2 * iommu.c: IOMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
10 #include <linux/kernel.h>
11 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h> /* pte_offset_map => kmap_atomic */
15 #include <linux/scatterlist.h>
17 #include <linux/of_device.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pgtable.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 #include <asm/bitext.h>
27 #include <asm/iommu.h>
31 * This can be sized dynamically, but we will do this
32 * only when we have a guidance about actual I/O pressures.
34 #define IOMMU_RNGE IOMMU_RNGE_256MB
35 #define IOMMU_START 0xF0000000
36 #define IOMMU_WINSIZE (256*1024*1024U)
37 #define IOMMU_NPTES (IOMMU_WINSIZE/PAGE_SIZE) /* 64K PTEs, 265KB */
38 #define IOMMU_ORDER 6 /* 4096 * (1<<6) */
41 extern int viking_mxcc_present;
42 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
43 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
44 extern int flush_page_for_dma_global;
45 static int viking_flush;
47 extern void viking_flush_page(unsigned long page);
48 extern void viking_mxcc_flush_page(unsigned long page);
51 * Values precomputed according to CPU type.
53 static unsigned int ioperm_noc; /* Consistent mapping iopte flags */
54 static pgprot_t dvma_prot; /* Consistent mapping pte flags */
56 #define IOPERM (IOPTE_CACHE | IOPTE_WRITE | IOPTE_VALID)
57 #define MKIOPTE(pfn, perm) (((((pfn)<<8) & IOPTE_PAGE) | (perm)) & ~IOPTE_WAZ)
59 static void __init sbus_iommu_init(struct of_device *op)
61 struct iommu_struct *iommu;
62 unsigned int impl, vers;
63 unsigned long *bitmap;
66 iommu = kmalloc(sizeof(struct iommu_struct), GFP_ATOMIC);
68 prom_printf("Unable to allocate iommu structure\n");
72 iommu->regs = of_ioremap(&op->resource[0], 0, PAGE_SIZE * 3,
75 prom_printf("Cannot map IOMMU registers\n");
78 impl = (iommu->regs->control & IOMMU_CTRL_IMPL) >> 28;
79 vers = (iommu->regs->control & IOMMU_CTRL_VERS) >> 24;
80 tmp = iommu->regs->control;
81 tmp &= ~(IOMMU_CTRL_RNGE);
82 tmp |= (IOMMU_RNGE_256MB | IOMMU_CTRL_ENAB);
83 iommu->regs->control = tmp;
84 iommu_invalidate(iommu->regs);
85 iommu->start = IOMMU_START;
86 iommu->end = 0xffffffff;
88 /* Allocate IOMMU page table */
89 /* Stupid alignment constraints give me a headache.
90 We need 256K or 512K or 1M or 2M area aligned to
91 its size and current gfp will fortunately give
93 tmp = __get_free_pages(GFP_KERNEL, IOMMU_ORDER);
95 prom_printf("Unable to allocate iommu table [0x%08x]\n",
96 IOMMU_NPTES*sizeof(iopte_t));
99 iommu->page_table = (iopte_t *)tmp;
101 /* Initialize new table. */
102 memset(iommu->page_table, 0, IOMMU_NPTES*sizeof(iopte_t));
105 iommu->regs->base = __pa((unsigned long) iommu->page_table) >> 4;
106 iommu_invalidate(iommu->regs);
108 bitmap = kmalloc(IOMMU_NPTES>>3, GFP_KERNEL);
110 prom_printf("Unable to allocate iommu bitmap [%d]\n",
111 (int)(IOMMU_NPTES>>3));
114 bit_map_init(&iommu->usemap, bitmap, IOMMU_NPTES);
115 /* To be coherent on HyperSparc, the page color of DVMA
116 * and physical addresses must match.
