Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux...
[linux-2.6] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
25
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27                       *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_key *ins_key,
30                       struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32                           struct btrfs_root *root, struct extent_buffer *dst,
33                           struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35                               struct btrfs_root *root,
36                               struct extent_buffer *dst_buf,
37                               struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39                    struct btrfs_path *path, int level, int slot);
40
41 struct btrfs_path *btrfs_alloc_path(void)
42 {
43         struct btrfs_path *path;
44         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
45         if (path)
46                 path->reada = 1;
47         return path;
48 }
49
50 /*
51  * set all locked nodes in the path to blocking locks.  This should
52  * be done before scheduling
53  */
54 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
55 {
56         int i;
57         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
58                 if (p->nodes[i] && p->locks[i])
59                         btrfs_set_lock_blocking(p->nodes[i]);
60         }
61 }
62
63 /*
64  * reset all the locked nodes in the patch to spinning locks.
65  *
66  * held is used to keep lockdep happy, when lockdep is enabled
67  * we set held to a blocking lock before we go around and
68  * retake all the spinlocks in the path.  You can safely use NULL
69  * for held
70  */
71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
72                                         struct extent_buffer *held)
73 {
74         int i;
75
76 #ifdef CONFIG_DEBUG_LOCK_ALLOC
77         /* lockdep really cares that we take all of these spinlocks
78          * in the right order.  If any of the locks in the path are not
79          * currently blocking, it is going to complain.  So, make really
80          * really sure by forcing the path to blocking before we clear
81          * the path blocking.
82          */
83         if (held)
84                 btrfs_set_lock_blocking(held);
85         btrfs_set_path_blocking(p);
86 #endif
87
88         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
89                 if (p->nodes[i] && p->locks[i])
90                         btrfs_clear_lock_blocking(p->nodes[i]);
91         }
92
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94         if (held)
95                 btrfs_clear_lock_blocking(held);
96 #endif
97 }
98
99 /* this also releases the path */
100 void btrfs_free_path(struct btrfs_path *p)
101 {
102         btrfs_release_path(NULL, p);
103         kmem_cache_free(btrfs_path_cachep, p);
104 }
105
106 /*
107  * path release drops references on the extent buffers in the path
108  * and it drops any locks held by this path
109  *
110  * It is safe to call this on paths that no locks or extent buffers held.
111  */
112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
113 {
114         int i;
115
116         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
117                 p->slots[i] = 0;
118                 if (!p->nodes[i])
119                         continue;
120                 if (p->locks[i]) {
121                         btrfs_tree_unlock(p->nodes[i]);
122                         p->locks[i] = 0;
123                 }
124                 free_extent_buffer(p->nodes[i]);
125                 p->nodes[i] = NULL;
126         }
127 }
128
129 /*
130  * safely gets a reference on the root node of a tree.  A lock
131  * is not taken, so a concurrent writer may put a different node
132  * at the root of the tree.  See btrfs_lock_root_node for the
133  * looping required.
134  *
135  * The extent buffer returned by this has a reference taken, so
136  * it won't disappear.  It may stop being the root of the tree
137  * at any time because there are no locks held.
138  */
139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
140 {
141         struct extent_buffer *eb;
142         spin_lock(&root->node_lock);
143         eb = root->node;
144         extent_buffer_get(eb);
145         spin_unlock(&root->node_lock);
146         return eb;
147 }
148
149 /* loop around taking references on and locking the root node of the
150  * tree until you end up with a lock on the root.  A locked buffer
151  * is returned, with a reference held.
152  */
153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
154 {
155         struct extent_buffer *eb;
156
157         while (1) {
158                 eb = btrfs_root_node(root);
159                 btrfs_tree_lock(eb);
160
161                 spin_lock(&root->node_lock);
162                 if (eb == root->node) {
163                         spin_unlock(&root->node_lock);
164                         break;
165                 }
166                 spin_unlock(&root->node_lock);
167
168                 btrfs_tree_unlock(eb);
169                 free_extent_buffer(eb);
170         }
171         return eb;
172 }
173
174 /* cowonly root (everything not a reference counted cow subvolume), just get
175  * put onto a simple dirty list.  transaction.c walks this to make sure they
176  * get properly updated on disk.
177  */
178 static void add_root_to_dirty_list(struct btrfs_root *root)
179 {
180         if (root->track_dirty && list_empty(&root->dirty_list)) {
181                 list_add(&root->dirty_list,
182                          &root->fs_info->dirty_cowonly_roots);
183         }
184 }
185
186 /*
187  * used by snapshot creation to make a copy of a root for a tree with
188  * a given objectid.  The buffer with the new root node is returned in
189  * cow_ret, and this func returns zero on success or a negative error code.
190  */
191 int btrfs_copy_root(struct btrfs_trans_handle *trans,
192                       struct btrfs_root *root,
193                       struct extent_buffer *buf,
194                       struct extent_buffer **cow_ret, u64 new_root_objectid)
195 {
196         struct extent_buffer *cow;
197         u32 nritems;
198         int ret = 0;
199         int level;
200         struct btrfs_disk_key disk_key;
201
202         WARN_ON(root->ref_cows && trans->transid !=
203                 root->fs_info->running_transaction->transid);
204         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
205
206         level = btrfs_header_level(buf);
207         nritems = btrfs_header_nritems(buf);
208         if (level == 0)
209                 btrfs_item_key(buf, &disk_key, 0);
210         else
211                 btrfs_node_key(buf, &disk_key, 0);
212
213         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
214                                      new_root_objectid, &disk_key, level,
215                                      buf->start, 0);
216         if (IS_ERR(cow))
217                 return PTR_ERR(cow);
218
219         copy_extent_buffer(cow, buf, 0, 0, cow->len);
220         btrfs_set_header_bytenr(cow, cow->start);
221         btrfs_set_header_generation(cow, trans->transid);
222         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
223         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
224                                      BTRFS_HEADER_FLAG_RELOC);
225         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
226                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
227         else
228                 btrfs_set_header_owner(cow, new_root_objectid);
229
230         write_extent_buffer(cow, root->fs_info->fsid,
231                             (unsigned long)btrfs_header_fsid(cow),
232                             BTRFS_FSID_SIZE);
233
234         WARN_ON(btrfs_header_generation(buf) > trans->transid);
235         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
236                 ret = btrfs_inc_ref(trans, root, cow, 1);
237         else
238                 ret = btrfs_inc_ref(trans, root, cow, 0);
239
240         if (ret)
241                 return ret;
242
243         btrfs_mark_buffer_dirty(cow);
244         *cow_ret = cow;
245         return 0;
246 }
247
248 /*
249  * check if the tree block can be shared by multiple trees
250  */
251 int btrfs_block_can_be_shared(struct btrfs_root *root,
252                               struct extent_buffer *buf)
253 {
254         /*
255          * Tree blocks not in refernece counted trees and tree roots
256          * are never shared. If a block was allocated after the last
257          * snapshot and the block was not allocated by tree relocation,
258          * we know the block is not shared.
259          */
260         if (root->ref_cows &&
261             buf != root->node && buf != root->commit_root &&
262             (btrfs_header_generation(buf) <=
263              btrfs_root_last_snapshot(&root->root_item) ||
264              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
265                 return 1;
266 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
267         if (root->ref_cows &&
268             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
269                 return 1;
270 #endif
271         return 0;
272 }
273
274 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
275                                        struct btrfs_root *root,
276                                        struct extent_buffer *buf,
277                                        struct extent_buffer *cow)
278 {
279         u64 refs;
280         u64 owner;
281         u64 flags;
282         u64 new_flags = 0;
283         int ret;
284
285         /*
286          * Backrefs update rules:
287          *
288          * Always use full backrefs for extent pointers in tree block
289          * allocated by tree relocation.
290          *
291          * If a shared tree block is no longer referenced by its owner
292          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
293          * use full backrefs for extent pointers in tree block.
294          *
295          * If a tree block is been relocating
296          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
297          * use full backrefs for extent pointers in tree block.
298          * The reason for this is some operations (such as drop tree)
299          * are only allowed for blocks use full backrefs.
300          */
301
302         if (btrfs_block_can_be_shared(root, buf)) {
303                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
304                                                buf->len, &refs, &flags);
305                 BUG_ON(ret);
306                 BUG_ON(refs == 0);
307         } else {
308                 refs = 1;
309                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
310                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
311                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
312                 else
313                         flags = 0;
314         }
315
316         owner = btrfs_header_owner(buf);
317         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
318                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
319
320         if (refs > 1) {
321                 if ((owner == root->root_key.objectid ||
322                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
323                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
324                         ret = btrfs_inc_ref(trans, root, buf, 1);
325                         BUG_ON(ret);
326
327                         if (root->root_key.objectid ==
328                             BTRFS_TREE_RELOC_OBJECTID) {
329                                 ret = btrfs_dec_ref(trans, root, buf, 0);
330                                 BUG_ON(ret);
331                                 ret = btrfs_inc_ref(trans, root, cow, 1);
332                                 BUG_ON(ret);
333                         }
334                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
335                 } else {
336
337                         if (root->root_key.objectid ==
338                             BTRFS_TREE_RELOC_OBJECTID)
339                                 ret = btrfs_inc_ref(trans, root, cow, 1);
340                         else
341                                 ret = btrfs_inc_ref(trans, root, cow, 0);
342                         BUG_ON(ret);
343                 }
344                 if (new_flags != 0) {
345                         ret = btrfs_set_disk_extent_flags(trans, root,
346                                                           buf->start,
347                                                           buf->len,
348                                                           new_flags, 0);
349                         BUG_ON(ret);
350                 }
351         } else {
352                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
353                         if (root->root_key.objectid ==
354                             BTRFS_TREE_RELOC_OBJECTID)
355                                 ret = btrfs_inc_ref(trans, root, cow, 1);
356                         else
357                                 ret = btrfs_inc_ref(trans, root, cow, 0);
358                         BUG_ON(ret);
359                         ret = btrfs_dec_ref(trans, root, buf, 1);
360                         BUG_ON(ret);
361                 }
362                 clean_tree_block(trans, root, buf);
363         }
364         return 0;
365 }
366
367 /*
368  * does the dirty work in cow of a single block.  The parent block (if
369  * supplied) is updated to point to the new cow copy.  The new buffer is marked
370  * dirty and returned locked.  If you modify the block it needs to be marked
371  * dirty again.
372  *
373  * search_start -- an allocation hint for the new block
374  *
375  * empty_size -- a hint that you plan on doing more cow.  This is the size in
376  * bytes the allocator should try to find free next to the block it returns.
377  * This is just a hint and may be ignored by the allocator.
378  */
379 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
380                              struct btrfs_root *root,
381                              struct extent_buffer *buf,
382                              struct extent_buffer *parent, int parent_slot,
383                              struct extent_buffer **cow_ret,
384                              u64 search_start, u64 empty_size)
385 {
386         struct btrfs_disk_key disk_key;
387         struct extent_buffer *cow;
388         int level;
389         int unlock_orig = 0;
390         u64 parent_start;
391
392         if (*cow_ret == buf)
393                 unlock_orig = 1;
394
395         btrfs_assert_tree_locked(buf);
396
397         WARN_ON(root->ref_cows && trans->transid !=
398                 root->fs_info->running_transaction->transid);
399         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
400
401         level = btrfs_header_level(buf);
402
403         if (level == 0)
404                 btrfs_item_key(buf, &disk_key, 0);
405         else
406                 btrfs_node_key(buf, &disk_key, 0);
407
408         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
409                 if (parent)
410                         parent_start = parent->start;
411                 else
412                         parent_start = 0;
413         } else
414                 parent_start = 0;
415
416         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
417                                      root->root_key.objectid, &disk_key,
418                                      level, search_start, empty_size);
419         if (IS_ERR(cow))
420                 return PTR_ERR(cow);
421
422         /* cow is set to blocking by btrfs_init_new_buffer */
423
424         copy_extent_buffer(cow, buf, 0, 0, cow->len);
425         btrfs_set_header_bytenr(cow, cow->start);
426         btrfs_set_header_generation(cow, trans->transid);
427         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
428         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
429                                      BTRFS_HEADER_FLAG_RELOC);
430         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
431                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
432         else
433                 btrfs_set_header_owner(cow, root->root_key.objectid);
434
435         write_extent_buffer(cow, root->fs_info->fsid,
436                             (unsigned long)btrfs_header_fsid(cow),
437                             BTRFS_FSID_SIZE);
438
439         update_ref_for_cow(trans, root, buf, cow);
440
441         if (buf == root->node) {
442                 WARN_ON(parent && parent != buf);
443                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
444                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
445                         parent_start = buf->start;
446                 else
447                         parent_start = 0;
448
449                 spin_lock(&root->node_lock);
450                 root->node = cow;
451                 extent_buffer_get(cow);
452                 spin_unlock(&root->node_lock);
453
454                 btrfs_free_extent(trans, root, buf->start, buf->len,
455                                   parent_start, root->root_key.objectid,
456                                   level, 0);
457                 free_extent_buffer(buf);
458                 add_root_to_dirty_list(root);
459         } else {
460                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
461                         parent_start = parent->start;
462                 else
463                         parent_start = 0;
464
465                 WARN_ON(trans->transid != btrfs_header_generation(parent));
466                 btrfs_set_node_blockptr(parent, parent_slot,
467                                         cow->start);
468                 btrfs_set_node_ptr_generation(parent, parent_slot,
469                                               trans->transid);
470                 btrfs_mark_buffer_dirty(parent);
471                 btrfs_free_extent(trans, root, buf->start, buf->len,
472                                   parent_start, root->root_key.objectid,
473                                   level, 0);
474         }
475         if (unlock_orig)
476                 btrfs_tree_unlock(buf);
477         free_extent_buffer(buf);
478         btrfs_mark_buffer_dirty(cow);
479         *cow_ret = cow;
480         return 0;
481 }
482
483 static inline int should_cow_block(struct btrfs_trans_handle *trans,
484                                    struct btrfs_root *root,
485                                    struct extent_buffer *buf)
486 {
487         if (btrfs_header_generation(buf) == trans->transid &&
488             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
489             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
490               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
491                 return 0;
492         return 1;
493 }
494
495 /*
496  * cows a single block, see __btrfs_cow_block for the real work.
