relay: fix for possible loss/corruption of produced subbufs
[linux-2.6] / kernel / sys.c
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37
38 #include <linux/compat.h>
39 #include <linux/syscalls.h>
40 #include <linux/kprobes.h>
41 #include <linux/user_namespace.h>
42
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/unistd.h>
46
47 #ifndef SET_UNALIGN_CTL
48 # define SET_UNALIGN_CTL(a,b)   (-EINVAL)
49 #endif
50 #ifndef GET_UNALIGN_CTL
51 # define GET_UNALIGN_CTL(a,b)   (-EINVAL)
52 #endif
53 #ifndef SET_FPEMU_CTL
54 # define SET_FPEMU_CTL(a,b)     (-EINVAL)
55 #endif
56 #ifndef GET_FPEMU_CTL
57 # define GET_FPEMU_CTL(a,b)     (-EINVAL)
58 #endif
59 #ifndef SET_FPEXC_CTL
60 # define SET_FPEXC_CTL(a,b)     (-EINVAL)
61 #endif
62 #ifndef GET_FPEXC_CTL
63 # define GET_FPEXC_CTL(a,b)     (-EINVAL)
64 #endif
65 #ifndef GET_ENDIAN
66 # define GET_ENDIAN(a,b)        (-EINVAL)
67 #endif
68 #ifndef SET_ENDIAN
69 # define SET_ENDIAN(a,b)        (-EINVAL)
70 #endif
71 #ifndef GET_TSC_CTL
72 # define GET_TSC_CTL(a)         (-EINVAL)
73 #endif
74 #ifndef SET_TSC_CTL
75 # define SET_TSC_CTL(a)         (-EINVAL)
76 #endif
77
78 /*
79  * this is where the system-wide overflow UID and GID are defined, for
80  * architectures that now have 32-bit UID/GID but didn't in the past
81  */
82
83 int overflowuid = DEFAULT_OVERFLOWUID;
84 int overflowgid = DEFAULT_OVERFLOWGID;
85
86 #ifdef CONFIG_UID16
87 EXPORT_SYMBOL(overflowuid);
88 EXPORT_SYMBOL(overflowgid);
89 #endif
90
91 /*
92  * the same as above, but for filesystems which can only store a 16-bit
93  * UID and GID. as such, this is needed on all architectures
94  */
95
96 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
97 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
98
99 EXPORT_SYMBOL(fs_overflowuid);
100 EXPORT_SYMBOL(fs_overflowgid);
101
102 /*
103  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
104  */
105
106 int C_A_D = 1;
107 struct pid *cad_pid;
108 EXPORT_SYMBOL(cad_pid);
109
110 /*
111  * If set, this is used for preparing the system to power off.
112  */
113
114 void (*pm_power_off_prepare)(void);
115
116 /*
117  * set the priority of a task
118  * - the caller must hold the RCU read lock
119  */
120 static int set_one_prio(struct task_struct *p, int niceval, int error)
121 {
122         const struct cred *cred = current_cred(), *pcred = __task_cred(p);
123         int no_nice;
124
125         if (pcred->uid  != cred->euid &&
126             pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
127                 error = -EPERM;
128                 goto out;
129         }
130         if (niceval < task_nice(p) && !can_nice(p, niceval)) {
131                 error = -EACCES;
132                 goto out;
133         }
134         no_nice = security_task_setnice(p, niceval);
135         if (no_nice) {
136                 error = no_nice;
137                 goto out;
138         }
139         if (error == -ESRCH)
140                 error = 0;
141         set_user_nice(p, niceval);
142 out:
143         return error;
144 }
145
146 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
147 {
148         struct task_struct *g, *p;
149         struct user_struct *user;
150         const struct cred *cred = current_cred();
151         int error = -EINVAL;
152         struct pid *pgrp;
153
154         if (which > PRIO_USER || which < PRIO_PROCESS)
155                 goto out;
156
157         /* normalize: avoid signed division (rounding problems) */
158         error = -ESRCH;
159         if (niceval < -20)
160                 niceval = -20;
161         if (niceval > 19)
162                 niceval = 19;
163
164         read_lock(&tasklist_lock);
165         switch (which) {
166                 case PRIO_PROCESS:
167                         if (who)
168                                 p = find_task_by_vpid(who);
169                         else
170                                 p = current;
171                         if (p)
172                                 error = set_one_prio(p, niceval, error);
173                         break;
174                 case PRIO_PGRP:
175                         if (who)
176                                 pgrp = find_vpid(who);
177                         else
178                                 pgrp = task_pgrp(current);
179                         do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
