Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93
94 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
95 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
96 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
98 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
99 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
100 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
101 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
102 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123         struct inet_connection_sock *icsk = inet_csk(sk);
124         const unsigned int lss = icsk->icsk_ack.last_seg_size;
125         unsigned int len;
126
127         icsk->icsk_ack.last_seg_size = 0;
128
129         /* skb->len may jitter because of SACKs, even if peer
130          * sends good full-sized frames.
131          */
132         len = skb_shinfo(skb)->gso_size ? : skb->len;
133         if (len >= icsk->icsk_ack.rcv_mss) {
134                 icsk->icsk_ack.rcv_mss = len;
135         } else {
136                 /* Otherwise, we make more careful check taking into account,
137                  * that SACKs block is variable.
138                  *
139                  * "len" is invariant segment length, including TCP header.
140                  */
141                 len += skb->data - skb_transport_header(skb);
142                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143                     /* If PSH is not set, packet should be
144                      * full sized, provided peer TCP is not badly broken.
145                      * This observation (if it is correct 8)) allows
146                      * to handle super-low mtu links fairly.
147                      */
148                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150                         /* Subtract also invariant (if peer is RFC compliant),
151                          * tcp header plus fixed timestamp option length.
152                          * Resulting "len" is MSS free of SACK jitter.
153                          */
154                         len -= tcp_sk(sk)->tcp_header_len;
155                         icsk->icsk_ack.last_seg_size = len;
156                         if (len == lss) {
157                                 icsk->icsk_ack.rcv_mss = len;
158                                 return;
159                         }
160                 }
161                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164         }
165 }
166
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169         struct inet_connection_sock *icsk = inet_csk(sk);
170         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171
172         if (quickacks == 0)
173                 quickacks = 2;
174         if (quickacks > icsk->icsk_ack.quick)
175                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180         struct inet_connection_sock *icsk = inet_csk(sk);
181         tcp_incr_quickack(sk);
182         icsk->icsk_ack.pingpong = 0;
183         icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192         const struct inet_connection_sock *icsk = inet_csk(sk);
193         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198         if (tp->ecn_flags & TCP_ECN_OK)
199                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204         if (tcp_hdr(skb)->cwr)
205                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215         if (tp->ecn_flags & TCP_ECN_OK) {
216                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218                 /* Funny extension: if ECT is not set on a segment,
219                  * it is surely retransmit. It is not in ECN RFC,
220                  * but Linux follows this rule. */
221                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222                         tcp_enter_quickack_mode((struct sock *)tp);
223         }
224 }
225
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229                 tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235                 tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241                 return 1;
242         return 0;
243 }
244
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253                      sizeof(struct sk_buff);
254
255         if (sk->sk_sndbuf < 3 * sndmem)
256                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287         struct tcp_sock *tp = tcp_sk(sk);
288         /* Optimize this! */
289         int truesize = tcp_win_from_space(skb->truesize) >> 1;
290         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291
292         while (tp->rcv_ssthresh <= window) {
293                 if (truesize <= skb->len)
294                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295
296                 truesize >>= 1;
297                 window >>= 1;
298         }
299         return 0;
300 }
301
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304         struct tcp_sock *tp = tcp_sk(sk);
305
306         /* Check #1 */
307         if (tp->rcv_ssthresh < tp->window_clamp &&
308             (int)tp->rcv_ssthresh < tcp_space(sk) &&
309             !tcp_memory_pressure) {
310                 int incr;
311
312                 /* Check #2. Increase window, if skb with such overhead
313                  * will fit to rcvbuf in future.
314                  */
315                 if (tcp_win_from_space(skb->truesize) <= skb->len)
316                         incr = 2 * tp->advmss;
317                 else
318                         incr = __tcp_grow_window(sk, skb);
319
320                 if (incr) {
321                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322                                                tp->window_clamp);
323                         inet_csk(sk)->icsk_ack.quick |= 1;
324                 }
325         }
326 }
327
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332         struct tcp_sock *tp = tcp_sk(sk);
333         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334
335         /* Try to select rcvbuf so that 4 mss-sized segments
336          * will fit to window and corresponding skbs will fit to our rcvbuf.
337          * (was 3; 4 is minimum to allow fast retransmit to work.)
338          */
339         while (tcp_win_from_space(rcvmem) < tp->advmss)
340                 rcvmem += 128;
341         if (sk->sk_rcvbuf < 4 * rcvmem)
342                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350         struct tcp_sock *tp = tcp_sk(sk);
351         int maxwin;
352
353         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354                 tcp_fixup_rcvbuf(sk);
355         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356                 tcp_fixup_sndbuf(sk);
357
358         tp->rcvq_space.space = tp->rcv_wnd;
359
360         maxwin = tcp_full_space(sk);
361
362         if (tp->window_clamp >= maxwin) {
363                 tp->window_clamp = maxwin;
364
365                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366                         tp->window_clamp = max(maxwin -
367                                                (maxwin >> sysctl_tcp_app_win),
368                                                4 * tp->advmss);
369         }
370
371         /* Force reservation of one segment. */
372         if (sysctl_tcp_app_win &&
373             tp->window_clamp > 2 * tp->advmss &&
374             tp->window_clamp + tp->advmss > maxwin)
375                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376
377         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378         tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384         struct tcp_sock *tp = tcp_sk(sk);
385         struct inet_connection_sock *icsk = inet_csk(sk);
386
387         icsk->icsk_ack.quick = 0;
388
389         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391             !tcp_memory_pressure &&
392             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394                                     sysctl_tcp_rmem[2]);
395         }
396         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409         struct tcp_sock *tp = tcp_sk(sk);
410         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411
412         hint = min(hint, tp->rcv_wnd / 2);
413         hint = min(hint, TCP_MIN_RCVMSS);
414         hint = max(hint, TCP_MIN_MSS);
415
416         inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432         u32 new_sample = tp->rcv_rtt_est.rtt;
433         long m = sample;
434
435         if (m == 0)
436                 m = 1;
437
438         if (new_sample != 0) {
439                 /* If we sample in larger samples in the non-timestamp
440                  * case, we could grossly overestimate the RTT especially
441                  * with chatty applications or bulk transfer apps which
442                  * are stalled on filesystem I/O.
443                  *
444                  * Also, since we are only going for a minimum in the
445                  * non-timestamp case, we do not smooth things out
446                  * else with timestamps disabled convergence takes too
447                  * long.
448                  */
449                 if (!win_dep) {
450                         m -= (new_sample >> 3);
451                         new_sample += m;
452                 } else if (m < new_sample)
453                         new_sample = m << 3;
454         } else {
455                 /* No previous measure. */
456                 new_sample = m << 3;
457         }
458
459         if (tp->rcv_rtt_est.rtt != new_sample)
460                 tp->rcv_rtt_est.rtt = new_sample;
461 }
462
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465         if (tp->rcv_rtt_est.time == 0)
466                 goto new_measure;
467         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468                 return;
469         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470
471 new_measure:
472         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473         tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477                                           const struct sk_buff *skb)
478 {
479         struct tcp_sock *tp = tcp_sk(sk);
480         if (tp->rx_opt.rcv_tsecr &&
481             (TCP_SKB_CB(skb)->end_seq -
482              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492         struct tcp_sock *tp = tcp_sk(sk);
493         int time;
494         int space;
495
496         if (tp->rcvq_space.time == 0)
497                 goto new_measure;
498
499         time = tcp_time_stamp - tp->rcvq_space.time;
500         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501                 return;
502
503         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504
505         space = max(tp->rcvq_space.space, space);
506
507         if (tp->rcvq_space.space != space) {
508                 int rcvmem;
509
510                 tp->rcvq_space.space = space;
511
512                 if (sysctl_tcp_moderate_rcvbuf &&
513                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514                         int new_clamp = space;
515
516                         /* Receive space grows, normalize in order to
517                          * take into account packet headers and sk_buff
518                          * structure overhead.
519                          */
520                         space /= tp->advmss;
521                         if (!space)
522                                 space = 1;
523                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
524                                   16 + sizeof(struct sk_buff));
525                         while (tcp_win_from_space(rcvmem) < tp->advmss)
526                                 rcvmem += 128;
527                         space *= rcvmem;
528                         space = min(space, sysctl_tcp_rmem[2]);
529                         if (space > sk->sk_rcvbuf) {
530                                 sk->sk_rcvbuf = space;
531
532                                 /* Make the window clamp follow along.  */
533                                 tp->window_clamp = new_clamp;
534                         }
535                 }
536         }
537
538 new_measure:
539         tp->rcvq_space.seq = tp->copied_seq;
540         tp->rcvq_space.time = tcp_time_stamp;
541 }
542
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555         struct tcp_sock *tp = tcp_sk(sk);
556         struct inet_connection_sock *icsk = inet_csk(sk);
557         u32 now;
558
559         inet_csk_schedule_ack(sk);
560
561         tcp_measure_rcv_mss(sk, skb);
562
563         tcp_rcv_rtt_measure(tp);
564
565         now = tcp_time_stamp;
566
567         if (!icsk->icsk_ack.ato) {
568                 /* The _first_ data packet received, initialize
569                  * delayed ACK engine.
570                  */
571                 tcp_incr_quickack(sk);
572                 icsk->icsk_ack.ato = TCP_ATO_MIN;
573         } else {
574                 int m = now - icsk->icsk_ack.lrcvtime;
575
576                 if (m <= TCP_ATO_MIN / 2) {
577                         /* The fastest case is the first. */
578                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579                 } else if (m < icsk->icsk_ack.ato) {
580                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
582                                 icsk->icsk_ack.ato = icsk->icsk_rto;
583                 } else if (m > icsk->icsk_rto) {
584                         /* Too long gap. Apparently sender failed to
585                          * restart window, so that we send ACKs quickly.
586                          */
587                         tcp_incr_quickack(sk);
588                         sk_mem_reclaim(sk);
589                 }
590         }
591         icsk->icsk_ack.lrcvtime = now;
592
593         TCP_ECN_check_ce(tp, skb);
594
595         if (skb->len >= 128)
596                 tcp_grow_window(sk, skb);
597 }
598
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601         struct dst_entry *dst = __sk_dst_get(sk);
602         u32 rto_min = TCP_RTO_MIN;
603
604         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605                 rto_min = dst_metric(dst, RTAX_RTO_MIN);
606         return rto_min;
607 }
608
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620         struct tcp_sock *tp = tcp_sk(sk);
621         long m = mrtt; /* RTT */
622
623         /*      The following amusing code comes from Jacobson's
624          *      article in SIGCOMM '88.  Note that rtt and mdev
625          *      are scaled versions of rtt and mean deviation.
626          *      This is designed to be as fast as possible
627          *      m stands for "measurement".
628          *
629          *      On a 1990 paper the rto value is changed to:
630          *      RTO = rtt + 4 * mdev
631          *
632          * Funny. This algorithm seems to be very broken.
633          * These formulae increase RTO, when it should be decreased, increase
634          * too slowly, when it should be increased quickly, decrease too quickly
635          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636          * does not matter how to _calculate_ it. Seems, it was trap
637          * that VJ failed to avoid. 8)
638          */
639         if (m == 0)
640                 m = 1;
641         if (tp->srtt != 0) {
642                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
643                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
644                 if (m < 0) {
645                         m = -m;         /* m is now abs(error) */
646                         m -= (tp->mdev >> 2);   /* similar update on mdev */
647                         /* This is similar to one of Eifel findings.
648                          * Eifel blocks mdev updates when rtt decreases.
649                          * This solution is a bit different: we use finer gain
650                          * for mdev in this case (alpha*beta).
651                          * Like Eifel it also prevents growth of rto,
652                          * but also it limits too fast rto decreases,
653                          * happening in pure Eifel.
654                          */
655                         if (m > 0)
656                                 m >>= 3;
657                 } else {
658                         m -= (tp->mdev >> 2);   /* similar update on mdev */
659                 }
660                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
661                 if (tp->mdev > tp->mdev_max) {
662                         tp->mdev_max = tp->mdev;
663                         if (tp->mdev_max > tp->rttvar)
664                                 tp->rttvar = tp->mdev_max;
665                 }
666                 if (after(tp->snd_una, tp->rtt_seq)) {
667                         if (tp->mdev_max < tp->rttvar)
668                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669                         tp->rtt_seq = tp->snd_nxt;
670                         tp->mdev_max = tcp_rto_min(sk);
671                 }
672         } else {
673                 /* no previous measure. */
674                 tp->srtt = m << 3;      /* take the measured time to be rtt */
675                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
676                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677                 tp->rtt_seq = tp->snd_nxt;
678         }
679 }
680
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686         const struct tcp_sock *tp = tcp_sk(sk);
687         /* Old crap is replaced with new one. 8)
688          *
689          * More seriously:
690          * 1. If rtt variance happened to be less 50msec, it is hallucination.
691          *    It cannot be less due to utterly erratic ACK generation made
692          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693          *    to do with delayed acks, because at cwnd>2 true delack timeout
694          *    is invisible. Actually, Linux-2.4 also generates erratic
695          *    ACKs in some circumstances.
696          */
697         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698
699         /* 2. Fixups made earlier cannot be right.
700          *    If we do not estimate RTO correctly without them,
701          *    all the algo is pure shit and should be replaced
702          *    with correct one. It is exactly, which we pretend to do.
703          */
704 }
705
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721         struct tcp_sock *tp = tcp_sk(sk);
722         struct dst_entry *dst = __sk_dst_get(sk);
723
724         if (sysctl_tcp_nometrics_save)
725                 return;
726
727         dst_confirm(dst);
728
729         if (dst && (dst->flags & DST_HOST)) {
730                 const struct inet_connection_sock *icsk = inet_csk(sk);
731                 int m;
732
733                 if (icsk->icsk_backoff || !tp->srtt) {
734                         /* This session failed to estimate rtt. Why?
735                          * Probably, no packets returned in time.
736                          * Reset our results.
737                          */
738                         if (!(dst_metric_locked(dst, RTAX_RTT)))
739                                 dst->metrics[RTAX_RTT - 1] = 0;
740                         return;
741                 }
742
743                 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
744
745                 /* If newly calculated rtt larger than stored one,
746                  * store new one. Otherwise, use EWMA. Remember,
747                  * rtt overestimation is always better than underestimation.
748                  */
749                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
750                         if (m <= 0)
751                                 dst->metrics[RTAX_RTT - 1] = tp->srtt;
752                         else
753                                 dst->metrics[RTAX_RTT - 1] -= (m >> 3);
754                 }
755
756                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
757                         if (m < 0)
758                                 m = -m;
759
760                         /* Scale deviation to rttvar fixed point */
761                         m >>= 1;
762                         if (m < tp->mdev)
763                                 m = tp->mdev;
764
765                         if (m >= dst_metric(dst, RTAX_RTTVAR))
766                                 dst->metrics[RTAX_RTTVAR - 1] = m;
767                         else
768                                 dst->metrics[RTAX_RTTVAR-1] -=
769                                         (dst_metric(dst, RTAX_RTTVAR) - m)>>2;
770                 }
771
772                 if (tp->snd_ssthresh >= 0xFFFF) {
773                         /* Slow start still did not finish. */
774                         if (dst_metric(dst, RTAX_SSTHRESH) &&
775                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
776                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
777                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
778                         if (!dst_metric_locked(dst, RTAX_CWND) &&
779                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
780                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
781                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
782                            icsk->icsk_ca_state == TCP_CA_Open) {
783                         /* Cong. avoidance phase, cwnd is reliable. */
784                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
785                                 dst->metrics[RTAX_SSTHRESH-1] =
786                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
787                         if (!dst_metric_locked(dst, RTAX_CWND))
788                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
789                 } else {
790                         /* Else slow start did not finish, cwnd is non-sense,
791                            ssthresh may be also invalid.
792                          */
793                         if (!dst_metric_locked(dst, RTAX_CWND))
794                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
795                         if (dst_metric(dst, RTAX_SSTHRESH) &&
796                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
797                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
798                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
799                 }
800
801                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
802                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
803                             tp->reordering != sysctl_tcp_reordering)
804                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
805                 }
806         }
807 }
808
809 /* Numbers are taken from RFC3390.
810  *
811  * John Heffner states:
812  *
813  *      The RFC specifies a window of no more than 4380 bytes
814  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
815  *      is a bit misleading because they use a clamp at 4380 bytes
816  *      rather than use a multiplier in the relevant range.
817  */
818 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
819 {
820         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
821
822         if (!cwnd) {
823                 if (tp->mss_cache > 1460)
824                         cwnd = 2;
825                 else
826                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
827         }
828         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
829 }
830
831 /* Set slow start threshold and cwnd not falling to slow start */
832 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
833 {
834         struct tcp_sock *tp = tcp_sk(sk);
835         const struct inet_connection_sock *icsk = inet_csk(sk);
836
837         tp->prior_ssthresh = 0;
838         tp->bytes_acked = 0;
839         if (icsk->icsk_ca_state < TCP_CA_CWR) {
840                 tp->undo_marker = 0;
841                 if (set_ssthresh)
842                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
843                 tp->snd_cwnd = min(tp->snd_cwnd,
844                                    tcp_packets_in_flight(tp) + 1U);
845                 tp->snd_cwnd_cnt = 0;
846                 tp->high_seq = tp->snd_nxt;
847                 tp->snd_cwnd_stamp = tcp_time_stamp;
848                 TCP_ECN_queue_cwr(tp);
849
850                 tcp_set_ca_state(sk, TCP_CA_CWR);
851         }
852 }
853
854 /*
855  * Packet counting of FACK is based on in-order assumptions, therefore TCP
856  * disables it when reordering is detected
857  */
858 static void tcp_disable_fack(struct tcp_sock *tp)
859 {
860         /* RFC3517 uses different metric in lost marker => reset on change */
861         if (tcp_is_fack(tp))
862                 tp->lost_skb_hint = NULL;
863         tp->rx_opt.sack_ok &= ~2;
864 }
865
866 /* Take a notice that peer is sending D-SACKs */
867 static void tcp_dsack_seen(struct tcp_sock *tp)
868 {
869         tp->rx_opt.sack_ok |= 4;
870 }
871
872 /* Initialize metrics on socket. */
873
874 static void tcp_init_metrics(struct sock *sk)
875 {
876         struct tcp_sock *tp = tcp_sk(sk);
877         struct dst_entry *dst = __sk_dst_get(sk);
878
879         if (dst == NULL)
880                 goto reset;
881
882         dst_confirm(dst);
883
884         if (dst_metric_locked(dst, RTAX_CWND))
885                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
886         if (dst_metric(dst, RTAX_SSTHRESH)) {
887                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
888                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
889                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
890         }
891         if (dst_metric(dst, RTAX_REORDERING) &&
892             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
893                 tcp_disable_fack(tp);
894                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
895         }
896
897         if (dst_metric(dst, RTAX_RTT) == 0)
898                 goto reset;
899
900         if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
901                 goto reset;
902
903         /* Initial rtt is determined from SYN,SYN-ACK.
904          * The segment is small and rtt may appear much
905          * less than real one. Use per-dst memory
906          * to make it more realistic.
907          *
908          * A bit of theory. RTT is time passed after "normal" sized packet
909          * is sent until it is ACKed. In normal circumstances sending small
910          * packets force peer to delay ACKs and calculation is correct too.
911          * The algorithm is adaptive and, provided we follow specs, it
912          * NEVER underestimate RTT. BUT! If peer tries to make some clever
913          * tricks sort of "quick acks" for time long enough to decrease RTT
914          * to low value, and then abruptly stops to do it and starts to delay
915          * ACKs, wait for troubles.
916          */
917         if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
918                 tp->srtt = dst_metric(dst, RTAX_RTT);
919                 tp->rtt_seq = tp->snd_nxt;
920         }
921         if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
922                 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
923                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
924         }
925         tcp_set_rto(sk);
926         tcp_bound_rto(sk);
927         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
928                 goto reset;
929         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
930         tp->snd_cwnd_stamp = tcp_time_stamp;
931         return;
932
933 reset:
934         /* Play conservative. If timestamps are not
935          * supported, TCP will fail to recalculate correct
936          * rtt, if initial rto is too small. FORGET ALL AND RESET!