497  * This version of it has extra checks so that a block isn't cow'd more than
498  * once per transaction, as long as it hasn't been written yet
499  */
500 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
501                     struct btrfs_root *root, struct extent_buffer *buf,
502                     struct extent_buffer *parent, int parent_slot,
503                     struct extent_buffer **cow_ret)
504 {
505         u64 search_start;
506         int ret;
507
508         if (trans->transaction != root->fs_info->running_transaction) {
509                 printk(KERN_CRIT "trans %llu running %llu\n",
510                        (unsigned long long)trans->transid,
511                        (unsigned long long)
512                        root->fs_info->running_transaction->transid);
513                 WARN_ON(1);
514         }
515         if (trans->transid != root->fs_info->generation) {
516                 printk(KERN_CRIT "trans %llu running %llu\n",
517                        (unsigned long long)trans->transid,
518                        (unsigned long long)root->fs_info->generation);
519                 WARN_ON(1);
520         }
521
522         if (!should_cow_block(trans, root, buf)) {
523                 *cow_ret = buf;
524                 return 0;
525         }
526
527         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
528
529         if (parent)
530                 btrfs_set_lock_blocking(parent);
531         btrfs_set_lock_blocking(buf);
532
533         ret = __btrfs_cow_block(trans, root, buf, parent,
534                                  parent_slot, cow_ret, search_start, 0);
535         return ret;
536 }
537
538 /*
539  * helper function for defrag to decide if two blocks pointed to by a
540  * node are actually close by
541  */
542 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
543 {
544         if (blocknr < other && other - (blocknr + blocksize) < 32768)
545                 return 1;
546         if (blocknr > other && blocknr - (other + blocksize) < 32768)
547                 return 1;
548         return 0;
549 }
550
551 /*
552  * compare two keys in a memcmp fashion
553  */
554 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
555 {
556         struct btrfs_key k1;
557
558         btrfs_disk_key_to_cpu(&k1, disk);
559
560         if (k1.objectid > k2->objectid)
561                 return 1;
562         if (k1.objectid < k2->objectid)
563                 return -1;
564         if (k1.type > k2->type)
565                 return 1;
566         if (k1.type < k2->type)
567                 return -1;
568         if (k1.offset > k2->offset)
569                 return 1;
570         if (k1.offset < k2->offset)
571                 return -1;
572         return 0;
573 }
574
575 /*
576  * same as comp_keys only with two btrfs_key's
577  */
578 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
579 {
580         if (k1->objectid > k2->objectid)
581                 return 1;
582         if (k1->objectid < k2->objectid)
583                 return -1;
584         if (k1->type > k2->type)
585                 return 1;
586         if (k1->type < k2->type)
587                 return -1;
588         if (k1->offset > k2->offset)
589                 return 1;
590         if (k1->offset < k2->offset)
591                 return -1;
592         return 0;
593 }
594
595 /*
596  * this is used by the defrag code to go through all the
597  * leaves pointed to by a node and reallocate them so that
598  * disk order is close to key order
599  */
600 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
601                        struct btrfs_root *root, struct extent_buffer *parent,
602                        int start_slot, int cache_only, u64 *last_ret,
603                        struct btrfs_key *progress)
604 {
605         struct extent_buffer *cur;
606         u64 blocknr;
607         u64 gen;
608         u64 search_start = *last_ret;
609         u64 last_block = 0;
610         u64 other;
611         u32 parent_nritems;
612         int end_slot;
613         int i;
614         int err = 0;
615         int parent_level;
616         int uptodate;
617         u32 blocksize;
618         int progress_passed = 0;
619         struct btrfs_disk_key disk_key;
620
621         parent_level = btrfs_header_level(parent);
622         if (cache_only && parent_level != 1)
623                 return 0;
624
625         if (trans->transaction != root->fs_info->running_transaction)
626                 WARN_ON(1);
627         if (trans->transid != root->fs_info->generation)
628                 WARN_ON(1);
629
630         parent_nritems = btrfs_header_nritems(parent);
631         blocksize = btrfs_level_size(root, parent_level - 1);
632         end_slot = parent_nritems;
633
634         if (parent_nritems == 1)
635                 return 0;
636
637         btrfs_set_lock_blocking(parent);
638
639         for (i = start_slot; i < end_slot; i++) {
640                 int close = 1;
641
642                 if (!parent->map_token) {
643                         map_extent_buffer(parent,
644                                         btrfs_node_key_ptr_offset(i),
645                                         sizeof(struct btrfs_key_ptr),
646                                         &parent->map_token, &parent->kaddr,
647                                         &parent->map_start, &parent->map_len,
648                                         KM_USER1);
649                 }
650                 btrfs_node_key(parent, &disk_key, i);
651                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
652                         continue;
653
654                 progress_passed = 1;
655                 blocknr = btrfs_node_blockptr(parent, i);
656                 gen = btrfs_node_ptr_generation(parent, i);
657                 if (last_block == 0)
658                         last_block = blocknr;
659
660                 if (i > 0) {
661                         other = btrfs_node_blockptr(parent, i - 1);
662                         close = close_blocks(blocknr, other, blocksize);
663                 }
664                 if (!close && i < end_slot - 2) {
665                         other = btrfs_node_blockptr(parent, i + 1);
666                         close = close_blocks(blocknr, other, blocksize);
667                 }
668                 if (close) {
669                         last_block = blocknr;
670                         continue;
671                 }
672                 if (parent->map_token) {
673                         unmap_extent_buffer(parent, parent->map_token,
674                                             KM_USER1);
675                         parent->map_token = NULL;
676                 }
677
678                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
679                 if (cur)
680                         uptodate = btrfs_buffer_uptodate(cur, gen);
681                 else
682                         uptodate = 0;
683                 if (!cur || !uptodate) {
684                         if (cache_only) {
685                                 free_extent_buffer(cur);
686                                 continue;
687                         }
688                         if (!cur) {
689                                 cur = read_tree_block(root, blocknr,
690                                                          blocksize, gen);
691                         } else if (!uptodate) {
692                                 btrfs_read_buffer(cur, gen);
693                         }
694                 }
695                 if (search_start == 0)
696                         search_start = last_block;
697
698                 btrfs_tree_lock(cur);
699                 btrfs_set_lock_blocking(cur);
700                 err = __btrfs_cow_block(trans, root, cur, parent, i,
701                                         &cur, search_start,
702                                         min(16 * blocksize,
703                                             (end_slot - i) * blocksize));
704                 if (err) {
705                         btrfs_tree_unlock(cur);
706                         free_extent_buffer(cur);
707                         break;
708                 }
709                 search_start = cur->start;
710                 last_block = cur->start;
711                 *last_ret = search_start;
712                 btrfs_tree_unlock(cur);
713                 free_extent_buffer(cur);
714         }
715         if (parent->map_token) {
716                 unmap_extent_buffer(parent, parent->map_token,
717                                     KM_USER1);
718                 parent->map_token = NULL;
719         }
720         return err;
721 }
722
723 /*
724  * The leaf data grows from end-to-front in the node.
725  * this returns the address of the start of the last item,
726  * which is the stop of the leaf data stack
727  */
728 static inline unsigned int leaf_data_end(struct btrfs_root *root,
729                                          struct extent_buffer *leaf)
730 {
731         u32 nr = btrfs_header_nritems(leaf);
732         if (nr == 0)
733                 return BTRFS_LEAF_DATA_SIZE(root);
734         return btrfs_item_offset_nr(leaf, nr - 1);
735 }
736
737 /*
738  * extra debugging checks to make sure all the items in a key are
739  * well formed and in the proper order
740  */
741 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
742                       int level)
743 {
744         struct extent_buffer *parent = NULL;
745         struct extent_buffer *node = path->nodes[level];
746         struct btrfs_disk_key parent_key;
747         struct btrfs_disk_key node_key;
748         int parent_slot;
749         int slot;
750         struct btrfs_key cpukey;
751         u32 nritems = btrfs_header_nritems(node);
752
753         if (path->nodes[level + 1])
754                 parent = path->nodes[level + 1];
755
756         slot = path->slots[level];
757         BUG_ON(nritems == 0);
758         if (parent) {
759                 parent_slot = path->slots[level + 1];
760                 btrfs_node_key(parent, &parent_key, parent_slot);
761                 btrfs_node_key(node, &node_key, 0);
762                 BUG_ON(memcmp(&parent_key, &node_key,
763                               sizeof(struct btrfs_disk_key)));
764                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
765                        btrfs_header_bytenr(node));
766         }
767         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
768         if (slot != 0) {
769                 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
770                 btrfs_node_key(node, &node_key, slot);
771                 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
772         }
773         if (slot < nritems - 1) {
774                 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
775                 btrfs_node_key(node, &node_key, slot);
776                 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
777         }
778         return 0;
779 }
780
781 /*
782  * extra checking to make sure all the items in a leaf are
783  * well formed and in the proper order
784  */
785 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
786                       int level)
787 {
788         struct extent_buffer *leaf = path->nodes[level];
789         struct extent_buffer *parent = NULL;
790         int parent_slot;
791         struct btrfs_key cpukey;
792         struct btrfs_disk_key parent_key;
793         struct btrfs_disk_key leaf_key;
794         int slot = path->slots[0];
795
796         u32 nritems = btrfs_header_nritems(leaf);
797
798         if (path->nodes[level + 1])
799                 parent = path->nodes[level + 1];
800
801         if (nritems == 0)
802                 return 0;
803
804         if (parent) {
805                 parent_slot = path->slots[level + 1];
806                 btrfs_node_key(parent, &parent_key, parent_slot);
807                 btrfs_item_key(leaf, &leaf_key, 0);
808
809                 BUG_ON(memcmp(&parent_key, &leaf_key,
810                        sizeof(struct btrfs_disk_key)));
811                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
812                        btrfs_header_bytenr(leaf));
813         }
814         if (slot != 0 && slot < nritems - 1) {
815                 btrfs_item_key(leaf, &leaf_key, slot);
816                 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
817                 if (comp_keys(&leaf_key, &cpukey) <= 0) {
818                         btrfs_print_leaf(root, leaf);
819                         printk(KERN_CRIT "slot %d offset bad key\n", slot);
820                         BUG_ON(1);
821                 }
822                 if (btrfs_item_offset_nr(leaf, slot - 1) !=
823                        btrfs_item_end_nr(leaf, slot)) {
824                         btrfs_print_leaf(root, leaf);
825                         printk(KERN_CRIT "slot %d offset bad\n", slot);
826                         BUG_ON(1);
827                 }
828         }
829         if (slot < nritems - 1) {
830                 btrfs_item_key(leaf, &leaf_key, slot);
831                 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
832                 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
833                 if (btrfs_item_offset_nr(leaf, slot) !=
834                         btrfs_item_end_nr(leaf, slot + 1)) {
835                         btrfs_print_leaf(root, leaf);
836                         printk(KERN_CRIT "slot %d offset bad\n", slot);
837                         BUG_ON(1);
838                 }
839         }
840         BUG_ON(btrfs_item_offset_nr(leaf, 0) +
841                btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
842         return 0;
843 }
844
845 static noinline int check_block(struct btrfs_root *root,
846                                 struct btrfs_path *path, int level)
847 {
848         return 0;
849         if (level == 0)
850                 return check_leaf(root, path, level);
851         return check_node(root, path, level);
852 }
853
854 /*
855  * search for key in the extent_buffer.  The items start at offset p,
856  * and they are item_size apart.  There are 'max' items in p.
857  *
858  * the slot in the array is returned via slot, and it points to
859  * the place where you would insert key if it is not found in
860  * the array.
861  *
862  * slot may point to max if the key is bigger than all of the keys
863  */
864 static noinline int generic_bin_search(struct extent_buffer *eb,
865                                        unsigned long p,
866                                        int item_size, struct btrfs_key *key,
867                                        int max, int *slot)
868 {
869         int low = 0;
870         int high = max;
871         int mid;
872         int ret;
873         struct btrfs_disk_key *tmp = NULL;
874         struct btrfs_disk_key unaligned;
875         unsigned long offset;
876         char *map_token = NULL;
877         char *kaddr = NULL;
878         unsigned long map_start = 0;
879         unsigned long map_len = 0;
880         int err;
881
882         while (low < high) {
883                 mid = (low + high) / 2;
884                 offset = p + mid * item_size;
885
886                 if (!map_token || offset < map_start ||
887                     (offset + sizeof(struct btrfs_disk_key)) >
888                     map_start + map_len) {
889                         if (map_token) {
890                                 unmap_extent_buffer(eb, map_token, KM_USER0);
891                                 map_token = NULL;
892                         }
893
894                         err = map_private_extent_buffer(eb, offset,
895                                                 sizeof(struct btrfs_disk_key),
896                                                 &map_token, &kaddr,
897                                                 &map_start, &map_len, KM_USER0);
898
899                         if (!err) {
900                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
901                                                         map_start);
902                         } else {
903                                 read_extent_buffer(eb, &unaligned,
904                                                    offset, sizeof(unaligned));
905                                 tmp = &unaligned;
906                         }
907
908                 } else {
909                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
910                                                         map_start);
911                 }
912                 ret = comp_keys(tmp, key);
913
914                 if (ret < 0)
915                         low = mid + 1;
916                 else if (ret > 0)
917                         high = mid;
918                 else {
919                         *slot = mid;
920                         if (map_token)
921                                 unmap_extent_buffer(eb, map_token, KM_USER0);
922                         return 0;
923                 }
924         }
925         *slot = low;
926         if (map_token)
927                 unmap_extent_buffer(eb, map_token, KM_USER0);
928         return 1;
929 }
930
931 /*
932  * simple bin_search frontend that does the right thing for
933  * leaves vs nodes
934  */
935 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
936                       int level, int *slot)
937 {
938         if (level == 0) {
939                 return generic_bin_search(eb,
940                                           offsetof(struct btrfs_leaf, items),
941                                           sizeof(struct btrfs_item),
942                                           key, btrfs_header_nritems(eb),
943                                           slot);
944         } else {
945                 return generic_bin_search(eb,
946                                           offsetof(struct btrfs_node, ptrs),
947                                           sizeof(struct btrfs_key_ptr),
948                                           key, btrfs_header_nritems(eb),
949                                           slot);
950         }
951         return -1;
952 }
953
954 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
955                      int level, int *slot)
956 {
957         return bin_search(eb, key, level, slot);
958 }
959
960 /* given a node and slot number, this reads the blocks it points to.  The
961  * extent buffer is returned with a reference taken (but unlocked).
962  * NULL is returned on error.
963  */
964 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
965                                    struct extent_buffer *parent, int slot)
966 {
967         int level = btrfs_header_level(parent);
968         if (slot < 0)
969                 return NULL;
970         if (slot >= btrfs_header_nritems(parent))
971                 return NULL;
972
973         BUG_ON(level == 0);
974
975         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
976                        btrfs_level_size(root, level - 1),
977                        btrfs_node_ptr_generation(parent, slot));
978 }
979
980 /*
981  * node level balancing, used to make sure nodes are in proper order for
982  * item deletion.  We balance from the top down, so we have to make sure
983  * that a deletion won't leave an node completely empty later on.
984  */
985 static noinline int balance_level(struct btrfs_trans_handle *trans,
986                          struct btrfs_root *root,
987                          struct btrfs_path *path, int level)
988 {
989         struct extent_buffer *right = NULL;
990         struct extent_buffer *mid;
991         struct extent_buffer *left = NULL;
992         struct extent_buffer *parent = NULL;
993         int ret = 0;
994         int wret;
995         int pslot;
996         int orig_slot = path->slots[level];
997         int err_on_enospc = 0;
998         u64 orig_ptr;
999
1000         if (level == 0)
1001                 return 0;
1002
1003         mid = path->nodes[level];
1004
1005         WARN_ON(!path->locks[level]);
1006         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1007
1008         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1009
1010         if (level < BTRFS_MAX_LEVEL - 1)
1011                 parent = path->nodes[level + 1];
1012         pslot = path->slots[level + 1];
1013
1014         /*
1015          * deal with the case where there is only one pointer in the root
1016          * by promoting the node below to a root
1017          */
1018         if (!parent) {
1019                 struct extent_buffer *child;
1020
1021                 if (btrfs_header_nritems(mid) != 1)
1022                         return 0;
1023
1024                 /* promote the child to a root */
1025                 child = read_node_slot(root, mid, 0);
1026                 BUG_ON(!child);
1027                 btrfs_tree_lock(child);
1028                 btrfs_set_lock_blocking(child);
1029                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1030                 BUG_ON(ret);
1031
1032                 spin_lock(&root->node_lock);
1033                 root->node = child;
1034                 spin_unlock(&root->node_lock);
1035
1036                 add_root_to_dirty_list(root);
1037                 btrfs_tree_unlock(child);
1038
1039                 path->locks[level] = 0;
1040                 path->nodes[level] = NULL;
1041                 clean_tree_block(trans, root, mid);
1042                 btrfs_tree_unlock(mid);
1043                 /* once for the path */
1044                 free_extent_buffer(mid);
1045                 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
1046                                         0, root->root_key.objectid, level, 1);
1047                 /* once for the root ptr */
1048                 free_extent_buffer(mid);
1049                 return ret;
1050         }
1051         if (btrfs_header_nritems(mid) >
1052             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1053                 return 0;
1054
1055         if (btrfs_header_nritems(mid) > 2)
1056                 return 0;
1057
1058         if (btrfs_header_nritems(mid) < 2)
1059                 err_on_enospc = 1;
1060
1061         left = read_node_slot(root, parent, pslot - 1);
1062         if (left) {
1063                 btrfs_tree_lock(left);
1064                 btrfs_set_lock_blocking(left);
1065                 wret = btrfs_cow_block(trans, root, left,
1066                                        parent, pslot - 1, &left);
1067                 if (wret) {
1068                         ret = wret;
1069                         goto enospc;
1070                 }
1071         }
1072         right = read_node_slot(root, parent, pslot + 1);
1073         if (right) {
1074                 btrfs_tree_lock(right);
1075                 btrfs_set_lock_blocking(right);
1076                 wret = btrfs_cow_block(trans, root, right,
1077                                        parent, pslot + 1, &right);
1078                 if (wret) {
1079                         ret = wret;
1080                         goto enospc;
1081                 }
1082         }
1083
1084         /* first, try to make some room in the middle buffer */
1085         if (left) {
1086                 orig_slot += btrfs_header_nritems(left);
1087                 wret = push_node_left(trans, root, left, mid, 1);
1088                 if (wret < 0)
1089                         ret = wret;
1090                 if (btrfs_header_nritems(mid) < 2)
1091                         err_on_enospc = 1;
1092         }
1093
1094         /*
1095          * then try to empty the right most buffer into the middle
1096          */
1097         if (right) {
1098                 wret = push_node_left(trans, root, mid, right, 1);
1099                 if (wret < 0 && wret != -ENOSPC)
1100                         ret = wret;
1101                 if (btrfs_header_nritems(right) == 0) {
1102                         u64 bytenr = right->start;
1103                         u32 blocksize = right->len;
1104
1105                         clean_tree_block(trans, root, right);
1106                         btrfs_tree_unlock(right);
1107                         free_extent_buffer(right);
1108                         right = NULL;
1109                         wret = del_ptr(trans, root, path, level + 1, pslot +
1110                                        1);
1111                         if (wret)
1112                                 ret = wret;
1113                         wret = btrfs_free_extent(trans, root, bytenr,
1114                                                  blocksize, 0,
1115                                                  root->root_key.objectid,
1116                                                  level, 0);
1117                         if (wret)
1118                                 ret = wret;
1119                 } else {
1120                         struct btrfs_disk_key right_key;
1121                         btrfs_node_key(right, &right_key, 0);
1122                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1123                         btrfs_mark_buffer_dirty(parent);
1124                 }
1125         }
1126         if (btrfs_header_nritems(mid) == 1) {
1127                 /*
1128                  * we're not allowed to leave a node with one item in the
1129                  * tree during a delete.  A deletion from lower in the tree
1130                  * could try to delete the only pointer in this node.