180                                 error = set_one_prio(p, niceval, error);
181                         } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
182                         break;
183                 case PRIO_USER:
184                         user = (struct user_struct *) cred->user;
185                         if (!who)
186                                 who = cred->uid;
187                         else if ((who != cred->uid) &&
188                                  !(user = find_user(who)))
189                                 goto out_unlock;        /* No processes for this user */
190
191                         do_each_thread(g, p)
192                                 if (__task_cred(p)->uid == who)
193                                         error = set_one_prio(p, niceval, error);
194                         while_each_thread(g, p);
195                         if (who != cred->uid)
196                                 free_uid(user);         /* For find_user() */
197                         break;
198         }
199 out_unlock:
200         read_unlock(&tasklist_lock);
201 out:
202         return error;
203 }
204
205 /*
206  * Ugh. To avoid negative return values, "getpriority()" will
207  * not return the normal nice-value, but a negated value that
208  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
209  * to stay compatible.
210  */
211 SYSCALL_DEFINE2(getpriority, int, which, int, who)
212 {
213         struct task_struct *g, *p;
214         struct user_struct *user;
215         const struct cred *cred = current_cred();
216         long niceval, retval = -ESRCH;
217         struct pid *pgrp;
218
219         if (which > PRIO_USER || which < PRIO_PROCESS)
220                 return -EINVAL;
221
222         read_lock(&tasklist_lock);
223         switch (which) {
224                 case PRIO_PROCESS:
225                         if (who)
226                                 p = find_task_by_vpid(who);
227                         else
228                                 p = current;
229                         if (p) {
230                                 niceval = 20 - task_nice(p);
231                                 if (niceval > retval)
232                                         retval = niceval;
233                         }
234                         break;
235                 case PRIO_PGRP:
236                         if (who)
237                                 pgrp = find_vpid(who);
238                         else
239                                 pgrp = task_pgrp(current);
240                         do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
241                                 niceval = 20 - task_nice(p);
242                                 if (niceval > retval)
243                                         retval = niceval;
244                         } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
245                         break;
246                 case PRIO_USER:
247                         user = (struct user_struct *) cred->user;
248                         if (!who)
249                                 who = cred->uid;
250                         else if ((who != cred->uid) &&
251                                  !(user = find_user(who)))
252                                 goto out_unlock;        /* No processes for this user */
253
254                         do_each_thread(g, p)
255                                 if (__task_cred(p)->uid == who) {
256                                         niceval = 20 - task_nice(p);
257                                         if (niceval > retval)
258                                                 retval = niceval;
259                                 }
260                         while_each_thread(g, p);
261                         if (who != cred->uid)
262                                 free_uid(user);         /* for find_user() */
263                         break;
264         }
265 out_unlock:
266         read_unlock(&tasklist_lock);
267
268         return retval;
269 }
270
271 /**
272  *      emergency_restart - reboot the system
273  *
274  *      Without shutting down any hardware or taking any locks
275  *      reboot the system.  This is called when we know we are in
276  *      trouble so this is our best effort to reboot.  This is
277  *      safe to call in interrupt context.