937          */
938         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
939                 tp->srtt = 0;
940                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
941                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
942         }
943 }
944
945 static void tcp_update_reordering(struct sock *sk, const int metric,
946                                   const int ts)
947 {
948         struct tcp_sock *tp = tcp_sk(sk);
949         if (metric > tp->reordering) {
950                 int mib_idx;
951
952                 tp->reordering = min(TCP_MAX_REORDERING, metric);
953
954                 /* This exciting event is worth to be remembered. 8) */
955                 if (ts)
956                         mib_idx = LINUX_MIB_TCPTSREORDER;
957                 else if (tcp_is_reno(tp))
958                         mib_idx = LINUX_MIB_TCPRENOREORDER;
959                 else if (tcp_is_fack(tp))
960                         mib_idx = LINUX_MIB_TCPFACKREORDER;
961                 else
962                         mib_idx = LINUX_MIB_TCPSACKREORDER;
963
964                 NET_INC_STATS_BH(mib_idx);
965 #if FASTRETRANS_DEBUG > 1
966                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
967                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
968                        tp->reordering,
969                        tp->fackets_out,
970                        tp->sacked_out,
971                        tp->undo_marker ? tp->undo_retrans : 0);
972 #endif
973                 tcp_disable_fack(tp);
974         }
975 }
976
977 /* This procedure tags the retransmission queue when SACKs arrive.
978  *
979  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
980  * Packets in queue with these bits set are counted in variables
981  * sacked_out, retrans_out and lost_out, correspondingly.
982  *
983  * Valid combinations are:
984  * Tag  InFlight        Description
985  * 0    1               - orig segment is in flight.
986  * S    0               - nothing flies, orig reached receiver.
987  * L    0               - nothing flies, orig lost by net.
988  * R    2               - both orig and retransmit are in flight.
989  * L|R  1               - orig is lost, retransmit is in flight.
990  * S|R  1               - orig reached receiver, retrans is still in flight.
991  * (L|S|R is logically valid, it could occur when L|R is sacked,
992  *  but it is equivalent to plain S and code short-curcuits it to S.
993  *  L|S is logically invalid, it would mean -1 packet in flight 8))
994  *
995  * These 6 states form finite state machine, controlled by the following events:
996  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
997  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
998  * 3. Loss detection event of one of three flavors:
999  *      A. Scoreboard estimator decided the packet is lost.
1000  *         A'. Reno "three dupacks" marks head of queue lost.
1001  *         A''. Its FACK modfication, head until snd.fack is lost.
1002  *      B. SACK arrives sacking data transmitted after never retransmitted
1003  *         hole was sent out.
1004  *      C. SACK arrives sacking SND.NXT at the moment, when the
1005  *         segment was retransmitted.
1006  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1007  *
1008  * It is pleasant to note, that state diagram turns out to be commutative,
1009  * so that we are allowed not to be bothered by order of our actions,
1010  * when multiple events arrive simultaneously. (see the function below).
1011  *
1012  * Reordering detection.
1013  * --------------------
1014  * Reordering metric is maximal distance, which a packet can be displaced
1015  * in packet stream. With SACKs we can estimate it:
1016  *
1017  * 1. SACK fills old hole and the corresponding segment was not
1018  *    ever retransmitted -> reordering. Alas, we cannot use it
1019  *    when segment was retransmitted.
1020  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1021  *    for retransmitted and already SACKed segment -> reordering..
1022  * Both of these heuristics are not used in Loss state, when we cannot
1023  * account for retransmits accurately.
1024  *
1025  * SACK block validation.
1026  * ----------------------
1027  *
1028  * SACK block range validation checks that the received SACK block fits to
1029  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1030  * Note that SND.UNA is not included to the range though being valid because
1031  * it means that the receiver is rather inconsistent with itself reporting
1032  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1033  * perfectly valid, however, in light of RFC2018 which explicitly states
1034  * that "SACK block MUST reflect the newest segment.  Even if the newest
1035  * segment is going to be discarded ...", not that it looks very clever
1036  * in case of head skb. Due to potentional receiver driven attacks, we
1037  * choose to avoid immediate execution of a walk in write queue due to
1038  * reneging and defer head skb's loss recovery to standard loss recovery
1039  * procedure that will eventually trigger (nothing forbids us doing this).
1040  *
1041  * Implements also blockage to start_seq wrap-around. Problem lies in the
1042  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1043  * there's no guarantee that it will be before snd_nxt (n). The problem
1044  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1045  * wrap (s_w):
1046  *
1047  *         <- outs wnd ->                          <- wrapzone ->
1048  *         u     e      n                         u_w   e_w  s n_w
1049  *         |     |      |                          |     |   |  |
1050  * |<------------+------+----- TCP seqno space --------------+---------->|
1051  * ...-- <2^31 ->|                                           |<--------...
1052  * ...---- >2^31 ------>|                                    |<--------...
1053  *
1054  * Current code wouldn't be vulnerable but it's better still to discard such
1055  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1056  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1057  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1058  * equal to the ideal case (infinite seqno space without wrap caused issues).
1059  *
1060  * With D-SACK the lower bound is extended to cover sequence space below
1061  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1062  * again, D-SACK block must not to go across snd_una (for the same reason as
1063  * for the normal SACK blocks, explained above). But there all simplicity
1064  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1065  * fully below undo_marker they do not affect behavior in anyway and can
1066  * therefore be safely ignored. In rare cases (which are more or less
1067  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1068  * fragmentation and packet reordering past skb's retransmission. To consider
1069  * them correctly, the acceptable range must be extended even more though
1070  * the exact amount is rather hard to quantify. However, tp->max_window can
1071  * be used as an exaggerated estimate.
1072  */
1073 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1074                                   u32 start_seq, u32 end_seq)
1075 {
1076         /* Too far in future, or reversed (interpretation is ambiguous) */
1077         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1078                 return 0;
1079
1080         /* Nasty start_seq wrap-around check (see comments above) */
1081         if (!before(start_seq, tp->snd_nxt))
1082                 return 0;
1083
1084         /* In outstanding window? ...This is valid exit for D-SACKs too.
1085          * start_seq == snd_una is non-sensical (see comments above)
1086          */
1087         if (after(start_seq, tp->snd_una))
1088                 return 1;
1089
1090         if (!is_dsack || !tp->undo_marker)
1091                 return 0;
1092
1093         /* ...Then it's D-SACK, and must reside below snd_una completely */
1094         if (!after(end_seq, tp->snd_una))
1095                 return 0;
1096
1097         if (!before(start_seq, tp->undo_marker))
1098                 return 1;
1099
1100         /* Too old */
1101         if (!after(end_seq, tp->undo_marker))
1102                 return 0;
1103
1104         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1105          *   start_seq < undo_marker and end_seq >= undo_marker.
1106          */
1107         return !before(start_seq, end_seq - tp->max_window);
1108 }
1109
1110 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1111  * Event "C". Later note: FACK people cheated me again 8), we have to account
1112  * for reordering! Ugly, but should help.
1113  *
1114  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1115  * less than what is now known to be received by the other end (derived from
1116  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1117  * retransmitted skbs to avoid some costly processing per ACKs.
1118  */
1119 static void tcp_mark_lost_retrans(struct sock *sk)
1120 {
1121         const struct inet_connection_sock *icsk = inet_csk(sk);
1122         struct tcp_sock *tp = tcp_sk(sk);
1123         struct sk_buff *skb;
1124         int cnt = 0;
1125         u32 new_low_seq = tp->snd_nxt;
1126         u32 received_upto = tcp_highest_sack_seq(tp);
1127
1128         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1129             !after(received_upto, tp->lost_retrans_low) ||
1130             icsk->icsk_ca_state != TCP_CA_Recovery)
1131                 return;
1132
1133         tcp_for_write_queue(skb, sk) {
1134                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1135
1136                 if (skb == tcp_send_head(sk))
1137                         break;
1138                 if (cnt == tp->retrans_out)
1139                         break;
1140                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1141                         continue;
1142
1143                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1144                         continue;
1145
1146                 if (after(received_upto, ack_seq) &&
1147                     (tcp_is_fack(tp) ||
1148                      !before(received_upto,
1149                              ack_seq + tp->reordering * tp->mss_cache))) {
1150                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1151                         tp->retrans_out -= tcp_skb_pcount(skb);
1152
1153                         /* clear lost hint */
1154                         tp->retransmit_skb_hint = NULL;
1155
1156                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1157                                 tp->lost_out += tcp_skb_pcount(skb);
1158                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1159                         }
1160                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1161                 } else {
1162                         if (before(ack_seq, new_low_seq))
1163                                 new_low_seq = ack_seq;
1164                         cnt += tcp_skb_pcount(skb);
1165                 }
1166         }
1167
1168         if (tp->retrans_out)
1169                 tp->lost_retrans_low = new_low_seq;
1170 }
1171
1172 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1173                            struct tcp_sack_block_wire *sp, int num_sacks,
1174                            u32 prior_snd_una)
1175 {
1176         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1177         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1178         int dup_sack = 0;
1179
1180         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1181                 dup_sack = 1;
1182                 tcp_dsack_seen(tp);
1183                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1184         } else if (num_sacks > 1) {
1185                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1186                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1187
1188                 if (!after(end_seq_0, end_seq_1) &&
1189                     !before(start_seq_0, start_seq_1)) {
1190                         dup_sack = 1;
1191                         tcp_dsack_seen(tp);
1192                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1193                 }
1194         }
1195
1196         /* D-SACK for already forgotten data... Do dumb counting. */
1197         if (dup_sack &&
1198             !after(end_seq_0, prior_snd_una) &&
1199             after(end_seq_0, tp->undo_marker))
1200                 tp->undo_retrans--;
1201
1202         return dup_sack;
1203 }
1204
1205 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1206  * the incoming SACK may not exactly match but we can find smaller MSS
1207  * aligned portion of it that matches. Therefore we might need to fragment
1208  * which may fail and creates some hassle (caller must handle error case
1209  * returns).
1210  */
1211 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1212                                  u32 start_seq, u32 end_seq)
1213 {
1214         int in_sack, err;
1215         unsigned int pkt_len;
1216
1217         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1218                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1219
1220         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1221             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1222
1223                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1224
1225                 if (!in_sack)
1226                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1227                 else
1228                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1229                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1230                 if (err < 0)
1231                         return err;
1232         }
1233
1234         return in_sack;
1235 }
1236
1237 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1238                            int *reord, int dup_sack, int fack_count)
1239 {
1240         struct tcp_sock *tp = tcp_sk(sk);
1241         u8 sacked = TCP_SKB_CB(skb)->sacked;
1242         int flag = 0;
1243
1244         /* Account D-SACK for retransmitted packet. */
1245         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1246                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1247                         tp->undo_retrans--;
1248                 if (sacked & TCPCB_SACKED_ACKED)
1249                         *reord = min(fack_count, *reord);
1250         }
1251
1252         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1253         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1254                 return flag;
1255
1256         if (!(sacked & TCPCB_SACKED_ACKED)) {
1257                 if (sacked & TCPCB_SACKED_RETRANS) {
1258                         /* If the segment is not tagged as lost,
1259                          * we do not clear RETRANS, believing
1260                          * that retransmission is still in flight.
1261                          */
1262                         if (sacked & TCPCB_LOST) {
1263                                 TCP_SKB_CB(skb)->sacked &=
1264                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1265                                 tp->lost_out -= tcp_skb_pcount(skb);
1266                                 tp->retrans_out -= tcp_skb_pcount(skb);
1267
1268                                 /* clear lost hint */
1269                                 tp->retransmit_skb_hint = NULL;
1270                         }
1271                 } else {
1272                         if (!(sacked & TCPCB_RETRANS)) {
1273                                 /* New sack for not retransmitted frame,
1274                                  * which was in hole. It is reordering.
1275                                  */
1276                                 if (before(TCP_SKB_CB(skb)->seq,
1277                                            tcp_highest_sack_seq(tp)))
1278                                         *reord = min(fack_count, *reord);
1279
1280                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1281                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1282                                         flag |= FLAG_ONLY_ORIG_SACKED;
1283                         }
1284
1285                         if (sacked & TCPCB_LOST) {
1286                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1287                                 tp->lost_out -= tcp_skb_pcount(skb);
1288
1289                                 /* clear lost hint */
1290                                 tp->retransmit_skb_hint = NULL;
1291                         }
1292                 }
1293
1294                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1295                 flag |= FLAG_DATA_SACKED;
1296                 tp->sacked_out += tcp_skb_pcount(skb);
1297
1298                 fack_count += tcp_skb_pcount(skb);
1299
1300                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1301                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1302                     before(TCP_SKB_CB(skb)->seq,
1303                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1304                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1305
1306                 if (fack_count > tp->fackets_out)
1307                         tp->fackets_out = fack_count;
1308
1309                 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1310                         tcp_advance_highest_sack(sk, skb);
1311         }
1312
1313         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1314          * frames and clear it. undo_retrans is decreased above, L|R frames
1315          * are accounted above as well.
1316          */
1317         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1318                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1319                 tp->retrans_out -= tcp_skb_pcount(skb);
1320                 tp->retransmit_skb_hint = NULL;
1321         }
1322
1323         return flag;
1324 }
1325
1326 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1327                                         struct tcp_sack_block *next_dup,
1328                                         u32 start_seq, u32 end_seq,
1329                                         int dup_sack_in, int *fack_count,
1330                                         int *reord, int *flag)
1331 {
1332         tcp_for_write_queue_from(skb, sk) {
1333                 int in_sack = 0;
1334                 int dup_sack = dup_sack_in;
1335
1336                 if (skb == tcp_send_head(sk))
1337                         break;
1338
1339                 /* queue is in-order => we can short-circuit the walk early */
1340                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1341                         break;
1342
1343                 if ((next_dup != NULL) &&
1344                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1345                         in_sack = tcp_match_skb_to_sack(sk, skb,
1346                                                         next_dup->start_seq,
1347                                                         next_dup->end_seq);
1348                         if (in_sack > 0)
1349                                 dup_sack = 1;
1350                 }
1351
1352                 if (in_sack <= 0)
1353                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1354                                                         end_seq);
1355                 if (unlikely(in_sack < 0))
1356                         break;
1357
1358                 if (in_sack)
1359                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1360                                                  *fack_count);
1361
1362                 *fack_count += tcp_skb_pcount(skb);
1363         }
1364         return skb;
1365 }
1366
1367 /* Avoid all extra work that is being done by sacktag while walking in
1368  * a normal way
1369  */
1370 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1371                                         u32 skip_to_seq, int *fack_count)
1372 {
1373         tcp_for_write_queue_from(skb, sk) {
1374                 if (skb == tcp_send_head(sk))
1375                         break;
1376
1377                 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1378                         break;
1379
1380                 *fack_count += tcp_skb_pcount(skb);
1381         }
1382         return skb;
1383 }
1384
1385 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1386                                                 struct sock *sk,
1387                                                 struct tcp_sack_block *next_dup,
1388                                                 u32 skip_to_seq,
1389                                                 int *fack_count, int *reord,
1390                                                 int *flag)
1391 {
1392         if (next_dup == NULL)
1393                 return skb;
1394
1395         if (before(next_dup->start_seq, skip_to_seq)) {
1396                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1397                 skb = tcp_sacktag_walk(skb, sk, NULL,
1398                                      next_dup->start_seq, next_dup->end_seq,
1399                                      1, fack_count, reord, flag);
1400         }
1401
1402         return skb;
1403 }
1404
1405 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1406 {
1407         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1408 }
1409
1410 static int
1411 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1412                         u32 prior_snd_una)
1413 {
1414         const struct inet_connection_sock *icsk = inet_csk(sk);
1415         struct tcp_sock *tp = tcp_sk(sk);
1416         unsigned char *ptr = (skb_transport_header(ack_skb) +
1417                               TCP_SKB_CB(ack_skb)->sacked);
1418         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1419         struct tcp_sack_block sp[4];
1420         struct tcp_sack_block *cache;
1421         struct sk_buff *skb;
1422         int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1423         int used_sacks;
1424         int reord = tp->packets_out;
1425         int flag = 0;
1426         int found_dup_sack = 0;
1427         int fack_count;
1428         int i, j;
1429         int first_sack_index;
1430
1431         if (!tp->sacked_out) {
1432                 if (WARN_ON(tp->fackets_out))
1433                         tp->fackets_out = 0;
1434                 tcp_highest_sack_reset(sk);
1435         }
1436
1437         found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1438                                          num_sacks, prior_snd_una);
1439         if (found_dup_sack)
1440                 flag |= FLAG_DSACKING_ACK;
1441
1442         /* Eliminate too old ACKs, but take into
1443          * account more or less fresh ones, they can
1444          * contain valid SACK info.
1445          */
1446         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1447                 return 0;
1448
1449         if (!tp->packets_out)
1450                 goto out;
1451
1452         used_sacks = 0;
1453         first_sack_index = 0;
1454         for (i = 0; i < num_sacks; i++) {
1455                 int dup_sack = !i && found_dup_sack;
1456
1457                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1458                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1459
1460                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1461                                             sp[used_sacks].start_seq,
1462                                             sp[used_sacks].end_seq)) {
1463                         int mib_idx;
1464
1465                         if (dup_sack) {
1466                                 if (!tp->undo_marker)
1467                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1468                                 else
1469                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1470                         } else {
1471                                 /* Don't count olds caused by ACK reordering */
1472                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1473                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1474                                         continue;
1475                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1476                         }
1477
1478                         NET_INC_STATS_BH(mib_idx);
1479                         if (i == 0)
1480                                 first_sack_index = -1;
1481                         continue;
1482                 }
1483
1484                 /* Ignore very old stuff early */
1485                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1486                         continue;
1487
1488                 used_sacks++;
1489         }
1490
1491         /* order SACK blocks to allow in order walk of the retrans queue */
1492         for (i = used_sacks - 1; i > 0; i--) {
1493                 for (j = 0; j < i; j++) {
1494                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1495                                 struct tcp_sack_block tmp;
1496
1497                                 tmp = sp[j];
1498                                 sp[j] = sp[j + 1];
1499                                 sp[j + 1] = tmp;
1500
1501                                 /* Track where the first SACK block goes to */
1502                                 if (j == first_sack_index)
1503                                         first_sack_index = j + 1;
1504                         }
1505                 }
1506         }
1507
1508         skb = tcp_write_queue_head(sk);
1509         fack_count = 0;
1510         i = 0;
1511
1512         if (!tp->sacked_out) {
1513                 /* It's already past, so skip checking against it */
1514                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1515         } else {
1516                 cache = tp->recv_sack_cache;
1517                 /* Skip empty blocks in at head of the cache */
1518                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1519                        !cache->end_seq)
1520                         cache++;
1521         }
1522
1523         while (i < used_sacks) {
1524                 u32 start_seq = sp[i].start_seq;
1525                 u32 end_seq = sp[i].end_seq;
1526                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1527                 struct tcp_sack_block *next_dup = NULL;
1528
1529                 if (found_dup_sack && ((i + 1) == first_sack_index))
1530                         next_dup = &sp[i + 1];
1531
1532                 /* Event "B" in the comment above. */
1533                 if (after(end_seq, tp->high_seq))
1534                         flag |= FLAG_DATA_LOST;
1535
1536                 /* Skip too early cached blocks */
1537                 while (tcp_sack_cache_ok(tp, cache) &&
1538                        !before(start_seq, cache->end_seq))
1539                         cache++;
1540
1541                 /* Can skip some work by looking recv_sack_cache? */
1542                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1543                     after(end_seq, cache->start_seq)) {
1544
1545                         /* Head todo? */
1546                         if (before(start_seq, cache->start_seq)) {
1547                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1548                                                        &fack_count);
1549                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1550                                                        start_seq,
1551                                                        cache->start_seq,
1552                                                        dup_sack, &fack_count,
1553                                                        &reord, &flag);
1554                         }
1555
1556                         /* Rest of the block already fully processed? */
1557                         if (!after(end_seq, cache->end_seq))
1558                                 goto advance_sp;
1559
1560                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1561                                                        cache->end_seq,
1562                                                        &fack_count, &reord,
1563                                                        &flag);
1564
1565                         /* ...tail remains todo... */
1566                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1567                                 /* ...but better entrypoint exists! */
1568                                 skb = tcp_highest_sack(sk);
1569                                 if (skb == NULL)
1570                                         break;
1571                                 fack_count = tp->fackets_out;
1572                                 cache++;
1573                                 goto walk;
1574                         }
1575
1576                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1577                                                &fack_count);
1578                         /* Check overlap against next cached too (past this one already) */
1579                         cache++;
1580                         continue;
1581                 }
1582
1583                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1584                         skb = tcp_highest_sack(sk);
1585                         if (skb == NULL)
1586                                 break;
1587                         fack_count = tp->fackets_out;
1588                 }
1589                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1590
1591 walk:
1592                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1593                                        dup_sack, &fack_count, &reord, &flag);
1594
1595 advance_sp:
1596                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1597                  * due to in-order walk
1598                  */
1599                 if (after(end_seq, tp->frto_highmark))
1600                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1601
1602                 i++;
1603         }
1604
1605         /* Clear the head of the cache sack blocks so we can skip it next time */
1606         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1607                 tp->recv_sack_cache[i].start_seq = 0;
1608                 tp->recv_sack_cache[i].end_seq = 0;
1609         }
1610         for (j = 0; j < used_sacks; j++)
1611                 tp->recv_sack_cache[i++] = sp[j];
1612
1613         tcp_mark_lost_retrans(sk);
1614
1615         tcp_verify_left_out(tp);
1616
1617         if ((reord < tp->fackets_out) &&
1618             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1619             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1620                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1621
1622 out:
1623
1624 #if FASTRETRANS_DEBUG > 0
1625         BUG_TRAP((int)tp->sacked_out >= 0);
1626         BUG_TRAP((int)tp->lost_out >= 0);
1627         BUG_TRAP((int)tp->retrans_out >= 0);
1628         BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1629 #endif
1630         return flag;
1631 }
1632
1633 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1634  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1635  */
1636 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1637 {
1638         u32 holes;
1639
1640         holes = max(tp->lost_out, 1U);
1641         holes = min(holes, tp->packets_out);
1642
1643         if ((tp->sacked_out + holes) > tp->packets_out) {
1644                 tp->sacked_out = tp->packets_out - holes;
1645                 return 1;
1646         }
1647         return 0;
1648 }
1649
1650 /* If we receive more dupacks than we expected counting segments
1651  * in assumption of absent reordering, interpret this as reordering.
