {
4582 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4585 /* Is the urgent pointer pointing into this packet? */
4586 if (ptr < skb->len) {
4588 if (skb_copy_bits(skb, ptr, &tmp, 1))
4590 tp->urg_data = TCP_URG_VALID | tmp;
4591 if (!sock_flag(sk, SOCK_DEAD))
4592 sk->sk_data_ready(sk, 0);
4597 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4599 struct tcp_sock *tp = tcp_sk(sk);
4600 int chunk = skb->len - hlen;
4604 if (skb_csum_unnecessary(skb))
4605 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4607 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4611 tp->ucopy.len -= chunk;
4612 tp->copied_seq += chunk;
4613 tcp_rcv_space_adjust(sk);
4620 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4621 struct sk_buff *skb)
4625 if (sock_owned_by_user(sk)) {
4627 result = __tcp_checksum_complete(skb);
4630 result = __tcp_checksum_complete(skb);
4635 static inline int tcp_checksum_complete_user(struct sock *sk,
4636 struct sk_buff *skb)
4638 return !skb_csum_unnecessary(skb) &&
4639 __tcp_checksum_complete_user(sk, skb);
4642 #ifdef CONFIG_NET_DMA
4643 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4646 struct tcp_sock *tp = tcp_sk(sk);
4647 int chunk = skb->len - hlen;
4649 int copied_early = 0;
4651 if (tp->ucopy.wakeup)
4654 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4655 tp->ucopy.dma_chan = get_softnet_dma();
4657 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4659 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4661 tp->ucopy.iov, chunk,
4662 tp->ucopy.pinned_list);
4667 tp->ucopy.dma_cookie = dma_cookie;
4670 tp->ucopy.len -= chunk;
4671 tp->copied_seq += chunk;
4672 tcp_rcv_space_adjust(sk);
4674 if ((tp->ucopy.len == 0) ||
4675 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4676 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4677 tp->ucopy.wakeup = 1;
4678 sk->sk_data_ready(sk, 0);
4680 } else if (chunk > 0) {
4681 tp->ucopy.wakeup = 1;
4682 sk->sk_data_ready(sk, 0);
4685 return copied_early;
4687 #endif /* CONFIG_NET_DMA */
4690 * TCP receive function for the ESTABLISHED state.
4692 * It is split into a fast path and a slow path. The fast path is
4694 * - A zero window was announced from us - zero window probing
4695 * is only handled properly in the slow path.
4696 * - Out of order segments arrived.
4697 * - Urgent data is expected.
4698 * - There is no buffer space left
4699 * - Unexpected TCP flags/window values/header lengths are received
4700 * (detected by checking the TCP header against pred_flags)
4701 * - Data is sent in both directions. Fast path only supports pure senders
4702 * or pure receivers (this means either the sequence number or the ack
4703 * value must stay constant)
4704 * - Unexpected TCP option.
4706 * When these conditions are not satisfied it drops into a standard
4707 * receive procedure patterned after RFC793 to handle all cases.
4708 * The first three cases are guaranteed by proper pred_flags setting,
4709 * the rest is checked inline. Fast processing is turned on in
4710 * tcp_data_queue when everything is OK.
4712 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4713 struct tcphdr *th, unsigned len)
4715 struct tcp_sock *tp = tcp_sk(sk);
4718 * Header prediction.
4719 * The code loosely follows the one in the famous
4720 * "30 instruction TCP receive" Van Jacobson mail.
4722 * Van's trick is to deposit buffers into socket queue
4723 * on a device interrupt, to call tcp_recv function
4724 * on the receive process context and checksum and copy
4725 * the buffer to user space. smart...
4727 * Our current scheme is not silly either but we take the
4728 * extra cost of the net_bh soft interrupt processing...
4729 * We do checksum and copy also but from device to kernel.
4732 tp->rx_opt.saw_tstamp = 0;
4734 /* pred_flags is 0xS?10 << 16 + snd_wnd
4735 * if header_prediction is to be made
4736 * 'S' will always be tp->tcp_header_len >> 2
4737 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4738 * turn it off (when there are holes in the receive
4739 * space for instance)
4740 * PSH flag is ignored.