278  */
279 void emergency_restart(void)
280 {
281         machine_emergency_restart();
282 }
283 EXPORT_SYMBOL_GPL(emergency_restart);
284
285 void kernel_restart_prepare(char *cmd)
286 {
287         blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
288         system_state = SYSTEM_RESTART;
289         device_shutdown();
290         sysdev_shutdown();
291 }
292
293 /**
294  *      kernel_restart - reboot the system
295  *      @cmd: pointer to buffer containing command to execute for restart
296  *              or %NULL
297  *
298  *      Shutdown everything and perform a clean reboot.
299  *      This is not safe to call in interrupt context.
300  */
301 void kernel_restart(char *cmd)
302 {
303         kernel_restart_prepare(cmd);
304         if (!cmd)
305                 printk(KERN_EMERG "Restarting system.\n");
306         else
307                 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
308         machine_restart(cmd);
309 }
310 EXPORT_SYMBOL_GPL(kernel_restart);
311
312 static void kernel_shutdown_prepare(enum system_states state)
313 {
314         blocking_notifier_call_chain(&reboot_notifier_list,
315                 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
316         system_state = state;
317         device_shutdown();
318 }
319 /**
320  *      kernel_halt - halt the system
321  *
322  *      Shutdown everything and perform a clean system halt.
323  */
324 void kernel_halt(void)
325 {
326         kernel_shutdown_prepare(SYSTEM_HALT);
327         sysdev_shutdown();
328         printk(KERN_EMERG "System halted.\n");
329         machine_halt();
330 }
331
332 EXPORT_SYMBOL_GPL(kernel_halt);
333
334 /**
335  *      kernel_power_off - power_off the system
336  *
337  *      Shutdown everything and perform a clean system power_off.
338  */
339 void kernel_power_off(void)
340 {
341         kernel_shutdown_prepare(SYSTEM_POWER_OFF);
342         if (pm_power_off_prepare)
343                 pm_power_off_prepare();
344         disable_nonboot_cpus();
345         sysdev_shutdown();
346         printk(KERN_EMERG "Power down.\n");
347         machine_power_off();
348 }
349 EXPORT_SYMBOL_GPL(kernel_power_off);
350 /*
351  * Reboot system call: for obvious reasons only root may call it,
352  * and even root needs to set up some magic numbers in the registers
353  * so that some mistake won't make this reboot the whole machine.
354  * You can also set the meaning of the ctrl-alt-del-key here.
355  *
356  * reboot doesn't sync: do that yourself before calling this.
357  */
358 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
359                 void __user *, arg)
360 {
361         char buffer[256];
362
363         /* We only trust the superuser with rebooting the system. */
364         if (!capable(CAP_SYS_BOOT))
365                 return -EPERM;
366
367         /* For safety, we require "magic" arguments. */
368         if (magic1 != LINUX_REBOOT_MAGIC1 ||
369             (magic2 != LINUX_REBOOT_MAGIC2 &&
370                         magic2 != LINUX_REBOOT_MAGIC2A &&
371                         magic2 != LINUX_REBOOT_MAGIC2B &&
372                         magic2 != LINUX_REBOOT_MAGIC2C))
373                 return -EINVAL;
374
375         /* Instead of trying to make the power_off code look like
376          * halt when pm_power_off is not set do it the easy way.