1652  * The only another reason could be bug in receiver TCP.
1653  */
1654 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1655 {
1656         struct tcp_sock *tp = tcp_sk(sk);
1657         if (tcp_limit_reno_sacked(tp))
1658                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1659 }
1660
1661 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1662
1663 static void tcp_add_reno_sack(struct sock *sk)
1664 {
1665         struct tcp_sock *tp = tcp_sk(sk);
1666         tp->sacked_out++;
1667         tcp_check_reno_reordering(sk, 0);
1668         tcp_verify_left_out(tp);
1669 }
1670
1671 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1672
1673 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1674 {
1675         struct tcp_sock *tp = tcp_sk(sk);
1676
1677         if (acked > 0) {
1678                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1679                 if (acked - 1 >= tp->sacked_out)
1680                         tp->sacked_out = 0;
1681                 else
1682                         tp->sacked_out -= acked - 1;
1683         }
1684         tcp_check_reno_reordering(sk, acked);
1685         tcp_verify_left_out(tp);
1686 }
1687
1688 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1689 {
1690         tp->sacked_out = 0;
1691 }
1692
1693 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1694 {
1695         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1696 }
1697
1698 /* F-RTO can only be used if TCP has never retransmitted anything other than
1699  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1700  */
1701 int tcp_use_frto(struct sock *sk)
1702 {
1703         const struct tcp_sock *tp = tcp_sk(sk);
1704         const struct inet_connection_sock *icsk = inet_csk(sk);
1705         struct sk_buff *skb;
1706
1707         if (!sysctl_tcp_frto)
1708                 return 0;
1709
1710         /* MTU probe and F-RTO won't really play nicely along currently */
1711         if (icsk->icsk_mtup.probe_size)
1712                 return 0;
1713
1714         if (tcp_is_sackfrto(tp))
1715                 return 1;
1716
1717         /* Avoid expensive walking of rexmit queue if possible */
1718         if (tp->retrans_out > 1)
1719                 return 0;
1720
1721         skb = tcp_write_queue_head(sk);
1722         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1723         tcp_for_write_queue_from(skb, sk) {
1724                 if (skb == tcp_send_head(sk))
1725                         break;
1726                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1727                         return 0;
1728                 /* Short-circuit when first non-SACKed skb has been checked */
1729                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1730                         break;
1731         }
1732         return 1;
1733 }
1734
1735 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1736  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1737  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1738  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1739  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1740  * bits are handled if the Loss state is really to be entered (in
1741  * tcp_enter_frto_loss).
1742  *
1743  * Do like tcp_enter_loss() would; when RTO expires the second time it
1744  * does:
1745  *  "Reduce ssthresh if it has not yet been made inside this window."
1746  */
1747 void tcp_enter_frto(struct sock *sk)
1748 {
1749         const struct inet_connection_sock *icsk = inet_csk(sk);
1750         struct tcp_sock *tp = tcp_sk(sk);
1751         struct sk_buff *skb;
1752
1753         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1754             tp->snd_una == tp->high_seq ||
1755             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1756              !icsk->icsk_retransmits)) {
1757                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1758                 /* Our state is too optimistic in ssthresh() call because cwnd
1759                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1760                  * recovery has not yet completed. Pattern would be this: RTO,
1761                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1762                  * up here twice).
1763                  * RFC4138 should be more specific on what to do, even though
1764                  * RTO is quite unlikely to occur after the first Cumulative ACK
1765                  * due to back-off and complexity of triggering events ...
1766                  */
1767                 if (tp->frto_counter) {
1768                         u32 stored_cwnd;
1769                         stored_cwnd = tp->snd_cwnd;
1770                         tp->snd_cwnd = 2;
1771                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1772                         tp->snd_cwnd = stored_cwnd;
1773                 } else {
1774                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1775                 }
1776                 /* ... in theory, cong.control module could do "any tricks" in
1777                  * ssthresh(), which means that ca_state, lost bits and lost_out
1778                  * counter would have to be faked before the call occurs. We
1779                  * consider that too expensive, unlikely and hacky, so modules
1780                  * using these in ssthresh() must deal these incompatibility
1781                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1782                  */
1783                 tcp_ca_event(sk, CA_EVENT_FRTO);
1784         }
1785
1786         tp->undo_marker = tp->snd_una;
1787         tp->undo_retrans = 0;
1788
1789         skb = tcp_write_queue_head(sk);
1790         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1791                 tp->undo_marker = 0;
1792         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1793                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1794                 tp->retrans_out -= tcp_skb_pcount(skb);
1795         }
1796         tcp_verify_left_out(tp);
1797
1798         /* Too bad if TCP was application limited */
1799         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1800
1801         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1802          * The last condition is necessary at least in tp->frto_counter case.
1803          */
1804         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1805             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1806             after(tp->high_seq, tp->snd_una)) {
1807                 tp->frto_highmark = tp->high_seq;
1808         } else {
1809                 tp->frto_highmark = tp->snd_nxt;
1810         }
1811         tcp_set_ca_state(sk, TCP_CA_Disorder);
1812         tp->high_seq = tp->snd_nxt;
1813         tp->frto_counter = 1;
1814 }
1815
1816 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1817  * which indicates that we should follow the traditional RTO recovery,
1818  * i.e. mark everything lost and do go-back-N retransmission.
1819  */
1820 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1821 {
1822         struct tcp_sock *tp = tcp_sk(sk);
1823         struct sk_buff *skb;
1824
1825         tp->lost_out = 0;
1826         tp->retrans_out = 0;
1827         if (tcp_is_reno(tp))
1828                 tcp_reset_reno_sack(tp);
1829
1830         tcp_for_write_queue(skb, sk) {
1831                 if (skb == tcp_send_head(sk))
1832                         break;
1833
1834                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1835                 /*
1836                  * Count the retransmission made on RTO correctly (only when
1837                  * waiting for the first ACK and did not get it)...
1838                  */
1839                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1840                         /* For some reason this R-bit might get cleared? */
1841                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1842                                 tp->retrans_out += tcp_skb_pcount(skb);
1843                         /* ...enter this if branch just for the first segment */
1844                         flag |= FLAG_DATA_ACKED;
1845                 } else {
1846                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1847                                 tp->undo_marker = 0;
1848                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1849                 }
1850
1851                 /* Marking forward transmissions that were made after RTO lost
1852                  * can cause unnecessary retransmissions in some scenarios,
1853                  * SACK blocks will mitigate that in some but not in all cases.
1854                  * We used to not mark them but it was causing break-ups with
1855                  * receivers that do only in-order receival.
1856                  *
1857                  * TODO: we could detect presence of such receiver and select
1858                  * different behavior per flow.
1859                  */
1860                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1861                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1862                         tp->lost_out += tcp_skb_pcount(skb);
1863                 }
1864         }
1865         tcp_verify_left_out(tp);
1866
1867         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1868         tp->snd_cwnd_cnt = 0;
1869         tp->snd_cwnd_stamp = tcp_time_stamp;
1870         tp->frto_counter = 0;
1871         tp->bytes_acked = 0;
1872
1873         tp->reordering = min_t(unsigned int, tp->reordering,
1874                                sysctl_tcp_reordering);
1875         tcp_set_ca_state(sk, TCP_CA_Loss);
1876         tp->high_seq = tp->snd_nxt;
1877         TCP_ECN_queue_cwr(tp);
1878
1879         tcp_clear_retrans_hints_partial(tp);
1880 }
1881
1882 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1883 {
1884         tp->retrans_out = 0;
1885         tp->lost_out = 0;
1886
1887         tp->undo_marker = 0;
1888         tp->undo_retrans = 0;
1889 }
1890
1891 void tcp_clear_retrans(struct tcp_sock *tp)
1892 {
1893         tcp_clear_retrans_partial(tp);
1894
1895         tp->fackets_out = 0;
1896         tp->sacked_out = 0;
1897 }
1898
1899 /* Enter Loss state. If "how" is not zero, forget all SACK information
1900  * and reset tags completely, otherwise preserve SACKs. If receiver
1901  * dropped its ofo queue, we will know this due to reneging detection.
1902  */
1903 void tcp_enter_loss(struct sock *sk, int how)
1904 {
1905         const struct inet_connection_sock *icsk = inet_csk(sk);
1906         struct tcp_sock *tp = tcp_sk(sk);
1907         struct sk_buff *skb;
1908
1909         /* Reduce ssthresh if it has not yet been made inside this window. */
1910         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1911             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1912                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1913                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1914                 tcp_ca_event(sk, CA_EVENT_LOSS);
1915         }
1916         tp->snd_cwnd       = 1;
1917         tp->snd_cwnd_cnt   = 0;
1918         tp->snd_cwnd_stamp = tcp_time_stamp;
1919
1920         tp->bytes_acked = 0;
1921         tcp_clear_retrans_partial(tp);
1922
1923         if (tcp_is_reno(tp))
1924                 tcp_reset_reno_sack(tp);
1925
1926         if (!how) {
1927                 /* Push undo marker, if it was plain RTO and nothing
1928                  * was retransmitted. */
1929                 tp->undo_marker = tp->snd_una;
1930                 tcp_clear_retrans_hints_partial(tp);
1931         } else {
1932                 tp->sacked_out = 0;
1933                 tp->fackets_out = 0;
1934                 tcp_clear_all_retrans_hints(tp);
1935         }
1936
1937         tcp_for_write_queue(skb, sk) {
1938                 if (skb == tcp_send_head(sk))
1939                         break;
1940
1941                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1942                         tp->undo_marker = 0;
1943                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1944                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1945                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1946                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1947                         tp->lost_out += tcp_skb_pcount(skb);
1948                 }
1949         }
1950         tcp_verify_left_out(tp);
1951
1952         tp->reordering = min_t(unsigned int, tp->reordering,
1953                                sysctl_tcp_reordering);
1954         tcp_set_ca_state(sk, TCP_CA_Loss);
1955         tp->high_seq = tp->snd_nxt;
1956         TCP_ECN_queue_cwr(tp);
1957         /* Abort F-RTO algorithm if one is in progress */
1958         tp->frto_counter = 0;
1959 }
1960
1961 /* If ACK arrived pointing to a remembered SACK, it means that our
1962  * remembered SACKs do not reflect real state of receiver i.e.
1963  * receiver _host_ is heavily congested (or buggy).
1964  *
1965  * Do processing similar to RTO timeout.
1966  */
1967 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1968 {
1969         if (flag & FLAG_SACK_RENEGING) {
1970                 struct inet_connection_sock *icsk = inet_csk(sk);
1971                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1972
1973                 tcp_enter_loss(sk, 1);
1974                 icsk->icsk_retransmits++;
1975                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1976                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1977                                           icsk->icsk_rto, TCP_RTO_MAX);
1978                 return 1;
1979         }
1980         return 0;
1981 }
1982
1983 static inline int tcp_fackets_out(struct tcp_sock *tp)
1984 {
1985         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1986 }
1987
1988 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1989  * counter when SACK is enabled (without SACK, sacked_out is used for
1990  * that purpose).
1991  *
1992  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1993  * segments up to the highest received SACK block so far and holes in
1994  * between them.
1995  *
1996  * With reordering, holes may still be in flight, so RFC3517 recovery
1997  * uses pure sacked_out (total number of SACKed segments) even though
1998  * it violates the RFC that uses duplicate ACKs, often these are equal
1999  * but when e.g. out-of-window ACKs or packet duplication occurs,
2000  * they differ. Since neither occurs due to loss, TCP should really
2001  * ignore them.
2002  */
2003 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2004 {
2005         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2006 }
2007
2008 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2009 {
2010         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2011 }
2012
2013 static inline int tcp_head_timedout(struct sock *sk)
2014 {
2015         struct tcp_sock *tp = tcp_sk(sk);
2016
2017         return tp->packets_out &&
2018                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2019 }
2020
2021 /* Linux NewReno/SACK/FACK/ECN state machine.
2022  * --------------------------------------
2023  *
2024  * "Open"       Normal state, no dubious events, fast path.
2025  * "Disorder"   In all the respects it is "Open",
2026  *              but requires a bit more attention. It is entered when
2027  *              we see some SACKs or dupacks. It is split of "Open"
2028  *              mainly to move some processing from fast path to slow one.
2029  * "CWR"        CWND was reduced due to some Congestion Notification event.
2030  *              It can be ECN, ICMP source quench, local device congestion.
2031  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2032  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2033  *
2034  * tcp_fastretrans_alert() is entered:
2035  * - each incoming ACK, if state is not "Open"
2036  * - when arrived ACK is unusual, namely:
2037  *      * SACK
2038  *      * Duplicate ACK.
2039  *      * ECN ECE.
2040  *
2041  * Counting packets in flight is pretty simple.
2042  *
2043  *      in_flight = packets_out - left_out + retrans_out
2044  *
2045  *      packets_out is SND.NXT-SND.UNA counted in packets.
2046  *
2047  *      retrans_out is number of retransmitted segments.
2048  *
2049  *      left_out is number of segments left network, but not ACKed yet.
2050  *
2051  *              left_out = sacked_out + lost_out
2052  *
2053  *     sacked_out: Packets, which arrived to receiver out of order
2054  *                 and hence not ACKed. With SACKs this number is simply
2055  *                 amount of SACKed data. Even without SACKs
2056  *                 it is easy to give pretty reliable estimate of this number,
2057  *                 counting duplicate ACKs.
2058  *
2059  *       lost_out: Packets lost by network. TCP has no explicit
2060  *                 "loss notification" feedback from network (for now).
2061  *                 It means that this number can be only _guessed_.
2062  *                 Actually, it is the heuristics to predict lossage that
2063  *                 distinguishes different algorithms.
2064  *
2065  *      F.e. after RTO, when all the queue is considered as lost,
2066  *      lost_out = packets_out and in_flight = retrans_out.
2067  *
2068  *              Essentially, we have now two algorithms counting
2069  *              lost packets.
2070  *
2071  *              FACK: It is the simplest heuristics. As soon as we decided
2072  *              that something is lost, we decide that _all_ not SACKed
2073  *              packets until the most forward SACK are lost. I.e.
2074  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2075  *              It is absolutely correct estimate, if network does not reorder
2076  *              packets. And it loses any connection to reality when reordering
2077  *              takes place. We use FACK by default until reordering
2078  *              is suspected on the path to this destination.
2079  *
2080  *              NewReno: when Recovery is entered, we assume that one segment
2081  *              is lost (classic Reno). While we are in Recovery and
2082  *              a partial ACK arrives, we assume that one more packet
2083  *              is lost (NewReno). This heuristics are the same in NewReno
2084  *              and SACK.
2085  *
2086  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2087  *  deflation etc. CWND is real congestion window, never inflated, changes
2088  *  only according to classic VJ rules.
2089  *
2090  * Really tricky (and requiring careful tuning) part of algorithm
2091  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2092  * The first determines the moment _when_ we should reduce CWND and,
2093  * hence, slow down forward transmission. In fact, it determines the moment
2094  * when we decide that hole is caused by loss, rather than by a reorder.
2095  *
2096  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2097  * holes, caused by lost packets.
2098  *
2099  * And the most logically complicated part of algorithm is undo
2100  * heuristics. We detect false retransmits due to both too early
2101  * fast retransmit (reordering) and underestimated RTO, analyzing
2102  * timestamps and D-SACKs. When we detect that some segments were
2103  * retransmitted by mistake and CWND reduction was wrong, we undo
2104  * window reduction and abort recovery phase. This logic is hidden
2105  * inside several functions named tcp_try_undo_<something>.
2106  */
2107
2108 /* This function decides, when we should leave Disordered state
2109  * and enter Recovery phase, reducing congestion window.
2110  *
2111  * Main question: may we further continue forward transmission
2112  * with the same cwnd?
2113  */
2114 static int tcp_time_to_recover(struct sock *sk)
2115 {
2116         struct tcp_sock *tp = tcp_sk(sk);
2117         __u32 packets_out;
2118
2119         /* Do not perform any recovery during F-RTO algorithm */
2120         if (tp->frto_counter)
2121                 return 0;
2122
2123         /* Trick#1: The loss is proven. */
2124         if (tp->lost_out)
2125                 return 1;
2126
2127         /* Not-A-Trick#2 : Classic rule... */
2128         if (tcp_dupack_heurestics(tp) > tp->reordering)
2129                 return 1;
2130
2131         /* Trick#3 : when we use RFC2988 timer restart, fast
2132          * retransmit can be triggered by timeout of queue head.
2133          */
2134         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2135                 return 1;
2136
2137         /* Trick#4: It is still not OK... But will it be useful to delay
2138          * recovery more?
2139          */
2140         packets_out = tp->packets_out;
2141         if (packets_out <= tp->reordering &&
2142             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2143             !tcp_may_send_now(sk)) {
2144                 /* We have nothing to send. This connection is limited
2145                  * either by receiver window or by application.
2146                  */
2147                 return 1;
2148         }
2149
2150         return 0;
2151 }
2152
2153 /* RFC: This is from the original, I doubt that this is necessary at all:
2154  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2155  * retransmitted past LOST markings in the first place? I'm not fully sure
2156  * about undo and end of connection cases, which can cause R without L?
2157  */
2158 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2159 {
2160         if ((tp->retransmit_skb_hint != NULL) &&
2161             before(TCP_SKB_CB(skb)->seq,
2162                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2163                 tp->retransmit_skb_hint = NULL;
2164 }
2165
2166 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2167  * is against sacked "cnt", otherwise it's against facked "cnt"
2168  */
2169 static void tcp_mark_head_lost(struct sock *sk, int packets)
2170 {
2171         struct tcp_sock *tp = tcp_sk(sk);
2172         struct sk_buff *skb;
2173         int cnt, oldcnt;
2174         int err;
2175         unsigned int mss;
2176
2177         BUG_TRAP(packets <= tp->packets_out);
2178         if (tp->lost_skb_hint) {
2179                 skb = tp->lost_skb_hint;
2180                 cnt = tp->lost_cnt_hint;
2181         } else {
2182                 skb = tcp_write_queue_head(sk);
2183                 cnt = 0;
2184         }
2185
2186         tcp_for_write_queue_from(skb, sk) {
2187                 if (skb == tcp_send_head(sk))
2188                         break;
2189                 /* TODO: do this better */
2190                 /* this is not the most efficient way to do this... */
2191                 tp->lost_skb_hint = skb;
2192                 tp->lost_cnt_hint = cnt;
2193
2194                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2195                         break;
2196
2197                 oldcnt = cnt;
2198                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2199                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2200                         cnt += tcp_skb_pcount(skb);
2201
2202                 if (cnt > packets) {
2203                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2204                                 break;
2205
2206                         mss = skb_shinfo(skb)->gso_size;
2207                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2208                         if (err < 0)
2209                                 break;
2210                         cnt = packets;
2211                 }
2212
2213                 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2214                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2215                         tp->lost_out += tcp_skb_pcount(skb);
2216                         tcp_verify_retransmit_hint(tp, skb);
2217                 }
2218         }
2219         tcp_verify_left_out(tp);
2220 }
2221
2222 /* Account newly detected lost packet(s) */
2223
2224 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2225 {
2226         struct tcp_sock *tp = tcp_sk(sk);
2227
2228         if (tcp_is_reno(tp)) {
2229                 tcp_mark_head_lost(sk, 1);
2230         } else if (tcp_is_fack(tp)) {
2231                 int lost = tp->fackets_out - tp->reordering;
2232                 if (lost <= 0)
2233                         lost = 1;
2234                 tcp_mark_head_lost(sk, lost);
2235         } else {
2236                 int sacked_upto = tp->sacked_out - tp->reordering;
2237                 if (sacked_upto < fast_rexmit)
2238                         sacked_upto = fast_rexmit;
2239                 tcp_mark_head_lost(sk, sacked_upto);
2240         }
2241
2242         /* New heuristics: it is possible only after we switched
2243          * to restart timer each time when something is ACKed.