1131                  * So, pull some keys from the left.
1132                  * There has to be a left pointer at this point because
1133                  * otherwise we would have pulled some pointers from the
1134                  * right
1135                  */
1136                 BUG_ON(!left);
1137                 wret = balance_node_right(trans, root, mid, left);
1138                 if (wret < 0) {
1139                         ret = wret;
1140                         goto enospc;
1141                 }
1142                 if (wret == 1) {
1143                         wret = push_node_left(trans, root, left, mid, 1);
1144                         if (wret < 0)
1145                                 ret = wret;
1146                 }
1147                 BUG_ON(wret == 1);
1148         }
1149         if (btrfs_header_nritems(mid) == 0) {
1150                 /* we've managed to empty the middle node, drop it */
1151                 u64 bytenr = mid->start;
1152                 u32 blocksize = mid->len;
1153
1154                 clean_tree_block(trans, root, mid);
1155                 btrfs_tree_unlock(mid);
1156                 free_extent_buffer(mid);
1157                 mid = NULL;
1158                 wret = del_ptr(trans, root, path, level + 1, pslot);
1159                 if (wret)
1160                         ret = wret;
1161                 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1162                                          0, root->root_key.objectid,
1163                                          level, 0);
1164                 if (wret)
1165                         ret = wret;
1166         } else {
1167                 /* update the parent key to reflect our changes */
1168                 struct btrfs_disk_key mid_key;
1169                 btrfs_node_key(mid, &mid_key, 0);
1170                 btrfs_set_node_key(parent, &mid_key, pslot);
1171                 btrfs_mark_buffer_dirty(parent);
1172         }
1173
1174         /* update the path */
1175         if (left) {
1176                 if (btrfs_header_nritems(left) > orig_slot) {
1177                         extent_buffer_get(left);
1178                         /* left was locked after cow */
1179                         path->nodes[level] = left;
1180                         path->slots[level + 1] -= 1;
1181                         path->slots[level] = orig_slot;
1182                         if (mid) {
1183                                 btrfs_tree_unlock(mid);
1184                                 free_extent_buffer(mid);
1185                         }
1186                 } else {
1187                         orig_slot -= btrfs_header_nritems(left);
1188                         path->slots[level] = orig_slot;
1189                 }
1190         }
1191         /* double check we haven't messed things up */
1192         check_block(root, path, level);
1193         if (orig_ptr !=
1194             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1195                 BUG();
1196 enospc:
1197         if (right) {
1198                 btrfs_tree_unlock(right);
1199                 free_extent_buffer(right);
1200         }
1201         if (left) {
1202                 if (path->nodes[level] != left)
1203                         btrfs_tree_unlock(left);
1204                 free_extent_buffer(left);
1205         }
1206         return ret;
1207 }
1208
1209 /* Node balancing for insertion.  Here we only split or push nodes around
1210  * when they are completely full.  This is also done top down, so we
1211  * have to be pessimistic.
1212  */
1213 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1214                                           struct btrfs_root *root,
1215                                           struct btrfs_path *path, int level)
1216 {
1217         struct extent_buffer *right = NULL;
1218         struct extent_buffer *mid;
1219         struct extent_buffer *left = NULL;
1220         struct extent_buffer *parent = NULL;
1221         int ret = 0;
1222         int wret;
1223         int pslot;
1224         int orig_slot = path->slots[level];
1225         u64 orig_ptr;
1226
1227         if (level == 0)
1228                 return 1;
1229
1230         mid = path->nodes[level];
1231         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1232         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1233
1234         if (level < BTRFS_MAX_LEVEL - 1)
1235                 parent = path->nodes[level + 1];
1236         pslot = path->slots[level + 1];
1237
1238         if (!parent)
1239                 return 1;
1240
1241         left = read_node_slot(root, parent, pslot - 1);
1242
1243         /* first, try to make some room in the middle buffer */
1244         if (left) {
1245                 u32 left_nr;
1246
1247                 btrfs_tree_lock(left);
1248                 btrfs_set_lock_blocking(left);
1249
1250                 left_nr = btrfs_header_nritems(left);
1251                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1252                         wret = 1;
1253                 } else {
1254                         ret = btrfs_cow_block(trans, root, left, parent,
1255                                               pslot - 1, &left);
1256                         if (ret)
1257                                 wret = 1;
1258                         else {
1259                                 wret = push_node_left(trans, root,
1260                                                       left, mid, 0);
1261                         }
1262                 }
1263                 if (wret < 0)
1264                         ret = wret;
1265                 if (wret == 0) {
1266                         struct btrfs_disk_key disk_key;
1267                         orig_slot += left_nr;
1268                         btrfs_node_key(mid, &disk_key, 0);
1269                         btrfs_set_node_key(parent, &disk_key, pslot);
1270                         btrfs_mark_buffer_dirty(parent);
1271                         if (btrfs_header_nritems(left) > orig_slot) {
1272                                 path->nodes[level] = left;
1273                                 path->slots[level + 1] -= 1;
1274                                 path->slots[level] = orig_slot;
1275                                 btrfs_tree_unlock(mid);
1276                                 free_extent_buffer(mid);
1277                         } else {
1278                                 orig_slot -=
1279                                         btrfs_header_nritems(left);
1280                                 path->slots[level] = orig_slot;
1281                                 btrfs_tree_unlock(left);
1282                                 free_extent_buffer(left);
1283                         }
1284                         return 0;
1285                 }
1286                 btrfs_tree_unlock(left);
1287                 free_extent_buffer(left);
1288         }
1289         right = read_node_slot(root, parent, pslot + 1);
1290
1291         /*
1292          * then try to empty the right most buffer into the middle
1293          */
1294         if (right) {
1295                 u32 right_nr;
1296
1297                 btrfs_tree_lock(right);
1298                 btrfs_set_lock_blocking(right);
1299
1300                 right_nr = btrfs_header_nritems(right);
1301                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1302                         wret = 1;
1303                 } else {
1304                         ret = btrfs_cow_block(trans, root, right,
1305                                               parent, pslot + 1,
1306                                               &right);
1307                         if (ret)
1308                                 wret = 1;
1309                         else {
1310                                 wret = balance_node_right(trans, root,
1311                                                           right, mid);
1312                         }
1313                 }
1314                 if (wret < 0)
1315                         ret = wret;
1316                 if (wret == 0) {
1317                         struct btrfs_disk_key disk_key;
1318
1319                         btrfs_node_key(right, &disk_key, 0);
1320                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1321                         btrfs_mark_buffer_dirty(parent);
1322
1323                         if (btrfs_header_nritems(mid) <= orig_slot) {
1324                                 path->nodes[level] = right;
1325                                 path->slots[level + 1] += 1;
1326                                 path->slots[level] = orig_slot -
1327                                         btrfs_header_nritems(mid);
1328                                 btrfs_tree_unlock(mid);
1329                                 free_extent_buffer(mid);
1330                         } else {
1331                                 btrfs_tree_unlock(right);
1332                                 free_extent_buffer(right);
1333                         }
1334                         return 0;
1335                 }
1336                 btrfs_tree_unlock(right);
1337                 free_extent_buffer(right);
1338         }
1339         return 1;
1340 }
1341
1342 /*
1343  * readahead one full node of leaves, finding things that are close
1344  * to the block in 'slot', and triggering ra on them.
1345  */
1346 static void reada_for_search(struct btrfs_root *root,
1347                              struct btrfs_path *path,
1348                              int level, int slot, u64 objectid)
1349 {
1350         struct extent_buffer *node;
1351         struct btrfs_disk_key disk_key;
1352         u32 nritems;
1353         u64 search;
1354         u64 target;
1355         u64 nread = 0;
1356         int direction = path->reada;
1357         struct extent_buffer *eb;
1358         u32 nr;
1359         u32 blocksize;
1360         u32 nscan = 0;
1361
1362         if (level != 1)
1363                 return;
1364
1365         if (!path->nodes[level])
1366                 return;
1367
1368         node = path->nodes[level];
1369
1370         search = btrfs_node_blockptr(node, slot);
1371         blocksize = btrfs_level_size(root, level - 1);
1372         eb = btrfs_find_tree_block(root, search, blocksize);
1373         if (eb) {
1374                 free_extent_buffer(eb);
1375                 return;
1376         }
1377
1378         target = search;
1379
1380         nritems = btrfs_header_nritems(node);
1381         nr = slot;
1382         while (1) {
1383                 if (direction < 0) {
1384                         if (nr == 0)
1385                                 break;
1386                         nr--;
1387                 } else if (direction > 0) {
1388                         nr++;
1389                         if (nr >= nritems)
1390                                 break;
1391                 }
1392                 if (path->reada < 0 && objectid) {
1393                         btrfs_node_key(node, &disk_key, nr);
1394                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1395                                 break;
1396                 }
1397                 search = btrfs_node_blockptr(node, nr);
1398                 if ((search <= target && target - search <= 65536) ||
1399                     (search > target && search - target <= 65536)) {
1400                         readahead_tree_block(root, search, blocksize,
1401                                      btrfs_node_ptr_generation(node, nr));
1402                         nread += blocksize;
1403                 }
1404                 nscan++;
1405                 if ((nread > 65536 || nscan > 32))
1406                         break;
1407         }
1408 }
1409
1410 /*
1411  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1412  * cache
1413  */
1414 static noinline int reada_for_balance(struct btrfs_root *root,
1415                                       struct btrfs_path *path, int level)
1416 {
1417         int slot;
1418         int nritems;
1419         struct extent_buffer *parent;
1420         struct extent_buffer *eb;
1421         u64 gen;
1422         u64 block1 = 0;
1423         u64 block2 = 0;
1424         int ret = 0;
1425         int blocksize;
1426
1427         parent = path->nodes[level + 1];
1428         if (!parent)
1429                 return 0;
1430
1431         nritems = btrfs_header_nritems(parent);
1432         slot = path->slots[level + 1];
1433         blocksize = btrfs_level_size(root, level);
1434
1435         if (slot > 0) {
1436                 block1 = btrfs_node_blockptr(parent, slot - 1);
1437                 gen = btrfs_node_ptr_generation(parent, slot - 1);
1438                 eb = btrfs_find_tree_block(root, block1, blocksize);
1439                 if (eb && btrfs_buffer_uptodate(eb, gen))
1440                         block1 = 0;
1441                 free_extent_buffer(eb);
1442         }
1443         if (slot + 1 < nritems) {
1444                 block2 = btrfs_node_blockptr(parent, slot + 1);
1445                 gen = btrfs_node_ptr_generation(parent, slot + 1);
1446                 eb = btrfs_find_tree_block(root, block2, blocksize);
1447                 if (eb && btrfs_buffer_uptodate(eb, gen))
1448                         block2 = 0;
1449                 free_extent_buffer(eb);
1450         }
1451         if (block1 || block2) {
1452                 ret = -EAGAIN;
1453
1454                 /* release the whole path */
1455                 btrfs_release_path(root, path);
1456
1457                 /* read the blocks */
1458                 if (block1)
1459                         readahead_tree_block(root, block1, blocksize, 0);
1460                 if (block2)
1461                         readahead_tree_block(root, block2, blocksize, 0);
1462
1463                 if (block1) {
1464                         eb = read_tree_block(root, block1, blocksize, 0);
1465                         free_extent_buffer(eb);
1466                 }
1467                 if (block2) {
1468                         eb = read_tree_block(root, block2, blocksize, 0);
1469                         free_extent_buffer(eb);
1470                 }
1471         }
1472         return ret;
1473 }
1474
1475
1476 /*
1477  * when we walk down the tree, it is usually safe to unlock the higher layers
1478  * in the tree.  The exceptions are when our path goes through slot 0, because
1479  * operations on the tree might require changing key pointers higher up in the
1480  * tree.
1481  *
1482  * callers might also have set path->keep_locks, which tells this code to keep
1483  * the lock if the path points to the last slot in the block.  This is part of
1484  * walking through the tree, and selecting the next slot in the higher block.
1485  *
1486  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1487  * if lowest_unlock is 1, level 0 won't be unlocked
1488  */
1489 static noinline void unlock_up(struct btrfs_path *path, int level,
1490                                int lowest_unlock)
1491 {
1492         int i;
1493         int skip_level = level;
1494         int no_skips = 0;
1495         struct extent_buffer *t;
1496
1497         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1498                 if (!path->nodes[i])
1499                         break;
1500                 if (!path->locks[i])
1501                         break;
1502                 if (!no_skips && path->slots[i] == 0) {
1503                         skip_level = i + 1;
1504                         continue;
1505                 }
1506                 if (!no_skips && path->keep_locks) {
1507                         u32 nritems;
1508                         t = path->nodes[i];
1509                         nritems = btrfs_header_nritems(t);
1510                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
1511                                 skip_level = i + 1;
1512                                 continue;
1513                         }
1514                 }
1515                 if (skip_level < i && i >= lowest_unlock)
1516                         no_skips = 1;
1517
1518                 t = path->nodes[i];
1519                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1520                         btrfs_tree_unlock(t);
1521                         path->locks[i] = 0;
1522                 }
1523         }
1524 }
1525
1526 /*
1527  * This releases any locks held in the path starting at level and
1528  * going all the way up to the root.
1529  *
1530  * btrfs_search_slot will keep the lock held on higher nodes in a few
1531  * corner cases, such as COW of the block at slot zero in the node.  This
1532  * ignores those rules, and it should only be called when there are no
1533  * more updates to be done higher up in the tree.
1534  */
1535 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1536 {
1537         int i;
1538
1539         if (path->keep_locks)
1540                 return;
1541
1542         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1543                 if (!path->nodes[i])
1544                         continue;
1545                 if (!path->locks[i])
1546                         continue;
1547                 btrfs_tree_unlock(path->nodes[i]);
1548                 path->locks[i] = 0;
1549         }
1550 }
1551
1552 /*
1553  * helper function for btrfs_search_slot.  The goal is to find a block
1554  * in cache without setting the path to blocking.  If we find the block
1555  * we return zero and the path is unchanged.
1556  *
1557  * If we can't find the block, we set the path blocking and do some
1558  * reada.  -EAGAIN is returned and the search must be repeated.
1559  */
1560 static int
1561 read_block_for_search(struct btrfs_trans_handle *trans,
1562                        struct btrfs_root *root, struct btrfs_path *p,
1563                        struct extent_buffer **eb_ret, int level, int slot,
1564                        struct btrfs_key *key)
1565 {
1566         u64 blocknr;
1567         u64 gen;
1568         u32 blocksize;
1569         struct extent_buffer *b = *eb_ret;
1570         struct extent_buffer *tmp;
1571         int ret;
1572
1573         blocknr = btrfs_node_blockptr(b, slot);
1574         gen = btrfs_node_ptr_generation(b, slot);
1575         blocksize = btrfs_level_size(root, level - 1);
1576
1577         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1578         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1579                 /*
1580                  * we found an up to date block without sleeping, return
1581                  * right away
1582                  */
1583                 *eb_ret = tmp;
1584                 return 0;
1585         }
1586
1587         /*
1588          * reduce lock contention at high levels
1589          * of the btree by dropping locks before
1590          * we read.  Don't release the lock on the current
1591          * level because we need to walk this node to figure
1592          * out which blocks to read.
1593          */
1594         btrfs_unlock_up_safe(p, level + 1);
1595         btrfs_set_path_blocking(p);
1596
1597         if (tmp)
1598                 free_extent_buffer(tmp);
1599         if (p->reada)
1600                 reada_for_search(root, p, level, slot, key->objectid);
1601
1602         btrfs_release_path(NULL, p);
1603
1604         ret = -EAGAIN;
1605         tmp = read_tree_block(root, blocknr, blocksize, gen);
1606         if (tmp) {
1607                 /*
1608                  * If the read above didn't mark this buffer up to date,
1609                  * it will never end up being up to date.  Set ret to EIO now
1610                  * and give up so that our caller doesn't loop forever
1611                  * on our EAGAINs.
1612                  */
1613                 if (!btrfs_buffer_uptodate(tmp, 0))
1614                         ret = -EIO;
1615                 free_extent_buffer(tmp);
1616         }
1617         return ret;
1618 }
1619
1620 /*
1621  * helper function for btrfs_search_slot.  This does all of the checks
1622  * for node-level blocks and does any balancing required based on
1623  * the ins_len.
