oprofile: reset bt_lost_no_mapping with other stats
[linux-2.6] / fs / libfs.c
1 /*
2  *      fs/libfs.c
3  *      Library for filesystems writers.
4  */
5
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/mount.h>
9 #include <linux/vfs.h>
10 #include <linux/mutex.h>
11 #include <linux/exportfs.h>
12 #include <linux/writeback.h>
13 #include <linux/buffer_head.h>
14
15 #include <asm/uaccess.h>
16
17 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
18                    struct kstat *stat)
19 {
20         struct inode *inode = dentry->d_inode;
21         generic_fillattr(inode, stat);
22         stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
23         return 0;
24 }
25
26 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
27 {
28         buf->f_type = dentry->d_sb->s_magic;
29         buf->f_bsize = PAGE_CACHE_SIZE;
30         buf->f_namelen = NAME_MAX;
31         return 0;
32 }
33
34 /*
35  * Retaining negative dentries for an in-memory filesystem just wastes
36  * memory and lookup time: arrange for them to be deleted immediately.
37  */
38 static int simple_delete_dentry(struct dentry *dentry)
39 {
40         return 1;
41 }
42
43 /*
44  * Lookup the data. This is trivial - if the dentry didn't already
45  * exist, we know it is negative.  Set d_op to delete negative dentries.
46  */
47 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
48 {
49         static const struct dentry_operations simple_dentry_operations = {
50                 .d_delete = simple_delete_dentry,
51         };
52
53         if (dentry->d_name.len > NAME_MAX)
54                 return ERR_PTR(-ENAMETOOLONG);
55         dentry->d_op = &simple_dentry_operations;
56         d_add(dentry, NULL);
57         return NULL;
58 }
59
60 int simple_sync_file(struct file * file, struct dentry *dentry, int datasync)
61 {
62         return 0;
63 }
64  
65 int dcache_dir_open(struct inode *inode, struct file *file)
66 {
67         static struct qstr cursor_name = {.len = 1, .name = "."};
68
69         file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
70
71         return file->private_data ? 0 : -ENOMEM;
72 }
73
74 int dcache_dir_close(struct inode *inode, struct file *file)
75 {
76         dput(file->private_data);
77         return 0;
78 }
79
80 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
81 {
82         mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
83         switch (origin) {
84                 case 1:
85                         offset += file->f_pos;
86                 case 0:
87                         if (offset >= 0)
88                                 break;
89                 default:
90                         mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
91                         return -EINVAL;
92         }
93         if (offset != file->f_pos) {
94                 file->f_pos = offset;
95                 if (file->f_pos >= 2) {
96                         struct list_head *p;
97                         struct dentry *cursor = file->private_data;
98                         loff_t n = file->f_pos - 2;
99
100                         spin_lock(&dcache_lock);
101                         list_del(&cursor->d_u.d_child);
102                         p = file->f_path.dentry->d_subdirs.next;
103                         while (n && p != &file->f_path.dentry->d_subdirs) {
104                                 struct dentry *next;
105                                 next = list_entry(p, struct dentry, d_u.d_child);
106                                 if (!d_unhashed(next) && next->d_inode)
107                                         n--;
108                                 p = p->next;
109                         }
110                         list_add_tail(&cursor->d_u.d_child, p);
111                         spin_unlock(&dcache_lock);
112                 }
113         }
114         mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
115         return offset;
116 }
117
118 /* Relationship between i_mode and the DT_xxx types */
119 static inline unsigned char dt_type(struct inode *inode)
120 {
121         return (inode->i_mode >> 12) & 15;
122 }
123
124 /*
125  * Directory is locked and all positive dentries in it are safe, since
126  * for ramfs-type trees they can't go away without unlink() or rmdir(),
127  * both impossible due to the lock on directory.