2244          * Hence, we can detect timed out packets during fast
2245          * retransmit without falling to slow start.
2246          */
2247         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2248                 struct sk_buff *skb;
2249
2250                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2251                         : tcp_write_queue_head(sk);
2252
2253                 tcp_for_write_queue_from(skb, sk) {
2254                         if (skb == tcp_send_head(sk))
2255                                 break;
2256                         if (!tcp_skb_timedout(sk, skb))
2257                                 break;
2258
2259                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2260                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2261                                 tp->lost_out += tcp_skb_pcount(skb);
2262                                 tcp_verify_retransmit_hint(tp, skb);
2263                         }
2264                 }
2265
2266                 tp->scoreboard_skb_hint = skb;
2267
2268                 tcp_verify_left_out(tp);
2269         }
2270 }
2271
2272 /* CWND moderation, preventing bursts due to too big ACKs
2273  * in dubious situations.
2274  */
2275 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2276 {
2277         tp->snd_cwnd = min(tp->snd_cwnd,
2278                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2279         tp->snd_cwnd_stamp = tcp_time_stamp;
2280 }
2281
2282 /* Lower bound on congestion window is slow start threshold
2283  * unless congestion avoidance choice decides to overide it.
2284  */
2285 static inline u32 tcp_cwnd_min(const struct sock *sk)
2286 {
2287         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2288
2289         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2290 }
2291
2292 /* Decrease cwnd each second ack. */
2293 static void tcp_cwnd_down(struct sock *sk, int flag)
2294 {
2295         struct tcp_sock *tp = tcp_sk(sk);
2296         int decr = tp->snd_cwnd_cnt + 1;
2297
2298         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2299             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2300                 tp->snd_cwnd_cnt = decr & 1;
2301                 decr >>= 1;
2302
2303                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2304                         tp->snd_cwnd -= decr;
2305
2306                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2307                 tp->snd_cwnd_stamp = tcp_time_stamp;
2308         }
2309 }
2310
2311 /* Nothing was retransmitted or returned timestamp is less
2312  * than timestamp of the first retransmission.
2313  */
2314 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2315 {
2316         return !tp->retrans_stamp ||
2317                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2318                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2319 }
2320
2321 /* Undo procedures. */
2322
2323 #if FASTRETRANS_DEBUG > 1
2324 static void DBGUNDO(struct sock *sk, const char *msg)
2325 {
2326         struct tcp_sock *tp = tcp_sk(sk);
2327         struct inet_sock *inet = inet_sk(sk);
2328
2329         if (sk->sk_family == AF_INET) {
2330                 printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2331                        msg,
2332                        NIPQUAD(inet->daddr), ntohs(inet->dport),
2333                        tp->snd_cwnd, tcp_left_out(tp),
2334                        tp->snd_ssthresh, tp->prior_ssthresh,
2335                        tp->packets_out);
2336         }
2337 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2338         else if (sk->sk_family == AF_INET6) {
2339                 struct ipv6_pinfo *np = inet6_sk(sk);
2340                 printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2341                        msg,
2342                        NIP6(np->daddr), ntohs(inet->dport),
2343                        tp->snd_cwnd, tcp_left_out(tp),
2344                        tp->snd_ssthresh, tp->prior_ssthresh,
2345                        tp->packets_out);
2346         }
2347 #endif
2348 }
2349 #else
2350 #define DBGUNDO(x...) do { } while (0)
2351 #endif
2352
2353 static void tcp_undo_cwr(struct sock *sk, const int undo)
2354 {
2355         struct tcp_sock *tp = tcp_sk(sk);
2356
2357         if (tp->prior_ssthresh) {
2358                 const struct inet_connection_sock *icsk = inet_csk(sk);
2359
2360                 if (icsk->icsk_ca_ops->undo_cwnd)
2361                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2362                 else
2363                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2364
2365                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2366                         tp->snd_ssthresh = tp->prior_ssthresh;
2367                         TCP_ECN_withdraw_cwr(tp);
2368                 }
2369         } else {
2370                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2371         }
2372         tcp_moderate_cwnd(tp);
2373         tp->snd_cwnd_stamp = tcp_time_stamp;
2374
2375         /* There is something screwy going on with the retrans hints after
2376            an undo */
2377         tcp_clear_all_retrans_hints(tp);
2378 }
2379
2380 static inline int tcp_may_undo(struct tcp_sock *tp)
2381 {
2382         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2383 }
2384
2385 /* People celebrate: "We love our President!" */
2386 static int tcp_try_undo_recovery(struct sock *sk)
2387 {
2388         struct tcp_sock *tp = tcp_sk(sk);
2389
2390         if (tcp_may_undo(tp)) {
2391                 int mib_idx;
2392
2393                 /* Happy end! We did not retransmit anything
2394                  * or our original transmission succeeded.
2395                  */
2396                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2397                 tcp_undo_cwr(sk, 1);
2398                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2399                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2400                 else
2401                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2402
2403                 NET_INC_STATS_BH(mib_idx);
2404                 tp->undo_marker = 0;
2405         }
2406         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2407                 /* Hold old state until something *above* high_seq
2408                  * is ACKed. For Reno it is MUST to prevent false
2409                  * fast retransmits (RFC2582). SACK TCP is safe. */
2410                 tcp_moderate_cwnd(tp);
2411                 return 1;
2412         }
2413         tcp_set_ca_state(sk, TCP_CA_Open);
2414         return 0;
2415 }
2416
2417 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2418 static void tcp_try_undo_dsack(struct sock *sk)
2419 {
2420         struct tcp_sock *tp = tcp_sk(sk);
2421
2422         if (tp->undo_marker && !tp->undo_retrans) {
2423                 DBGUNDO(sk, "D-SACK");
2424                 tcp_undo_cwr(sk, 1);
2425                 tp->undo_marker = 0;
2426                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2427         }
2428 }
2429
2430 /* Undo during fast recovery after partial ACK. */
2431
2432 static int tcp_try_undo_partial(struct sock *sk, int acked)
2433 {
2434         struct tcp_sock *tp = tcp_sk(sk);
2435         /* Partial ACK arrived. Force Hoe's retransmit. */
2436         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2437
2438         if (tcp_may_undo(tp)) {
2439                 /* Plain luck! Hole if filled with delayed
2440                  * packet, rather than with a retransmit.
2441                  */
2442                 if (tp->retrans_out == 0)
2443                         tp->retrans_stamp = 0;
2444
2445                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2446
2447                 DBGUNDO(sk, "Hoe");
2448                 tcp_undo_cwr(sk, 0);
2449                 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2450
2451                 /* So... Do not make Hoe's retransmit yet.
2452                  * If the first packet was delayed, the rest
2453                  * ones are most probably delayed as well.
2454                  */
2455                 failed = 0;
2456         }
2457         return failed;
2458 }
2459
2460 /* Undo during loss recovery after partial ACK. */
2461 static int tcp_try_undo_loss(struct sock *sk)
2462 {
2463         struct tcp_sock *tp = tcp_sk(sk);
2464
2465         if (tcp_may_undo(tp)) {
2466                 struct sk_buff *skb;
2467                 tcp_for_write_queue(skb, sk) {
2468                         if (skb == tcp_send_head(sk))
2469                                 break;
2470                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2471                 }
2472
2473                 tcp_clear_all_retrans_hints(tp);
2474
2475                 DBGUNDO(sk, "partial loss");
2476                 tp->lost_out = 0;
2477                 tcp_undo_cwr(sk, 1);
2478                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2479                 inet_csk(sk)->icsk_retransmits = 0;
2480                 tp->undo_marker = 0;
2481                 if (tcp_is_sack(tp))
2482                         tcp_set_ca_state(sk, TCP_CA_Open);
2483                 return 1;
2484         }
2485         return 0;
2486 }
2487
2488 static inline void tcp_complete_cwr(struct sock *sk)
2489 {
2490         struct tcp_sock *tp = tcp_sk(sk);
2491         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2492         tp->snd_cwnd_stamp = tcp_time_stamp;
2493         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2494 }
2495
2496 static void tcp_try_keep_open(struct sock *sk)
2497 {
2498         struct tcp_sock *tp = tcp_sk(sk);
2499         int state = TCP_CA_Open;
2500
2501         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2502                 state = TCP_CA_Disorder;
2503
2504         if (inet_csk(sk)->icsk_ca_state != state) {
2505                 tcp_set_ca_state(sk, state);
2506                 tp->high_seq = tp->snd_nxt;
2507         }
2508 }
2509
2510 static void tcp_try_to_open(struct sock *sk, int flag)
2511 {
2512         struct tcp_sock *tp = tcp_sk(sk);
2513
2514         tcp_verify_left_out(tp);
2515
2516         if (!tp->frto_counter && tp->retrans_out == 0)
2517                 tp->retrans_stamp = 0;
2518
2519         if (flag & FLAG_ECE)
2520                 tcp_enter_cwr(sk, 1);
2521
2522         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2523                 tcp_try_keep_open(sk);
2524                 tcp_moderate_cwnd(tp);
2525         } else {
2526                 tcp_cwnd_down(sk, flag);
2527         }
2528 }
2529
2530 static void tcp_mtup_probe_failed(struct sock *sk)
2531 {
2532         struct inet_connection_sock *icsk = inet_csk(sk);
2533
2534         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2535         icsk->icsk_mtup.probe_size = 0;
2536 }
2537
2538 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2539 {
2540         struct tcp_sock *tp = tcp_sk(sk);
2541         struct inet_connection_sock *icsk = inet_csk(sk);
2542
2543         /* FIXME: breaks with very large cwnd */
2544         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2545         tp->snd_cwnd = tp->snd_cwnd *
2546                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2547                        icsk->icsk_mtup.probe_size;
2548         tp->snd_cwnd_cnt = 0;
2549         tp->snd_cwnd_stamp = tcp_time_stamp;
2550         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2551
2552         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2553         icsk->icsk_mtup.probe_size = 0;
2554         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2555 }
2556
2557 /* Process an event, which can update packets-in-flight not trivially.
2558  * Main goal of this function is to calculate new estimate for left_out,
2559  * taking into account both packets sitting in receiver's buffer and
2560  * packets lost by network.
2561  *
2562  * Besides that it does CWND reduction, when packet loss is detected
2563  * and changes state of machine.
2564  *
2565  * It does _not_ decide what to send, it is made in function
2566  * tcp_xmit_retransmit_queue().
2567  */
2568 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2569 {
2570         struct inet_connection_sock *icsk = inet_csk(sk);
2571         struct tcp_sock *tp = tcp_sk(sk);
2572         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2573         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2574                                     (tcp_fackets_out(tp) > tp->reordering));
2575         int fast_rexmit = 0, mib_idx;
2576
2577         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2578                 tp->sacked_out = 0;
2579         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2580                 tp->fackets_out = 0;
2581
2582         /* Now state machine starts.
2583          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2584         if (flag & FLAG_ECE)
2585                 tp->prior_ssthresh = 0;
2586
2587         /* B. In all the states check for reneging SACKs. */
2588         if (tcp_check_sack_reneging(sk, flag))
2589                 return;
2590
2591         /* C. Process data loss notification, provided it is valid. */
2592         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2593             before(tp->snd_una, tp->high_seq) &&
2594             icsk->icsk_ca_state != TCP_CA_Open &&
2595             tp->fackets_out > tp->reordering) {
2596                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2597                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2598         }
2599
2600         /* D. Check consistency of the current state. */
2601         tcp_verify_left_out(tp);
2602
2603         /* E. Check state exit conditions. State can be terminated
2604          *    when high_seq is ACKed. */
2605         if (icsk->icsk_ca_state == TCP_CA_Open) {
2606                 BUG_TRAP(tp->retrans_out == 0);
2607                 tp->retrans_stamp = 0;
2608         } else if (!before(tp->snd_una, tp->high_seq)) {
2609                 switch (icsk->icsk_ca_state) {
2610                 case TCP_CA_Loss:
2611                         icsk->icsk_retransmits = 0;
2612                         if (tcp_try_undo_recovery(sk))
2613                                 return;
2614                         break;
2615
2616                 case TCP_CA_CWR:
2617                         /* CWR is to be held something *above* high_seq
2618                          * is ACKed for CWR bit to reach receiver. */
2619                         if (tp->snd_una != tp->high_seq) {
2620                                 tcp_complete_cwr(sk);
2621                                 tcp_set_ca_state(sk, TCP_CA_Open);
2622                         }
2623                         break;
2624
2625                 case TCP_CA_Disorder:
2626                         tcp_try_undo_dsack(sk);
2627                         if (!tp->undo_marker ||
2628                             /* For SACK case do not Open to allow to undo
2629                              * catching for all duplicate ACKs. */
2630                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2631                                 tp->undo_marker = 0;
2632                                 tcp_set_ca_state(sk, TCP_CA_Open);
2633                         }
2634                         break;
2635
2636                 case TCP_CA_Recovery:
2637                         if (tcp_is_reno(tp))
2638                                 tcp_reset_reno_sack(tp);
2639                         if (tcp_try_undo_recovery(sk))
2640                                 return;
2641                         tcp_complete_cwr(sk);
2642                         break;
2643                 }
2644         }
2645
2646         /* F. Process state. */
2647         switch (icsk->icsk_ca_state) {
2648         case TCP_CA_Recovery:
2649                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2650                         if (tcp_is_reno(tp) && is_dupack)
2651                                 tcp_add_reno_sack(sk);
2652                 } else
2653                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2654                 break;
2655         case TCP_CA_Loss:
2656                 if (flag & FLAG_DATA_ACKED)
2657                         icsk->icsk_retransmits = 0;
2658                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2659                         tcp_reset_reno_sack(tp);
2660                 if (!tcp_try_undo_loss(sk)) {
2661                         tcp_moderate_cwnd(tp);
2662                         tcp_xmit_retransmit_queue(sk);
2663                         return;
2664                 }
2665                 if (icsk->icsk_ca_state != TCP_CA_Open)
2666                         return;
2667                 /* Loss is undone; fall through to processing in Open state. */
2668         default:
2669                 if (tcp_is_reno(tp)) {
2670                         if (flag & FLAG_SND_UNA_ADVANCED)
2671                                 tcp_reset_reno_sack(tp);
2672                         if (is_dupack)
2673                                 tcp_add_reno_sack(sk);
2674                 }
2675
2676                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2677                         tcp_try_undo_dsack(sk);
2678
2679                 if (!tcp_time_to_recover(sk)) {
2680                         tcp_try_to_open(sk, flag);
2681                         return;
2682                 }
2683
2684                 /* MTU probe failure: don't reduce cwnd */
2685                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2686                     icsk->icsk_mtup.probe_size &&
2687                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2688                         tcp_mtup_probe_failed(sk);
2689                         /* Restores the reduction we did in tcp_mtup_probe() */
2690                         tp->snd_cwnd++;
2691                         tcp_simple_retransmit(sk);
2692                         return;
2693                 }
2694
2695                 /* Otherwise enter Recovery state */
2696
2697                 if (tcp_is_reno(tp))
2698                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
2699                 else
2700                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2701
2702                 NET_INC_STATS_BH(mib_idx);
2703
2704                 tp->high_seq = tp->snd_nxt;
2705                 tp->prior_ssthresh = 0;
2706                 tp->undo_marker = tp->snd_una;
2707                 tp->undo_retrans = tp->retrans_out;
2708
2709                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2710                         if (!(flag & FLAG_ECE))
2711                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2712                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2713                         TCP_ECN_queue_cwr(tp);
2714                 }
2715
2716                 tp->bytes_acked = 0;
2717                 tp->snd_cwnd_cnt = 0;
2718                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2719                 fast_rexmit = 1;
2720         }
2721
2722         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2723                 tcp_update_scoreboard(sk, fast_rexmit);
2724         tcp_cwnd_down(sk, flag);
2725         tcp_xmit_retransmit_queue(sk);
2726 }
2727
2728 /* Read draft-ietf-tcplw-high-performance before mucking
2729  * with this code. (Supersedes RFC1323)
2730  */
2731 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2732 {
2733         /* RTTM Rule: A TSecr value received in a segment is used to
2734          * update the averaged RTT measurement only if the segment
2735          * acknowledges some new data, i.e., only if it advances the
2736          * left edge of the send window.
2737          *
2738          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2739          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2740          *
2741          * Changed: reset backoff as soon as we see the first valid sample.
2742          * If we do not, we get strongly overestimated rto. With timestamps
2743          * samples are accepted even from very old segments: f.e., when rtt=1
2744          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2745          * answer arrives rto becomes 120 seconds! If at least one of segments
2746          * in window is lost... Voila.                          --ANK (010210)
2747          */
2748         struct tcp_sock *tp = tcp_sk(sk);
2749         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2750         tcp_rtt_estimator(sk, seq_rtt);
2751         tcp_set_rto(sk);
2752         inet_csk(sk)->icsk_backoff = 0;
2753         tcp_bound_rto(sk);
2754 }
2755
2756 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2757 {
2758         /* We don't have a timestamp. Can only use
2759          * packets that are not retransmitted to determine
2760          * rtt estimates. Also, we must not reset the
2761          * backoff for rto until we get a non-retransmitted
2762          * packet. This allows us to deal with a situation
2763          * where the network delay has increased suddenly.
2764          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2765          */
2766
2767         if (flag & FLAG_RETRANS_DATA_ACKED)
2768                 return;
2769
2770         tcp_rtt_estimator(sk, seq_rtt);
2771         tcp_set_rto(sk);
2772         inet_csk(sk)->icsk_backoff = 0;
2773         tcp_bound_rto(sk);
2774 }
2775
2776 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2777                                       const s32 seq_rtt)
2778 {
2779         const struct tcp_sock *tp = tcp_sk(sk);
2780         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2781         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2782                 tcp_ack_saw_tstamp(sk, flag);
2783         else if (seq_rtt >= 0)
2784                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2785 }
2786
2787 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2788 {
2789         const struct inet_connection_sock *icsk = inet_csk(sk);
2790         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2791         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2792 }
2793
2794 /* Restart timer after forward progress on connection.
2795  * RFC2988 recommends to restart timer to now+rto.
2796  */
2797 static void tcp_rearm_rto(struct sock *sk)
2798 {
2799         struct tcp_sock *tp = tcp_sk(sk);
2800
2801         if (!tp->packets_out) {
2802                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2803         } else {
2804                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2805                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2806         }
2807 }
2808
2809 /* If we get here, the whole TSO packet has not been acked. */
2810 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2811 {
2812         struct tcp_sock *tp = tcp_sk(sk);
2813         u32 packets_acked;
2814
2815         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2816
2817         packets_acked = tcp_skb_pcount(skb);
2818         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2819                 return 0;
2820         packets_acked -= tcp_skb_pcount(skb);
2821
2822         if (packets_acked) {
2823                 BUG_ON(tcp_skb_pcount(skb) == 0);
2824                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2825         }
2826
2827         return packets_acked;
2828 }
2829
2830 /* Remove acknowledged frames from the retransmission queue. If our packet
2831  * is before the ack sequence we can discard it as it's confirmed to have
2832  * arrived at the other end.