4743 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4744 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4745 int tcp_header_len = tp->tcp_header_len;
4747 /* Timestamp header prediction: tcp_header_len
4748 * is automatically equal to th->doff*4 due to pred_flags
4752 /* Check timestamp */
4753 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4754 __be32 *ptr = (__be32 *)(th + 1);
4756 /* No? Slow path! */
4757 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4758 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4761 tp->rx_opt.saw_tstamp = 1;
4763 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4765 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4767 /* If PAWS failed, check it more carefully in slow path */
4768 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4771 /* DO NOT update ts_recent here, if checksum fails
4772 * and timestamp was corrupted part, it will result
4773 * in a hung connection since we will drop all
4774 * future packets due to the PAWS test.
4778 if (len <= tcp_header_len) {
4779 /* Bulk data transfer: sender */
4780 if (len == tcp_header_len) {
4781 /* Predicted packet is in window by definition.
4782 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4783 * Hence, check seq<=rcv_wup reduces to:
4785 if (tcp_header_len ==
4786 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4787 tp->rcv_nxt == tp->rcv_wup)
4788 tcp_store_ts_recent(tp);
4790 /* We know that such packets are checksummed
4793 tcp_ack(sk, skb, 0);
4795 tcp_data_snd_check(sk);
4797 } else { /* Header too small */
4798 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4803 int copied_early = 0;
4805 if (tp->copied_seq == tp->rcv_nxt &&
4806 len - tcp_header_len <= tp->ucopy.len) {
4807 #ifdef CONFIG_NET_DMA
4808 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4813 if (tp->ucopy.task == current &&
4814 sock_owned_by_user(sk) && !copied_early) {
4815 __set_current_state(TASK_RUNNING);
4817 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4821 /* Predicted packet is in window by definition.
4822 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4823 * Hence, check seq<=rcv_wup reduces to:
4825 if (tcp_header_len ==
4826 (sizeof(struct tcphdr) +
4827 TCPOLEN_TSTAMP_ALIGNED) &&
4828 tp->rcv_nxt == tp->rcv_wup)
4829 tcp_store_ts_recent(tp);
4831 tcp_rcv_rtt_measure_ts(sk, skb);
4833 __skb_pull(skb, tcp_header_len);
4834 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4835 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4838 tcp_cleanup_rbuf(sk, skb->len);
4841 if (tcp_checksum_complete_user(sk, skb))
4844 /* Predicted packet is in window by definition.
4845 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4846 * Hence, check seq<=rcv_wup reduces to:
4848 if (tcp_header_len ==
4849 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4850 tp->rcv_nxt == tp->rcv_wup)
4851 tcp_store_ts_recent(tp);
4853 tcp_rcv_rtt_measure_ts(sk, skb);
4855 if ((int)skb->truesize > sk->sk_forward_alloc)
4858 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4860 /* Bulk data transfer: receiver */
4861 __skb_pull(skb, tcp_header_len);
4862 __skb_queue_tail(&sk->sk_receive_queue, skb);
4863 skb_set_owner_r(skb, sk);
4864 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4867 tcp_event_data_recv(sk, skb);
4869 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4870 /* Well, only one small jumplet in fast path... */
4871 tcp_ack(sk, skb, FLAG_DATA);
4872 tcp_data_snd_check(sk);
4873 if (!inet_csk_ack_scheduled(sk))
4877 __tcp_ack_snd_check(sk, 0);
4879 #ifdef CONFIG_NET_DMA
4881 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4887 sk->sk_data_ready(sk, 0);
4893 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4897 * RFC1323: H1. Apply PAWS check first.
4899 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4900 tcp_paws_discard(sk, skb)) {
4902 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4903 tcp_send_dupack(sk, skb);
4906 /* Resets are accepted even if PAWS failed.
4908 ts_recent update must be made after we are sure
4909 that the packet is in window.
4914 * Standard slow path.
4917 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4918 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4919 * (RST) segments are validated by checking their SEQ-fields."