128  */
129
130 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
131 {
132         struct dentry *dentry = filp->f_path.dentry;
133         struct dentry *cursor = filp->private_data;
134         struct list_head *p, *q = &cursor->d_u.d_child;
135         ino_t ino;
136         int i = filp->f_pos;
137
138         switch (i) {
139                 case 0:
140                         ino = dentry->d_inode->i_ino;
141                         if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
142                                 break;
143                         filp->f_pos++;
144                         i++;
145                         /* fallthrough */
146                 case 1:
147                         ino = parent_ino(dentry);
148                         if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
149                                 break;
150                         filp->f_pos++;
151                         i++;
152                         /* fallthrough */
153                 default:
154                         spin_lock(&dcache_lock);
155                         if (filp->f_pos == 2)
156                                 list_move(q, &dentry->d_subdirs);
157
158                         for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
159                                 struct dentry *next;
160                                 next = list_entry(p, struct dentry, d_u.d_child);
161                                 if (d_unhashed(next) || !next->d_inode)
162                                         continue;
163
164                                 spin_unlock(&dcache_lock);
165                                 if (filldir(dirent, next->d_name.name, 
166                                             next->d_name.len, filp->f_pos, 
167                                             next->d_inode->i_ino, 
168                                             dt_type(next->d_inode)) < 0)
169                                         return 0;
170                                 spin_lock(&dcache_lock);
171                                 /* next is still alive */
172                                 list_move(q, p);
173                                 p = q;
174                                 filp->f_pos++;
175                         }
176                         spin_unlock(&dcache_lock);
177         }
178         return 0;
179 }
180
181 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
182 {
183         return -EISDIR;
184 }
185
186 const struct file_operations simple_dir_operations = {
187         .open           = dcache_dir_open,
188         .release        = dcache_dir_close,
189         .llseek         = dcache_dir_lseek,
190         .read           = generic_read_dir,
191         .readdir        = dcache_readdir,
192         .fsync          = simple_sync_file,
193 };
194
195 const struct inode_operations simple_dir_inode_operations = {
196         .lookup         = simple_lookup,
197 };
198
199 static const struct super_operations simple_super_operations = {
200         .statfs         = simple_statfs,
201 };
202
203 /*
204  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
205  * will never be mountable)
206  */
207 int get_sb_pseudo(struct file_system_type *fs_type, char *name,
208         const struct super_operations *ops, unsigned long magic,
209         struct vfsmount *mnt)
210 {
211         struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
212         struct dentry *dentry;
213         struct inode *root;
214         struct qstr d_name = {.name = name, .len = strlen(name)};
215
216         if (IS_ERR(s))
217                 return PTR_ERR(s);
218
219         s->s_flags = MS_NOUSER;
220         s->s_maxbytes = ~0ULL;
221         s->s_blocksize = PAGE_SIZE;
222         s->s_blocksize_bits = PAGE_SHIFT;
223         s->s_magic = magic;
224         s->s_op = ops ? ops : &simple_super_operations;
225         s->s_time_gran = 1;
226         root = new_inode(s);
227         if (!root)
228                 goto Enomem;
229         /*
230          * since this is the first inode, make it number 1. New inodes created
231          * after this must take care not to collide with it (by passing
232          * max_reserved of 1 to iunique).
233          */
234         root->i_ino = 1;
235         root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
236         root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
237         dentry = d_alloc(NULL, &d_name);
238         if (!dentry) {
239                 iput(root);
240                 goto Enomem;
241         }
242         dentry->d_sb = s;
243         dentry->d_parent = dentry;
244         d_instantiate(dentry, root);
245         s->s_root = dentry;
246         s->s_flags |= MS_ACTIVE;
247         simple_set_mnt(mnt, s);
248         return 0;
249
250 Enomem:
251         deactivate_locked_super(s);
252         return -ENOMEM;
253 }
254
255 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
256 {
257         struct inode *inode = old_dentry->d_inode;
258
259         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
260         inc_nlink(inode);