2833  */
2834 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2835 {
2836         struct tcp_sock *tp = tcp_sk(sk);
2837         const struct inet_connection_sock *icsk = inet_csk(sk);
2838         struct sk_buff *skb;
2839         u32 now = tcp_time_stamp;
2840         int fully_acked = 1;
2841         int flag = 0;
2842         u32 pkts_acked = 0;
2843         u32 reord = tp->packets_out;
2844         s32 seq_rtt = -1;
2845         s32 ca_seq_rtt = -1;
2846         ktime_t last_ackt = net_invalid_timestamp();
2847
2848         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2849                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2850                 u32 end_seq;
2851                 u32 acked_pcount;
2852                 u8 sacked = scb->sacked;
2853
2854                 /* Determine how many packets and what bytes were acked, tso and else */
2855                 if (after(scb->end_seq, tp->snd_una)) {
2856                         if (tcp_skb_pcount(skb) == 1 ||
2857                             !after(tp->snd_una, scb->seq))
2858                                 break;
2859
2860                         acked_pcount = tcp_tso_acked(sk, skb);
2861                         if (!acked_pcount)
2862                                 break;
2863
2864                         fully_acked = 0;
2865                         end_seq = tp->snd_una;
2866                 } else {
2867                         acked_pcount = tcp_skb_pcount(skb);
2868                         end_seq = scb->end_seq;
2869                 }
2870
2871                 /* MTU probing checks */
2872                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2873                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2874                         tcp_mtup_probe_success(sk, skb);
2875                 }
2876
2877                 if (sacked & TCPCB_RETRANS) {
2878                         if (sacked & TCPCB_SACKED_RETRANS)
2879                                 tp->retrans_out -= acked_pcount;
2880                         flag |= FLAG_RETRANS_DATA_ACKED;
2881                         ca_seq_rtt = -1;
2882                         seq_rtt = -1;
2883                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2884                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2885                 } else {
2886                         ca_seq_rtt = now - scb->when;
2887                         last_ackt = skb->tstamp;
2888                         if (seq_rtt < 0) {
2889                                 seq_rtt = ca_seq_rtt;
2890                         }
2891                         if (!(sacked & TCPCB_SACKED_ACKED))
2892                                 reord = min(pkts_acked, reord);
2893                 }
2894
2895                 if (sacked & TCPCB_SACKED_ACKED)
2896                         tp->sacked_out -= acked_pcount;
2897                 if (sacked & TCPCB_LOST)
2898                         tp->lost_out -= acked_pcount;
2899
2900                 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2901                         tp->urg_mode = 0;
2902
2903                 tp->packets_out -= acked_pcount;
2904                 pkts_acked += acked_pcount;
2905
2906                 /* Initial outgoing SYN's get put onto the write_queue
2907                  * just like anything else we transmit.  It is not
2908                  * true data, and if we misinform our callers that
2909                  * this ACK acks real data, we will erroneously exit
2910                  * connection startup slow start one packet too
2911                  * quickly.  This is severely frowned upon behavior.
2912                  */
2913                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2914                         flag |= FLAG_DATA_ACKED;
2915                 } else {
2916                         flag |= FLAG_SYN_ACKED;
2917                         tp->retrans_stamp = 0;
2918                 }
2919
2920                 if (!fully_acked)
2921                         break;
2922
2923                 tcp_unlink_write_queue(skb, sk);
2924                 sk_wmem_free_skb(sk, skb);
2925                 tcp_clear_all_retrans_hints(tp);
2926         }
2927
2928         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2929                 flag |= FLAG_SACK_RENEGING;
2930
2931         if (flag & FLAG_ACKED) {
2932                 const struct tcp_congestion_ops *ca_ops
2933                         = inet_csk(sk)->icsk_ca_ops;
2934
2935                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2936                 tcp_rearm_rto(sk);
2937
2938                 if (tcp_is_reno(tp)) {
2939                         tcp_remove_reno_sacks(sk, pkts_acked);
2940                 } else {
2941                         /* Non-retransmitted hole got filled? That's reordering */
2942                         if (reord < prior_fackets)
2943                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2944                 }
2945
2946                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2947
2948                 if (ca_ops->pkts_acked) {
2949                         s32 rtt_us = -1;
2950
2951                         /* Is the ACK triggering packet unambiguous? */
2952                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2953                                 /* High resolution needed and available? */
2954                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2955                                     !ktime_equal(last_ackt,
2956                                                  net_invalid_timestamp()))
2957                                         rtt_us = ktime_us_delta(ktime_get_real(),
2958                                                                 last_ackt);
2959                                 else if (ca_seq_rtt > 0)
2960                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2961                         }
2962
2963                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2964                 }
2965         }
2966
2967 #if FASTRETRANS_DEBUG > 0
2968         BUG_TRAP((int)tp->sacked_out >= 0);
2969         BUG_TRAP((int)tp->lost_out >= 0);
2970         BUG_TRAP((int)tp->retrans_out >= 0);
2971         if (!tp->packets_out && tcp_is_sack(tp)) {
2972                 icsk = inet_csk(sk);
2973                 if (tp->lost_out) {
2974                         printk(KERN_DEBUG "Leak l=%u %d\n",
2975                                tp->lost_out, icsk->icsk_ca_state);
2976                         tp->lost_out = 0;
2977                 }
2978                 if (tp->sacked_out) {
2979                         printk(KERN_DEBUG "Leak s=%u %d\n",
2980                                tp->sacked_out, icsk->icsk_ca_state);
2981                         tp->sacked_out = 0;
2982                 }
2983                 if (tp->retrans_out) {
2984                         printk(KERN_DEBUG "Leak r=%u %d\n",
2985                                tp->retrans_out, icsk->icsk_ca_state);
2986                         tp->retrans_out = 0;
2987                 }
2988         }
2989 #endif
2990         return flag;
2991 }
2992
2993 static void tcp_ack_probe(struct sock *sk)
2994 {
2995         const struct tcp_sock *tp = tcp_sk(sk);
2996         struct inet_connection_sock *icsk = inet_csk(sk);
2997
2998         /* Was it a usable window open? */
2999
3000         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3001                 icsk->icsk_backoff = 0;
3002                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3003                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3004                  * This function is not for random using!
3005                  */
3006         } else {
3007                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3008                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3009                                           TCP_RTO_MAX);
3010         }
3011 }
3012
3013 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3014 {
3015         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3016                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3017 }
3018
3019 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3020 {
3021         const struct tcp_sock *tp = tcp_sk(sk);
3022         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3023                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3024 }
3025
3026 /* Check that window update is acceptable.
3027  * The function assumes that snd_una<=ack<=snd_next.
3028  */
3029 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3030                                         const u32 ack, const u32 ack_seq,
3031                                         const u32 nwin)
3032 {
3033         return (after(ack, tp->snd_una) ||
3034                 after(ack_seq, tp->snd_wl1) ||
3035                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3036 }
3037
3038 /* Update our send window.
3039  *
3040  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3041  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3042  */
3043 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3044                                  u32 ack_seq)
3045 {
3046         struct tcp_sock *tp = tcp_sk(sk);
3047         int flag = 0;
3048         u32 nwin = ntohs(tcp_hdr(skb)->window);
3049
3050         if (likely(!tcp_hdr(skb)->syn))
3051                 nwin <<= tp->rx_opt.snd_wscale;
3052
3053         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3054                 flag |= FLAG_WIN_UPDATE;
3055                 tcp_update_wl(tp, ack, ack_seq);
3056
3057                 if (tp->snd_wnd != nwin) {
3058                         tp->snd_wnd = nwin;
3059
3060                         /* Note, it is the only place, where
3061                          * fast path is recovered for sending TCP.
3062                          */
3063                         tp->pred_flags = 0;
3064                         tcp_fast_path_check(sk);
3065
3066                         if (nwin > tp->max_window) {
3067                                 tp->max_window = nwin;
3068                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3069                         }
3070                 }
3071         }
3072
3073         tp->snd_una = ack;
3074
3075         return flag;
3076 }
3077
3078 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3079  * continue in congestion avoidance.
3080  */
3081 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3082 {
3083         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3084         tp->snd_cwnd_cnt = 0;
3085         tp->bytes_acked = 0;
3086         TCP_ECN_queue_cwr(tp);
3087         tcp_moderate_cwnd(tp);
3088 }
3089
3090 /* A conservative spurious RTO response algorithm: reduce cwnd using
3091  * rate halving and continue in congestion avoidance.
3092  */
3093 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3094 {
3095         tcp_enter_cwr(sk, 0);
3096 }
3097
3098 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3099 {
3100         if (flag & FLAG_ECE)
3101                 tcp_ratehalving_spur_to_response(sk);
3102         else
3103                 tcp_undo_cwr(sk, 1);
3104 }
3105
3106 /* F-RTO spurious RTO detection algorithm (RFC4138)
3107  *
3108  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3109  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3110  * window (but not to or beyond highest sequence sent before RTO):
3111  *   On First ACK,  send two new segments out.
3112  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3113  *                  algorithm is not part of the F-RTO detection algorithm
3114  *                  given in RFC4138 but can be selected separately).
3115  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3116  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3117  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3118  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3119  *
3120  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3121  * original window even after we transmit two new data segments.
3122  *
3123  * SACK version:
3124  *   on first step, wait until first cumulative ACK arrives, then move to
3125  *   the second step. In second step, the next ACK decides.
3126  *
3127  * F-RTO is implemented (mainly) in four functions:
3128  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3129  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3130  *     called when tcp_use_frto() showed green light
3131  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3132  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3133  *     to prove that the RTO is indeed spurious. It transfers the control
3134  *     from F-RTO to the conventional RTO recovery
3135  */
3136 static int tcp_process_frto(struct sock *sk, int flag)
3137 {
3138         struct tcp_sock *tp = tcp_sk(sk);
3139
3140         tcp_verify_left_out(tp);
3141
3142         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3143         if (flag & FLAG_DATA_ACKED)
3144                 inet_csk(sk)->icsk_retransmits = 0;
3145
3146         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3147             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3148                 tp->undo_marker = 0;
3149
3150         if (!before(tp->snd_una, tp->frto_highmark)) {
3151                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3152                 return 1;
3153         }
3154
3155         if (!tcp_is_sackfrto(tp)) {
3156                 /* RFC4138 shortcoming in step 2; should also have case c):
3157                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3158                  * data, winupdate
3159                  */
3160                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3161                         return 1;
3162
3163                 if (!(flag & FLAG_DATA_ACKED)) {
3164                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3165                                             flag);
3166                         return 1;
3167                 }
3168         } else {
3169                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3170                         /* Prevent sending of new data. */
3171                         tp->snd_cwnd = min(tp->snd_cwnd,
3172                                            tcp_packets_in_flight(tp));
3173                         return 1;
3174                 }
3175
3176                 if ((tp->frto_counter >= 2) &&
3177                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3178                      ((flag & FLAG_DATA_SACKED) &&
3179                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3180                         /* RFC4138 shortcoming (see comment above) */
3181                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3182                             (flag & FLAG_NOT_DUP))
3183                                 return 1;
3184
3185                         tcp_enter_frto_loss(sk, 3, flag);
3186                         return 1;
3187                 }
3188         }
3189
3190         if (tp->frto_counter == 1) {
3191                 /* tcp_may_send_now needs to see updated state */
3192                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3193                 tp->frto_counter = 2;
3194
3195                 if (!tcp_may_send_now(sk))
3196                         tcp_enter_frto_loss(sk, 2, flag);
3197
3198                 return 1;
3199         } else {
3200                 switch (sysctl_tcp_frto_response) {
3201                 case 2:
3202                         tcp_undo_spur_to_response(sk, flag);
3203                         break;
3204                 case 1:
3205                         tcp_conservative_spur_to_response(tp);
3206                         break;
3207                 default:
3208                         tcp_ratehalving_spur_to_response(sk);
3209                         break;
3210                 }
3211                 tp->frto_counter = 0;
3212                 tp->undo_marker = 0;
3213                 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3214         }
3215         return 0;
3216 }
3217
3218 /* This routine deals with incoming acks, but not outgoing ones. */
3219 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3220 {
3221         struct inet_connection_sock *icsk = inet_csk(sk);
3222         struct tcp_sock *tp = tcp_sk(sk);
3223         u32 prior_snd_una = tp->snd_una;
3224         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3225         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3226         u32 prior_in_flight;
3227         u32 prior_fackets;
3228         int prior_packets;
3229         int frto_cwnd = 0;
3230
3231         /* If the ack is newer than sent or older than previous acks
3232          * then we can probably ignore it.
3233          */
3234         if (after(ack, tp->snd_nxt))
3235                 goto uninteresting_ack;
3236
3237         if (before(ack, prior_snd_una))
3238                 goto old_ack;
3239
3240         if (after(ack, prior_snd_una))
3241                 flag |= FLAG_SND_UNA_ADVANCED;
3242
3243         if (sysctl_tcp_abc) {
3244                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3245                         tp->bytes_acked += ack - prior_snd_una;
3246                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3247                         /* we assume just one segment left network */
3248                         tp->bytes_acked += min(ack - prior_snd_una,
3249                                                tp->mss_cache);
3250         }
3251
3252         prior_fackets = tp->fackets_out;
3253         prior_in_flight = tcp_packets_in_flight(tp);
3254
3255         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3256                 /* Window is constant, pure forward advance.
3257                  * No more checks are required.
3258                  * Note, we use the fact that SND.UNA>=SND.WL2.
3259                  */
3260                 tcp_update_wl(tp, ack, ack_seq);
3261                 tp->snd_una = ack;
3262                 flag |= FLAG_WIN_UPDATE;
3263
3264                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3265
3266                 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3267         } else {
3268                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3269                         flag |= FLAG_DATA;
3270                 else
3271                         NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3272
3273                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3274
3275                 if (TCP_SKB_CB(skb)->sacked)
3276                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3277
3278                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3279                         flag |= FLAG_ECE;
3280
3281                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3282         }
3283
3284         /* We passed data and got it acked, remove any soft error
3285          * log. Something worked...
3286          */
3287         sk->sk_err_soft = 0;
3288         tp->rcv_tstamp = tcp_time_stamp;
3289         prior_packets = tp->packets_out;
3290         if (!prior_packets)
3291                 goto no_queue;
3292
3293         /* See if we can take anything off of the retransmit queue. */
3294         flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3295
3296         if (tp->frto_counter)
3297                 frto_cwnd = tcp_process_frto(sk, flag);
3298         /* Guarantee sacktag reordering detection against wrap-arounds */
3299         if (before(tp->frto_highmark, tp->snd_una))
3300                 tp->frto_highmark = 0;
3301
3302         if (tcp_ack_is_dubious(sk, flag)) {
3303                 /* Advance CWND, if state allows this. */
3304                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3305                     tcp_may_raise_cwnd(sk, flag))
3306                         tcp_cong_avoid(sk, ack, prior_in_flight);
3307                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3308                                       flag);
3309         } else {
3310                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3311                         tcp_cong_avoid(sk, ack, prior_in_flight);
3312         }
3313
3314         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3315                 dst_confirm(sk->sk_dst_cache);
3316
3317         return 1;
3318
3319 no_queue:
3320         icsk->icsk_probes_out = 0;
3321
3322         /* If this ack opens up a zero window, clear backoff.  It was
3323          * being used to time the probes, and is probably far higher than
3324          * it needs to be for normal retransmission.
3325          */
3326         if (tcp_send_head(sk))
3327                 tcp_ack_probe(sk);
3328         return 1;
3329
3330 old_ack:
3331         if (TCP_SKB_CB(skb)->sacked) {
3332                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3333                 if (icsk->icsk_ca_state == TCP_CA_Open)
3334                         tcp_try_keep_open(sk);
3335         }
3336
3337 uninteresting_ack:
3338         SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3339         return 0;
3340 }
3341
3342 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3343  * But, this can also be called on packets in the established flow when
3344  * the fast version below fails.
3345  */
3346 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3347                        int estab)
3348 {
3349         unsigned char *ptr;
3350         struct tcphdr *th = tcp_hdr(skb);
3351         int length = (th->doff * 4) - sizeof(struct tcphdr);
3352
3353         ptr = (unsigned char *)(th + 1);
3354         opt_rx->saw_tstamp = 0;
3355
3356         while (length > 0) {
3357                 int opcode = *ptr++;
3358                 int opsize;
3359
3360                 switch (opcode) {
3361                 case TCPOPT_EOL:
3362                         return;
3363                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3364                         length--;
3365                         continue;
3366                 default:
3367                         opsize = *ptr++;
3368                         if (opsize < 2) /* "silly options" */
3369                                 return;
3370                         if (opsize > length)
3371                                 return; /* don't parse partial options */
3372                         switch (opcode) {
3373                         case TCPOPT_MSS:
3374                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3375                                         u16 in_mss = get_unaligned_be16(ptr);
3376                                         if (in_mss) {
3377                                                 if (opt_rx->user_mss &&
3378                                                     opt_rx->user_mss < in_mss)
3379                                                         in_mss = opt_rx->user_mss;
3380                                                 opt_rx->mss_clamp = in_mss;
3381                                         }
3382                                 }
3383                                 break;
3384                         case TCPOPT_WINDOW:
3385                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3386                                     !estab && sysctl_tcp_window_scaling) {
3387                                         __u8 snd_wscale = *(__u8 *)ptr;
3388                                         opt_rx->wscale_ok = 1;
3389                                         if (snd_wscale > 14) {
3390                                                 if (net_ratelimit())
3391                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3392                                                                "scaling value %d >14 received.\n",
3393                                                                snd_wscale);
3394                                                 snd_wscale = 14;
3395                                         }
3396                                         opt_rx->snd_wscale = snd_wscale;
3397                                 }
3398                                 break;
3399                         case TCPOPT_TIMESTAMP:
3400                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3401                                     ((estab && opt_rx->tstamp_ok) ||
3402                                      (!estab && sysctl_tcp_timestamps))) {
3403                                         opt_rx->saw_tstamp = 1;
3404                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3405                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3406                                 }
3407                                 break;
3408                         case TCPOPT_SACK_PERM:
3409                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3410                                     !estab && sysctl_tcp_sack) {
3411                                         opt_rx->sack_ok = 1;
3412                                         tcp_sack_reset(opt_rx);
3413                                 }
3414                                 break;
3415
3416                         case TCPOPT_SACK:
3417                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3418                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3419                                    opt_rx->sack_ok) {
3420                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3421                                 }
3422                                 break;
3423 #ifdef CONFIG_TCP_MD5SIG
3424                         case TCPOPT_MD5SIG:
3425                                 /*
3426                                  * The MD5 Hash has already been
3427                                  * checked (see tcp_v{4,6}_do_rcv()).
3428                                  */
3429                                 break;
3430 #endif
3431                         }
3432
3433                         ptr += opsize-2;
3434                         length -= opsize;
3435                 }
3436         }
3437 }
3438
3439 /* Fast parse options. This hopes to only see timestamps.
3440  * If it is wrong it falls back on tcp_parse_options().
3441  */
3442 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3443                                   struct tcp_sock *tp)
3444 {
3445         if (th->doff == sizeof(struct tcphdr) >> 2) {
3446                 tp->rx_opt.saw_tstamp = 0;
3447                 return 0;
3448         } else if (tp->rx_opt.tstamp_ok &&
3449                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3450                 __be32 *ptr = (__be32 *)(th + 1);
3451                 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3452                                   | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3453                         tp->rx_opt.saw_tstamp = 1;
3454                         ++ptr;
3455                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
3456                         ++ptr;
3457                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3458                         return 1;
3459                 }
3460         }
3461         tcp_parse_options(skb, &tp->rx_opt, 1);
3462         return 1;
3463 }
3464
3465 #ifdef CONFIG_TCP_MD5SIG
3466 /*
3467  * Parse MD5 Signature option
3468  */
3469 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3470 {
3471         int length = (th->doff << 2) - sizeof (*th);
3472         u8 *ptr = (u8*)(th + 1);
3473
3474         /* If the TCP option is too short, we can short cut */
3475         if (length < TCPOLEN_MD5SIG)
3476                 return NULL;
3477
3478         while (length > 0) {
3479                 int opcode = *ptr++;
3480                 int opsize;
3481
3482                 switch(opcode) {
3483                 case TCPOPT_EOL:
3484                         return NULL;
3485                 case TCPOPT_NOP:
3486                         length--;
3487                         continue;
3488                 default:
3489                         opsize = *ptr++;
3490                         if (opsize < 2 || opsize > length)
3491                                 return NULL;
3492                         if (opcode == TCPOPT_MD5SIG)
3493                                 return ptr;
3494                 }
3495                 ptr += opsize - 2;
3496                 length -= opsize;
3497         }
3498         return NULL;
3499 }
3500 #endif
3501
3502 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3503 {
3504         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3505         tp->rx_opt.ts_recent_stamp = get_seconds();
3506 }
3507
3508 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3509 {
3510         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3511                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3512                  * extra check below makes sure this can only happen
3513                  * for pure ACK frames.  -DaveM
3514                  *
3515                  * Not only, also it occurs for expired timestamps.