377          */
378         if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
379                 cmd = LINUX_REBOOT_CMD_HALT;
380
381         lock_kernel();
382         switch (cmd) {
383         case LINUX_REBOOT_CMD_RESTART:
384                 kernel_restart(NULL);
385                 break;
386
387         case LINUX_REBOOT_CMD_CAD_ON:
388                 C_A_D = 1;
389                 break;
390
391         case LINUX_REBOOT_CMD_CAD_OFF:
392                 C_A_D = 0;
393                 break;
394
395         case LINUX_REBOOT_CMD_HALT:
396                 kernel_halt();
397                 unlock_kernel();
398                 do_exit(0);
399                 break;
400
401         case LINUX_REBOOT_CMD_POWER_OFF:
402                 kernel_power_off();
403                 unlock_kernel();
404                 do_exit(0);
405                 break;
406
407         case LINUX_REBOOT_CMD_RESTART2:
408                 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
409                         unlock_kernel();
410                         return -EFAULT;
411                 }
412                 buffer[sizeof(buffer) - 1] = '\0';
413
414                 kernel_restart(buffer);
415                 break;
416
417 #ifdef CONFIG_KEXEC
418         case LINUX_REBOOT_CMD_KEXEC:
419                 {
420                         int ret;
421                         ret = kernel_kexec();
422                         unlock_kernel();
423                         return ret;
424                 }
425 #endif
426
427 #ifdef CONFIG_HIBERNATION
428         case LINUX_REBOOT_CMD_SW_SUSPEND:
429                 {
430                         int ret = hibernate();
431                         unlock_kernel();
432                         return ret;
433                 }
434 #endif
435
436         default:
437                 unlock_kernel();
438                 return -EINVAL;
439         }
440         unlock_kernel();
441         return 0;
442 }
443
444 static void deferred_cad(struct work_struct *dummy)
445 {
446         kernel_restart(NULL);
447 }
448
449 /*
450  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
451  * As it's called within an interrupt, it may NOT sync: the only choice
452  * is whether to reboot at once, or just ignore the ctrl-alt-del.
453  */
454 void ctrl_alt_del(void)
455 {
456         static DECLARE_WORK(cad_work, deferred_cad);
457
458         if (C_A_D)
459                 schedule_work(&cad_work);
460         else
461                 kill_cad_pid(SIGINT, 1);
462 }
463         
464 /*
465  * Unprivileged users may change the real gid to the effective gid
466  * or vice versa.  (BSD-style)
467  *
468  * If you set the real gid at all, or set the effective gid to a value not
469  * equal to the real gid, then the saved gid is set to the new effective gid.
470  *
471  * This makes it possible for a setgid program to completely drop its
472  * privileges, which is often a useful assertion to make when you are doing
473  * a security audit over a program.
474  *
475  * The general idea is that a program which uses just setregid() will be
476  * 100% compatible with BSD.  A program which uses just setgid() will be
477  * 100% compatible with POSIX with saved IDs. 
478  *
479  * SMP: There are not races, the GIDs are checked only by filesystem
480  *      operations (as far as semantic preservation is concerned).
481  */
482 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
483 {
484         const struct cred *old;
485         struct cred *new;
486         int retval;
487
488         new = prepare_creds();
489         if (!new)
490                 return -ENOMEM;
491         old = current_cred();
492
493         retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
494         if (retval)
495                 goto error;
496
497         retval = -EPERM;
498         if (rgid != (gid_t) -1) {
499                 if (old->gid == rgid ||
500                     old->egid == rgid ||
501                     capable(CAP_SETGID))
502                         new->gid = rgid;
503                 else
504                         goto error;
505         }
506         if (egid != (gid_t) -1) {
507                 if (old->gid == egid ||
508                     old->egid == egid ||
509                     old->sgid == egid ||
510                     capable(CAP_SETGID))
511                         new->egid = egid;
512                 else
513                         goto error;
514         }
515
516         if (rgid != (gid_t) -1 ||
517             (egid != (gid_t) -1 && egid != old->gid))
518                 new->sgid = new->egid;
519         new->fsgid = new->egid;
520
521         return commit_creds(new);
522
523 error:
524         abort_creds(new);
525         return retval;
526 }
527
528 /*
529  * setgid() is implemented like SysV w/ SAVED_IDS 
530  *
531  * SMP: Same implicit races as above.