261         atomic_inc(&inode->i_count);
262         dget(dentry);
263         d_instantiate(dentry, inode);
264         return 0;
265 }
266
267 static inline int simple_positive(struct dentry *dentry)
268 {
269         return dentry->d_inode && !d_unhashed(dentry);
270 }
271
272 int simple_empty(struct dentry *dentry)
273 {
274         struct dentry *child;
275         int ret = 0;
276
277         spin_lock(&dcache_lock);
278         list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
279                 if (simple_positive(child))
280                         goto out;
281         ret = 1;
282 out:
283         spin_unlock(&dcache_lock);
284         return ret;
285 }
286
287 int simple_unlink(struct inode *dir, struct dentry *dentry)
288 {
289         struct inode *inode = dentry->d_inode;
290
291         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
292         drop_nlink(inode);
293         dput(dentry);
294         return 0;
295 }
296
297 int simple_rmdir(struct inode *dir, struct dentry *dentry)
298 {
299         if (!simple_empty(dentry))
300                 return -ENOTEMPTY;
301
302         drop_nlink(dentry->d_inode);
303         simple_unlink(dir, dentry);
304         drop_nlink(dir);
305         return 0;
306 }
307
308 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
309                 struct inode *new_dir, struct dentry *new_dentry)
310 {
311         struct inode *inode = old_dentry->d_inode;
312         int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
313
314         if (!simple_empty(new_dentry))
315                 return -ENOTEMPTY;
316
317         if (new_dentry->d_inode) {
318                 simple_unlink(new_dir, new_dentry);
319                 if (they_are_dirs)
320                         drop_nlink(old_dir);
321         } else if (they_are_dirs) {
322                 drop_nlink(old_dir);
323                 inc_nlink(new_dir);
324         }
325
326         old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
327                 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
328
329         return 0;
330 }
331
332 int simple_readpage(struct file *file, struct page *page)
333 {
334         clear_highpage(page);
335         flush_dcache_page(page);
336         SetPageUptodate(page);
337         unlock_page(page);
338         return 0;
339 }
340
341 int simple_prepare_write(struct file *file, struct page *page,
342                         unsigned from, unsigned to)
343 {
344         if (!PageUptodate(page)) {
345                 if (to - from != PAGE_CACHE_SIZE)
346                         zero_user_segments(page,
347                                 0, from,
348                                 to, PAGE_CACHE_SIZE);
349         }
350         return 0;
351 }
352
353 int simple_write_begin(struct file *file, struct address_space *mapping,
354                         loff_t pos, unsigned len, unsigned flags,
355                         struct page **pagep, void **fsdata)
356 {
357         struct page *page;
358         pgoff_t index;
359         unsigned from;
360
361         index = pos >> PAGE_CACHE_SHIFT;
362         from = pos & (PAGE_CACHE_SIZE - 1);
363
364         page = grab_cache_page_write_begin(mapping, index, flags);
365         if (!page)
366                 return -ENOMEM;
367
368         *pagep = page;
369
370         return simple_prepare_write(file, page, from, from+len);
371 }
372
373 static int simple_commit_write(struct file *file, struct page *page,
374                                unsigned from, unsigned to)
375 {
376         struct inode *inode = page->mapping->host;
377         loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
378
379         if (!PageUptodate(page))
380                 SetPageUptodate(page);
381         /*
382          * No need to use i_size_read() here, the i_size
383          * cannot change under us because we hold the i_mutex.
384          */
385         if (pos > inode->i_size)
386                 i_size_write(inode, pos);
387         set_page_dirty(page);
388         return 0;
389 }
390
391 int simple_write_end(struct file *file, struct address_space *mapping,
392                         loff_t pos, unsigned len, unsigned copied,
393                         struct page *page, void *fsdata)
394 {
395         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
396
397         /* zero the stale part of the page if we did a short copy */
398         if (copied < len) {
399                 void *kaddr = kmap_atomic(page, KM_USER0);
400                 memset(kaddr + from + copied, 0, len - copied);
401                 flush_dcache_page(page);
402                 kunmap_atomic(kaddr, KM_USER0);
403         }
404
405         simple_commit_write(file, page, from, from+copied);
406
407         unlock_page(page);
408         page_cache_release(page);
409
410         return copied;
411 }
412
413 /*
414  * the inodes created here are not hashed. If you use iunique to generate
415  * unique inode values later for this filesystem, then you must take care
416  * to pass it an appropriate max_reserved value to avoid collisions.