1624  *
1625  * If no extra work was required, zero is returned.  If we had to
1626  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1627  * start over
1628  */
1629 static int
1630 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1631                        struct btrfs_root *root, struct btrfs_path *p,
1632                        struct extent_buffer *b, int level, int ins_len)
1633 {
1634         int ret;
1635         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1636             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1637                 int sret;
1638
1639                 sret = reada_for_balance(root, p, level);
1640                 if (sret)
1641                         goto again;
1642
1643                 btrfs_set_path_blocking(p);
1644                 sret = split_node(trans, root, p, level);
1645                 btrfs_clear_path_blocking(p, NULL);
1646
1647                 BUG_ON(sret > 0);
1648                 if (sret) {
1649                         ret = sret;
1650                         goto done;
1651                 }
1652                 b = p->nodes[level];
1653         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1654                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1655                 int sret;
1656
1657                 sret = reada_for_balance(root, p, level);
1658                 if (sret)
1659                         goto again;
1660
1661                 btrfs_set_path_blocking(p);
1662                 sret = balance_level(trans, root, p, level);
1663                 btrfs_clear_path_blocking(p, NULL);
1664
1665                 if (sret) {
1666                         ret = sret;
1667                         goto done;
1668                 }
1669                 b = p->nodes[level];
1670                 if (!b) {
1671                         btrfs_release_path(NULL, p);
1672                         goto again;
1673                 }
1674                 BUG_ON(btrfs_header_nritems(b) == 1);
1675         }
1676         return 0;
1677
1678 again:
1679         ret = -EAGAIN;
1680 done:
1681         return ret;
1682 }
1683
1684 /*
1685  * look for key in the tree.  path is filled in with nodes along the way
1686  * if key is found, we return zero and you can find the item in the leaf
1687  * level of the path (level 0)
1688  *
1689  * If the key isn't found, the path points to the slot where it should
1690  * be inserted, and 1 is returned.  If there are other errors during the
1691  * search a negative error number is returned.
1692  *
1693  * if ins_len > 0, nodes and leaves will be split as we walk down the
1694  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1695  * possible)
1696  */
1697 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1698                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1699                       ins_len, int cow)
1700 {
1701         struct extent_buffer *b;
1702         int slot;
1703         int ret;
1704         int level;
1705         int lowest_unlock = 1;
1706         u8 lowest_level = 0;
1707
1708         lowest_level = p->lowest_level;
1709         WARN_ON(lowest_level && ins_len > 0);
1710         WARN_ON(p->nodes[0] != NULL);
1711
1712         if (ins_len < 0)
1713                 lowest_unlock = 2;
1714
1715 again:
1716         if (p->search_commit_root) {
1717                 b = root->commit_root;
1718                 extent_buffer_get(b);
1719                 if (!p->skip_locking)
1720                         btrfs_tree_lock(b);
1721         } else {
1722                 if (p->skip_locking)
1723                         b = btrfs_root_node(root);
1724                 else
1725                         b = btrfs_lock_root_node(root);
1726         }
1727
1728         while (b) {
1729                 level = btrfs_header_level(b);
1730
1731                 /*
1732                  * setup the path here so we can release it under lock
1733                  * contention with the cow code
1734                  */
1735                 p->nodes[level] = b;
1736                 if (!p->skip_locking)
1737                         p->locks[level] = 1;
1738
1739                 if (cow) {
1740                         int wret;
1741
1742                         /*
1743                          * if we don't really need to cow this block
1744                          * then we don't want to set the path blocking,
1745                          * so we test it here
1746                          */
1747                         if (!should_cow_block(trans, root, b))
1748                                 goto cow_done;
1749
1750                         btrfs_set_path_blocking(p);
1751
1752                         wret = btrfs_cow_block(trans, root, b,
1753                                                p->nodes[level + 1],
1754                                                p->slots[level + 1], &b);
1755                         if (wret) {
1756                                 free_extent_buffer(b);
1757                                 ret = wret;
1758                                 goto done;
1759                         }
1760                 }
1761 cow_done:
1762                 BUG_ON(!cow && ins_len);
1763                 if (level != btrfs_header_level(b))
1764                         WARN_ON(1);
1765                 level = btrfs_header_level(b);
1766
1767                 p->nodes[level] = b;
1768                 if (!p->skip_locking)
1769                         p->locks[level] = 1;
1770
1771                 btrfs_clear_path_blocking(p, NULL);
1772
1773                 /*
1774                  * we have a lock on b and as long as we aren't changing
1775                  * the tree, there is no way to for the items in b to change.
1776                  * It is safe to drop the lock on our parent before we
1777                  * go through the expensive btree search on b.
1778                  *
1779                  * If cow is true, then we might be changing slot zero,
1780                  * which may require changing the parent.  So, we can't
1781                  * drop the lock until after we know which slot we're
1782                  * operating on.
1783                  */
1784                 if (!cow)
1785                         btrfs_unlock_up_safe(p, level + 1);
1786
1787                 ret = check_block(root, p, level);
1788                 if (ret) {
1789                         ret = -1;
1790                         goto done;
1791                 }
1792
1793                 ret = bin_search(b, key, level, &slot);
1794
1795                 if (level != 0) {
1796                         if (ret && slot > 0)
1797                                 slot -= 1;
1798                         p->slots[level] = slot;
1799                         ret = setup_nodes_for_search(trans, root, p, b, level,
1800                                                      ins_len);
1801                         if (ret == -EAGAIN)
1802                                 goto again;
1803                         else if (ret)
1804                                 goto done;
1805                         b = p->nodes[level];
1806                         slot = p->slots[level];
1807
1808                         unlock_up(p, level, lowest_unlock);
1809
1810                         /* this is only true while dropping a snapshot */
1811                         if (level == lowest_level) {
1812                                 ret = 0;
1813                                 goto done;
1814                         }
1815
1816                         ret = read_block_for_search(trans, root, p,
1817                                                     &b, level, slot, key);
1818                         if (ret == -EAGAIN)
1819                                 goto again;
1820
1821                         if (ret == -EIO)
1822                                 goto done;
1823
1824                         if (!p->skip_locking) {
1825                                 int lret;
1826
1827                                 btrfs_clear_path_blocking(p, NULL);
1828                                 lret = btrfs_try_spin_lock(b);
1829
1830                                 if (!lret) {
1831                                         btrfs_set_path_blocking(p);
1832                                         btrfs_tree_lock(b);
1833                                         btrfs_clear_path_blocking(p, b);
1834                                 }
1835                         }
1836                 } else {
1837                         p->slots[level] = slot;
1838                         if (ins_len > 0 &&
1839                             btrfs_leaf_free_space(root, b) < ins_len) {
1840                                 int sret;
1841
1842                                 btrfs_set_path_blocking(p);
1843                                 sret = split_leaf(trans, root, key,
1844                                                       p, ins_len, ret == 0);
1845                                 btrfs_clear_path_blocking(p, NULL);
1846
1847                                 BUG_ON(sret > 0);
1848                                 if (sret) {
1849                                         ret = sret;
1850                                         goto done;
1851                                 }
1852                         }
1853                         if (!p->search_for_split)
1854                                 unlock_up(p, level, lowest_unlock);
1855                         goto done;
1856                 }
1857         }
1858         ret = 1;
1859 done:
1860         /*
1861          * we don't really know what they plan on doing with the path
1862          * from here on, so for now just mark it as blocking
1863          */
1864         if (!p->leave_spinning)
1865                 btrfs_set_path_blocking(p);
1866         if (ret < 0)
1867                 btrfs_release_path(root, p);
1868         return ret;
1869 }
1870
1871 /*
1872  * adjust the pointers going up the tree, starting at level
1873  * making sure the right key of each node is points to 'key'.
1874  * This is used after shifting pointers to the left, so it stops
1875  * fixing up pointers when a given leaf/node is not in slot 0 of the
1876  * higher levels
1877  *
1878  * If this fails to write a tree block, it returns -1, but continues
1879  * fixing up the blocks in ram so the tree is consistent.
1880  */
1881 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1882                           struct btrfs_root *root, struct btrfs_path *path,
1883                           struct btrfs_disk_key *key, int level)
1884 {
1885         int i;
1886         int ret = 0;
1887         struct extent_buffer *t;
1888
1889         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1890                 int tslot = path->slots[i];
1891                 if (!path->nodes[i])
1892                         break;
1893                 t = path->nodes[i];
1894                 btrfs_set_node_key(t, key, tslot);
1895                 btrfs_mark_buffer_dirty(path->nodes[i]);
1896                 if (tslot != 0)
1897                         break;
1898         }
1899         return ret;
1900 }
1901
1902 /*
1903  * update item key.
1904  *
1905  * This function isn't completely safe. It's the caller's responsibility
1906  * that the new key won't break the order
1907  */
1908 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1909                             struct btrfs_root *root, struct btrfs_path *path,
1910                             struct btrfs_key *new_key)
1911 {
1912         struct btrfs_disk_key disk_key;
1913         struct extent_buffer *eb;
1914         int slot;
1915
1916         eb = path->nodes[0];
1917         slot = path->slots[0];
1918         if (slot > 0) {
1919                 btrfs_item_key(eb, &disk_key, slot - 1);
1920                 if (comp_keys(&disk_key, new_key) >= 0)
1921                         return -1;
1922         }
1923         if (slot < btrfs_header_nritems(eb) - 1) {
1924                 btrfs_item_key(eb, &disk_key, slot + 1);
1925                 if (comp_keys(&disk_key, new_key) <= 0)
1926                         return -1;
1927         }
1928
1929         btrfs_cpu_key_to_disk(&disk_key, new_key);
1930         btrfs_set_item_key(eb, &disk_key, slot);
1931         btrfs_mark_buffer_dirty(eb);
1932         if (slot == 0)
1933                 fixup_low_keys(trans, root, path, &disk_key, 1);
1934         return 0;
1935 }
1936
1937 /*
1938  * try to push data from one node into the next node left in the
1939  * tree.
1940  *
1941  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1942  * error, and > 0 if there was no room in the left hand block.
1943  */
1944 static int push_node_left(struct btrfs_trans_handle *trans,
1945                           struct btrfs_root *root, struct extent_buffer *dst,
1946                           struct extent_buffer *src, int empty)
1947 {
1948         int push_items = 0;
1949         int src_nritems;
1950         int dst_nritems;
1951         int ret = 0;
1952
1953         src_nritems = btrfs_header_nritems(src);
1954         dst_nritems = btrfs_header_nritems(dst);
1955         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1956         WARN_ON(btrfs_header_generation(src) != trans->transid);
1957         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1958
1959         if (!empty && src_nritems <= 8)
1960                 return 1;
1961
1962         if (push_items <= 0)
1963                 return 1;
1964
1965         if (empty) {
1966                 push_items = min(src_nritems, push_items);
1967                 if (push_items < src_nritems) {
1968                         /* leave at least 8 pointers in the node if
1969                          * we aren't going to empty it
1970                          */
1971                         if (src_nritems - push_items < 8) {
1972                                 if (push_items <= 8)
1973                                         return 1;
1974                                 push_items -= 8;
1975                         }
1976                 }
1977         } else
1978                 push_items = min(src_nritems - 8, push_items);
1979
1980         copy_extent_buffer(dst, src,
1981                            btrfs_node_key_ptr_offset(dst_nritems),
1982                            btrfs_node_key_ptr_offset(0),
1983                            push_items * sizeof(struct btrfs_key_ptr));
1984
1985         if (push_items < src_nritems) {
1986                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1987                                       btrfs_node_key_ptr_offset(push_items),
1988                                       (src_nritems - push_items) *
1989                                       sizeof(struct btrfs_key_ptr));
1990         }
1991         btrfs_set_header_nritems(src, src_nritems - push_items);
1992         btrfs_set_header_nritems(dst, dst_nritems + push_items);
1993         btrfs_mark_buffer_dirty(src);
1994         btrfs_mark_buffer_dirty(dst);
1995
1996         return ret;
1997 }
1998
1999 /*
2000  * try to push data from one node into the next node right in the
2001  * tree.
2002  *
2003  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2004  * error, and > 0 if there was no room in the right hand block.
2005  *
2006  * this will  only push up to 1/2 the contents of the left node over
2007  */
2008 static int balance_node_right(struct btrfs_trans_handle *trans,
2009                               struct btrfs_root *root,
2010                               struct extent_buffer *dst,
2011                               struct extent_buffer *src)
2012 {
2013         int push_items = 0;
2014         int max_push;
2015         int src_nritems;
2016         int dst_nritems;
2017         int ret = 0;
2018
2019         WARN_ON(btrfs_header_generation(src) != trans->transid);
2020         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2021
2022         src_nritems = btrfs_header_nritems(src);
2023         dst_nritems = btrfs_header_nritems(dst);
2024         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2025         if (push_items <= 0)
2026                 return 1;
2027
2028         if (src_nritems < 4)
2029                 return 1;
2030
2031         max_push = src_nritems / 2 + 1;
2032         /* don't try to empty the node */
2033         if (max_push >= src_nritems)
2034                 return 1;
2035
2036         if (max_push < push_items)
2037                 push_items = max_push;
2038
2039         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2040                                       btrfs_node_key_ptr_offset(0),
2041                                       (dst_nritems) *
2042                                       sizeof(struct btrfs_key_ptr));
2043
2044         copy_extent_buffer(dst, src,
2045                            btrfs_node_key_ptr_offset(0),
2046                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2047                            push_items * sizeof(struct btrfs_key_ptr));
2048
2049         btrfs_set_header_nritems(src, src_nritems - push_items);
2050         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2051
2052         btrfs_mark_buffer_dirty(src);
2053         btrfs_mark_buffer_dirty(dst);
2054
2055         return ret;
2056 }
2057
2058 /*
2059  * helper function to insert a new root level in the tree.
2060  * A new node is allocated, and a single item is inserted to
2061  * point to the existing root
2062  *
2063  * returns zero on success or < 0 on failure.
2064  */
2065 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2066                            struct btrfs_root *root,
2067                            struct btrfs_path *path, int level)
2068 {
2069         u64 lower_gen;
2070         struct extent_buffer *lower;
2071         struct extent_buffer *c;
2072         struct extent_buffer *old;
2073         struct btrfs_disk_key lower_key;
2074
2075         BUG_ON(path->nodes[level]);
2076         BUG_ON(path->nodes[level-1] != root->node);
2077
2078         lower = path->nodes[level-1];
2079         if (level == 1)
2080                 btrfs_item_key(lower, &lower_key, 0);
2081         else
2082                 btrfs_node_key(lower, &lower_key, 0);
2083
2084         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2085                                    root->root_key.objectid, &lower_key,
2086                                    level, root->node->start, 0);
2087         if (IS_ERR(c))
2088                 return PTR_ERR(c);
2089
2090         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2091         btrfs_set_header_nritems(c, 1);
2092         btrfs_set_header_level(c, level);
2093         btrfs_set_header_bytenr(c, c->start);
2094         btrfs_set_header_generation(c, trans->transid);
2095         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2096         btrfs_set_header_owner(c, root->root_key.objectid);
2097
2098         write_extent_buffer(c, root->fs_info->fsid,
2099                             (unsigned long)btrfs_header_fsid(c),
2100                             BTRFS_FSID_SIZE);
2101
2102         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2103                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2104                             BTRFS_UUID_SIZE);
2105
2106         btrfs_set_node_key(c, &lower_key, 0);
2107         btrfs_set_node_blockptr(c, 0, lower->start);
2108         lower_gen = btrfs_header_generation(lower);
2109         WARN_ON(lower_gen != trans->transid);
2110
2111         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2112
2113         btrfs_mark_buffer_dirty(c);
2114
2115         spin_lock(&root->node_lock);
2116         old = root->node;
2117         root->node = c;
2118         spin_unlock(&root->node_lock);
2119
2120         /* the super has an extra ref to root->node */
2121         free_extent_buffer(old);
2122
2123         add_root_to_dirty_list(root);
2124         extent_buffer_get(c);
2125         path->nodes[level] = c;
2126         path->locks[level] = 1;
2127         path->slots[level] = 0;
2128         return 0;
2129 }
2130
2131 /*
2132  * worker function to insert a single pointer in a node.
2133  * the node should have enough room for the pointer already
2134  *
2135  * slot and level indicate where you want the key to go, and
2136  * blocknr is the block the key points to.
2137  *
2138  * returns zero on success and < 0 on any error
2139  */
2140 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2141                       *root, struct btrfs_path *path, struct btrfs_disk_key
2142                       *key, u64 bytenr, int slot, int level)
2143 {
2144         struct extent_buffer *lower;
2145         int nritems;
2146
2147         BUG_ON(!path->nodes[level]);
2148         lower = path->nodes[level];
2149         nritems = btrfs_header_nritems(lower);
2150         BUG_ON(slot > nritems);
2151         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2152                 BUG();
2153         if (slot != nritems) {
2154                 memmove_extent_buffer(lower,
2155                               btrfs_node_key_ptr_offset(slot + 1),
2156                               btrfs_node_key_ptr_offset(slot),
2157                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2158         }
2159         btrfs_set_node_key(lower, key, slot);
2160         btrfs_set_node_blockptr(lower, slot, bytenr);
2161         WARN_ON(trans->transid == 0);
2162         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2163         btrfs_set_header_nritems(lower, nritems + 1);
2164         btrfs_mark_buffer_dirty(lower);
2165         return 0;
2166 }
2167
2168 /*
2169  * split the node at the specified level in path in two.
2170  * The path is corrected to point to the appropriate node after the split
2171  *
2172  * Before splitting this tries to make some room in the node by pushing
2173  * left and right, if either one works, it returns right away.