532  */
533 SYSCALL_DEFINE1(setgid, gid_t, gid)
534 {
535         const struct cred *old;
536         struct cred *new;
537         int retval;
538
539         new = prepare_creds();
540         if (!new)
541                 return -ENOMEM;
542         old = current_cred();
543
544         retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
545         if (retval)
546                 goto error;
547
548         retval = -EPERM;
549         if (capable(CAP_SETGID))
550                 new->gid = new->egid = new->sgid = new->fsgid = gid;
551         else if (gid == old->gid || gid == old->sgid)
552                 new->egid = new->fsgid = gid;
553         else
554                 goto error;
555
556         return commit_creds(new);
557
558 error:
559         abort_creds(new);
560         return retval;
561 }
562
563 /*
564  * change the user struct in a credentials set to match the new UID
565  */
566 static int set_user(struct cred *new)
567 {
568         struct user_struct *new_user;
569
570         new_user = alloc_uid(current_user_ns(), new->uid);
571         if (!new_user)
572                 return -EAGAIN;
573
574         if (!task_can_switch_user(new_user, current)) {
575                 free_uid(new_user);
576                 return -EINVAL;
577         }
578
579         if (atomic_read(&new_user->processes) >=
580                                 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
581                         new_user != INIT_USER) {
582                 free_uid(new_user);
583                 return -EAGAIN;
584         }
585
586         free_uid(new->user);
587         new->user = new_user;
588         return 0;
589 }
590
591 /*
592  * Unprivileged users may change the real uid to the effective uid
593  * or vice versa.  (BSD-style)
594  *
595  * If you set the real uid at all, or set the effective uid to a value not
596  * equal to the real uid, then the saved uid is set to the new effective uid.
597  *
598  * This makes it possible for a setuid program to completely drop its
599  * privileges, which is often a useful assertion to make when you are doing
600  * a security audit over a program.
601  *
602  * The general idea is that a program which uses just setreuid() will be
603  * 100% compatible with BSD.  A program which uses just setuid() will be
604  * 100% compatible with POSIX with saved IDs. 
605  */
606 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
607 {
608         const struct cred *old;
609         struct cred *new;
610         int retval;
611
612         new = prepare_creds();
613         if (!new)
614                 return -ENOMEM;
615         old = current_cred();
616
617         retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
618         if (retval)
619                 goto error;
620
621         retval = -EPERM;
622         if (ruid != (uid_t) -1) {
623                 new->uid = ruid;
624                 if (old->uid != ruid &&
625                     old->euid != ruid &&
626                     !capable(CAP_SETUID))
627                         goto error;
628         }
629
630         if (euid != (uid_t) -1) {
631                 new->euid = euid;
632                 if (old->uid != euid &&
633                     old->euid != euid &&
634                     old->suid != euid &&
635                     !capable(CAP_SETUID))
636                         goto error;
637         }
638
639         if (new->uid != old->uid) {
640                 retval = set_user(new);
641                 if (retval < 0)
642                         goto error;
643         }
644         if (ruid != (uid_t) -1 ||
645             (euid != (uid_t) -1 && euid != old->uid))
646                 new->suid = new->euid;
647         new->fsuid = new->euid;
648
649         retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
650         if (retval < 0)
651                 goto error;
652
653         return commit_creds(new);
654
655 error:
656         abort_creds(new);
657         return retval;
658 }
659                 
660 /*
661  * setuid() is implemented like SysV with SAVED_IDS 
662  * 
663  * Note that SAVED_ID's is deficient in that a setuid root program
664  * like sendmail, for example, cannot set its uid to be a normal 
665  * user and then switch back, because if you're root, setuid() sets
666  * the saved uid too.  If you don't like this, blame the bright people
667  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
668  * will allow a root program to temporarily drop privileges and be able to
669  * regain them by swapping the real and effective uid.  