417  */
418 int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files)
419 {
420         struct inode *inode;
421         struct dentry *root;
422         struct dentry *dentry;
423         int i;
424
425         s->s_blocksize = PAGE_CACHE_SIZE;
426         s->s_blocksize_bits = PAGE_CACHE_SHIFT;
427         s->s_magic = magic;
428         s->s_op = &simple_super_operations;
429         s->s_time_gran = 1;
430
431         inode = new_inode(s);
432         if (!inode)
433                 return -ENOMEM;
434         /*
435          * because the root inode is 1, the files array must not contain an
436          * entry at index 1
437          */
438         inode->i_ino = 1;
439         inode->i_mode = S_IFDIR | 0755;
440         inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
441         inode->i_op = &simple_dir_inode_operations;
442         inode->i_fop = &simple_dir_operations;
443         inode->i_nlink = 2;
444         root = d_alloc_root(inode);
445         if (!root) {
446                 iput(inode);
447                 return -ENOMEM;
448         }
449         for (i = 0; !files->name || files->name[0]; i++, files++) {
450                 if (!files->name)
451                         continue;
452
453                 /* warn if it tries to conflict with the root inode */
454                 if (unlikely(i == 1))
455                         printk(KERN_WARNING "%s: %s passed in a files array"
456                                 "with an index of 1!\n", __func__,
457                                 s->s_type->name);
458
459                 dentry = d_alloc_name(root, files->name);
460                 if (!dentry)
461                         goto out;
462                 inode = new_inode(s);
463                 if (!inode)
464                         goto out;
465                 inode->i_mode = S_IFREG | files->mode;
466                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
467                 inode->i_fop = files->ops;
468                 inode->i_ino = i;
469                 d_add(dentry, inode);
470         }
471         s->s_root = root;
472         return 0;
473 out:
474         d_genocide(root);
475         dput(root);
476         return -ENOMEM;
477 }
478
479 static DEFINE_SPINLOCK(pin_fs_lock);
480
481 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
482 {
483         struct vfsmount *mnt = NULL;
484         spin_lock(&pin_fs_lock);
485         if (unlikely(!*mount)) {
486                 spin_unlock(&pin_fs_lock);
487                 mnt = vfs_kern_mount(type, 0, type->name, NULL);
488                 if (IS_ERR(mnt))
489                         return PTR_ERR(mnt);
490                 spin_lock(&pin_fs_lock);
491                 if (!*mount)
492                         *mount = mnt;
493         }
494         mntget(*mount);
495         ++*count;
496         spin_unlock(&pin_fs_lock);
497         mntput(mnt);
498         return 0;
499 }
500
501 void simple_release_fs(struct vfsmount **mount, int *count)
502 {
503         struct vfsmount *mnt;
504         spin_lock(&pin_fs_lock);
505         mnt = *mount;
506         if (!--*count)
507                 *mount = NULL;
508         spin_unlock(&pin_fs_lock);
509         mntput(mnt);
510 }
511
512 /**
513  * simple_read_from_buffer - copy data from the buffer to user space
514  * @to: the user space buffer to read to
515  * @count: the maximum number of bytes to read
516  * @ppos: the current position in the buffer
517  * @from: the buffer to read from
518  * @available: the size of the buffer
519  *
520  * The simple_read_from_buffer() function reads up to @count bytes from the
521  * buffer @from at offset @ppos into the user space address starting at @to.
522  *
523  * On success, the number of bytes read is returned and the offset @ppos is
524  * advanced by this number, or negative value is returned on error.
525  **/
526 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
527                                 const void *from, size_t available)
528 {
529         loff_t pos = *ppos;
530         if (pos < 0)
531                 return -EINVAL;
532         if (pos >= available)
533                 return 0;
534         if (count > available - pos)
535                 count = available - pos;
536         if (copy_to_user(to, from + pos, count))
537                 return -EFAULT;
538         *ppos = pos + count;
539         return count;
540 }
541
542 /**
543  * memory_read_from_buffer - copy data from the buffer
544  * @to: the kernel space buffer to read to
545  * @count: the maximum number of bytes to read
546  * @ppos: the current position in the buffer
547  * @from: the buffer to read from
548  * @available: the size of the buffer
549  *
550  * The memory_read_from_buffer() function reads up to @count bytes from the
551  * buffer @from at offset @ppos into the kernel space address starting at @to.
552  *
553  * On success, the number of bytes read is returned and the offset @ppos is
554  * advanced by this number, or negative value is returned on error.
555  **/
556 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
557                                 const void *from, size_t available)
558 {
559         loff_t pos = *ppos;
560
561         if (pos < 0)
562                 return -EINVAL;
563         if (pos >= available)
564                 return 0;
565         if (count > available - pos)
566                 count = available - pos;
567         memcpy(to, from + pos, count);
568         *ppos = pos + count;
569
570         return count;
571 }
572
573 /*
574  * Transaction based IO.
575  * The file expects a single write which triggers the transaction, and then
576  * possibly a read which collects the result - which is stored in a
577  * file-local buffer.
578  */
579
580 void simple_transaction_set(struct file *file, size_t n)
581 {
582         struct simple_transaction_argresp *ar = file->private_data;
583
584         BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
585
586         /*
587          * The barrier ensures that ar->size will really remain zero until
588          * ar->data is ready for reading.
