2 * Isochronous I/O functionality:
3 * - Isochronous DMA context management
4 * - Isochronous bus resource management (channels, bandwidth), client side
6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
29 #include <linux/spinlock.h>
30 #include <linux/vmalloc.h>
32 #include <asm/byteorder.h>
37 * Isochronous DMA context management
40 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
41 int page_count, enum dma_data_direction direction)
46 buffer->page_count = page_count;
47 buffer->direction = direction;
49 buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
51 if (buffer->pages == NULL)
54 for (i = 0; i < buffer->page_count; i++) {
55 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
56 if (buffer->pages[i] == NULL)
59 address = dma_map_page(card->device, buffer->pages[i],
60 0, PAGE_SIZE, direction);
61 if (dma_mapping_error(card->device, address)) {
62 __free_page(buffer->pages[i]);
65 set_page_private(buffer->pages[i], address);
71 for (j = 0; j < i; j++) {
72 address = page_private(buffer->pages[j]);
73 dma_unmap_page(card->device, address,
74 PAGE_SIZE, direction);
75 __free_page(buffer->pages[j]);
83 EXPORT_SYMBOL(fw_iso_buffer_init);
85 int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
90 uaddr = vma->vm_start;
91 for (i = 0; i < buffer->page_count; i++) {
92 err = vm_insert_page(vma, uaddr, buffer->pages[i]);
102 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
103 struct fw_card *card)
108 for (i = 0; i < buffer->page_count; i++) {
109 address = page_private(buffer->pages[i]);
110 dma_unmap_page(card->device, address,
111 PAGE_SIZE, buffer->direction);
112 __free_page(buffer->pages[i]);
115 kfree(buffer->pages);
116 buffer->pages = NULL;
118 EXPORT_SYMBOL(fw_iso_buffer_destroy);
120 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
121 int type, int channel, int speed, size_t header_size,
122 fw_iso_callback_t callback, void *callback_data)
124 struct fw_iso_context *ctx;
126 ctx = card->driver->allocate_iso_context(card,
127 type, channel, header_size);
133 ctx->channel = channel;
135 ctx->header_size = header_size;
136 ctx->callback = callback;
137 ctx->callback_data = callback_data;
141 EXPORT_SYMBOL(fw_iso_context_create);
143 void fw_iso_context_destroy(struct fw_iso_context *ctx)
145 struct fw_card *card = ctx->card;
147 card->driver->free_iso_context(ctx);
149 EXPORT_SYMBOL(fw_iso_context_destroy);
151 int fw_iso_context_start(struct fw_iso_context *ctx,
152 int cycle, int sync, int tags)
154 return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
156 EXPORT_SYMBOL(fw_iso_context_start);
158 int fw_iso_context_queue(struct fw_iso_context *ctx,
159 struct fw_iso_packet *packet,
160 struct fw_iso_buffer *buffer,
161 unsigned long payload)
163 struct fw_card *card = ctx->card;
165 return card->driver->queue_iso(ctx, packet, buffer, payload);
167 EXPORT_SYMBOL(fw_iso_context_queue);
169 int fw_iso_context_stop(struct fw_iso_context *ctx)
171 return ctx->card->driver->stop_iso(ctx);
173 EXPORT_SYMBOL(fw_iso_context_stop);
176 * Isochronous bus resource management (channels, bandwidth), client side
179 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
180 int bandwidth, bool allocate, __be32 data[2])
182 int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
185 * On a 1394a IRM with low contention, try < 1 is enough.
186 * On a 1394-1995 IRM, we need at least try < 2.
187 * Let's just do try < 5.
189 for (try = 0; try < 5; try++) {
190 new = allocate ? old - bandwidth : old + bandwidth;
191 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
194 data[0] = cpu_to_be32(old);
195 data[1] = cpu_to_be32(new);
196 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
197 irm_id, generation, SCODE_100,
198 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
199 data, sizeof(data))) {
200 case RCODE_GENERATION:
201 /* A generation change frees all bandwidth. */
202 return allocate ? -EAGAIN : bandwidth;
205 if (be32_to_cpup(data) == old)
208 old = be32_to_cpup(data);
216 static int manage_channel(struct fw_card *card, int irm_id, int generation,
217 u32 channels_mask, u64 offset, bool allocate, __be32 data[2])
222 old = all = allocate ? cpu_to_be32(~0) : 0;
224 for (i = 0; i < 32; i++) {
225 if (!(channels_mask & 1 << i))
228 c = cpu_to_be32(1 << (31 - i));
229 if ((old & c) != (all & c))
234 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
235 irm_id, generation, SCODE_100,
236 offset, data, sizeof(data))) {
237 case RCODE_GENERATION:
238 /* A generation change frees all channels. */
239 return allocate ? -EAGAIN : i;
247 /* Is the IRM 1394a-2000 compliant? */
248 if ((data[0] & c) == (data[1] & c))
251 /* 1394-1995 IRM, fall through to retry. */
261 static void deallocate_channel(struct fw_card *card, int irm_id,
262 int generation, int channel, __be32 buffer[2])
267 mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
268 offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
269 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
271 manage_channel(card, irm_id, generation, mask, offset, false, buffer);
275 * fw_iso_resource_manage - Allocate or deallocate a channel and/or bandwidth
277 * In parameters: card, generation, channels_mask, bandwidth, allocate
278 * Out parameters: channel, bandwidth
279 * This function blocks (sleeps) during communication with the IRM.
281 * Allocates or deallocates at most one channel out of channels_mask.
282 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
283 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
284 * channel 0 and LSB for channel 63.)
285 * Allocates or deallocates as many bandwidth allocation units as specified.
287 * Returns channel < 0 if no channel was allocated or deallocated.
288 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
290 * If generation is stale, deallocations succeed but allocations fail with
293 * If channel allocation fails, no bandwidth will be allocated either.
294 * If bandwidth allocation fails, no channel will be allocated either.
295 * But deallocations of channel and bandwidth are tried independently
296 * of each other's success.
298 void fw_iso_resource_manage(struct fw_card *card, int generation,
299 u64 channels_mask, int *channel, int *bandwidth,
300 bool allocate, __be32 buffer[2])
302 u32 channels_hi = channels_mask; /* channels 31...0 */
303 u32 channels_lo = channels_mask >> 32; /* channels 63...32 */
304 int irm_id, ret, c = -EINVAL;
306 spin_lock_irq(&card->lock);
307 irm_id = card->irm_node->node_id;
308 spin_unlock_irq(&card->lock);
311 c = manage_channel(card, irm_id, generation, channels_hi,
312 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
314 if (channels_lo && c < 0) {
315 c = manage_channel(card, irm_id, generation, channels_lo,
316 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
323 if (allocate && channels_mask != 0 && c < 0)
329 ret = manage_bandwidth(card, irm_id, generation, *bandwidth,
334 if (allocate && ret < 0 && c >= 0) {
335 deallocate_channel(card, irm_id, generation, c, buffer);