4920 * And page 69: "If an incoming segment is not acceptable,
4921 * an acknowledgment should be sent in reply (unless the RST bit
4922 * is set, if so drop the segment and return)".
4925 tcp_send_dupack(sk, skb);
4934 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4936 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4937 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4938 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4945 tcp_ack(sk, skb, FLAG_SLOWPATH);
4947 tcp_rcv_rtt_measure_ts(sk, skb);
4949 /* Process urgent data. */
4950 tcp_urg(sk, skb, th);
4952 /* step 7: process the segment text */
4953 tcp_data_queue(sk, skb);
4955 tcp_data_snd_check(sk);
4956 tcp_ack_snd_check(sk);
4960 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4967 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4968 struct tcphdr *th, unsigned len)
4970 struct tcp_sock *tp = tcp_sk(sk);
4971 struct inet_connection_sock *icsk = inet_csk(sk);
4972 int saved_clamp = tp->rx_opt.mss_clamp;
4974 tcp_parse_options(skb, &tp->rx_opt, 0);
4978 * "If the state is SYN-SENT then
4979 * first check the ACK bit
4980 * If the ACK bit is set
4981 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4982 * a reset (unless the RST bit is set, if so drop
4983 * the segment and return)"
4985 * We do not send data with SYN, so that RFC-correct
4988 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4989 goto reset_and_undo;
4991 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4992 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4994 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4995 goto reset_and_undo;
4998 /* Now ACK is acceptable.
5000 * "If the RST bit is set
5001 * If the ACK was acceptable then signal the user "error:
5002 * connection reset", drop the segment, enter CLOSED state,
5003 * delete TCB, and return."
5012 * "fifth, if neither of the SYN or RST bits is set then
5013 * drop the segment and return."
5019 goto discard_and_undo;
5022 * "If the SYN bit is on ...
5023 * are acceptable then ...
5024 * (our SYN has been ACKed), change the connection
5025 * state to ESTABLISHED..."
5028 TCP_ECN_rcv_synack(tp, th);
5030 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5031 tcp_ack(sk, skb, FLAG_SLOWPATH);
5033 /* Ok.. it's good. Set up sequence numbers and
5034 * move to established.
5036 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5037 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5039 /* RFC1323: The window in SYN & SYN/ACK segments is
5042 tp->snd_wnd = ntohs(th->window);
5043 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5045 if (!tp->rx_opt.wscale_ok) {
5046 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5047 tp->window_clamp = min(tp->window_clamp, 65535U);
5050 if (tp->rx_opt.saw_tstamp) {
5051 tp->rx_opt.tstamp_ok = 1;
5052 tp->tcp_header_len =
5053 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5054 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5055 tcp_store_ts_recent(tp);
5057 tp->tcp_header_len = sizeof(struct tcphdr);
5060 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5061 tcp_enable_fack(tp);
5064 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5065 tcp_initialize_rcv_mss(sk);
5067 /* Remember, tcp_poll() does not lock socket!
5068 * Change state from SYN-SENT only after copied_seq
5069 * is initialized. */
5070 tp->copied_seq = tp->rcv_nxt;
5072 tcp_set_state(sk, TCP_ESTABLISHED);
5074 security_inet_conn_established(sk, skb);
5076 /* Make sure socket is routed, for correct metrics. */
5077 icsk->icsk_af_ops->rebuild_header(sk);
5079 tcp_init_metrics(sk);
5081 tcp_init_congestion_control(sk);
5083 /* Prevent spurious tcp_cwnd_restart() on first data
5086 tp->lsndtime = tcp_time_stamp;
5088 tcp_init_buffer_space(sk);
5090 if (sock_flag(sk, SOCK_KEEPOPEN))
5091 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5093 if (!tp->rx_opt.snd_wscale)
5094 __tcp_fast_path_on(tp, tp->snd_wnd);
5098 if (!sock_flag(sk, SOCK_DEAD)) {
5099 sk->sk_state_change(sk);
5100 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5103 if (sk->sk_write_pending ||
5104 icsk->icsk_accept_queue.rskq_defer_accept ||
5105 icsk->icsk_ack.pingpong) {
5106 /* Save one ACK. Data will be ready after
5107 * several ticks, if write_pending is set.