589          */
590         smp_mb();
591         ar->size = n;
592 }
593
594 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
595 {
596         struct simple_transaction_argresp *ar;
597         static DEFINE_SPINLOCK(simple_transaction_lock);
598
599         if (size > SIMPLE_TRANSACTION_LIMIT - 1)
600                 return ERR_PTR(-EFBIG);
601
602         ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
603         if (!ar)
604                 return ERR_PTR(-ENOMEM);
605
606         spin_lock(&simple_transaction_lock);
607
608         /* only one write allowed per open */
609         if (file->private_data) {
610                 spin_unlock(&simple_transaction_lock);
611                 free_page((unsigned long)ar);
612                 return ERR_PTR(-EBUSY);
613         }
614
615         file->private_data = ar;
616
617         spin_unlock(&simple_transaction_lock);
618
619         if (copy_from_user(ar->data, buf, size))
620                 return ERR_PTR(-EFAULT);
621
622         return ar->data;
623 }
624
625 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
626 {
627         struct simple_transaction_argresp *ar = file->private_data;
628
629         if (!ar)
630                 return 0;
631         return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
632 }
633
634 int simple_transaction_release(struct inode *inode, struct file *file)
635 {
636         free_page((unsigned long)file->private_data);
637         return 0;
638 }
639
640 /* Simple attribute files */
641
642 struct simple_attr {
643         int (*get)(void *, u64 *);
644         int (*set)(void *, u64);
645         char get_buf[24];       /* enough to store a u64 and "\n\0" */
646         char set_buf[24];
647         void *data;
648         const char *fmt;        /* format for read operation */
649         struct mutex mutex;     /* protects access to these buffers */
650 };
651
652 /* simple_attr_open is called by an actual attribute open file operation
653  * to set the attribute specific access operations. */
654 int simple_attr_open(struct inode *inode, struct file *file,
655                      int (*get)(void *, u64 *), int (*set)(void *, u64),
656                      const char *fmt)
657 {
658         struct simple_attr *attr;
659
660         attr = kmalloc(sizeof(*attr), GFP_KERNEL);
661         if (!attr)
662                 return -ENOMEM;
663
664         attr->get = get;
665         attr->set = set;
666         attr->data = inode->i_private;
667         attr->fmt = fmt;
668         mutex_init(&attr->mutex);
669
670         file->private_data = attr;
671
672         return nonseekable_open(inode, file);
673 }
674
675 int simple_attr_release(struct inode *inode, struct file *file)
676 {
677         kfree(file->private_data);
678         return 0;
679 }
680
681 /* read from the buffer that is filled with the get function */
682 ssize_t simple_attr_read(struct file *file, char __user *buf,
683                          size_t len, loff_t *ppos)
684 {
685         struct simple_attr *attr;
686         size_t size;
687         ssize_t ret;
688
689         attr = file->private_data;
690
691         if (!attr->get)
692                 return -EACCES;
693
694         ret = mutex_lock_interruptible(&attr->mutex);
695         if (ret)
696                 return ret;
697
698         if (*ppos) {            /* continued read */
699                 size = strlen(attr->get_buf);
700         } else {                /* first read */
701                 u64 val;
702                 ret = attr->get(attr->data, &val);
703                 if (ret)
704                         goto out;
705
706                 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
707                                  attr->fmt, (unsigned long long)val);
708         }
709
710         ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
711 out:
712         mutex_unlock(&attr->mutex);
713         return ret;
714 }
715
716 /* interpret the buffer as a number to call the set function with */
717 ssize_t simple_attr_write(struct file *file, const char __user *buf,
718                           size_t len, loff_t *ppos)
719 {
720         struct simple_attr *attr;
721         u64 val;
722         size_t size;
723         ssize_t ret;
724
725         attr = file->private_data;
726         if (!attr->set)
727                 return -EACCES;
728
729         ret = mutex_lock_interruptible(&attr->mutex);
730         if (ret)
731                 return ret;
732
733         ret = -EFAULT;
734         size = min(sizeof(attr->set_buf) - 1, len);
735         if (copy_from_user(attr->set_buf, buf, size))
736                 goto out;
737
738         ret = len; /* claim we got the whole input */
739         attr->set_buf[size] = '\0';
740         val = simple_strtol(attr->set_buf, NULL, 0);
741         attr->set(attr->data, val);
742 out:
743         mutex_unlock(&attr->mutex);
744         return ret;
745 }
746
747 /**
748  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
749  * @sb:         filesystem to do the file handle conversion on
750  * @fid:        file handle to convert
751  * @fh_len:     length of the file handle in bytes
752  * @fh_type:    type of file handle
753  * @get_inode:  filesystem callback to retrieve inode
754  *
755  * This function decodes @fid as long as it has one of the well-known
756  * Linux filehandle types and calls @get_inode on it to retrieve the
757  * inode for the object specified in the file handle.