118 if (srmmu_modtype == HyperSparc)
119 iommu->usemap.num_colors = vac_cache_size >> PAGE_SHIFT;
121 iommu->usemap.num_colors = 1;
123 printk(KERN_INFO "IOMMU: impl %d vers %d table 0x%p[%d B] map [%d b]\n",
124 impl, vers, iommu->page_table,
125 (int)(IOMMU_NPTES*sizeof(iopte_t)), (int)IOMMU_NPTES);
127 op->dev.archdata.iommu = iommu;
130 static int __init iommu_init(void)
132 struct device_node *dp;
134 for_each_node_by_name(dp, "iommu") {
135 struct of_device *op = of_find_device_by_node(dp);
138 of_propagate_archdata(op);
144 subsys_initcall(iommu_init);
146 /* This begs to be btfixup-ed by srmmu. */
147 /* Flush the iotlb entries to ram. */
148 /* This could be better if we didn't have to flush whole pages. */
149 static void iommu_flush_iotlb(iopte_t *iopte, unsigned int niopte)
154 start = (unsigned long)iopte;
155 end = PAGE_ALIGN(start + niopte*sizeof(iopte_t));
157 if (viking_mxcc_present) {
159 viking_mxcc_flush_page(start);
162 } else if (viking_flush) {
164 viking_flush_page(start);
169 __flush_page_to_ram(start);
175 static u32 iommu_get_one(struct device *dev, struct page *page, int npages)
177 struct iommu_struct *iommu = dev->archdata.iommu;
179 iopte_t *iopte, *iopte0;
180 unsigned int busa, busa0;
183 /* page color = pfn of page */
184 ioptex = bit_map_string_get(&iommu->usemap, npages, page_to_pfn(page));
187 busa0 = iommu->start + (ioptex << PAGE_SHIFT);
188 iopte0 = &iommu->page_table[ioptex];
192 for (i = 0; i < npages; i++) {
193 iopte_val(*iopte) = MKIOPTE(page_to_pfn(page), IOPERM);
194 iommu_invalidate_page(iommu->regs, busa);
200 iommu_flush_iotlb(iopte0, npages);
205 static u32 iommu_get_scsi_one(struct device *dev, char *vaddr, unsigned int len)
212 off = (unsigned long)vaddr & ~PAGE_MASK;
213 npages = (off + len + PAGE_SIZE-1) >> PAGE_SHIFT;
214 page = virt_to_page((unsigned long)vaddr & PAGE_MASK);
215 busa = iommu_get_one(dev, page, npages);
219 static __u32 iommu_get_scsi_one_noflush(struct device *dev, char *vaddr, unsigned long len)
221 return iommu_get_scsi_one(dev, vaddr, len);
224 static __u32 iommu_get_scsi_one_gflush(struct device *dev, char *vaddr, unsigned long len)
226 flush_page_for_dma(0);
227 return iommu_get_scsi_one(dev, vaddr, len);
230 static __u32 iommu_get_scsi_one_pflush(struct device *dev, char *vaddr, unsigned long len)
232 unsigned long page = ((unsigned long) vaddr) & PAGE_MASK;
234 while(page < ((unsigned long)(vaddr + len))) {
235 flush_page_for_dma(page);
238 return iommu_get_scsi_one(dev, vaddr, len);
241 static void iommu_get_scsi_sgl_noflush(struct device *dev, struct scatterlist *sg, int sz)
247 n = (sg->length + sg->offset + PAGE_SIZE-1) >> PAGE_SHIFT;
248 sg->dvma_address = iommu_get_one(dev, sg_page(sg), n) + sg->offset;
249 sg->dvma_length = (__u32) sg->length;
254 static void iommu_get_scsi_sgl_gflush(struct device *dev, struct scatterlist *sg, int sz)
258 flush_page_for_dma(0);
261 n = (sg->length + sg->offset + PAGE_SIZE-1) >> PAGE_SHIFT;
262 sg->dvma_address = iommu_get_one(dev, sg_page(sg), n) + sg->offset;
263 sg->dvma_length = (__u32) sg->length;
268 static void iommu_get_scsi_sgl_pflush(struct device *dev, struct scatterlist *sg, int sz)
270 unsigned long page, oldpage = 0;
276 n = (sg->length + sg->offset + PAGE_SIZE-1) >> PAGE_SHIFT;
279 * We expect unmapped highmem pages to be not in the cache.
280 * XXX Is this a good assumption?
281 * XXX What if someone else unmaps it here and races us?
283 if ((page = (unsigned long) page_address(sg_page(sg))) != 0) {
284 for (i = 0; i < n; i++) {
285 if (page != oldpage) { /* Already flushed? */
286 flush_page_for_dma(page);
293 sg->dvma_address = iommu_get_one(dev, sg_page(sg), n) + sg->offset;
294 sg->dvma_length = (__u32) sg->length;
299 static void iommu_release_one(struct device *dev, u32 busa, int npages)
301 struct iommu_struct *iommu = dev->archdata.iommu;
305 BUG_ON(busa < iommu->start);
306 ioptex = (busa - iommu->start) >> PAGE_SHIFT;
307 for (i = 0; i < npages; i++) {
308 iopte_val(iommu->page_table[ioptex + i]) = 0;
309 iommu_invalidate_page(iommu->regs, busa);
312 bit_map_clear(&iommu->usemap, ioptex, npages);
315 static void iommu_release_scsi_one(struct device *dev, __u32 vaddr, unsigned long len)
320 off = vaddr & ~PAGE_MASK;
321 npages = (off + len + PAGE_SIZE-1) >> PAGE_SHIFT;
322 iommu_release_one(dev, vaddr & PAGE_MASK, npages);
325 static void iommu_release_scsi_sgl(struct device *dev, struct scatterlist *sg, int sz)
332 n = (sg->length + sg->offset + PAGE_SIZE-1) >> PAGE_SHIFT;
333 iommu_release_one(dev, sg->dvma_address & PAGE_MASK, n);
334 sg->dvma_address = 0x21212121;
340 static int iommu_map_dma_area(struct device *dev, dma_addr_t *pba, unsigned long va,
341 unsigned long addr, int len)
343 struct iommu_struct *iommu = dev->archdata.iommu;
344 unsigned long page, end;
345 iopte_t *iopte = iommu->page_table;
349 BUG_ON((va & ~PAGE_MASK) != 0);
350 BUG_ON((addr & ~PAGE_MASK) != 0);
351 BUG_ON((len & ~PAGE_MASK) != 0);
353 /* page color = physical address */
354 ioptex = bit_map_string_get(&iommu->usemap, len >> PAGE_SHIFT,
369 if (viking_mxcc_present)
370 viking_mxcc_flush_page(page);
371 else if (viking_flush)
372 viking_flush_page(page);
374 __flush_page_to_ram(page);
376 pgdp = pgd_offset(&init_mm, addr);
377 pmdp = pmd_offset(pgdp, addr);
378 ptep = pte_offset_map(pmdp, addr);
380 set_pte(ptep, mk_pte(virt_to_page(page), dvma_prot));
382 iopte_val(*iopte++) =
383 MKIOPTE(page_to_pfn(virt_to_page(page)), ioperm_noc);
387 /* P3: why do we need this?