2174  *
2175  * returns 0 on success and < 0 on failure
2176  */
2177 static noinline int split_node(struct btrfs_trans_handle *trans,
2178                                struct btrfs_root *root,
2179                                struct btrfs_path *path, int level)
2180 {
2181         struct extent_buffer *c;
2182         struct extent_buffer *split;
2183         struct btrfs_disk_key disk_key;
2184         int mid;
2185         int ret;
2186         int wret;
2187         u32 c_nritems;
2188
2189         c = path->nodes[level];
2190         WARN_ON(btrfs_header_generation(c) != trans->transid);
2191         if (c == root->node) {
2192                 /* trying to split the root, lets make a new one */
2193                 ret = insert_new_root(trans, root, path, level + 1);
2194                 if (ret)
2195                         return ret;
2196         } else {
2197                 ret = push_nodes_for_insert(trans, root, path, level);
2198                 c = path->nodes[level];
2199                 if (!ret && btrfs_header_nritems(c) <
2200                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2201                         return 0;
2202                 if (ret < 0)
2203                         return ret;
2204         }
2205
2206         c_nritems = btrfs_header_nritems(c);
2207         mid = (c_nritems + 1) / 2;
2208         btrfs_node_key(c, &disk_key, mid);
2209
2210         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2211                                         root->root_key.objectid,
2212                                         &disk_key, level, c->start, 0);
2213         if (IS_ERR(split))
2214                 return PTR_ERR(split);
2215
2216         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2217         btrfs_set_header_level(split, btrfs_header_level(c));
2218         btrfs_set_header_bytenr(split, split->start);
2219         btrfs_set_header_generation(split, trans->transid);
2220         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2221         btrfs_set_header_owner(split, root->root_key.objectid);
2222         write_extent_buffer(split, root->fs_info->fsid,
2223                             (unsigned long)btrfs_header_fsid(split),
2224                             BTRFS_FSID_SIZE);
2225         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2226                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
2227                             BTRFS_UUID_SIZE);
2228
2229
2230         copy_extent_buffer(split, c,
2231                            btrfs_node_key_ptr_offset(0),
2232                            btrfs_node_key_ptr_offset(mid),
2233                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2234         btrfs_set_header_nritems(split, c_nritems - mid);
2235         btrfs_set_header_nritems(c, mid);
2236         ret = 0;
2237
2238         btrfs_mark_buffer_dirty(c);
2239         btrfs_mark_buffer_dirty(split);
2240
2241         wret = insert_ptr(trans, root, path, &disk_key, split->start,
2242                           path->slots[level + 1] + 1,
2243                           level + 1);
2244         if (wret)
2245                 ret = wret;
2246
2247         if (path->slots[level] >= mid) {
2248                 path->slots[level] -= mid;
2249                 btrfs_tree_unlock(c);
2250                 free_extent_buffer(c);
2251                 path->nodes[level] = split;
2252                 path->slots[level + 1] += 1;
2253         } else {
2254                 btrfs_tree_unlock(split);
2255                 free_extent_buffer(split);
2256         }
2257         return ret;
2258 }
2259
2260 /*
2261  * how many bytes are required to store the items in a leaf.  start
2262  * and nr indicate which items in the leaf to check.  This totals up the
2263  * space used both by the item structs and the item data
2264  */
2265 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2266 {
2267         int data_len;
2268         int nritems = btrfs_header_nritems(l);
2269         int end = min(nritems, start + nr) - 1;
2270
2271         if (!nr)
2272                 return 0;
2273         data_len = btrfs_item_end_nr(l, start);
2274         data_len = data_len - btrfs_item_offset_nr(l, end);
2275         data_len += sizeof(struct btrfs_item) * nr;
2276         WARN_ON(data_len < 0);
2277         return data_len;
2278 }
2279
2280 /*
2281  * The space between the end of the leaf items and
2282  * the start of the leaf data.  IOW, how much room
2283  * the leaf has left for both items and data
2284  */
2285 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2286                                    struct extent_buffer *leaf)
2287 {
2288         int nritems = btrfs_header_nritems(leaf);
2289         int ret;
2290         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2291         if (ret < 0) {
2292                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2293                        "used %d nritems %d\n",
2294                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2295                        leaf_space_used(leaf, 0, nritems), nritems);
2296         }
2297         return ret;
2298 }
2299
2300 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2301                                       struct btrfs_root *root,
2302                                       struct btrfs_path *path,
2303                                       int data_size, int empty,
2304                                       struct extent_buffer *right,
2305                                       int free_space, u32 left_nritems)
2306 {
2307         struct extent_buffer *left = path->nodes[0];
2308         struct extent_buffer *upper = path->nodes[1];
2309         struct btrfs_disk_key disk_key;
2310         int slot;
2311         u32 i;
2312         int push_space = 0;
2313         int push_items = 0;
2314         struct btrfs_item *item;
2315         u32 nr;
2316         u32 right_nritems;
2317         u32 data_end;
2318         u32 this_item_size;
2319
2320         if (empty)
2321                 nr = 0;
2322         else
2323                 nr = 1;
2324
2325         if (path->slots[0] >= left_nritems)
2326                 push_space += data_size;
2327
2328         slot = path->slots[1];
2329         i = left_nritems - 1;
2330         while (i >= nr) {
2331                 item = btrfs_item_nr(left, i);
2332
2333                 if (!empty && push_items > 0) {
2334                         if (path->slots[0] > i)
2335                                 break;
2336                         if (path->slots[0] == i) {
2337                                 int space = btrfs_leaf_free_space(root, left);
2338                                 if (space + push_space * 2 > free_space)
2339                                         break;
2340                         }
2341                 }
2342
2343                 if (path->slots[0] == i)
2344                         push_space += data_size;
2345
2346                 if (!left->map_token) {
2347                         map_extent_buffer(left, (unsigned long)item,
2348                                         sizeof(struct btrfs_item),
2349                                         &left->map_token, &left->kaddr,
2350                                         &left->map_start, &left->map_len,
2351                                         KM_USER1);
2352                 }
2353
2354                 this_item_size = btrfs_item_size(left, item);
2355                 if (this_item_size + sizeof(*item) + push_space > free_space)
2356                         break;
2357
2358                 push_items++;
2359                 push_space += this_item_size + sizeof(*item);
2360                 if (i == 0)
2361                         break;
2362                 i--;
2363         }
2364         if (left->map_token) {
2365                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2366                 left->map_token = NULL;
2367         }
2368
2369         if (push_items == 0)
2370                 goto out_unlock;
2371
2372         if (!empty && push_items == left_nritems)
2373                 WARN_ON(1);
2374
2375         /* push left to right */
2376         right_nritems = btrfs_header_nritems(right);
2377
2378         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2379         push_space -= leaf_data_end(root, left);
2380
2381         /* make room in the right data area */
2382         data_end = leaf_data_end(root, right);
2383         memmove_extent_buffer(right,
2384                               btrfs_leaf_data(right) + data_end - push_space,
2385                               btrfs_leaf_data(right) + data_end,
2386                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
2387
2388         /* copy from the left data area */
2389         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2390                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2391                      btrfs_leaf_data(left) + leaf_data_end(root, left),
2392                      push_space);
2393
2394         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2395                               btrfs_item_nr_offset(0),
2396                               right_nritems * sizeof(struct btrfs_item));
2397
2398         /* copy the items from left to right */
2399         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2400                    btrfs_item_nr_offset(left_nritems - push_items),
2401                    push_items * sizeof(struct btrfs_item));
2402
2403         /* update the item pointers */
2404         right_nritems += push_items;
2405         btrfs_set_header_nritems(right, right_nritems);
2406         push_space = BTRFS_LEAF_DATA_SIZE(root);
2407         for (i = 0; i < right_nritems; i++) {
2408                 item = btrfs_item_nr(right, i);
2409                 if (!right->map_token) {
2410                         map_extent_buffer(right, (unsigned long)item,
2411                                         sizeof(struct btrfs_item),
2412                                         &right->map_token, &right->kaddr,
2413                                         &right->map_start, &right->map_len,
2414                                         KM_USER1);
2415                 }
2416                 push_space -= btrfs_item_size(right, item);
2417                 btrfs_set_item_offset(right, item, push_space);
2418         }
2419
2420         if (right->map_token) {
2421                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2422                 right->map_token = NULL;
2423         }
2424         left_nritems -= push_items;
2425         btrfs_set_header_nritems(left, left_nritems);
2426
2427         if (left_nritems)
2428                 btrfs_mark_buffer_dirty(left);
2429         btrfs_mark_buffer_dirty(right);
2430
2431         btrfs_item_key(right, &disk_key, 0);
2432         btrfs_set_node_key(upper, &disk_key, slot + 1);
2433         btrfs_mark_buffer_dirty(upper);
2434
2435         /* then fixup the leaf pointer in the path */
2436         if (path->slots[0] >= left_nritems) {
2437                 path->slots[0] -= left_nritems;
2438                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2439                         clean_tree_block(trans, root, path->nodes[0]);
2440                 btrfs_tree_unlock(path->nodes[0]);
2441                 free_extent_buffer(path->nodes[0]);
2442                 path->nodes[0] = right;
2443                 path->slots[1] += 1;
2444         } else {
2445                 btrfs_tree_unlock(right);
2446                 free_extent_buffer(right);
2447         }
2448         return 0;
2449
2450 out_unlock:
2451         btrfs_tree_unlock(right);
2452         free_extent_buffer(right);
2453         return 1;
2454 }
2455
2456 /*
2457  * push some data in the path leaf to the right, trying to free up at
2458  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2459  *
2460  * returns 1 if the push failed because the other node didn't have enough
2461  * room, 0 if everything worked out and < 0 if there were major errors.
2462  */
2463 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2464                            *root, struct btrfs_path *path, int data_size,
2465                            int empty)
2466 {
2467         struct extent_buffer *left = path->nodes[0];
2468         struct extent_buffer *right;
2469         struct extent_buffer *upper;
2470         int slot;
2471         int free_space;
2472         u32 left_nritems;
2473         int ret;
2474
2475         if (!path->nodes[1])
2476                 return 1;
2477
2478         slot = path->slots[1];
2479         upper = path->nodes[1];
2480         if (slot >= btrfs_header_nritems(upper) - 1)
2481                 return 1;
2482
2483         btrfs_assert_tree_locked(path->nodes[1]);
2484
2485         right = read_node_slot(root, upper, slot + 1);
2486         btrfs_tree_lock(right);
2487         btrfs_set_lock_blocking(right);
2488
2489         free_space = btrfs_leaf_free_space(root, right);
2490         if (free_space < data_size)
2491                 goto out_unlock;
2492
2493         /* cow and double check */
2494         ret = btrfs_cow_block(trans, root, right, upper,
2495                               slot + 1, &right);
2496         if (ret)
2497                 goto out_unlock;
2498
2499         free_space = btrfs_leaf_free_space(root, right);
2500         if (free_space < data_size)
2501                 goto out_unlock;
2502
2503         left_nritems = btrfs_header_nritems(left);
2504         if (left_nritems == 0)
2505                 goto out_unlock;
2506
2507         return __push_leaf_right(trans, root, path, data_size, empty,
2508                                 right, free_space, left_nritems);
2509 out_unlock:
2510         btrfs_tree_unlock(right);
2511         free_extent_buffer(right);
2512         return 1;
2513 }
2514
2515 /*
2516  * push some data in the path leaf to the left, trying to free up at
2517  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2518  */
2519 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2520                                      struct btrfs_root *root,
2521                                      struct btrfs_path *path, int data_size,
2522                                      int empty, struct extent_buffer *left,
2523                                      int free_space, int right_nritems)
2524 {
2525         struct btrfs_disk_key disk_key;
2526         struct extent_buffer *right = path->nodes[0];
2527         int slot;
2528         int i;
2529         int push_space = 0;
2530         int push_items = 0;
2531         struct btrfs_item *item;
2532         u32 old_left_nritems;
2533         u32 nr;
2534         int ret = 0;
2535         int wret;
2536         u32 this_item_size;
2537         u32 old_left_item_size;
2538
2539         slot = path->slots[1];
2540
2541         if (empty)
2542                 nr = right_nritems;
2543         else
2544                 nr = right_nritems - 1;
2545
2546         for (i = 0; i < nr; i++) {
2547                 item = btrfs_item_nr(right, i);
2548                 if (!right->map_token) {
2549                         map_extent_buffer(right, (unsigned long)item,
2550                                         sizeof(struct btrfs_item),
2551                                         &right->map_token, &right->kaddr,
2552                                         &right->map_start, &right->map_len,
2553                                         KM_USER1);
2554                 }
2555
2556                 if (!empty && push_items > 0) {
2557                         if (path->slots[0] < i)
2558                                 break;
2559                         if (path->slots[0] == i) {
2560                                 int space = btrfs_leaf_free_space(root, right);
2561                                 if (space + push_space * 2 > free_space)
2562                                         break;
2563                         }
2564                 }
2565
2566                 if (path->slots[0] == i)
2567                         push_space += data_size;
2568
2569                 this_item_size = btrfs_item_size(right, item);
2570                 if (this_item_size + sizeof(*item) + push_space > free_space)
2571                         break;
2572
2573                 push_items++;
2574                 push_space += this_item_size + sizeof(*item);
2575         }
2576
2577         if (right->map_token) {
2578                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2579                 right->map_token = NULL;
2580         }
2581
2582         if (push_items == 0) {
2583                 ret = 1;
2584                 goto out;
2585         }
2586         if (!empty && push_items == btrfs_header_nritems(right))
2587                 WARN_ON(1);
2588
2589         /* push data from right to left */
2590         copy_extent_buffer(left, right,
2591                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
2592                            btrfs_item_nr_offset(0),
2593                            push_items * sizeof(struct btrfs_item));
2594
2595         push_space = BTRFS_LEAF_DATA_SIZE(root) -
2596                      btrfs_item_offset_nr(right, push_items - 1);
2597
2598         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2599                      leaf_data_end(root, left) - push_space,
2600                      btrfs_leaf_data(right) +
2601                      btrfs_item_offset_nr(right, push_items - 1),
2602                      push_space);
2603         old_left_nritems = btrfs_header_nritems(left);
2604         BUG_ON(old_left_nritems <= 0);
2605
2606         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2607         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2608                 u32 ioff;
2609
2610                 item = btrfs_item_nr(left, i);
2611                 if (!left->map_token) {
2612                         map_extent_buffer(left, (unsigned long)item,
2613                                         sizeof(struct btrfs_item),
2614                                         &left->map_token, &left->kaddr,
2615                                         &left->map_start, &left->map_len,
2616                                         KM_USER1);
2617                 }
2618
2619                 ioff = btrfs_item_offset(left, item);
2620                 btrfs_set_item_offset(left, item,
2621                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2622         }
2623         btrfs_set_header_nritems(left, old_left_nritems + push_items);
2624         if (left->map_token) {
2625                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2626                 left->map_token = NULL;
2627         }
2628
2629         /* fixup right node */
2630         if (push_items > right_nritems) {
2631                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2632                        right_nritems);
2633                 WARN_ON(1);
2634         }
2635
2636         if (push_items < right_nritems) {
2637                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2638                                                   leaf_data_end(root, right);
2639                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2640                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
2641                                       btrfs_leaf_data(right) +
2642                                       leaf_data_end(root, right), push_space);
2643
2644                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2645                               btrfs_item_nr_offset(push_items),
2646                              (btrfs_header_nritems(right) - push_items) *
2647                              sizeof(struct btrfs_item));
2648         }
2649         right_nritems -= push_items;
2650         btrfs_set_header_nritems(right, right_nritems);
2651         push_space = BTRFS_LEAF_DATA_SIZE(root);
2652         for (i = 0; i < right_nritems; i++) {
2653                 item = btrfs_item_nr(right, i);
2654
2655                 if (!right->map_token) {
2656                         map_extent_buffer(right, (unsigned long)item,
2657                                         sizeof(struct btrfs_item),
2658                                         &right->map_token, &right->kaddr,
2659                                         &right->map_start, &right->map_len,
2660                                         KM_USER1);
2661                 }
2662
2663                 push_space = push_space - btrfs_item_size(right, item);
2664                 btrfs_set_item_offset(right, item, push_space);
2665         }
2666         if (right->map_token) {
2667                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2668                 right->map_token = NULL;
2669         }
2670
2671         btrfs_mark_buffer_dirty(left);
2672         if (right_nritems)
2673                 btrfs_mark_buffer_dirty(right);
2674
2675         btrfs_item_key(right, &disk_key, 0);
2676         wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2677         if (wret)
2678                 ret = wret;
2679
2680         /* then fixup the leaf pointer in the path */
2681         if (path->slots[0] < push_items) {
2682                 path->slots[0] += old_left_nritems;
2683                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2684                         clean_tree_block(trans, root, path->nodes[0]);
2685                 btrfs_tree_unlock(path->nodes[0]);
2686                 free_extent_buffer(path->nodes[0]);
2687                 path->nodes[0] = left;
2688                 path->slots[1] -= 1;
2689         } else {
2690                 btrfs_tree_unlock(left);
2691                 free_extent_buffer(left);
2692                 path->slots[0] -= push_items;
2693         }
2694         BUG_ON(path->slots[0] < 0);
2695         return ret;
2696 out:
2697         btrfs_tree_unlock(left);
2698         free_extent_buffer(left);
2699         return ret;
2700 }
2701
2702 /*
2703  * push some data in the path leaf to the left, trying to free up at
2704  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2705  */
2706 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2707                           *root, struct btrfs_path *path, int data_size,
2708                           int empty)
2709 {
2710         struct extent_buffer *right = path->nodes[0];
2711         struct extent_buffer *left;
2712         int slot;
2713         int free_space;
2714         u32 right_nritems;
2715         int ret = 0;
2716
2717         slot = path->slots[1];
2718         if (slot == 0)
2719                 return 1;
2720         if (!path->nodes[1])
2721                 return 1;
2722
2723         right_nritems = btrfs_header_nritems(right);
2724         if (right_nritems == 0)
2725                 return 1;
2726
2727         btrfs_assert_tree_locked(path->nodes[1]);
2728
2729         left = read_node_slot(root, path->nodes[1], slot - 1);
2730         btrfs_tree_lock(left);
2731         btrfs_set_lock_blocking(left);
2732
2733         free_space = btrfs_leaf_free_space(root, left);
2734         if (free_space < data_size) {
2735                 ret = 1;
2736                 goto out;
2737         }
2738
2739         /* cow and double check */
2740         ret = btrfs_cow_block(trans, root, left,
2741                               path->nodes[1], slot - 1, &left);
2742         if (ret) {
2743                 /* we hit -ENOSPC, but it isn't fatal here */
2744                 ret = 1;
2745                 goto out;
2746         }
2747
2748         free_space = btrfs_leaf_free_space(root, left);
2749         if (free_space < data_size) {
2750                 ret = 1;
2751                 goto out;
2752         }
2753
2754         return __push_leaf_left(trans, root, path, data_size,
2755                                empty, left, free_space, right_nritems);
2756 out:
2757         btrfs_tree_unlock(left);
2758         free_extent_buffer(left);
2759         return ret;
2760 }
2761
2762 /*
2763  * split the path's leaf in two, making sure there is at least data_size
2764  * available for the resulting leaf level of the path.