758  */
759 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
760                 int fh_len, int fh_type, struct inode *(*get_inode)
761                         (struct super_block *sb, u64 ino, u32 gen))
762 {
763         struct inode *inode = NULL;
764
765         if (fh_len < 2)
766                 return NULL;
767
768         switch (fh_type) {
769         case FILEID_INO32_GEN:
770         case FILEID_INO32_GEN_PARENT:
771                 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
772                 break;
773         }
774
775         return d_obtain_alias(inode);
776 }
777 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
778
779 /**
780  * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
781  * @sb:         filesystem to do the file handle conversion on
782  * @fid:        file handle to convert
783  * @fh_len:     length of the file handle in bytes
784  * @fh_type:    type of file handle
785  * @get_inode:  filesystem callback to retrieve inode
786  *
787  * This function decodes @fid as long as it has one of the well-known
788  * Linux filehandle types and calls @get_inode on it to retrieve the
789  * inode for the _parent_ object specified in the file handle if it
790  * is specified in the file handle, or NULL otherwise.
791  */
792 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
793                 int fh_len, int fh_type, struct inode *(*get_inode)
794                         (struct super_block *sb, u64 ino, u32 gen))
795 {
796         struct inode *inode = NULL;
797
798         if (fh_len <= 2)
799                 return NULL;
800
801         switch (fh_type) {
802         case FILEID_INO32_GEN_PARENT:
803                 inode = get_inode(sb, fid->i32.parent_ino,
804                                   (fh_len > 3 ? fid->i32.parent_gen : 0));
805                 break;
806         }
807
808         return d_obtain_alias(inode);
809 }
810 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
811
812 int simple_fsync(struct file *file, struct dentry *dentry, int datasync)
813 {
814         struct writeback_control wbc = {
815                 .sync_mode = WB_SYNC_ALL,
816                 .nr_to_write = 0, /* metadata-only; caller takes care of data */
817         };
818         struct inode *inode = dentry->d_inode;
819         int err;
820         int ret;
821
822         ret = sync_mapping_buffers(inode->i_mapping);
823         if (!(inode->i_state & I_DIRTY))
824                 return ret;
825         if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
826                 return ret;
827
828         err = sync_inode(inode, &wbc);
829         if (ret == 0)
830                 ret = err;
831         return ret;
832 }
833 EXPORT_SYMBOL(simple_fsync);
834
835 EXPORT_SYMBOL(dcache_dir_close);
836 EXPORT_SYMBOL(dcache_dir_lseek);
837 EXPORT_SYMBOL(dcache_dir_open);
838 EXPORT_SYMBOL(dcache_readdir);
839 EXPORT_SYMBOL(generic_read_dir);
840 EXPORT_SYMBOL(get_sb_pseudo);
841 EXPORT_SYMBOL(simple_write_begin);
842 EXPORT_SYMBOL(simple_write_end);
843 EXPORT_SYMBOL(simple_dir_inode_operations);
844 EXPORT_SYMBOL(simple_dir_operations);
845 EXPORT_SYMBOL(simple_empty);
846 EXPORT_SYMBOL(d_alloc_name);
847 EXPORT_SYMBOL(simple_fill_super);
848 EXPORT_SYMBOL(simple_getattr);
849 EXPORT_SYMBOL(simple_link);
850 EXPORT_SYMBOL(simple_lookup);
851 EXPORT_SYMBOL(simple_pin_fs);
852 EXPORT_UNUSED_SYMBOL(simple_prepare_write);
853 EXPORT_SYMBOL(simple_readpage);
854 EXPORT_SYMBOL(simple_release_fs);
855 EXPORT_SYMBOL(simple_rename);
856 EXPORT_SYMBOL(simple_rmdir);
857 EXPORT_SYMBOL(simple_statfs);
858 EXPORT_SYMBOL(simple_sync_file);
859 EXPORT_SYMBOL(simple_unlink);
860 EXPORT_SYMBOL(simple_read_from_buffer);
861 EXPORT_SYMBOL(memory_read_from_buffer);
862 EXPORT_SYMBOL(simple_transaction_set);
863 EXPORT_SYMBOL(simple_transaction_get);
864 EXPORT_SYMBOL(simple_transaction_read);
865 EXPORT_SYMBOL(simple_transaction_release);
866 EXPORT_SYMBOL_GPL(simple_attr_open);
867 EXPORT_SYMBOL_GPL(simple_attr_release);
868 EXPORT_SYMBOL_GPL(simple_attr_read);
869 EXPORT_SYMBOL_GPL(simple_attr_write);