3516                  */
3517
3518                 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3519                    get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3520                         tcp_store_ts_recent(tp);
3521         }
3522 }
3523
3524 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3525  *
3526  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3527  * it can pass through stack. So, the following predicate verifies that
3528  * this segment is not used for anything but congestion avoidance or
3529  * fast retransmit. Moreover, we even are able to eliminate most of such
3530  * second order effects, if we apply some small "replay" window (~RTO)
3531  * to timestamp space.
3532  *
3533  * All these measures still do not guarantee that we reject wrapped ACKs
3534  * on networks with high bandwidth, when sequence space is recycled fastly,
3535  * but it guarantees that such events will be very rare and do not affect
3536  * connection seriously. This doesn't look nice, but alas, PAWS is really
3537  * buggy extension.
3538  *
3539  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3540  * states that events when retransmit arrives after original data are rare.
3541  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3542  * the biggest problem on large power networks even with minor reordering.
3543  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3544  * up to bandwidth of 18Gigabit/sec. 8) ]
3545  */
3546
3547 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3548 {
3549         struct tcp_sock *tp = tcp_sk(sk);
3550         struct tcphdr *th = tcp_hdr(skb);
3551         u32 seq = TCP_SKB_CB(skb)->seq;
3552         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3553
3554         return (/* 1. Pure ACK with correct sequence number. */
3555                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3556
3557                 /* 2. ... and duplicate ACK. */
3558                 ack == tp->snd_una &&
3559
3560                 /* 3. ... and does not update window. */
3561                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3562
3563                 /* 4. ... and sits in replay window. */
3564                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3565 }
3566
3567 static inline int tcp_paws_discard(const struct sock *sk,
3568                                    const struct sk_buff *skb)
3569 {
3570         const struct tcp_sock *tp = tcp_sk(sk);
3571         return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3572                 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3573                 !tcp_disordered_ack(sk, skb));
3574 }
3575
3576 /* Check segment sequence number for validity.
3577  *
3578  * Segment controls are considered valid, if the segment
3579  * fits to the window after truncation to the window. Acceptability
3580  * of data (and SYN, FIN, of course) is checked separately.
3581  * See tcp_data_queue(), for example.
3582  *
3583  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3584  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3585  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3586  * (borrowed from freebsd)
3587  */
3588
3589 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3590 {
3591         return  !before(end_seq, tp->rcv_wup) &&
3592                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3593 }
3594
3595 /* When we get a reset we do this. */
3596 static void tcp_reset(struct sock *sk)
3597 {
3598         /* We want the right error as BSD sees it (and indeed as we do). */
3599         switch (sk->sk_state) {
3600         case TCP_SYN_SENT:
3601                 sk->sk_err = ECONNREFUSED;
3602                 break;
3603         case TCP_CLOSE_WAIT:
3604                 sk->sk_err = EPIPE;
3605                 break;
3606         case TCP_CLOSE:
3607                 return;
3608         default:
3609                 sk->sk_err = ECONNRESET;
3610         }
3611
3612         if (!sock_flag(sk, SOCK_DEAD))
3613                 sk->sk_error_report(sk);
3614
3615         tcp_done(sk);
3616 }
3617
3618 /*
3619  *      Process the FIN bit. This now behaves as it is supposed to work
3620  *      and the FIN takes effect when it is validly part of sequence
3621  *      space. Not before when we get holes.
3622  *
3623  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3624  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3625  *      TIME-WAIT)
3626  *
3627  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3628  *      close and we go into CLOSING (and later onto TIME-WAIT)
3629  *
3630  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3631  */
3632 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3633 {
3634         struct tcp_sock *tp = tcp_sk(sk);
3635
3636         inet_csk_schedule_ack(sk);
3637
3638         sk->sk_shutdown |= RCV_SHUTDOWN;
3639         sock_set_flag(sk, SOCK_DONE);
3640
3641         switch (sk->sk_state) {
3642         case TCP_SYN_RECV:
3643         case TCP_ESTABLISHED:
3644                 /* Move to CLOSE_WAIT */
3645                 tcp_set_state(sk, TCP_CLOSE_WAIT);
3646                 inet_csk(sk)->icsk_ack.pingpong = 1;
3647                 break;
3648
3649         case TCP_CLOSE_WAIT:
3650         case TCP_CLOSING:
3651                 /* Received a retransmission of the FIN, do
3652                  * nothing.
3653                  */
3654                 break;
3655         case TCP_LAST_ACK:
3656                 /* RFC793: Remain in the LAST-ACK state. */
3657                 break;
3658
3659         case TCP_FIN_WAIT1:
3660                 /* This case occurs when a simultaneous close
3661                  * happens, we must ack the received FIN and
3662                  * enter the CLOSING state.
3663                  */
3664                 tcp_send_ack(sk);
3665                 tcp_set_state(sk, TCP_CLOSING);
3666                 break;
3667         case TCP_FIN_WAIT2:
3668                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3669                 tcp_send_ack(sk);
3670                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3671                 break;
3672         default:
3673                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3674                  * cases we should never reach this piece of code.
3675                  */
3676                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3677                        __func__, sk->sk_state);
3678                 break;
3679         }
3680
3681         /* It _is_ possible, that we have something out-of-order _after_ FIN.
3682          * Probably, we should reset in this case. For now drop them.
3683          */
3684         __skb_queue_purge(&tp->out_of_order_queue);
3685         if (tcp_is_sack(tp))
3686                 tcp_sack_reset(&tp->rx_opt);
3687         sk_mem_reclaim(sk);
3688
3689         if (!sock_flag(sk, SOCK_DEAD)) {
3690                 sk->sk_state_change(sk);
3691
3692                 /* Do not send POLL_HUP for half duplex close. */
3693                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3694                     sk->sk_state == TCP_CLOSE)
3695                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3696                 else
3697                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3698         }
3699 }
3700
3701 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3702                                   u32 end_seq)
3703 {
3704         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3705                 if (before(seq, sp->start_seq))
3706                         sp->start_seq = seq;
3707                 if (after(end_seq, sp->end_seq))
3708                         sp->end_seq = end_seq;
3709                 return 1;
3710         }
3711         return 0;
3712 }
3713
3714 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3715 {
3716         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3717                 int mib_idx;
3718
3719                 if (before(seq, tp->rcv_nxt))
3720                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3721                 else
3722                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3723
3724                 NET_INC_STATS_BH(mib_idx);
3725
3726                 tp->rx_opt.dsack = 1;
3727                 tp->duplicate_sack[0].start_seq = seq;
3728                 tp->duplicate_sack[0].end_seq = end_seq;
3729                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3730                                            4 - tp->rx_opt.tstamp_ok);
3731         }
3732 }
3733
3734 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3735 {
3736         if (!tp->rx_opt.dsack)
3737                 tcp_dsack_set(tp, seq, end_seq);
3738         else
3739                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3740 }
3741
3742 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3743 {
3744         struct tcp_sock *tp = tcp_sk(sk);
3745
3746         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3747             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3748                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3749                 tcp_enter_quickack_mode(sk);
3750
3751                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3752                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3753
3754                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3755                                 end_seq = tp->rcv_nxt;
3756                         tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3757                 }
3758         }
3759
3760         tcp_send_ack(sk);
3761 }
3762
3763 /* These routines update the SACK block as out-of-order packets arrive or
3764  * in-order packets close up the sequence space.
3765  */
3766 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3767 {
3768         int this_sack;
3769         struct tcp_sack_block *sp = &tp->selective_acks[0];
3770         struct tcp_sack_block *swalk = sp + 1;
3771
3772         /* See if the recent change to the first SACK eats into
3773          * or hits the sequence space of other SACK blocks, if so coalesce.
3774          */
3775         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3776                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3777                         int i;
3778
3779                         /* Zap SWALK, by moving every further SACK up by one slot.
3780                          * Decrease num_sacks.
3781                          */
3782                         tp->rx_opt.num_sacks--;
3783                         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3784                                                    tp->rx_opt.dsack,
3785                                                    4 - tp->rx_opt.tstamp_ok);
3786                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3787                                 sp[i] = sp[i + 1];
3788                         continue;
3789                 }
3790                 this_sack++, swalk++;
3791         }
3792 }
3793
3794 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3795                                  struct tcp_sack_block *sack2)
3796 {
3797         __u32 tmp;
3798
3799         tmp = sack1->start_seq;
3800         sack1->start_seq = sack2->start_seq;
3801         sack2->start_seq = tmp;
3802
3803         tmp = sack1->end_seq;
3804         sack1->end_seq = sack2->end_seq;
3805         sack2->end_seq = tmp;
3806 }
3807
3808 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3809 {
3810         struct tcp_sock *tp = tcp_sk(sk);
3811         struct tcp_sack_block *sp = &tp->selective_acks[0];
3812         int cur_sacks = tp->rx_opt.num_sacks;
3813         int this_sack;
3814
3815         if (!cur_sacks)
3816                 goto new_sack;
3817
3818         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3819                 if (tcp_sack_extend(sp, seq, end_seq)) {
3820                         /* Rotate this_sack to the first one. */
3821                         for (; this_sack > 0; this_sack--, sp--)
3822                                 tcp_sack_swap(sp, sp - 1);
3823                         if (cur_sacks > 1)
3824                                 tcp_sack_maybe_coalesce(tp);
3825                         return;
3826                 }
3827         }
3828
3829         /* Could not find an adjacent existing SACK, build a new one,
3830          * put it at the front, and shift everyone else down.  We
3831          * always know there is at least one SACK present already here.
3832          *
3833          * If the sack array is full, forget about the last one.
3834          */
3835         if (this_sack >= 4) {
3836                 this_sack--;
3837                 tp->rx_opt.num_sacks--;
3838                 sp--;
3839         }
3840         for (; this_sack > 0; this_sack--, sp--)
3841                 *sp = *(sp - 1);
3842
3843 new_sack:
3844         /* Build the new head SACK, and we're done. */
3845         sp->start_seq = seq;
3846         sp->end_seq = end_seq;
3847         tp->rx_opt.num_sacks++;
3848         tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3849                                    4 - tp->rx_opt.tstamp_ok);
3850 }
3851
3852 /* RCV.NXT advances, some SACKs should be eaten. */
3853
3854 static void tcp_sack_remove(struct tcp_sock *tp)
3855 {
3856         struct tcp_sack_block *sp = &tp->selective_acks[0];
3857         int num_sacks = tp->rx_opt.num_sacks;
3858         int this_sack;
3859
3860         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3861         if (skb_queue_empty(&tp->out_of_order_queue)) {
3862                 tp->rx_opt.num_sacks = 0;
3863                 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3864                 return;
3865         }
3866
3867         for (this_sack = 0; this_sack < num_sacks;) {
3868                 /* Check if the start of the sack is covered by RCV.NXT. */
3869                 if (!before(tp->rcv_nxt, sp->start_seq)) {
3870                         int i;
3871
3872                         /* RCV.NXT must cover all the block! */
3873                         BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3874
3875                         /* Zap this SACK, by moving forward any other SACKS. */
3876                         for (i=this_sack+1; i < num_sacks; i++)
3877                                 tp->selective_acks[i-1] = tp->selective_acks[i];
3878                         num_sacks--;
3879                         continue;
3880                 }
3881                 this_sack++;
3882                 sp++;
3883         }
3884         if (num_sacks != tp->rx_opt.num_sacks) {
3885                 tp->rx_opt.num_sacks = num_sacks;
3886                 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3887                                            tp->rx_opt.dsack,
3888                                            4 - tp->rx_opt.tstamp_ok);
3889         }
3890 }
3891
3892 /* This one checks to see if we can put data from the
3893  * out_of_order queue into the receive_queue.
3894  */
3895 static void tcp_ofo_queue(struct sock *sk)
3896 {
3897         struct tcp_sock *tp = tcp_sk(sk);
3898         __u32 dsack_high = tp->rcv_nxt;
3899         struct sk_buff *skb;
3900
3901         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3902                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3903                         break;
3904
3905                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3906                         __u32 dsack = dsack_high;
3907                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3908                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
3909                         tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3910                 }
3911
3912                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3913                         SOCK_DEBUG(sk, "ofo packet was already received \n");
3914                         __skb_unlink(skb, &tp->out_of_order_queue);
3915                         __kfree_skb(skb);
3916                         continue;
3917                 }
3918                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3919                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3920                            TCP_SKB_CB(skb)->end_seq);
3921
3922                 __skb_unlink(skb, &tp->out_of_order_queue);
3923                 __skb_queue_tail(&sk->sk_receive_queue, skb);
3924                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3925                 if (tcp_hdr(skb)->fin)
3926                         tcp_fin(skb, sk, tcp_hdr(skb));
3927         }
3928 }
3929
3930 static int tcp_prune_ofo_queue(struct sock *sk);
3931 static int tcp_prune_queue(struct sock *sk);
3932
3933 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3934 {
3935         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3936             !sk_rmem_schedule(sk, size)) {
3937
3938                 if (tcp_prune_queue(sk) < 0)
3939                         return -1;
3940
3941                 if (!sk_rmem_schedule(sk, size)) {
3942                         if (!tcp_prune_ofo_queue(sk))
3943                                 return -1;
3944
3945                         if (!sk_rmem_schedule(sk, size))
3946                                 return -1;
3947                 }
3948         }
3949         return 0;
3950 }
3951
3952 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3953 {
3954         struct tcphdr *th = tcp_hdr(skb);
3955         struct tcp_sock *tp = tcp_sk(sk);
3956         int eaten = -1;
3957
3958         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3959                 goto drop;
3960
3961         __skb_pull(skb, th->doff * 4);
3962
3963         TCP_ECN_accept_cwr(tp, skb);
3964
3965         if (tp->rx_opt.dsack) {
3966                 tp->rx_opt.dsack = 0;
3967                 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3968                                              4 - tp->rx_opt.tstamp_ok);
3969         }
3970
3971         /*  Queue data for delivery to the user.
3972          *  Packets in sequence go to the receive queue.
3973          *  Out of sequence packets to the out_of_order_queue.
3974          */
3975         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3976                 if (tcp_receive_window(tp) == 0)
3977                         goto out_of_window;
3978
3979                 /* Ok. In sequence. In window. */
3980                 if (tp->ucopy.task == current &&
3981                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3982                     sock_owned_by_user(sk) && !tp->urg_data) {
3983                         int chunk = min_t(unsigned int, skb->len,
3984                                           tp->ucopy.len);
3985
3986                         __set_current_state(TASK_RUNNING);
3987
3988                         local_bh_enable();
3989                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3990                                 tp->ucopy.len -= chunk;
3991                                 tp->copied_seq += chunk;
3992                                 eaten = (chunk == skb->len && !th->fin);
3993                                 tcp_rcv_space_adjust(sk);
3994                         }
3995                         local_bh_disable();
3996                 }
3997
3998                 if (eaten <= 0) {
3999 queue_and_out:
4000                         if (eaten < 0 &&
4001                             tcp_try_rmem_schedule(sk, skb->truesize))
4002                                 goto drop;
4003
4004                         skb_set_owner_r(skb, sk);
4005                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4006                 }
4007                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4008                 if (skb->len)
4009                         tcp_event_data_recv(sk, skb);
4010                 if (th->fin)
4011                         tcp_fin(skb, sk, th);
4012
4013                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4014                         tcp_ofo_queue(sk);
4015
4016                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4017                          * gap in queue is filled.
4018                          */
4019                         if (skb_queue_empty(&tp->out_of_order_queue))
4020                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4021                 }
4022
4023                 if (tp->rx_opt.num_sacks)
4024                         tcp_sack_remove(tp);
4025
4026                 tcp_fast_path_check(sk);
4027
4028                 if (eaten > 0)
4029                         __kfree_skb(skb);
4030                 else if (!sock_flag(sk, SOCK_DEAD))
4031                         sk->sk_data_ready(sk, 0);
4032                 return;
4033         }
4034
4035         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4036                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4037                 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
4038                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4039
4040 out_of_window:
4041                 tcp_enter_quickack_mode(sk);
4042                 inet_csk_schedule_ack(sk);
4043 drop:
4044                 __kfree_skb(skb);
4045                 return;
4046         }
4047
4048         /* Out of window. F.e. zero window probe. */
4049         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4050                 goto out_of_window;
4051
4052         tcp_enter_quickack_mode(sk);
4053
4054         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4055                 /* Partial packet, seq < rcv_next < end_seq */
4056                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4057                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4058                            TCP_SKB_CB(skb)->end_seq);
4059
4060                 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4061
4062                 /* If window is closed, drop tail of packet. But after
4063                  * remembering D-SACK for its head made in previous line.
4064                  */
4065                 if (!tcp_receive_window(tp))
4066                         goto out_of_window;
4067                 goto queue_and_out;
4068         }
4069
4070         TCP_ECN_check_ce(tp, skb);
4071
4072         if (tcp_try_rmem_schedule(sk, skb->truesize))
4073                 goto drop;
4074
4075         /* Disable header prediction. */
4076         tp->pred_flags = 0;
4077         inet_csk_schedule_ack(sk);
4078
4079         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4080                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4081
4082         skb_set_owner_r(skb, sk);
4083
4084         if (!skb_peek(&tp->out_of_order_queue)) {
4085                 /* Initial out of order segment, build 1 SACK. */
4086                 if (tcp_is_sack(tp)) {
4087                         tp->rx_opt.num_sacks = 1;
4088                         tp->rx_opt.dsack     = 0;
4089                         tp->rx_opt.eff_sacks = 1;
4090                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4091                         tp->selective_acks[0].end_seq =
4092                                                 TCP_SKB_CB(skb)->end_seq;
4093                 }
4094                 __skb_queue_head(&tp->out_of_order_queue, skb);
4095         } else {
4096                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4097                 u32 seq = TCP_SKB_CB(skb)->seq;
4098                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4099
4100                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4101                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4102
4103                         if (!tp->rx_opt.num_sacks ||
4104                             tp->selective_acks[0].end_seq != seq)
4105                                 goto add_sack;
4106
4107                         /* Common case: data arrive in order after hole. */
4108                         tp->selective_acks[0].end_seq = end_seq;
4109                         return;
4110                 }
4111
4112                 /* Find place to insert this segment. */
4113                 do {
4114                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4115                                 break;
4116                 } while ((skb1 = skb1->prev) !=
4117                          (struct sk_buff *)&tp->out_of_order_queue);
4118
4119                 /* Do skb overlap to previous one? */
4120                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4121                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4122                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4123                                 /* All the bits are present. Drop. */
4124                                 __kfree_skb(skb);
4125                                 tcp_dsack_set(tp, seq, end_seq);
4126                                 goto add_sack;
4127                         }
4128                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4129                                 /* Partial overlap. */
4130                                 tcp_dsack_set(tp, seq,
4131                                               TCP_SKB_CB(skb1)->end_seq);
4132                         } else {
4133                                 skb1 = skb1->prev;
4134                         }
4135                 }
4136                 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4137
4138                 /* And clean segments covered by new one as whole. */
4139                 while ((skb1 = skb->next) !=
4140                        (struct sk_buff *)&tp->out_of_order_queue &&
4141                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4142                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4143                                 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4144                                                  end_seq);
4145                                 break;
4146                         }
4147                         __skb_unlink(skb1, &tp->out_of_order_queue);
4148                         tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4149                                          TCP_SKB_CB(skb1)->end_seq);
4150                         __kfree_skb(skb1);
4151                 }
4152
4153 add_sack:
4154                 if (tcp_is_sack(tp))
4155                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4156         }
4157 }
4158
4159 /* Collapse contiguous sequence of skbs head..tail with
4160  * sequence numbers start..end.
4161  * Segments with FIN/SYN are not collapsed (only because this
4162  * simplifies code)
4163  */
4164 static void
4165 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4166              struct sk_buff *head, struct sk_buff *tail,
4167              u32 start, u32 end)
4168 {
4169         struct sk_buff *skb;
4170
4171         /* First, check that queue is collapsible and find
4172          * the point where collapsing can be useful. */
4173         for (skb = head; skb != tail;) {
4174                 /* No new bits? It is possible on ofo queue. */
4175                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4176                         struct sk_buff *next = skb->next;
4177                         __skb_unlink(skb, list);
4178                         __kfree_skb(skb);
4179                         NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4180                         skb = next;
4181                         continue;
4182                 }
4183
4184                 /* The first skb to collapse is:
4185                  * - not SYN/FIN and
4186                  * - bloated or contains data before "start" or
4187                  *   overlaps to the next one.