389 * DAVEM: Because there are several aspects, none of which
390 * are handled by a single interface. Some cpus are
391 * completely not I/O DMA coherent, and some have
392 * virtually indexed caches. The driver DMA flushing
393 * methods handle the former case, but here during
394 * IOMMU page table modifications, and usage of non-cacheable
395 * cpu mappings of pages potentially in the cpu caches, we have
396 * to handle the latter case as well.
399 iommu_flush_iotlb(first, len >> PAGE_SHIFT);
401 iommu_invalidate(iommu->regs);
403 *pba = iommu->start + (ioptex << PAGE_SHIFT);
407 static void iommu_unmap_dma_area(struct device *dev, unsigned long busa, int len)
409 struct iommu_struct *iommu = dev->archdata.iommu;
410 iopte_t *iopte = iommu->page_table;
412 int ioptex = (busa - iommu->start) >> PAGE_SHIFT;
414 BUG_ON((busa & ~PAGE_MASK) != 0);
415 BUG_ON((len & ~PAGE_MASK) != 0);
420 iopte_val(*iopte++) = 0;
424 iommu_invalidate(iommu->regs);
425 bit_map_clear(&iommu->usemap, ioptex, len >> PAGE_SHIFT);
429 static char *iommu_lockarea(char *vaddr, unsigned long len)
434 static void iommu_unlockarea(char *vaddr, unsigned long len)
438 void __init ld_mmu_iommu(void)
440 viking_flush = (BTFIXUPVAL_CALL(flush_page_for_dma) == (unsigned long)viking_flush_page);
441 BTFIXUPSET_CALL(mmu_lockarea, iommu_lockarea, BTFIXUPCALL_RETO0);
442 BTFIXUPSET_CALL(mmu_unlockarea, iommu_unlockarea, BTFIXUPCALL_NOP);
444 if (!BTFIXUPVAL_CALL(flush_page_for_dma)) {
445 /* IO coherent chip */
446 BTFIXUPSET_CALL(mmu_get_scsi_one, iommu_get_scsi_one_noflush, BTFIXUPCALL_RETO0);
447 BTFIXUPSET_CALL(mmu_get_scsi_sgl, iommu_get_scsi_sgl_noflush, BTFIXUPCALL_NORM);
448 } else if (flush_page_for_dma_global) {
449 /* flush_page_for_dma flushes everything, no matter of what page is it */
450 BTFIXUPSET_CALL(mmu_get_scsi_one, iommu_get_scsi_one_gflush, BTFIXUPCALL_NORM);
451 BTFIXUPSET_CALL(mmu_get_scsi_sgl, iommu_get_scsi_sgl_gflush, BTFIXUPCALL_NORM);
453 BTFIXUPSET_CALL(mmu_get_scsi_one, iommu_get_scsi_one_pflush, BTFIXUPCALL_NORM);
454 BTFIXUPSET_CALL(mmu_get_scsi_sgl, iommu_get_scsi_sgl_pflush, BTFIXUPCALL_NORM);
456 BTFIXUPSET_CALL(mmu_release_scsi_one, iommu_release_scsi_one, BTFIXUPCALL_NORM);
457 BTFIXUPSET_CALL(mmu_release_scsi_sgl, iommu_release_scsi_sgl, BTFIXUPCALL_NORM);
460 BTFIXUPSET_CALL(mmu_map_dma_area, iommu_map_dma_area, BTFIXUPCALL_NORM);
461 BTFIXUPSET_CALL(mmu_unmap_dma_area, iommu_unmap_dma_area, BTFIXUPCALL_NORM);
464 if (viking_mxcc_present || srmmu_modtype == HyperSparc) {
465 dvma_prot = __pgprot(SRMMU_CACHE | SRMMU_ET_PTE | SRMMU_PRIV);
466 ioperm_noc = IOPTE_CACHE | IOPTE_WRITE | IOPTE_VALID;
468 dvma_prot = __pgprot(SRMMU_ET_PTE | SRMMU_PRIV);
469 ioperm_noc = IOPTE_WRITE | IOPTE_VALID;