5109 * It may be deleted, but with this feature tcpdumps
5110 * look so _wonderfully_ clever, that I was not able
5111 * to stand against the temptation 8) --ANK
5113 inet_csk_schedule_ack(sk);
5114 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5115 icsk->icsk_ack.ato = TCP_ATO_MIN;
5116 tcp_incr_quickack(sk);
5117 tcp_enter_quickack_mode(sk);
5118 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5119 TCP_DELACK_MAX, TCP_RTO_MAX);
5130 /* No ACK in the segment */
5134 * "If the RST bit is set
5136 * Otherwise (no ACK) drop the segment and return."
5139 goto discard_and_undo;
5143 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5144 tcp_paws_check(&tp->rx_opt, 0))
5145 goto discard_and_undo;
5148 /* We see SYN without ACK. It is attempt of
5149 * simultaneous connect with crossed SYNs.
5150 * Particularly, it can be connect to self.
5152 tcp_set_state(sk, TCP_SYN_RECV);
5154 if (tp->rx_opt.saw_tstamp) {
5155 tp->rx_opt.tstamp_ok = 1;
5156 tcp_store_ts_recent(tp);
5157 tp->tcp_header_len =
5158 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5160 tp->tcp_header_len = sizeof(struct tcphdr);
5163 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5164 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5166 /* RFC1323: The window in SYN & SYN/ACK segments is
5169 tp->snd_wnd = ntohs(th->window);
5170 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5171 tp->max_window = tp->snd_wnd;
5173 TCP_ECN_rcv_syn(tp, th);
5176 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5177 tcp_initialize_rcv_mss(sk);
5179 tcp_send_synack(sk);
5181 /* Note, we could accept data and URG from this segment.
5182 * There are no obstacles to make this.
5184 * However, if we ignore data in ACKless segments sometimes,
5185 * we have no reasons to accept it sometimes.
5186 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5187 * is not flawless. So, discard packet for sanity.
5188 * Uncomment this return to process the data.
5195 /* "fifth, if neither of the SYN or RST bits is set then
5196 * drop the segment and return."
5200 tcp_clear_options(&tp->rx_opt);
5201 tp->rx_opt.mss_clamp = saved_clamp;
5205 tcp_clear_options(&tp->rx_opt);
5206 tp->rx_opt.mss_clamp = saved_clamp;
5211 * This function implements the receiving procedure of RFC 793 for
5212 * all states except ESTABLISHED and TIME_WAIT.
5213 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5214 * address independent.
5217 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5218 struct tcphdr *th, unsigned len)
5220 struct tcp_sock *tp = tcp_sk(sk);
5221 struct inet_connection_sock *icsk = inet_csk(sk);
5224 tp->rx_opt.saw_tstamp = 0;
5226 switch (sk->sk_state) {
5238 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5241 /* Now we have several options: In theory there is
5242 * nothing else in the frame. KA9Q has an option to
5243 * send data with the syn, BSD accepts data with the
5244 * syn up to the [to be] advertised window and
5245 * Solaris 2.1 gives you a protocol error. For now
5246 * we just ignore it, that fits the spec precisely
5247 * and avoids incompatibilities. It would be nice in
5248 * future to drop through and process the data.
5250 * Now that TTCP is starting to be used we ought to
5252 * But, this leaves one open to an easy denial of
5253 * service attack, and SYN cookies can't defend
5254 * against this problem. So, we drop the data
5255 * in the interest of security over speed unless
5256 * it's still in use.
5264 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5268 /* Do step6 onward by hand. */
5269 tcp_urg(sk, skb, th);
5271 tcp_data_snd_check(sk);
5275 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5276 tcp_paws_discard(sk, skb)) {
5278 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5279 tcp_send_dupack(sk, skb);
5282 /* Reset is accepted even if it did not pass PAWS. */
5285 /* step 1: check sequence number */
5286 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5288 tcp_send_dupack(sk, skb);
5292 /* step 2: check RST bit */
5298 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5300 /* step 3: check security and precedence [ignored] */
5304 * Check for a SYN in window.