2765  *
2766  * returns 0 if all went well and < 0 on failure.
2767  */
2768 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2769                                struct btrfs_root *root,
2770                                struct btrfs_path *path,
2771                                struct extent_buffer *l,
2772                                struct extent_buffer *right,
2773                                int slot, int mid, int nritems)
2774 {
2775         int data_copy_size;
2776         int rt_data_off;
2777         int i;
2778         int ret = 0;
2779         int wret;
2780         struct btrfs_disk_key disk_key;
2781
2782         nritems = nritems - mid;
2783         btrfs_set_header_nritems(right, nritems);
2784         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2785
2786         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2787                            btrfs_item_nr_offset(mid),
2788                            nritems * sizeof(struct btrfs_item));
2789
2790         copy_extent_buffer(right, l,
2791                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2792                      data_copy_size, btrfs_leaf_data(l) +
2793                      leaf_data_end(root, l), data_copy_size);
2794
2795         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2796                       btrfs_item_end_nr(l, mid);
2797
2798         for (i = 0; i < nritems; i++) {
2799                 struct btrfs_item *item = btrfs_item_nr(right, i);
2800                 u32 ioff;
2801
2802                 if (!right->map_token) {
2803                         map_extent_buffer(right, (unsigned long)item,
2804                                         sizeof(struct btrfs_item),
2805                                         &right->map_token, &right->kaddr,
2806                                         &right->map_start, &right->map_len,
2807                                         KM_USER1);
2808                 }
2809
2810                 ioff = btrfs_item_offset(right, item);
2811                 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2812         }
2813
2814         if (right->map_token) {
2815                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2816                 right->map_token = NULL;
2817         }
2818
2819         btrfs_set_header_nritems(l, mid);
2820         ret = 0;
2821         btrfs_item_key(right, &disk_key, 0);
2822         wret = insert_ptr(trans, root, path, &disk_key, right->start,
2823                           path->slots[1] + 1, 1);
2824         if (wret)
2825                 ret = wret;
2826
2827         btrfs_mark_buffer_dirty(right);
2828         btrfs_mark_buffer_dirty(l);
2829         BUG_ON(path->slots[0] != slot);
2830
2831         if (mid <= slot) {
2832                 btrfs_tree_unlock(path->nodes[0]);
2833                 free_extent_buffer(path->nodes[0]);
2834                 path->nodes[0] = right;
2835                 path->slots[0] -= mid;
2836                 path->slots[1] += 1;
2837         } else {
2838                 btrfs_tree_unlock(right);
2839                 free_extent_buffer(right);
2840         }
2841
2842         BUG_ON(path->slots[0] < 0);
2843
2844         return ret;
2845 }
2846
2847 /*
2848  * split the path's leaf in two, making sure there is at least data_size
2849  * available for the resulting leaf level of the path.
2850  *
2851  * returns 0 if all went well and < 0 on failure.
2852  */
2853 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2854                                struct btrfs_root *root,
2855                                struct btrfs_key *ins_key,
2856                                struct btrfs_path *path, int data_size,
2857                                int extend)
2858 {
2859         struct btrfs_disk_key disk_key;
2860         struct extent_buffer *l;
2861         u32 nritems;
2862         int mid;
2863         int slot;
2864         struct extent_buffer *right;
2865         int ret = 0;
2866         int wret;
2867         int split;
2868         int num_doubles = 0;
2869
2870         /* first try to make some room by pushing left and right */
2871         if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2872                 wret = push_leaf_right(trans, root, path, data_size, 0);
2873                 if (wret < 0)
2874                         return wret;
2875                 if (wret) {
2876                         wret = push_leaf_left(trans, root, path, data_size, 0);
2877                         if (wret < 0)
2878                                 return wret;
2879                 }
2880                 l = path->nodes[0];
2881
2882                 /* did the pushes work? */
2883                 if (btrfs_leaf_free_space(root, l) >= data_size)
2884                         return 0;
2885         }
2886
2887         if (!path->nodes[1]) {
2888                 ret = insert_new_root(trans, root, path, 1);
2889                 if (ret)
2890                         return ret;
2891         }
2892 again:
2893         split = 1;
2894         l = path->nodes[0];
2895         slot = path->slots[0];
2896         nritems = btrfs_header_nritems(l);
2897         mid = (nritems + 1) / 2;
2898
2899         if (mid <= slot) {
2900                 if (nritems == 1 ||
2901                     leaf_space_used(l, mid, nritems - mid) + data_size >
2902                         BTRFS_LEAF_DATA_SIZE(root)) {
2903                         if (slot >= nritems) {
2904                                 split = 0;
2905                         } else {
2906                                 mid = slot;
2907                                 if (mid != nritems &&
2908                                     leaf_space_used(l, mid, nritems - mid) +
2909                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2910                                         split = 2;
2911                                 }
2912                         }
2913                 }
2914         } else {
2915                 if (leaf_space_used(l, 0, mid) + data_size >
2916                         BTRFS_LEAF_DATA_SIZE(root)) {
2917                         if (!extend && data_size && slot == 0) {
2918                                 split = 0;
2919                         } else if ((extend || !data_size) && slot == 0) {
2920                                 mid = 1;
2921                         } else {
2922                                 mid = slot;
2923                                 if (mid != nritems &&
2924                                     leaf_space_used(l, mid, nritems - mid) +
2925                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2926                                         split = 2 ;
2927                                 }
2928                         }
2929                 }
2930         }
2931
2932         if (split == 0)
2933                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2934         else
2935                 btrfs_item_key(l, &disk_key, mid);
2936
2937         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2938                                         root->root_key.objectid,
2939                                         &disk_key, 0, l->start, 0);
2940         if (IS_ERR(right)) {
2941                 BUG_ON(1);
2942                 return PTR_ERR(right);
2943         }
2944
2945         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2946         btrfs_set_header_bytenr(right, right->start);
2947         btrfs_set_header_generation(right, trans->transid);
2948         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2949         btrfs_set_header_owner(right, root->root_key.objectid);
2950         btrfs_set_header_level(right, 0);
2951         write_extent_buffer(right, root->fs_info->fsid,
2952                             (unsigned long)btrfs_header_fsid(right),
2953                             BTRFS_FSID_SIZE);
2954
2955         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2956                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
2957                             BTRFS_UUID_SIZE);
2958
2959         if (split == 0) {
2960                 if (mid <= slot) {
2961                         btrfs_set_header_nritems(right, 0);
2962                         wret = insert_ptr(trans, root, path,
2963                                           &disk_key, right->start,
2964                                           path->slots[1] + 1, 1);
2965                         if (wret)
2966                                 ret = wret;
2967
2968                         btrfs_tree_unlock(path->nodes[0]);
2969                         free_extent_buffer(path->nodes[0]);
2970                         path->nodes[0] = right;
2971                         path->slots[0] = 0;
2972                         path->slots[1] += 1;
2973                 } else {
2974                         btrfs_set_header_nritems(right, 0);
2975                         wret = insert_ptr(trans, root, path,
2976                                           &disk_key,
2977                                           right->start,
2978                                           path->slots[1], 1);
2979                         if (wret)
2980                                 ret = wret;
2981                         btrfs_tree_unlock(path->nodes[0]);
2982                         free_extent_buffer(path->nodes[0]);
2983                         path->nodes[0] = right;
2984                         path->slots[0] = 0;
2985                         if (path->slots[1] == 0) {
2986                                 wret = fixup_low_keys(trans, root,
2987                                                 path, &disk_key, 1);
2988                                 if (wret)
2989                                         ret = wret;
2990                         }
2991                 }
2992                 btrfs_mark_buffer_dirty(right);
2993                 return ret;
2994         }
2995
2996         ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2997         BUG_ON(ret);
2998
2999         if (split == 2) {
3000                 BUG_ON(num_doubles != 0);
3001                 num_doubles++;
3002                 goto again;
3003         }
3004
3005         return ret;
3006 }
3007
3008 /*
3009  * This function splits a single item into two items,
3010  * giving 'new_key' to the new item and splitting the
3011  * old one at split_offset (from the start of the item).
3012  *
3013  * The path may be released by this operation.  After
3014  * the split, the path is pointing to the old item.  The
3015  * new item is going to be in the same node as the old one.
3016  *
3017  * Note, the item being split must be smaller enough to live alone on
3018  * a tree block with room for one extra struct btrfs_item
3019  *
3020  * This allows us to split the item in place, keeping a lock on the
3021  * leaf the entire time.
3022  */
3023 int btrfs_split_item(struct btrfs_trans_handle *trans,
3024                      struct btrfs_root *root,
3025                      struct btrfs_path *path,
3026                      struct btrfs_key *new_key,
3027                      unsigned long split_offset)
3028 {
3029         u32 item_size;
3030         struct extent_buffer *leaf;
3031         struct btrfs_key orig_key;
3032         struct btrfs_item *item;
3033         struct btrfs_item *new_item;
3034         int ret = 0;
3035         int slot;
3036         u32 nritems;
3037         u32 orig_offset;
3038         struct btrfs_disk_key disk_key;
3039         char *buf;
3040
3041         leaf = path->nodes[0];
3042         btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
3043         if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
3044                 goto split;
3045
3046         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3047         btrfs_release_path(root, path);
3048
3049         path->search_for_split = 1;
3050         path->keep_locks = 1;
3051
3052         ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
3053         path->search_for_split = 0;
3054
3055         /* if our item isn't there or got smaller, return now */
3056         if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
3057                                                         path->slots[0])) {
3058                 path->keep_locks = 0;
3059                 return -EAGAIN;
3060         }
3061
3062         btrfs_set_path_blocking(path);
3063         ret = split_leaf(trans, root, &orig_key, path,
3064                          sizeof(struct btrfs_item), 1);
3065         path->keep_locks = 0;
3066         BUG_ON(ret);
3067
3068         btrfs_unlock_up_safe(path, 1);
3069         leaf = path->nodes[0];
3070         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3071
3072 split:
3073         /*
3074          * make sure any changes to the path from split_leaf leave it
3075          * in a blocking state
3076          */
3077         btrfs_set_path_blocking(path);
3078
3079         item = btrfs_item_nr(leaf, path->slots[0]);
3080         orig_offset = btrfs_item_offset(leaf, item);
3081         item_size = btrfs_item_size(leaf, item);
3082
3083         buf = kmalloc(item_size, GFP_NOFS);
3084         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3085                             path->slots[0]), item_size);
3086         slot = path->slots[0] + 1;
3087         leaf = path->nodes[0];
3088
3089         nritems = btrfs_header_nritems(leaf);
3090
3091         if (slot != nritems) {
3092                 /* shift the items */
3093                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3094                               btrfs_item_nr_offset(slot),
3095                               (nritems - slot) * sizeof(struct btrfs_item));
3096
3097         }
3098
3099         btrfs_cpu_key_to_disk(&disk_key, new_key);
3100         btrfs_set_item_key(leaf, &disk_key, slot);
3101
3102         new_item = btrfs_item_nr(leaf, slot);
3103
3104         btrfs_set_item_offset(leaf, new_item, orig_offset);
3105         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3106
3107         btrfs_set_item_offset(leaf, item,
3108                               orig_offset + item_size - split_offset);
3109         btrfs_set_item_size(leaf, item, split_offset);
3110
3111         btrfs_set_header_nritems(leaf, nritems + 1);
3112
3113         /* write the data for the start of the original item */
3114         write_extent_buffer(leaf, buf,
3115                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3116                             split_offset);
3117
3118         /* write the data for the new item */
3119         write_extent_buffer(leaf, buf + split_offset,
3120                             btrfs_item_ptr_offset(leaf, slot),
3121                             item_size - split_offset);
3122         btrfs_mark_buffer_dirty(leaf);
3123
3124         ret = 0;
3125         if (btrfs_leaf_free_space(root, leaf) < 0) {
3126                 btrfs_print_leaf(root, leaf);
3127                 BUG();
3128         }
3129         kfree(buf);
3130         return ret;
3131 }
3132
3133 /*
3134  * make the item pointed to by the path smaller.  new_size indicates
3135  * how small to make it, and from_end tells us if we just chop bytes
3136  * off the end of the item or if we shift the item to chop bytes off
3137  * the front.
3138  */
3139 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3140                         struct btrfs_root *root,
3141                         struct btrfs_path *path,
3142                         u32 new_size, int from_end)
3143 {
3144         int ret = 0;
3145         int slot;
3146         int slot_orig;
3147         struct extent_buffer *leaf;
3148         struct btrfs_item *item;
3149         u32 nritems;
3150         unsigned int data_end;
3151         unsigned int old_data_start;
3152         unsigned int old_size;
3153         unsigned int size_diff;
3154         int i;
3155
3156         slot_orig = path->slots[0];
3157         leaf = path->nodes[0];
3158         slot = path->slots[0];
3159
3160         old_size = btrfs_item_size_nr(leaf, slot);
3161         if (old_size == new_size)
3162                 return 0;
3163
3164         nritems = btrfs_header_nritems(leaf);
3165         data_end = leaf_data_end(root, leaf);
3166
3167         old_data_start = btrfs_item_offset_nr(leaf, slot);
3168
3169         size_diff = old_size - new_size;
3170
3171         BUG_ON(slot < 0);
3172         BUG_ON(slot >= nritems);
3173
3174         /*
3175          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3176          */
3177         /* first correct the data pointers */
3178         for (i = slot; i < nritems; i++) {
3179                 u32 ioff;
3180                 item = btrfs_item_nr(leaf, i);
3181
3182                 if (!leaf->map_token) {
3183                         map_extent_buffer(leaf, (unsigned long)item,
3184                                         sizeof(struct btrfs_item),
3185                                         &leaf->map_token, &leaf->kaddr,
3186                                         &leaf->map_start, &leaf->map_len,
3187                                         KM_USER1);
3188                 }
3189
3190                 ioff = btrfs_item_offset(leaf, item);
3191                 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3192         }
3193
3194         if (leaf->map_token) {
3195                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3196                 leaf->map_token = NULL;
3197         }
3198
3199         /* shift the data */
3200         if (from_end) {
3201                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3202                               data_end + size_diff, btrfs_leaf_data(leaf) +
3203                               data_end, old_data_start + new_size - data_end);
3204         } else {
3205                 struct btrfs_disk_key disk_key;
3206                 u64 offset;
3207
3208                 btrfs_item_key(leaf, &disk_key, slot);
3209
3210                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3211                         unsigned long ptr;
3212                         struct btrfs_file_extent_item *fi;
3213
3214                         fi = btrfs_item_ptr(leaf, slot,
3215                                             struct btrfs_file_extent_item);
3216                         fi = (struct btrfs_file_extent_item *)(
3217                              (unsigned long)fi - size_diff);
3218
3219                         if (btrfs_file_extent_type(leaf, fi) ==
3220                             BTRFS_FILE_EXTENT_INLINE) {
3221                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3222                                 memmove_extent_buffer(leaf, ptr,
3223                                       (unsigned long)fi,
3224                                       offsetof(struct btrfs_file_extent_item,
3225                                                  disk_bytenr));
3226                         }
3227                 }
3228
3229                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3230                               data_end + size_diff, btrfs_leaf_data(leaf) +
3231                               data_end, old_data_start - data_end);
3232
3233                 offset = btrfs_disk_key_offset(&disk_key);
3234                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3235                 btrfs_set_item_key(leaf, &disk_key, slot);
3236                 if (slot == 0)
3237                         fixup_low_keys(trans, root, path, &disk_key, 1);
3238         }
3239
3240         item = btrfs_item_nr(leaf, slot);
3241         btrfs_set_item_size(leaf, item, new_size);
3242         btrfs_mark_buffer_dirty(leaf);
3243
3244         ret = 0;
3245         if (btrfs_leaf_free_space(root, leaf) < 0) {
3246                 btrfs_print_leaf(root, leaf);
3247                 BUG();
3248         }
3249         return ret;
3250 }
3251
3252 /*
3253  * make the item pointed to by the path bigger, data_size is the new size.