4188                  */
4189                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4190                     (tcp_win_from_space(skb->truesize) > skb->len ||
4191                      before(TCP_SKB_CB(skb)->seq, start) ||
4192                      (skb->next != tail &&
4193                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4194                         break;
4195
4196                 /* Decided to skip this, advance start seq. */
4197                 start = TCP_SKB_CB(skb)->end_seq;
4198                 skb = skb->next;
4199         }
4200         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4201                 return;
4202
4203         while (before(start, end)) {
4204                 struct sk_buff *nskb;
4205                 unsigned int header = skb_headroom(skb);
4206                 int copy = SKB_MAX_ORDER(header, 0);
4207
4208                 /* Too big header? This can happen with IPv6. */
4209                 if (copy < 0)
4210                         return;
4211                 if (end - start < copy)
4212                         copy = end - start;
4213                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4214                 if (!nskb)
4215                         return;
4216
4217                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4218                 skb_set_network_header(nskb, (skb_network_header(skb) -
4219                                               skb->head));
4220                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4221                                                 skb->head));
4222                 skb_reserve(nskb, header);
4223                 memcpy(nskb->head, skb->head, header);
4224                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4225                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4226                 __skb_insert(nskb, skb->prev, skb, list);
4227                 skb_set_owner_r(nskb, sk);
4228
4229                 /* Copy data, releasing collapsed skbs. */
4230                 while (copy > 0) {
4231                         int offset = start - TCP_SKB_CB(skb)->seq;
4232                         int size = TCP_SKB_CB(skb)->end_seq - start;
4233
4234                         BUG_ON(offset < 0);
4235                         if (size > 0) {
4236                                 size = min(copy, size);
4237                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4238                                         BUG();
4239                                 TCP_SKB_CB(nskb)->end_seq += size;
4240                                 copy -= size;
4241                                 start += size;
4242                         }
4243                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4244                                 struct sk_buff *next = skb->next;
4245                                 __skb_unlink(skb, list);
4246                                 __kfree_skb(skb);
4247                                 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4248                                 skb = next;
4249                                 if (skb == tail ||
4250                                     tcp_hdr(skb)->syn ||
4251                                     tcp_hdr(skb)->fin)
4252                                         return;
4253                         }
4254                 }
4255         }
4256 }
4257
4258 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4259  * and tcp_collapse() them until all the queue is collapsed.
4260  */
4261 static void tcp_collapse_ofo_queue(struct sock *sk)
4262 {
4263         struct tcp_sock *tp = tcp_sk(sk);
4264         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4265         struct sk_buff *head;
4266         u32 start, end;
4267
4268         if (skb == NULL)
4269                 return;
4270
4271         start = TCP_SKB_CB(skb)->seq;
4272         end = TCP_SKB_CB(skb)->end_seq;
4273         head = skb;
4274
4275         for (;;) {
4276                 skb = skb->next;
4277
4278                 /* Segment is terminated when we see gap or when
4279                  * we are at the end of all the queue. */
4280                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4281                     after(TCP_SKB_CB(skb)->seq, end) ||
4282                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4283                         tcp_collapse(sk, &tp->out_of_order_queue,
4284                                      head, skb, start, end);
4285                         head = skb;
4286                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4287                                 break;
4288                         /* Start new segment */
4289                         start = TCP_SKB_CB(skb)->seq;
4290                         end = TCP_SKB_CB(skb)->end_seq;
4291                 } else {
4292                         if (before(TCP_SKB_CB(skb)->seq, start))
4293                                 start = TCP_SKB_CB(skb)->seq;
4294                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4295                                 end = TCP_SKB_CB(skb)->end_seq;
4296                 }
4297         }
4298 }
4299
4300 /*
4301  * Purge the out-of-order queue.
4302  * Return true if queue was pruned.
4303  */
4304 static int tcp_prune_ofo_queue(struct sock *sk)
4305 {
4306         struct tcp_sock *tp = tcp_sk(sk);
4307         int res = 0;
4308
4309         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4310                 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4311                 __skb_queue_purge(&tp->out_of_order_queue);
4312
4313                 /* Reset SACK state.  A conforming SACK implementation will
4314                  * do the same at a timeout based retransmit.  When a connection
4315                  * is in a sad state like this, we care only about integrity
4316                  * of the connection not performance.
4317                  */
4318                 if (tp->rx_opt.sack_ok)
4319                         tcp_sack_reset(&tp->rx_opt);
4320                 sk_mem_reclaim(sk);
4321                 res = 1;
4322         }
4323         return res;
4324 }
4325
4326 /* Reduce allocated memory if we can, trying to get
4327  * the socket within its memory limits again.
4328  *
4329  * Return less than zero if we should start dropping frames
4330  * until the socket owning process reads some of the data
4331  * to stabilize the situation.
4332  */
4333 static int tcp_prune_queue(struct sock *sk)
4334 {
4335         struct tcp_sock *tp = tcp_sk(sk);
4336
4337         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4338
4339         NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4340
4341         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4342                 tcp_clamp_window(sk);
4343         else if (tcp_memory_pressure)
4344                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4345
4346         tcp_collapse_ofo_queue(sk);
4347         tcp_collapse(sk, &sk->sk_receive_queue,
4348                      sk->sk_receive_queue.next,
4349                      (struct sk_buff *)&sk->sk_receive_queue,
4350                      tp->copied_seq, tp->rcv_nxt);
4351         sk_mem_reclaim(sk);
4352
4353         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4354                 return 0;
4355
4356         /* Collapsing did not help, destructive actions follow.
4357          * This must not ever occur. */
4358
4359         tcp_prune_ofo_queue(sk);
4360
4361         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4362                 return 0;
4363
4364         /* If we are really being abused, tell the caller to silently
4365          * drop receive data on the floor.  It will get retransmitted
4366          * and hopefully then we'll have sufficient space.
4367          */
4368         NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4369
4370         /* Massive buffer overcommit. */
4371         tp->pred_flags = 0;
4372         return -1;
4373 }
4374
4375 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4376  * As additional protections, we do not touch cwnd in retransmission phases,
4377  * and if application hit its sndbuf limit recently.
4378  */
4379 void tcp_cwnd_application_limited(struct sock *sk)
4380 {
4381         struct tcp_sock *tp = tcp_sk(sk);
4382
4383         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4384             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4385                 /* Limited by application or receiver window. */
4386                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4387                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4388                 if (win_used < tp->snd_cwnd) {
4389                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4390                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4391                 }
4392                 tp->snd_cwnd_used = 0;
4393         }
4394         tp->snd_cwnd_stamp = tcp_time_stamp;
4395 }
4396
4397 static int tcp_should_expand_sndbuf(struct sock *sk)
4398 {
4399         struct tcp_sock *tp = tcp_sk(sk);
4400
4401         /* If the user specified a specific send buffer setting, do
4402          * not modify it.
4403          */
4404         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4405                 return 0;
4406
4407         /* If we are under global TCP memory pressure, do not expand.  */
4408         if (tcp_memory_pressure)
4409                 return 0;
4410
4411         /* If we are under soft global TCP memory pressure, do not expand.  */
4412         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4413                 return 0;
4414
4415         /* If we filled the congestion window, do not expand.  */
4416         if (tp->packets_out >= tp->snd_cwnd)
4417                 return 0;
4418
4419         return 1;
4420 }
4421
4422 /* When incoming ACK allowed to free some skb from write_queue,
4423  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4424  * on the exit from tcp input handler.
4425  *
4426  * PROBLEM: sndbuf expansion does not work well with largesend.
4427  */
4428 static void tcp_new_space(struct sock *sk)
4429 {
4430         struct tcp_sock *tp = tcp_sk(sk);
4431
4432         if (tcp_should_expand_sndbuf(sk)) {
4433                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4434                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4435                     demanded = max_t(unsigned int, tp->snd_cwnd,
4436                                      tp->reordering + 1);
4437                 sndmem *= 2 * demanded;
4438                 if (sndmem > sk->sk_sndbuf)
4439                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4440                 tp->snd_cwnd_stamp = tcp_time_stamp;
4441         }
4442
4443         sk->sk_write_space(sk);
4444 }
4445
4446 static void tcp_check_space(struct sock *sk)
4447 {
4448         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4449                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4450                 if (sk->sk_socket &&
4451                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4452                         tcp_new_space(sk);
4453         }
4454 }
4455
4456 static inline void tcp_data_snd_check(struct sock *sk)
4457 {
4458         tcp_push_pending_frames(sk);
4459         tcp_check_space(sk);
4460 }
4461
4462 /*
4463  * Check if sending an ack is needed.
4464  */
4465 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4466 {
4467         struct tcp_sock *tp = tcp_sk(sk);
4468
4469             /* More than one full frame received... */
4470         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4471              /* ... and right edge of window advances far enough.
4472               * (tcp_recvmsg() will send ACK otherwise). Or...
4473               */
4474              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4475             /* We ACK each frame or... */
4476             tcp_in_quickack_mode(sk) ||
4477             /* We have out of order data. */
4478             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4479                 /* Then ack it now */
4480                 tcp_send_ack(sk);
4481         } else {
4482                 /* Else, send delayed ack. */
4483                 tcp_send_delayed_ack(sk);
4484         }
4485 }
4486
4487 static inline void tcp_ack_snd_check(struct sock *sk)
4488 {
4489         if (!inet_csk_ack_scheduled(sk)) {
4490                 /* We sent a data segment already. */
4491                 return;
4492         }
4493         __tcp_ack_snd_check(sk, 1);
4494 }
4495
4496 /*
4497  *      This routine is only called when we have urgent data
4498  *      signaled. Its the 'slow' part of tcp_urg. It could be
4499  *      moved inline now as tcp_urg is only called from one
4500  *      place. We handle URGent data wrong. We have to - as
4501  *      BSD still doesn't use the correction from RFC961.
4502  *      For 1003.1g we should support a new option TCP_STDURG to permit
4503  *      either form (or just set the sysctl tcp_stdurg).
4504  */
4505
4506 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4507 {
4508         struct tcp_sock *tp = tcp_sk(sk);
4509         u32 ptr = ntohs(th->urg_ptr);
4510
4511         if (ptr && !sysctl_tcp_stdurg)
4512                 ptr--;
4513         ptr += ntohl(th->seq);
4514
4515         /* Ignore urgent data that we've already seen and read. */
4516         if (after(tp->copied_seq, ptr))
4517                 return;
4518
4519         /* Do not replay urg ptr.
4520          *
4521          * NOTE: interesting situation not covered by specs.
4522          * Misbehaving sender may send urg ptr, pointing to segment,
4523          * which we already have in ofo queue. We are not able to fetch
4524          * such data and will stay in TCP_URG_NOTYET until will be eaten
4525          * by recvmsg(). Seems, we are not obliged to handle such wicked
4526          * situations. But it is worth to think about possibility of some
4527          * DoSes using some hypothetical application level deadlock.
4528          */
4529         if (before(ptr, tp->rcv_nxt))
4530                 return;
4531
4532         /* Do we already have a newer (or duplicate) urgent pointer? */
4533         if (tp->urg_data && !after(ptr, tp->urg_seq))
4534                 return;
4535
4536         /* Tell the world about our new urgent pointer. */
4537         sk_send_sigurg(sk);
4538
4539         /* We may be adding urgent data when the last byte read was
4540          * urgent. To do this requires some care. We cannot just ignore
4541          * tp->copied_seq since we would read the last urgent byte again
4542          * as data, nor can we alter copied_seq until this data arrives
4543          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4544          *
4545          * NOTE. Double Dutch. Rendering to plain English: author of comment
4546          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4547          * and expect that both A and B disappear from stream. This is _wrong_.
4548          * Though this happens in BSD with high probability, this is occasional.
4549          * Any application relying on this is buggy. Note also, that fix "works"
4550          * only in this artificial test. Insert some normal data between A and B and we will
4551          * decline of BSD again. Verdict: it is better to remove to trap
4552          * buggy users.
4553          */
4554         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4555             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4556                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4557                 tp->copied_seq++;
4558                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4559                         __skb_unlink(skb, &sk->sk_receive_queue);
4560                         __kfree_skb(skb);
4561                 }
4562         }
4563
4564         tp->urg_data = TCP_URG_NOTYET;
4565         tp->urg_seq = ptr;
4566
4567         /* Disable header prediction. */
4568         tp->pred_flags = 0;
4569 }
4570
4571 /* This is the 'fast' part of urgent handling. */
4572 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4573 {
4574         struct tcp_sock *tp = tcp_sk(sk);
4575
4576         /* Check if we get a new urgent pointer - normally not. */
4577         if (th->urg)
4578                 tcp_check_urg(sk, th);
4579
4580         /* Do we wait for any urgent data? - normally not... */
4581         if (tp->urg_data == TCP_URG_NOTYET) {
4582                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4583                           th->syn;
4584
4585                 /* Is the urgent pointer pointing into this packet? */
4586                 if (ptr < skb->len) {
4587                         u8 tmp;
4588                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4589                                 BUG();
4590                         tp->urg_data = TCP_URG_VALID | tmp;
4591                         if (!sock_flag(sk, SOCK_DEAD))
4592                                 sk->sk_data_ready(sk, 0);
4593                 }
4594         }
4595 }
4596
4597 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4598 {
4599         struct tcp_sock *tp = tcp_sk(sk);
4600         int chunk = skb->len - hlen;
4601         int err;
4602
4603         local_bh_enable();
4604         if (skb_csum_unnecessary(skb))
4605                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4606         else
4607                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4608                                                        tp->ucopy.iov);
4609
4610         if (!err) {
4611                 tp->ucopy.len -= chunk;
4612                 tp->copied_seq += chunk;
4613                 tcp_rcv_space_adjust(sk);
4614         }
4615
4616         local_bh_disable();
4617         return err;
4618 }
4619
4620 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4621                                             struct sk_buff *skb)
4622 {
4623         __sum16 result;
4624
4625         if (sock_owned_by_user(sk)) {
4626                 local_bh_enable();
4627                 result = __tcp_checksum_complete(skb);
4628                 local_bh_disable();
4629         } else {
4630                 result = __tcp_checksum_complete(skb);
4631         }
4632         return result;
4633 }
4634
4635 static inline int tcp_checksum_complete_user(struct sock *sk,
4636                                              struct sk_buff *skb)
4637 {
4638         return !skb_csum_unnecessary(skb) &&
4639                __tcp_checksum_complete_user(sk, skb);
4640 }
4641
4642 #ifdef CONFIG_NET_DMA
4643 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4644                                   int hlen)
4645 {
4646         struct tcp_sock *tp = tcp_sk(sk);
4647         int chunk = skb->len - hlen;
4648         int dma_cookie;
4649         int copied_early = 0;
4650
4651         if (tp->ucopy.wakeup)
4652                 return 0;
4653
4654         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4655                 tp->ucopy.dma_chan = get_softnet_dma();
4656
4657         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4658
4659                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4660                                                          skb, hlen,
4661                                                          tp->ucopy.iov, chunk,
4662                                                          tp->ucopy.pinned_list);
4663
4664                 if (dma_cookie < 0)
4665                         goto out;
4666
4667                 tp->ucopy.dma_cookie = dma_cookie;
4668                 copied_early = 1;
4669
4670                 tp->ucopy.len -= chunk;
4671                 tp->copied_seq += chunk;
4672                 tcp_rcv_space_adjust(sk);
4673
4674                 if ((tp->ucopy.len == 0) ||
4675                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4676                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4677                         tp->ucopy.wakeup = 1;
4678                         sk->sk_data_ready(sk, 0);
4679                 }
4680         } else if (chunk > 0) {
4681                 tp->ucopy.wakeup = 1;
4682                 sk->sk_data_ready(sk, 0);
4683         }
4684 out:
4685         return copied_early;
4686 }
4687 #endif /* CONFIG_NET_DMA */
4688
4689 /*
4690  *      TCP receive function for the ESTABLISHED state.
4691  *
4692  *      It is split into a fast path and a slow path. The fast path is
4693  *      disabled when:
4694  *      - A zero window was announced from us - zero window probing
4695  *        is only handled properly in the slow path.
4696  *      - Out of order segments arrived.
4697  *      - Urgent data is expected.
4698  *      - There is no buffer space left
4699  *      - Unexpected TCP flags/window values/header lengths are received
4700  *        (detected by checking the TCP header against pred_flags)
4701  *      - Data is sent in both directions. Fast path only supports pure senders
4702  *        or pure receivers (this means either the sequence number or the ack
4703  *        value must stay constant)
4704  *      - Unexpected TCP option.
4705  *
4706  *      When these conditions are not satisfied it drops into a standard
4707  *      receive procedure patterned after RFC793 to handle all cases.
4708  *      The first three cases are guaranteed by proper pred_flags setting,
4709  *      the rest is checked inline. Fast processing is turned on in
4710  *      tcp_data_queue when everything is OK.
4711  */
4712 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4713                         struct tcphdr *th, unsigned len)
4714 {
4715         struct tcp_sock *tp = tcp_sk(sk);
4716
4717         /*
4718          *      Header prediction.
4719          *      The code loosely follows the one in the famous
4720          *      "30 instruction TCP receive" Van Jacobson mail.
4721          *
4722          *      Van's trick is to deposit buffers into socket queue
4723          *      on a device interrupt, to call tcp_recv function
4724          *      on the receive process context and checksum and copy
4725          *      the buffer to user space. smart...
4726          *
4727          *      Our current scheme is not silly either but we take the
4728          *      extra cost of the net_bh soft interrupt processing...
4729          *      We do checksum and copy also but from device to kernel.
4730          */
4731
4732         tp->rx_opt.saw_tstamp = 0;
4733
4734         /*      pred_flags is 0xS?10 << 16 + snd_wnd
4735          *      if header_prediction is to be made
4736          *      'S' will always be tp->tcp_header_len >> 2
4737          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4738          *  turn it off (when there are holes in the receive
4739          *       space for instance)
4740          *      PSH flag is ignored.
4741          */
4742
4743         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4744             TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4745                 int tcp_header_len = tp->tcp_header_len;
4746
4747                 /* Timestamp header prediction: tcp_header_len
4748                  * is automatically equal to th->doff*4 due to pred_flags
4749                  * match.
4750                  */
4751
4752                 /* Check timestamp */
4753                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4754                         __be32 *ptr = (__be32 *)(th + 1);
4755
4756                         /* No? Slow path! */
4757                         if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4758                                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4759                                 goto slow_path;
4760
4761                         tp->rx_opt.saw_tstamp = 1;
4762                         ++ptr;
4763                         tp->rx_opt.rcv_tsval = ntohl(*ptr);
4764                         ++ptr;
4765                         tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4766
4767                         /* If PAWS failed, check it more carefully in slow path */
4768                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4769                                 goto slow_path;
4770
4771                         /* DO NOT update ts_recent here, if checksum fails
4772                          * and timestamp was corrupted part, it will result
4773                          * in a hung connection since we will drop all
4774                          * future packets due to the PAWS test.
4775                          */
4776                 }
4777
4778                 if (len <= tcp_header_len) {
4779                         /* Bulk data transfer: sender */
4780                         if (len == tcp_header_len) {
4781                                 /* Predicted packet is in window by definition.
4782                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4783                                  * Hence, check seq<=rcv_wup reduces to:
4784                                  */
4785                                 if (tcp_header_len ==
4786                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4787                                     tp->rcv_nxt == tp->rcv_wup)
4788                                         tcp_store_ts_recent(tp);
4789
4790                                 /* We know that such packets are checksummed
4791                                  * on entry.
4792                                  */
4793                                 tcp_ack(sk, skb, 0);
4794                                 __kfree_skb(skb);
4795                                 tcp_data_snd_check(sk);
4796                                 return 0;
4797                         } else { /* Header too small */
4798                                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4799                                 goto discard;
4800                         }
4801                 } else {
4802                         int eaten = 0;
4803                         int copied_early = 0;
4804
4805                         if (tp->copied_seq == tp->rcv_nxt &&
4806                             len - tcp_header_len <= tp->ucopy.len) {
4807 #ifdef CONFIG_NET_DMA
4808                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4809                                         copied_early = 1;
4810                                         eaten = 1;
4811                                 }
4812 #endif
4813                                 if (tp->ucopy.task == current &&
4814                                     sock_owned_by_user(sk) && !copied_early) {
4815                                         __set_current_state(TASK_RUNNING);
4816
4817                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4818                                                 eaten = 1;
4819                                 }
4820                                 if (eaten) {
4821                                         /* Predicted packet is in window by definition.