5306 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5307 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5312 /* step 5: check the ACK field */
5314 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5316 switch (sk->sk_state) {
5319 tp->copied_seq = tp->rcv_nxt;
5321 tcp_set_state(sk, TCP_ESTABLISHED);
5322 sk->sk_state_change(sk);
5324 /* Note, that this wakeup is only for marginal
5325 * crossed SYN case. Passively open sockets
5326 * are not waked up, because sk->sk_sleep ==
5327 * NULL and sk->sk_socket == NULL.
5331 SOCK_WAKE_IO, POLL_OUT);
5333 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5334 tp->snd_wnd = ntohs(th->window) <<
5335 tp->rx_opt.snd_wscale;
5336 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5337 TCP_SKB_CB(skb)->seq);
5339 /* tcp_ack considers this ACK as duplicate
5340 * and does not calculate rtt.
5341 * Fix it at least with timestamps.
5343 if (tp->rx_opt.saw_tstamp &&
5344 tp->rx_opt.rcv_tsecr && !tp->srtt)
5345 tcp_ack_saw_tstamp(sk, 0);
5347 if (tp->rx_opt.tstamp_ok)
5348 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5350 /* Make sure socket is routed, for
5353 icsk->icsk_af_ops->rebuild_header(sk);
5355 tcp_init_metrics(sk);
5357 tcp_init_congestion_control(sk);
5359 /* Prevent spurious tcp_cwnd_restart() on
5360 * first data packet.
5362 tp->lsndtime = tcp_time_stamp;
5365 tcp_initialize_rcv_mss(sk);
5366 tcp_init_buffer_space(sk);
5367 tcp_fast_path_on(tp);
5374 if (tp->snd_una == tp->write_seq) {
5375 tcp_set_state(sk, TCP_FIN_WAIT2);
5376 sk->sk_shutdown |= SEND_SHUTDOWN;
5377 dst_confirm(sk->sk_dst_cache);
5379 if (!sock_flag(sk, SOCK_DEAD))
5380 /* Wake up lingering close() */
5381 sk->sk_state_change(sk);
5385 if (tp->linger2 < 0 ||
5386 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5387 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5389 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5393 tmo = tcp_fin_time(sk);
5394 if (tmo > TCP_TIMEWAIT_LEN) {
5395 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5396 } else if (th->fin || sock_owned_by_user(sk)) {
5397 /* Bad case. We could lose such FIN otherwise.
5398 * It is not a big problem, but it looks confusing
5399 * and not so rare event. We still can lose it now,
5400 * if it spins in bh_lock_sock(), but it is really
5403 inet_csk_reset_keepalive_timer(sk, tmo);
5405 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5413 if (tp->snd_una == tp->write_seq) {
5414 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5420 if (tp->snd_una == tp->write_seq) {
5421 tcp_update_metrics(sk);
5430 /* step 6: check the URG bit */
5431 tcp_urg(sk, skb, th);
5433 /* step 7: process the segment text */
5434 switch (sk->sk_state) {
5435 case TCP_CLOSE_WAIT:
5438 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5442 /* RFC 793 says to queue data in these states,
5443 * RFC 1122 says we MUST send a reset.
5444 * BSD 4.4 also does reset.
5446 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5447 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5448 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5449 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5455 case TCP_ESTABLISHED:
5456 tcp_data_queue(sk, skb);
5461 /* tcp_data could move socket to TIME-WAIT */
5462 if (sk->sk_state != TCP_CLOSE) {
5463 tcp_data_snd_check(sk);
5464 tcp_ack_snd_check(sk);
5474 EXPORT_SYMBOL(sysctl_tcp_ecn);
5475 EXPORT_SYMBOL(sysctl_tcp_reordering);
5476 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5477 EXPORT_SYMBOL(tcp_parse_options);
5478 #ifdef CONFIG_TCP_MD5SIG
5479 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5481 EXPORT_SYMBOL(tcp_rcv_established);
5482 EXPORT_SYMBOL(tcp_rcv_state_process);
5483 EXPORT_SYMBOL(tcp_initialize_rcv_mss);