3254  */
3255 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3256                       struct btrfs_root *root, struct btrfs_path *path,
3257                       u32 data_size)
3258 {
3259         int ret = 0;
3260         int slot;
3261         int slot_orig;
3262         struct extent_buffer *leaf;
3263         struct btrfs_item *item;
3264         u32 nritems;
3265         unsigned int data_end;
3266         unsigned int old_data;
3267         unsigned int old_size;
3268         int i;
3269
3270         slot_orig = path->slots[0];
3271         leaf = path->nodes[0];
3272
3273         nritems = btrfs_header_nritems(leaf);
3274         data_end = leaf_data_end(root, leaf);
3275
3276         if (btrfs_leaf_free_space(root, leaf) < data_size) {
3277                 btrfs_print_leaf(root, leaf);
3278                 BUG();
3279         }
3280         slot = path->slots[0];
3281         old_data = btrfs_item_end_nr(leaf, slot);
3282
3283         BUG_ON(slot < 0);
3284         if (slot >= nritems) {
3285                 btrfs_print_leaf(root, leaf);
3286                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3287                        slot, nritems);
3288                 BUG_ON(1);
3289         }
3290
3291         /*
3292          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3293          */
3294         /* first correct the data pointers */
3295         for (i = slot; i < nritems; i++) {
3296                 u32 ioff;
3297                 item = btrfs_item_nr(leaf, i);
3298
3299                 if (!leaf->map_token) {
3300                         map_extent_buffer(leaf, (unsigned long)item,
3301                                         sizeof(struct btrfs_item),
3302                                         &leaf->map_token, &leaf->kaddr,
3303                                         &leaf->map_start, &leaf->map_len,
3304                                         KM_USER1);
3305                 }
3306                 ioff = btrfs_item_offset(leaf, item);
3307                 btrfs_set_item_offset(leaf, item, ioff - data_size);
3308         }
3309
3310         if (leaf->map_token) {
3311                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3312                 leaf->map_token = NULL;
3313         }
3314
3315         /* shift the data */
3316         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3317                       data_end - data_size, btrfs_leaf_data(leaf) +
3318                       data_end, old_data - data_end);
3319
3320         data_end = old_data;
3321         old_size = btrfs_item_size_nr(leaf, slot);
3322         item = btrfs_item_nr(leaf, slot);
3323         btrfs_set_item_size(leaf, item, old_size + data_size);
3324         btrfs_mark_buffer_dirty(leaf);
3325
3326         ret = 0;
3327         if (btrfs_leaf_free_space(root, leaf) < 0) {
3328                 btrfs_print_leaf(root, leaf);
3329                 BUG();
3330         }
3331         return ret;
3332 }
3333
3334 /*
3335  * Given a key and some data, insert items into the tree.
3336  * This does all the path init required, making room in the tree if needed.
3337  * Returns the number of keys that were inserted.
3338  */
3339 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3340                             struct btrfs_root *root,
3341                             struct btrfs_path *path,
3342                             struct btrfs_key *cpu_key, u32 *data_size,
3343                             int nr)
3344 {
3345         struct extent_buffer *leaf;
3346         struct btrfs_item *item;
3347         int ret = 0;
3348         int slot;
3349         int i;
3350         u32 nritems;
3351         u32 total_data = 0;
3352         u32 total_size = 0;
3353         unsigned int data_end;
3354         struct btrfs_disk_key disk_key;
3355         struct btrfs_key found_key;
3356
3357         for (i = 0; i < nr; i++) {
3358                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3359                     BTRFS_LEAF_DATA_SIZE(root)) {
3360                         break;
3361                         nr = i;
3362                 }
3363                 total_data += data_size[i];
3364                 total_size += data_size[i] + sizeof(struct btrfs_item);
3365         }
3366         BUG_ON(nr == 0);
3367
3368         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3369         if (ret == 0)
3370                 return -EEXIST;
3371         if (ret < 0)
3372                 goto out;
3373
3374         leaf = path->nodes[0];
3375
3376         nritems = btrfs_header_nritems(leaf);
3377         data_end = leaf_data_end(root, leaf);
3378
3379         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3380                 for (i = nr; i >= 0; i--) {
3381                         total_data -= data_size[i];
3382                         total_size -= data_size[i] + sizeof(struct btrfs_item);
3383                         if (total_size < btrfs_leaf_free_space(root, leaf))
3384                                 break;
3385                 }
3386                 nr = i;
3387         }
3388
3389         slot = path->slots[0];
3390         BUG_ON(slot < 0);
3391
3392         if (slot != nritems) {
3393                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3394
3395                 item = btrfs_item_nr(leaf, slot);
3396                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3397
3398                 /* figure out how many keys we can insert in here */
3399                 total_data = data_size[0];
3400                 for (i = 1; i < nr; i++) {
3401                         if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3402                                 break;
3403                         total_data += data_size[i];
3404                 }
3405                 nr = i;
3406
3407                 if (old_data < data_end) {
3408                         btrfs_print_leaf(root, leaf);
3409                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3410                                slot, old_data, data_end);
3411                         BUG_ON(1);
3412                 }
3413                 /*
3414                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3415                  */
3416                 /* first correct the data pointers */
3417                 WARN_ON(leaf->map_token);
3418                 for (i = slot; i < nritems; i++) {
3419                         u32 ioff;
3420
3421                         item = btrfs_item_nr(leaf, i);
3422                         if (!leaf->map_token) {
3423                                 map_extent_buffer(leaf, (unsigned long)item,
3424                                         sizeof(struct btrfs_item),
3425                                         &leaf->map_token, &leaf->kaddr,
3426                                         &leaf->map_start, &leaf->map_len,
3427                                         KM_USER1);
3428                         }
3429
3430                         ioff = btrfs_item_offset(leaf, item);
3431                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3432                 }
3433                 if (leaf->map_token) {
3434                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3435                         leaf->map_token = NULL;
3436                 }
3437
3438                 /* shift the items */
3439                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3440                               btrfs_item_nr_offset(slot),
3441                               (nritems - slot) * sizeof(struct btrfs_item));
3442
3443                 /* shift the data */
3444                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3445                               data_end - total_data, btrfs_leaf_data(leaf) +
3446                               data_end, old_data - data_end);
3447                 data_end = old_data;
3448         } else {
3449                 /*
3450                  * this sucks but it has to be done, if we are inserting at
3451                  * the end of the leaf only insert 1 of the items, since we
3452                  * have no way of knowing whats on the next leaf and we'd have
3453                  * to drop our current locks to figure it out
3454                  */
3455                 nr = 1;
3456         }
3457
3458         /* setup the item for the new data */
3459         for (i = 0; i < nr; i++) {
3460                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3461                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3462                 item = btrfs_item_nr(leaf, slot + i);
3463                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3464                 data_end -= data_size[i];
3465                 btrfs_set_item_size(leaf, item, data_size[i]);
3466         }
3467         btrfs_set_header_nritems(leaf, nritems + nr);
3468         btrfs_mark_buffer_dirty(leaf);
3469
3470         ret = 0;
3471         if (slot == 0) {
3472                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3473                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3474         }
3475
3476         if (btrfs_leaf_free_space(root, leaf) < 0) {
3477                 btrfs_print_leaf(root, leaf);
3478                 BUG();
3479         }
3480 out:
3481         if (!ret)
3482                 ret = nr;
3483         return ret;
3484 }
3485
3486 /*
3487  * this is a helper for btrfs_insert_empty_items, the main goal here is
3488  * to save stack depth by doing the bulk of the work in a function
3489  * that doesn't call btrfs_search_slot
3490  */
3491 static noinline_for_stack int
3492 setup_items_for_insert(struct btrfs_trans_handle *trans,
3493                       struct btrfs_root *root, struct btrfs_path *path,
3494                       struct btrfs_key *cpu_key, u32 *data_size,
3495                       u32 total_data, u32 total_size, int nr)
3496 {
3497         struct btrfs_item *item;
3498         int i;
3499         u32 nritems;
3500         unsigned int data_end;
3501         struct btrfs_disk_key disk_key;
3502         int ret;
3503         struct extent_buffer *leaf;
3504         int slot;
3505
3506         leaf = path->nodes[0];
3507         slot = path->slots[0];
3508
3509         nritems = btrfs_header_nritems(leaf);
3510         data_end = leaf_data_end(root, leaf);
3511
3512         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3513                 btrfs_print_leaf(root, leaf);
3514                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3515                        total_size, btrfs_leaf_free_space(root, leaf));
3516                 BUG();
3517         }
3518
3519         if (slot != nritems) {
3520                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3521
3522                 if (old_data < data_end) {
3523                         btrfs_print_leaf(root, leaf);
3524                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3525                                slot, old_data, data_end);
3526                         BUG_ON(1);
3527                 }
3528                 /*
3529                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3530                  */
3531                 /* first correct the data pointers */
3532                 WARN_ON(leaf->map_token);
3533                 for (i = slot; i < nritems; i++) {
3534                         u32 ioff;
3535
3536                         item = btrfs_item_nr(leaf, i);
3537                         if (!leaf->map_token) {
3538                                 map_extent_buffer(leaf, (unsigned long)item,
3539                                         sizeof(struct btrfs_item),
3540                                         &leaf->map_token, &leaf->kaddr,
3541                                         &leaf->map_start, &leaf->map_len,
3542                                         KM_USER1);
3543                         }
3544
3545                         ioff = btrfs_item_offset(leaf, item);
3546                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3547                 }
3548                 if (leaf->map_token) {
3549                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3550                         leaf->map_token = NULL;
3551                 }
3552
3553                 /* shift the items */
3554                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3555                               btrfs_item_nr_offset(slot),
3556                               (nritems - slot) * sizeof(struct btrfs_item));
3557
3558                 /* shift the data */
3559                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3560                               data_end - total_data, btrfs_leaf_data(leaf) +
3561                               data_end, old_data - data_end);
3562                 data_end = old_data;
3563         }
3564
3565         /* setup the item for the new data */
3566         for (i = 0; i < nr; i++) {
3567                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3568                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3569                 item = btrfs_item_nr(leaf, slot + i);
3570                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3571                 data_end -= data_size[i];
3572                 btrfs_set_item_size(leaf, item, data_size[i]);
3573         }
3574
3575         btrfs_set_header_nritems(leaf, nritems + nr);
3576
3577         ret = 0;
3578         if (slot == 0) {
3579                 struct btrfs_disk_key disk_key;
3580                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3581                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3582         }
3583         btrfs_unlock_up_safe(path, 1);
3584         btrfs_mark_buffer_dirty(leaf);
3585
3586         if (btrfs_leaf_free_space(root, leaf) < 0) {
3587                 btrfs_print_leaf(root, leaf);
3588                 BUG();
3589         }
3590         return ret;
3591 }
3592
3593 /*
3594  * Given a key and some data, insert items into the tree.
3595  * This does all the path init required, making room in the tree if needed.
3596  */
3597 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3598                             struct btrfs_root *root,
3599                             struct btrfs_path *path,
3600                             struct btrfs_key *cpu_key, u32 *data_size,
3601                             int nr)
3602 {
3603         struct extent_buffer *leaf;
3604         int ret = 0;
3605         int slot;
3606         int i;
3607         u32 total_size = 0;
3608         u32 total_data = 0;
3609
3610         for (i = 0; i < nr; i++)
3611                 total_data += data_size[i];
3612
3613         total_size = total_data + (nr * sizeof(struct btrfs_item));
3614         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3615         if (ret == 0)
3616                 return -EEXIST;
3617         if (ret < 0)
3618                 goto out;
3619
3620         leaf = path->nodes[0];
3621         slot = path->slots[0];
3622         BUG_ON(slot < 0);
3623
3624         ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3625                                total_data, total_size, nr);
3626
3627 out:
3628         return ret;
3629 }
3630
3631 /*
3632  * Given a key and some data, insert an item into the tree.
3633  * This does all the path init required, making room in the tree if needed.
3634  */
3635 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3636                       *root, struct btrfs_key *cpu_key, void *data, u32
3637                       data_size)
3638 {
3639         int ret = 0;
3640         struct btrfs_path *path;
3641         struct extent_buffer *leaf;
3642         unsigned long ptr;
3643
3644         path = btrfs_alloc_path();
3645         BUG_ON(!path);
3646         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3647         if (!ret) {
3648                 leaf = path->nodes[0];
3649                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3650                 write_extent_buffer(leaf, data, ptr, data_size);
3651                 btrfs_mark_buffer_dirty(leaf);
3652         }
3653         btrfs_free_path(path);
3654         return ret;
3655 }
3656
3657 /*
3658  * delete the pointer from a given node.
3659  *
3660  * the tree should have been previously balanced so the deletion does not
3661  * empty a node.
3662  */
3663 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3664                    struct btrfs_path *path, int level, int slot)
3665 {
3666         struct extent_buffer *parent = path->nodes[level];
3667         u32 nritems;
3668         int ret = 0;
3669         int wret;
3670
3671         nritems = btrfs_header_nritems(parent);
3672         if (slot != nritems - 1) {
3673                 memmove_extent_buffer(parent,
3674                               btrfs_node_key_ptr_offset(slot),
3675                               btrfs_node_key_ptr_offset(slot + 1),
3676                               sizeof(struct btrfs_key_ptr) *
3677                               (nritems - slot - 1));
3678         }
3679         nritems--;
3680         btrfs_set_header_nritems(parent, nritems);
3681         if (nritems == 0 && parent == root->node) {
3682                 BUG_ON(btrfs_header_level(root->node) != 1);
3683                 /* just turn the root into a leaf and break */
3684                 btrfs_set_header_level(root->node, 0);
3685         } else if (slot == 0) {
3686                 struct btrfs_disk_key disk_key;
3687
3688                 btrfs_node_key(parent, &disk_key, 0);
3689                 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3690                 if (wret)
3691                         ret = wret;
3692         }
3693         btrfs_mark_buffer_dirty(parent);
3694         return ret;
3695 }
3696
3697 /*
3698  * a helper function to delete the leaf pointed to by path->slots[1] and
3699  * path->nodes[1].
3700  *
3701  * This deletes the pointer in path->nodes[1] and frees the leaf
3702  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3703  *
3704  * The path must have already been setup for deleting the leaf, including
3705  * all the proper balancing.  path->nodes[1] must be locked.
3706  */
3707 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3708                                    struct btrfs_root *root,
3709                                    struct btrfs_path *path,
3710                                    struct extent_buffer *leaf)
3711 {
3712         int ret;
3713
3714         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3715         ret = del_ptr(trans, root, path, 1, path->slots[1]);
3716         if (ret)
3717                 return ret;
3718
3719         /*
3720          * btrfs_free_extent is expensive, we want to make sure we
3721          * aren't holding any locks when we call it
3722          */
3723         btrfs_unlock_up_safe(path, 0);
3724
3725         ret = btrfs_free_extent(trans, root, leaf->start, leaf->len,
3726                                 0, root->root_key.objectid, 0, 0);
3727         return ret;
3728 }
3729 /*
3730  * delete the item at the leaf level in path.  If that empties
3731  * the leaf, remove it from the tree
3732  */
3733 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3734                     struct btrfs_path *path, int slot, int nr)
3735 {
3736         struct extent_buffer *leaf;
3737         struct btrfs_item *item;
3738         int last_off;
3739         int dsize = 0;
3740         int ret = 0;
3741         int wret;
3742         int i;
3743         u32 nritems;
3744
3745         leaf = path->nodes[0];
3746         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3747
3748         for (i = 0; i < nr; i++)
3749                 dsize += btrfs_item_size_nr(leaf, slot + i);
3750
3751         nritems = btrfs_header_nritems(leaf);
3752
3753         if (slot + nr != nritems) {
3754                 int data_end = leaf_data_end(root, leaf);
3755
3756                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3757                               data_end + dsize,
3758                               btrfs_leaf_data(leaf) + data_end,
3759                               last_off - data_end);
3760
3761                 for (i = slot + nr; i < nritems; i++) {
3762                         u32 ioff;
3763
3764                         item = btrfs_item_nr(leaf, i);
3765                         if (!leaf->map_token) {
3766                                 map_extent_buffer(leaf, (unsigned long)item,
3767                                         sizeof(struct btrfs_item),
3768                                         &leaf->map_token, &leaf->kaddr,
3769                                         &leaf->map_start, &leaf->map_len,
3770                                         KM_USER1);
3771                         }
3772                         ioff = btrfs_item_offset(leaf, item);
3773                         btrfs_set_item_offset(leaf, item, ioff + dsize);
3774                 }
3775
3776                 if (leaf->map_token) {
3777                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3778                         leaf->map_token = NULL;
3779                 }
3780
3781                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3782                               btrfs_item_nr_offset(slot + nr),
3783                               sizeof(struct btrfs_item) *
3784                               (nritems - slot - nr));
3785         }
3786         btrfs_set_header_nritems(leaf, nritems - nr);
3787         nritems -= nr;
3788
3789         /* delete the leaf if we've emptied it */
3790         if (nritems == 0) {
3791                 if (leaf == root->node) {
3792                         btrfs_set_header_level(leaf, 0);
3793                 } else {
3794                         ret = btrfs_del_leaf(trans, root, path, leaf);
3795                         BUG_ON(ret);
3796                 }
3797         } else {
3798                 int used = leaf_space_used(leaf, 0, nritems);
3799                 if (slot == 0) {
3800                         struct btrfs_disk_key disk_key;
3801
3802                         btrfs_item_key(leaf, &disk_key, 0);
3803                         wret = fixup_low_keys(trans, root, path,
3804                                               &disk_key, 1);
3805                         if (wret)
3806                                 ret = wret;
3807                 }
3808
3809                 /* delete the leaf if it is mostly empty */
3810                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 2) {
3811                         /* push_leaf_left fixes the path.