4822                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4823                                          * Hence, check seq<=rcv_wup reduces to:
4824                                          */
4825                                         if (tcp_header_len ==
4826                                             (sizeof(struct tcphdr) +
4827                                              TCPOLEN_TSTAMP_ALIGNED) &&
4828                                             tp->rcv_nxt == tp->rcv_wup)
4829                                                 tcp_store_ts_recent(tp);
4830
4831                                         tcp_rcv_rtt_measure_ts(sk, skb);
4832
4833                                         __skb_pull(skb, tcp_header_len);
4834                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4835                                         NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4836                                 }
4837                                 if (copied_early)
4838                                         tcp_cleanup_rbuf(sk, skb->len);
4839                         }
4840                         if (!eaten) {
4841                                 if (tcp_checksum_complete_user(sk, skb))
4842                                         goto csum_error;
4843
4844                                 /* Predicted packet is in window by definition.
4845                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4846                                  * Hence, check seq<=rcv_wup reduces to:
4847                                  */
4848                                 if (tcp_header_len ==
4849                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4850                                     tp->rcv_nxt == tp->rcv_wup)
4851                                         tcp_store_ts_recent(tp);
4852
4853                                 tcp_rcv_rtt_measure_ts(sk, skb);
4854
4855                                 if ((int)skb->truesize > sk->sk_forward_alloc)
4856                                         goto step5;
4857
4858                                 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4859
4860                                 /* Bulk data transfer: receiver */
4861                                 __skb_pull(skb, tcp_header_len);
4862                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4863                                 skb_set_owner_r(skb, sk);
4864                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4865                         }
4866
4867                         tcp_event_data_recv(sk, skb);
4868
4869                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4870                                 /* Well, only one small jumplet in fast path... */
4871                                 tcp_ack(sk, skb, FLAG_DATA);
4872                                 tcp_data_snd_check(sk);
4873                                 if (!inet_csk_ack_scheduled(sk))
4874                                         goto no_ack;
4875                         }
4876
4877                         __tcp_ack_snd_check(sk, 0);
4878 no_ack:
4879 #ifdef CONFIG_NET_DMA
4880                         if (copied_early)
4881                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4882                         else
4883 #endif
4884                         if (eaten)
4885                                 __kfree_skb(skb);
4886                         else
4887                                 sk->sk_data_ready(sk, 0);
4888                         return 0;
4889                 }
4890         }
4891
4892 slow_path:
4893         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4894                 goto csum_error;
4895
4896         /*
4897          * RFC1323: H1. Apply PAWS check first.
4898          */
4899         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4900             tcp_paws_discard(sk, skb)) {
4901                 if (!th->rst) {
4902                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4903                         tcp_send_dupack(sk, skb);
4904                         goto discard;
4905                 }
4906                 /* Resets are accepted even if PAWS failed.
4907
4908                    ts_recent update must be made after we are sure
4909                    that the packet is in window.
4910                  */
4911         }
4912
4913         /*
4914          *      Standard slow path.
4915          */
4916
4917         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4918                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4919                  * (RST) segments are validated by checking their SEQ-fields."
4920                  * And page 69: "If an incoming segment is not acceptable,
4921                  * an acknowledgment should be sent in reply (unless the RST bit
4922                  * is set, if so drop the segment and return)".
4923                  */
4924                 if (!th->rst)
4925                         tcp_send_dupack(sk, skb);
4926                 goto discard;
4927         }
4928
4929         if (th->rst) {
4930                 tcp_reset(sk);
4931                 goto discard;
4932         }
4933
4934         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4935
4936         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4937                 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4938                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4939                 tcp_reset(sk);
4940                 return 1;
4941         }
4942
4943 step5:
4944         if (th->ack)
4945                 tcp_ack(sk, skb, FLAG_SLOWPATH);
4946
4947         tcp_rcv_rtt_measure_ts(sk, skb);
4948
4949         /* Process urgent data. */
4950         tcp_urg(sk, skb, th);
4951
4952         /* step 7: process the segment text */
4953         tcp_data_queue(sk, skb);
4954
4955         tcp_data_snd_check(sk);
4956         tcp_ack_snd_check(sk);
4957         return 0;
4958
4959 csum_error:
4960         TCP_INC_STATS_BH(TCP_MIB_INERRS);
4961
4962 discard:
4963         __kfree_skb(skb);
4964         return 0;
4965 }
4966
4967 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4968                                          struct tcphdr *th, unsigned len)
4969 {
4970         struct tcp_sock *tp = tcp_sk(sk);
4971         struct inet_connection_sock *icsk = inet_csk(sk);
4972         int saved_clamp = tp->rx_opt.mss_clamp;
4973
4974         tcp_parse_options(skb, &tp->rx_opt, 0);
4975
4976         if (th->ack) {
4977                 /* rfc793:
4978                  * "If the state is SYN-SENT then
4979                  *    first check the ACK bit
4980                  *      If the ACK bit is set
4981                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4982                  *        a reset (unless the RST bit is set, if so drop
4983                  *        the segment and return)"
4984                  *
4985                  *  We do not send data with SYN, so that RFC-correct
4986                  *  test reduces to:
4987                  */
4988                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4989                         goto reset_and_undo;
4990
4991                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4992                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4993                              tcp_time_stamp)) {
4994                         NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4995                         goto reset_and_undo;
4996                 }
4997
4998                 /* Now ACK is acceptable.
4999                  *
5000                  * "If the RST bit is set
5001                  *    If the ACK was acceptable then signal the user "error:
5002                  *    connection reset", drop the segment, enter CLOSED state,
5003                  *    delete TCB, and return."
5004                  */
5005
5006                 if (th->rst) {
5007                         tcp_reset(sk);
5008                         goto discard;
5009                 }
5010
5011                 /* rfc793:
5012                  *   "fifth, if neither of the SYN or RST bits is set then
5013                  *    drop the segment and return."
5014                  *
5015                  *    See note below!
5016                  *                                        --ANK(990513)
5017                  */
5018                 if (!th->syn)
5019                         goto discard_and_undo;
5020
5021                 /* rfc793:
5022                  *   "If the SYN bit is on ...
5023                  *    are acceptable then ...
5024                  *    (our SYN has been ACKed), change the connection
5025                  *    state to ESTABLISHED..."
5026                  */
5027
5028                 TCP_ECN_rcv_synack(tp, th);
5029
5030                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5031                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5032
5033                 /* Ok.. it's good. Set up sequence numbers and
5034                  * move to established.
5035                  */
5036                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5037                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5038
5039                 /* RFC1323: The window in SYN & SYN/ACK segments is
5040                  * never scaled.
5041                  */
5042                 tp->snd_wnd = ntohs(th->window);
5043                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5044
5045                 if (!tp->rx_opt.wscale_ok) {
5046                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5047                         tp->window_clamp = min(tp->window_clamp, 65535U);
5048                 }
5049
5050                 if (tp->rx_opt.saw_tstamp) {
5051                         tp->rx_opt.tstamp_ok       = 1;
5052                         tp->tcp_header_len =
5053                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5054                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5055                         tcp_store_ts_recent(tp);
5056                 } else {
5057                         tp->tcp_header_len = sizeof(struct tcphdr);
5058                 }
5059
5060                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5061                         tcp_enable_fack(tp);
5062
5063                 tcp_mtup_init(sk);
5064                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5065                 tcp_initialize_rcv_mss(sk);
5066
5067                 /* Remember, tcp_poll() does not lock socket!
5068                  * Change state from SYN-SENT only after copied_seq
5069                  * is initialized. */
5070                 tp->copied_seq = tp->rcv_nxt;
5071                 smp_mb();
5072                 tcp_set_state(sk, TCP_ESTABLISHED);
5073
5074                 security_inet_conn_established(sk, skb);
5075
5076                 /* Make sure socket is routed, for correct metrics.  */
5077                 icsk->icsk_af_ops->rebuild_header(sk);
5078
5079                 tcp_init_metrics(sk);
5080
5081                 tcp_init_congestion_control(sk);
5082
5083                 /* Prevent spurious tcp_cwnd_restart() on first data
5084                  * packet.
5085                  */
5086                 tp->lsndtime = tcp_time_stamp;
5087
5088                 tcp_init_buffer_space(sk);
5089
5090                 if (sock_flag(sk, SOCK_KEEPOPEN))
5091                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5092
5093                 if (!tp->rx_opt.snd_wscale)
5094                         __tcp_fast_path_on(tp, tp->snd_wnd);
5095                 else
5096                         tp->pred_flags = 0;
5097
5098                 if (!sock_flag(sk, SOCK_DEAD)) {
5099                         sk->sk_state_change(sk);
5100                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5101                 }
5102
5103                 if (sk->sk_write_pending ||
5104                     icsk->icsk_accept_queue.rskq_defer_accept ||
5105                     icsk->icsk_ack.pingpong) {
5106                         /* Save one ACK. Data will be ready after
5107                          * several ticks, if write_pending is set.
5108                          *
5109                          * It may be deleted, but with this feature tcpdumps
5110                          * look so _wonderfully_ clever, that I was not able
5111                          * to stand against the temptation 8)     --ANK
5112                          */
5113                         inet_csk_schedule_ack(sk);
5114                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5115                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5116                         tcp_incr_quickack(sk);
5117                         tcp_enter_quickack_mode(sk);
5118                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5119                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5120
5121 discard:
5122                         __kfree_skb(skb);
5123                         return 0;
5124                 } else {
5125                         tcp_send_ack(sk);
5126                 }
5127                 return -1;
5128         }
5129
5130         /* No ACK in the segment */
5131
5132         if (th->rst) {
5133                 /* rfc793:
5134                  * "If the RST bit is set
5135                  *
5136                  *      Otherwise (no ACK) drop the segment and return."
5137                  */
5138
5139                 goto discard_and_undo;
5140         }
5141
5142         /* PAWS check. */
5143         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5144             tcp_paws_check(&tp->rx_opt, 0))
5145                 goto discard_and_undo;
5146
5147         if (th->syn) {
5148                 /* We see SYN without ACK. It is attempt of
5149                  * simultaneous connect with crossed SYNs.
5150                  * Particularly, it can be connect to self.
5151                  */
5152                 tcp_set_state(sk, TCP_SYN_RECV);
5153
5154                 if (tp->rx_opt.saw_tstamp) {
5155                         tp->rx_opt.tstamp_ok = 1;
5156                         tcp_store_ts_recent(tp);
5157                         tp->tcp_header_len =
5158                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5159                 } else {
5160                         tp->tcp_header_len = sizeof(struct tcphdr);
5161                 }
5162
5163                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5164                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5165
5166                 /* RFC1323: The window in SYN & SYN/ACK segments is
5167                  * never scaled.
5168                  */
5169                 tp->snd_wnd    = ntohs(th->window);
5170                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5171                 tp->max_window = tp->snd_wnd;
5172
5173                 TCP_ECN_rcv_syn(tp, th);
5174
5175                 tcp_mtup_init(sk);
5176                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5177                 tcp_initialize_rcv_mss(sk);
5178
5179                 tcp_send_synack(sk);
5180 #if 0
5181                 /* Note, we could accept data and URG from this segment.
5182                  * There are no obstacles to make this.
5183                  *
5184                  * However, if we ignore data in ACKless segments sometimes,
5185                  * we have no reasons to accept it sometimes.
5186                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5187                  * is not flawless. So, discard packet for sanity.
5188                  * Uncomment this return to process the data.
5189                  */
5190                 return -1;
5191 #else
5192                 goto discard;
5193 #endif
5194         }
5195         /* "fifth, if neither of the SYN or RST bits is set then
5196          * drop the segment and return."
5197          */
5198
5199 discard_and_undo:
5200         tcp_clear_options(&tp->rx_opt);
5201         tp->rx_opt.mss_clamp = saved_clamp;
5202         goto discard;
5203
5204 reset_and_undo:
5205         tcp_clear_options(&tp->rx_opt);
5206         tp->rx_opt.mss_clamp = saved_clamp;
5207         return 1;
5208 }
5209
5210 /*
5211  *      This function implements the receiving procedure of RFC 793 for
5212  *      all states except ESTABLISHED and TIME_WAIT.
5213  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5214  *      address independent.
5215  */
5216
5217 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5218                           struct tcphdr *th, unsigned len)
5219 {
5220         struct tcp_sock *tp = tcp_sk(sk);
5221         struct inet_connection_sock *icsk = inet_csk(sk);
5222         int queued = 0;
5223
5224         tp->rx_opt.saw_tstamp = 0;
5225
5226         switch (sk->sk_state) {
5227         case TCP_CLOSE:
5228                 goto discard;
5229
5230         case TCP_LISTEN:
5231                 if (th->ack)
5232                         return 1;
5233
5234                 if (th->rst)
5235                         goto discard;
5236
5237                 if (th->syn) {
5238                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5239                                 return 1;
5240
5241                         /* Now we have several options: In theory there is
5242                          * nothing else in the frame. KA9Q has an option to
5243                          * send data with the syn, BSD accepts data with the
5244                          * syn up to the [to be] advertised window and
5245                          * Solaris 2.1 gives you a protocol error. For now
5246                          * we just ignore it, that fits the spec precisely
5247                          * and avoids incompatibilities. It would be nice in
5248                          * future to drop through and process the data.
5249                          *
5250                          * Now that TTCP is starting to be used we ought to
5251                          * queue this data.
5252                          * But, this leaves one open to an easy denial of
5253                          * service attack, and SYN cookies can't defend
5254                          * against this problem. So, we drop the data
5255                          * in the interest of security over speed unless
5256                          * it's still in use.
5257                          */
5258                         kfree_skb(skb);
5259                         return 0;
5260                 }
5261                 goto discard;
5262
5263         case TCP_SYN_SENT:
5264                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5265                 if (queued >= 0)
5266                         return queued;
5267
5268                 /* Do step6 onward by hand. */
5269                 tcp_urg(sk, skb, th);
5270                 __kfree_skb(skb);
5271                 tcp_data_snd_check(sk);
5272                 return 0;
5273         }
5274
5275         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5276             tcp_paws_discard(sk, skb)) {
5277                 if (!th->rst) {
5278                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5279                         tcp_send_dupack(sk, skb);
5280                         goto discard;
5281                 }
5282                 /* Reset is accepted even if it did not pass PAWS. */
5283         }
5284
5285         /* step 1: check sequence number */
5286         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5287                 if (!th->rst)
5288                         tcp_send_dupack(sk, skb);
5289                 goto discard;
5290         }
5291
5292         /* step 2: check RST bit */
5293         if (th->rst) {
5294                 tcp_reset(sk);
5295                 goto discard;
5296         }
5297
5298         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5299
5300         /* step 3: check security and precedence [ignored] */
5301
5302         /*      step 4:
5303          *
5304          *      Check for a SYN in window.
5305          */
5306         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5307                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5308                 tcp_reset(sk);
5309                 return 1;
5310         }
5311
5312         /* step 5: check the ACK field */
5313         if (th->ack) {
5314                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5315
5316                 switch (sk->sk_state) {
5317                 case TCP_SYN_RECV:
5318                         if (acceptable) {
5319                                 tp->copied_seq = tp->rcv_nxt;
5320                                 smp_mb();
5321                                 tcp_set_state(sk, TCP_ESTABLISHED);
5322                                 sk->sk_state_change(sk);
5323
5324                                 /* Note, that this wakeup is only for marginal
5325                                  * crossed SYN case. Passively open sockets
5326                                  * are not waked up, because sk->sk_sleep ==
5327                                  * NULL and sk->sk_socket == NULL.
5328                                  */
5329                                 if (sk->sk_socket)
5330                                         sk_wake_async(sk,
5331                                                       SOCK_WAKE_IO, POLL_OUT);
5332
5333                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5334                                 tp->snd_wnd = ntohs(th->window) <<
5335                                               tp->rx_opt.snd_wscale;
5336                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5337                                             TCP_SKB_CB(skb)->seq);
5338
5339                                 /* tcp_ack considers this ACK as duplicate
5340                                  * and does not calculate rtt.
5341                                  * Fix it at least with timestamps.
5342                                  */
5343                                 if (tp->rx_opt.saw_tstamp &&
5344                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5345                                         tcp_ack_saw_tstamp(sk, 0);
5346
5347                                 if (tp->rx_opt.tstamp_ok)
5348                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5349
5350                                 /* Make sure socket is routed, for
5351                                  * correct metrics.
5352                                  */
5353                                 icsk->icsk_af_ops->rebuild_header(sk);
5354
5355                                 tcp_init_metrics(sk);
5356
5357                                 tcp_init_congestion_control(sk);
5358
5359                                 /* Prevent spurious tcp_cwnd_restart() on
5360                                  * first data packet.
5361                                  */
5362                                 tp->lsndtime = tcp_time_stamp;
5363
5364                                 tcp_mtup_init(sk);
5365                                 tcp_initialize_rcv_mss(sk);
5366                                 tcp_init_buffer_space(sk);
5367                                 tcp_fast_path_on(tp);
5368                         } else {
5369                                 return 1;
5370                         }
5371                         break;
5372
5373                 case TCP_FIN_WAIT1:
5374                         if (tp->snd_una == tp->write_seq) {
5375                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5376                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5377                                 dst_confirm(sk->sk_dst_cache);
5378
5379                                 if (!sock_flag(sk, SOCK_DEAD))
5380                                         /* Wake up lingering close() */
5381                                         sk->sk_state_change(sk);
5382                                 else {
5383                                         int tmo;
5384
5385                                         if (tp->linger2 < 0 ||
5386                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5387                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5388                                                 tcp_done(sk);
5389                                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5390                                                 return 1;
5391                                         }
5392
5393                                         tmo = tcp_fin_time(sk);
5394                                         if (tmo > TCP_TIMEWAIT_LEN) {
5395                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5396                                         } else if (th->fin || sock_owned_by_user(sk)) {
5397                                                 /* Bad case. We could lose such FIN otherwise.
5398                                                  * It is not a big problem, but it looks confusing
5399                                                  * and not so rare event. We still can lose it now,
5400                                                  * if it spins in bh_lock_sock(), but it is really
5401                                                  * marginal case.
5402                                                  */
5403                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5404                                         } else {
5405                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5406                                                 goto discard;
5407                                         }
5408                                 }
5409                         }
5410                         break;
5411
5412                 case TCP_CLOSING:
5413                         if (tp->snd_una == tp->write_seq) {
5414                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5415                                 goto discard;
5416                         }
5417                         break;
5418
5419                 case TCP_LAST_ACK:
5420                         if (tp->snd_una == tp->write_seq) {
5421                                 tcp_update_metrics(sk);
5422                                 tcp_done(sk);
5423                                 goto discard;
5424                         }
5425                         break;
5426                 }
5427         } else
5428                 goto discard;
5429
5430         /* step 6: check the URG bit */
5431         tcp_urg(sk, skb, th);
5432
5433         /* step 7: process the segment text */
5434         switch (sk->sk_state) {
5435         case TCP_CLOSE_WAIT:
5436         case TCP_CLOSING:
5437         case TCP_LAST_ACK:
5438                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5439                         break;
5440         case TCP_FIN_WAIT1:
5441         case TCP_FIN_WAIT2:
5442                 /* RFC 793 says to queue data in these states,
5443                  * RFC 1122 says we MUST send a reset.
5444                  * BSD 4.4 also does reset.
5445                  */
5446                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5447                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5448                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5449                                 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5450                                 tcp_reset(sk);
5451                                 return 1;
5452                         }
5453                 }
5454                 /* Fall through */
5455         case TCP_ESTABLISHED:
5456                 tcp_data_queue(sk, skb);
5457                 queued = 1;
5458                 break;
5459         }
5460
5461         /* tcp_data could move socket to TIME-WAIT */
5462         if (sk->sk_state != TCP_CLOSE) {
5463                 tcp_data_snd_check(sk);
5464                 tcp_ack_snd_check(sk);
5465         }
5466
5467         if (!queued) {
5468 discard:
5469                 __kfree_skb(skb);
5470         }
5471         return 0;
5472 }
5473
5474 EXPORT_SYMBOL(sysctl_tcp_ecn);
5475 EXPORT_SYMBOL(sysctl_tcp_reordering);
5476 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5477 EXPORT_SYMBOL(tcp_parse_options);
5478 #ifdef CONFIG_TCP_MD5SIG
5479 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5480 #endif
5481 EXPORT_SYMBOL(tcp_rcv_established);
5482 EXPORT_SYMBOL(tcp_rcv_state_process);
5483 EXPORT_SYMBOL(tcp_initialize_rcv_mss);