3812                          * make sure the path still points to our leaf
3813                          * for possible call to del_ptr below
3814                          */
3815                         slot = path->slots[1];
3816                         extent_buffer_get(leaf);
3817
3818                         btrfs_set_path_blocking(path);
3819                         wret = push_leaf_left(trans, root, path, 1, 1);
3820                         if (wret < 0 && wret != -ENOSPC)
3821                                 ret = wret;
3822
3823                         if (path->nodes[0] == leaf &&
3824                             btrfs_header_nritems(leaf)) {
3825                                 wret = push_leaf_right(trans, root, path, 1, 1);
3826                                 if (wret < 0 && wret != -ENOSPC)
3827                                         ret = wret;
3828                         }
3829
3830                         if (btrfs_header_nritems(leaf) == 0) {
3831                                 path->slots[1] = slot;
3832                                 ret = btrfs_del_leaf(trans, root, path, leaf);
3833                                 BUG_ON(ret);
3834                                 free_extent_buffer(leaf);
3835                         } else {
3836                                 /* if we're still in the path, make sure
3837                                  * we're dirty.  Otherwise, one of the
3838                                  * push_leaf functions must have already
3839                                  * dirtied this buffer
3840                                  */
3841                                 if (path->nodes[0] == leaf)
3842                                         btrfs_mark_buffer_dirty(leaf);
3843                                 free_extent_buffer(leaf);
3844                         }
3845                 } else {
3846                         btrfs_mark_buffer_dirty(leaf);
3847                 }
3848         }
3849         return ret;
3850 }
3851
3852 /*
3853  * search the tree again to find a leaf with lesser keys
3854  * returns 0 if it found something or 1 if there are no lesser leaves.
3855  * returns < 0 on io errors.
3856  *
3857  * This may release the path, and so you may lose any locks held at the
3858  * time you call it.
3859  */
3860 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3861 {
3862         struct btrfs_key key;
3863         struct btrfs_disk_key found_key;
3864         int ret;
3865
3866         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3867
3868         if (key.offset > 0)
3869                 key.offset--;
3870         else if (key.type > 0)
3871                 key.type--;
3872         else if (key.objectid > 0)
3873                 key.objectid--;
3874         else
3875                 return 1;
3876
3877         btrfs_release_path(root, path);
3878         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3879         if (ret < 0)
3880                 return ret;
3881         btrfs_item_key(path->nodes[0], &found_key, 0);
3882         ret = comp_keys(&found_key, &key);
3883         if (ret < 0)
3884                 return 0;
3885         return 1;
3886 }
3887
3888 /*
3889  * A helper function to walk down the tree starting at min_key, and looking
3890  * for nodes or leaves that are either in cache or have a minimum
3891  * transaction id.  This is used by the btree defrag code, and tree logging
3892  *
3893  * This does not cow, but it does stuff the starting key it finds back
3894  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3895  * key and get a writable path.
3896  *
3897  * This does lock as it descends, and path->keep_locks should be set
3898  * to 1 by the caller.
3899  *
3900  * This honors path->lowest_level to prevent descent past a given level
3901  * of the tree.
3902  *
3903  * min_trans indicates the oldest transaction that you are interested
3904  * in walking through.  Any nodes or leaves older than min_trans are
3905  * skipped over (without reading them).
3906  *
3907  * returns zero if something useful was found, < 0 on error and 1 if there
3908  * was nothing in the tree that matched the search criteria.
3909  */
3910 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3911                          struct btrfs_key *max_key,
3912                          struct btrfs_path *path, int cache_only,
3913                          u64 min_trans)
3914 {
3915         struct extent_buffer *cur;
3916         struct btrfs_key found_key;
3917         int slot;
3918         int sret;
3919         u32 nritems;
3920         int level;
3921         int ret = 1;
3922
3923         WARN_ON(!path->keep_locks);
3924 again:
3925         cur = btrfs_lock_root_node(root);
3926         level = btrfs_header_level(cur);
3927         WARN_ON(path->nodes[level]);
3928         path->nodes[level] = cur;
3929         path->locks[level] = 1;
3930
3931         if (btrfs_header_generation(cur) < min_trans) {
3932                 ret = 1;
3933                 goto out;
3934         }
3935         while (1) {
3936                 nritems = btrfs_header_nritems(cur);
3937                 level = btrfs_header_level(cur);
3938                 sret = bin_search(cur, min_key, level, &slot);
3939
3940                 /* at the lowest level, we're done, setup the path and exit */
3941                 if (level == path->lowest_level) {
3942                         if (slot >= nritems)
3943                                 goto find_next_key;
3944                         ret = 0;
3945                         path->slots[level] = slot;
3946                         btrfs_item_key_to_cpu(cur, &found_key, slot);
3947                         goto out;
3948                 }
3949                 if (sret && slot > 0)
3950                         slot--;
3951                 /*
3952                  * check this node pointer against the cache_only and
3953                  * min_trans parameters.  If it isn't in cache or is too
3954                  * old, skip to the next one.
3955                  */
3956                 while (slot < nritems) {
3957                         u64 blockptr;
3958                         u64 gen;
3959                         struct extent_buffer *tmp;
3960                         struct btrfs_disk_key disk_key;
3961
3962                         blockptr = btrfs_node_blockptr(cur, slot);
3963                         gen = btrfs_node_ptr_generation(cur, slot);
3964                         if (gen < min_trans) {
3965                                 slot++;
3966                                 continue;
3967                         }
3968                         if (!cache_only)
3969                                 break;
3970
3971                         if (max_key) {
3972                                 btrfs_node_key(cur, &disk_key, slot);
3973                                 if (comp_keys(&disk_key, max_key) >= 0) {
3974                                         ret = 1;
3975                                         goto out;
3976                                 }
3977                         }
3978
3979                         tmp = btrfs_find_tree_block(root, blockptr,
3980                                             btrfs_level_size(root, level - 1));
3981
3982                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
3983                                 free_extent_buffer(tmp);
3984                                 break;
3985                         }
3986                         if (tmp)
3987                                 free_extent_buffer(tmp);
3988                         slot++;
3989                 }
3990 find_next_key:
3991                 /*
3992                  * we didn't find a candidate key in this node, walk forward
3993                  * and find another one
3994                  */
3995                 if (slot >= nritems) {
3996                         path->slots[level] = slot;
3997                         btrfs_set_path_blocking(path);
3998                         sret = btrfs_find_next_key(root, path, min_key, level,
3999                                                   cache_only, min_trans);
4000                         if (sret == 0) {
4001                                 btrfs_release_path(root, path);
4002                                 goto again;
4003                         } else {
4004                                 goto out;
4005                         }
4006                 }
4007                 /* save our key for returning back */
4008                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4009                 path->slots[level] = slot;
4010                 if (level == path->lowest_level) {
4011                         ret = 0;
4012                         unlock_up(path, level, 1);
4013                         goto out;
4014                 }
4015                 btrfs_set_path_blocking(path);
4016                 cur = read_node_slot(root, cur, slot);
4017
4018                 btrfs_tree_lock(cur);
4019
4020                 path->locks[level - 1] = 1;
4021                 path->nodes[level - 1] = cur;
4022                 unlock_up(path, level, 1);
4023                 btrfs_clear_path_blocking(path, NULL);
4024         }
4025 out:
4026         if (ret == 0)
4027                 memcpy(min_key, &found_key, sizeof(found_key));
4028         btrfs_set_path_blocking(path);
4029         return ret;
4030 }
4031
4032 /*
4033  * this is similar to btrfs_next_leaf, but does not try to preserve
4034  * and fixup the path.  It looks for and returns the next key in the
4035  * tree based on the current path and the cache_only and min_trans
4036  * parameters.
4037  *
4038  * 0 is returned if another key is found, < 0 if there are any errors
4039  * and 1 is returned if there are no higher keys in the tree
4040  *
4041  * path->keep_locks should be set to 1 on the search made before
4042  * calling this function.
4043  */
4044 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4045                         struct btrfs_key *key, int lowest_level,
4046                         int cache_only, u64 min_trans)
4047 {
4048         int level = lowest_level;
4049         int slot;
4050         struct extent_buffer *c;
4051
4052         WARN_ON(!path->keep_locks);
4053         while (level < BTRFS_MAX_LEVEL) {
4054                 if (!path->nodes[level])
4055                         return 1;
4056
4057                 slot = path->slots[level] + 1;
4058                 c = path->nodes[level];
4059 next:
4060                 if (slot >= btrfs_header_nritems(c)) {
4061                         level++;
4062                         if (level == BTRFS_MAX_LEVEL)
4063                                 return 1;
4064                         continue;
4065                 }
4066                 if (level == 0)
4067                         btrfs_item_key_to_cpu(c, key, slot);
4068                 else {
4069                         u64 blockptr = btrfs_node_blockptr(c, slot);
4070                         u64 gen = btrfs_node_ptr_generation(c, slot);
4071
4072                         if (cache_only) {
4073                                 struct extent_buffer *cur;
4074                                 cur = btrfs_find_tree_block(root, blockptr,
4075                                             btrfs_level_size(root, level - 1));
4076                                 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4077                                         slot++;
4078                                         if (cur)
4079                                                 free_extent_buffer(cur);
4080                                         goto next;
4081                                 }
4082                                 free_extent_buffer(cur);
4083                         }
4084                         if (gen < min_trans) {
4085                                 slot++;
4086                                 goto next;
4087                         }
4088                         btrfs_node_key_to_cpu(c, key, slot);
4089                 }
4090                 return 0;
4091         }
4092         return 1;
4093 }
4094
4095 /*
4096  * search the tree again to find a leaf with greater keys
4097  * returns 0 if it found something or 1 if there are no greater leaves.
4098  * returns < 0 on io errors.
4099  */
4100 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4101 {
4102         int slot;
4103         int level;
4104         struct extent_buffer *c;
4105         struct extent_buffer *next;
4106         struct btrfs_key key;
4107         u32 nritems;
4108         int ret;
4109         int old_spinning = path->leave_spinning;
4110         int force_blocking = 0;
4111
4112         nritems = btrfs_header_nritems(path->nodes[0]);
4113         if (nritems == 0)
4114                 return 1;
4115
4116         /*
4117          * we take the blocks in an order that upsets lockdep.  Using
4118          * blocking mode is the only way around it.
4119          */
4120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4121         force_blocking = 1;
4122 #endif
4123
4124         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4125 again:
4126         level = 1;
4127         next = NULL;
4128         btrfs_release_path(root, path);
4129
4130         path->keep_locks = 1;
4131
4132         if (!force_blocking)
4133                 path->leave_spinning = 1;
4134
4135         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4136         path->keep_locks = 0;
4137
4138         if (ret < 0)
4139                 return ret;
4140
4141         nritems = btrfs_header_nritems(path->nodes[0]);
4142         /*
4143          * by releasing the path above we dropped all our locks.  A balance
4144          * could have added more items next to the key that used to be
4145          * at the very end of the block.  So, check again here and
4146          * advance the path if there are now more items available.
4147          */
4148         if (nritems > 0 && path->slots[0] < nritems - 1) {
4149                 path->slots[0]++;
4150                 ret = 0;
4151                 goto done;
4152         }
4153
4154         while (level < BTRFS_MAX_LEVEL) {
4155                 if (!path->nodes[level]) {
4156                         ret = 1;
4157                         goto done;
4158                 }
4159
4160                 slot = path->slots[level] + 1;
4161                 c = path->nodes[level];
4162                 if (slot >= btrfs_header_nritems(c)) {
4163                         level++;
4164                         if (level == BTRFS_MAX_LEVEL) {
4165                                 ret = 1;
4166                                 goto done;
4167                         }
4168                         continue;
4169                 }
4170
4171                 if (next) {
4172                         btrfs_tree_unlock(next);
4173                         free_extent_buffer(next);
4174                 }
4175
4176                 next = c;
4177                 ret = read_block_for_search(NULL, root, path, &next, level,
4178                                             slot, &key);
4179                 if (ret == -EAGAIN)
4180                         goto again;
4181
4182                 if (ret < 0) {
4183                         btrfs_release_path(root, path);
4184                         goto done;
4185                 }
4186
4187                 if (!path->skip_locking) {
4188                         ret = btrfs_try_spin_lock(next);
4189                         if (!ret) {
4190                                 btrfs_set_path_blocking(path);
4191                                 btrfs_tree_lock(next);
4192                                 if (!force_blocking)
4193                                         btrfs_clear_path_blocking(path, next);
4194                         }
4195                         if (force_blocking)
4196                                 btrfs_set_lock_blocking(next);
4197                 }
4198                 break;
4199         }
4200         path->slots[level] = slot;
4201         while (1) {
4202                 level--;
4203                 c = path->nodes[level];
4204                 if (path->locks[level])
4205                         btrfs_tree_unlock(c);
4206
4207                 free_extent_buffer(c);
4208                 path->nodes[level] = next;
4209                 path->slots[level] = 0;
4210                 if (!path->skip_locking)
4211                         path->locks[level] = 1;
4212
4213                 if (!level)
4214                         break;
4215
4216                 ret = read_block_for_search(NULL, root, path, &next, level,
4217                                             0, &key);
4218                 if (ret == -EAGAIN)
4219                         goto again;
4220
4221                 if (ret < 0) {
4222                         btrfs_release_path(root, path);
4223                         goto done;
4224                 }
4225
4226                 if (!path->skip_locking) {
4227                         btrfs_assert_tree_locked(path->nodes[level]);
4228                         ret = btrfs_try_spin_lock(next);
4229                         if (!ret) {
4230                                 btrfs_set_path_blocking(path);
4231                                 btrfs_tree_lock(next);
4232                                 if (!force_blocking)
4233                                         btrfs_clear_path_blocking(path, next);
4234                         }
4235                         if (force_blocking)
4236                                 btrfs_set_lock_blocking(next);
4237                 }
4238         }
4239         ret = 0;
4240 done:
4241         unlock_up(path, 0, 1);
4242         path->leave_spinning = old_spinning;
4243         if (!old_spinning)
4244                 btrfs_set_path_blocking(path);
4245
4246         return ret;
4247 }
4248
4249 /*
4250  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4251  * searching until it gets past min_objectid or finds an item of 'type'
4252  *
4253  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4254  */
4255 int btrfs_previous_item(struct btrfs_root *root,
4256                         struct btrfs_path *path, u64 min_objectid,
4257                         int type)
4258 {
4259         struct btrfs_key found_key;
4260         struct extent_buffer *leaf;
4261         u32 nritems;
4262         int ret;
4263
4264         while (1) {
4265                 if (path->slots[0] == 0) {
4266                         btrfs_set_path_blocking(path);
4267                         ret = btrfs_prev_leaf(root, path);
4268                         if (ret != 0)
4269                                 return ret;
4270                 } else {
4271                         path->slots[0]--;
4272                 }
4273                 leaf = path->nodes[0];
4274                 nritems = btrfs_header_nritems(leaf);
4275                 if (nritems == 0)
4276                         return 1;
4277                 if (path->slots[0] == nritems)
4278                         path->slots[0]--;
4279
4280                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4281                 if (found_key.type == type)
4282                         return 0;
4283                 if (found_key.objectid < min_objectid)
4284                         break;
4285                 if (found_key.objectid == min_objectid &&
4286                     found_key.type < type)
4287                         break;
4288         }
4289         return 1;
4290 }