670  */
671 SYSCALL_DEFINE1(setuid, uid_t, uid)
672 {
673         const struct cred *old;
674         struct cred *new;
675         int retval;
676
677         new = prepare_creds();
678         if (!new)
679                 return -ENOMEM;
680         old = current_cred();
681
682         retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
683         if (retval)
684                 goto error;
685
686         retval = -EPERM;
687         if (capable(CAP_SETUID)) {
688                 new->suid = new->uid = uid;
689                 if (uid != old->uid) {
690                         retval = set_user(new);
691                         if (retval < 0)
692                                 goto error;
693                 }
694         } else if (uid != old->uid && uid != new->suid) {
695                 goto error;
696         }
697
698         new->fsuid = new->euid = uid;
699
700         retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
701         if (retval < 0)
702                 goto error;
703
704         return commit_creds(new);
705
706 error:
707         abort_creds(new);
708         return retval;
709 }
710
711
712 /*
713  * This function implements a generic ability to update ruid, euid,
714  * and suid.  This allows you to implement the 4.4 compatible seteuid().
715  */
716 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
717 {
718         const struct cred *old;
719         struct cred *new;
720         int retval;
721
722         new = prepare_creds();
723         if (!new)
724                 return -ENOMEM;
725
726         retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
727         if (retval)
728                 goto error;
729         old = current_cred();
730
731         retval = -EPERM;
732         if (!capable(CAP_SETUID)) {
733                 if (ruid != (uid_t) -1 && ruid != old->uid &&
734                     ruid != old->euid  && ruid != old->suid)
735                         goto error;
736                 if (euid != (uid_t) -1 && euid != old->uid &&
737                     euid != old->euid  && euid != old->suid)
738                         goto error;
739                 if (suid != (uid_t) -1 && suid != old->uid &&
740                     suid != old->euid  && suid != old->suid)
741                         goto error;
742         }
743
744         if (ruid != (uid_t) -1) {
745                 new->uid = ruid;
746                 if (ruid != old->uid) {
747                         retval = set_user(new);
748                         if (retval < 0)
749                                 goto error;
750                 }
751         }
752         if (euid != (uid_t) -1)
753                 new->euid = euid;
754         if (suid != (uid_t) -1)
755                 new->suid = suid;
756         new->fsuid = new->euid;
757
758         retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
759         if (retval < 0)
760                 goto error;
761
762         return commit_creds(new);
763
764 error:
765         abort_creds(new);
766         return retval;
767 }
768
769 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
770 {
771         const struct cred *cred = current_cred();
772         int retval;
773
774         if (!(retval   = put_user(cred->uid,  ruid)) &&
775             !(retval   = put_user(cred->euid, euid)))
776                 retval = put_user(cred->suid, suid);
777
778         return retval;
779 }
780
781 /*
782  * Same as above, but for rgid, egid, sgid.
783  */
784 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
785 {
786         const struct cred *old;
787         struct cred *new;
788         int retval;
789
790         new = prepare_creds();
791         if (!new)
792                 return -ENOMEM;
793         old = current_cred();
794
795         retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
796         if (retval)
797                 goto error;
798
799         retval = -EPERM;
800         if (!capable(CAP_SETGID)) {
801                 if (rgid != (gid_t) -1 && rgid != old->gid &&
802                     rgid != old->egid  && rgid != old->sgid)
803                         goto error;
804                 if (egid != (gid_t) -1 && egid != old->gid &&
805                     egid != old->egid  && egid != old->sgid)
806                         goto error;
807                 if (sgid != (gid_t) -1 && sgid != old->gid &&
808                     sgid != old->egid  && sgid != old->sgid)
809                         goto error;
810         }
811
812         if (rgid != (gid_t) -1)
813                 new->gid = rgid;
814         if (egid != (gid_t) -1)
815                 new->egid = egid;
816         if (sgid != (gid_t) -1)
817                 new->sgid = sgid;
818         new->fsgid = new->egid;
819
820         return commit_creds(new);
821
822 error:
823         abort_creds(new);
824         return retval;
825 }
826
827 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
828 {
829         const struct cred *cred = current_cred();
830         int retval;
831
832         if (!(retval   = put_user(cred->gid,  rgid)) &&
833             !(retval   = put_user(cred->egid, egid)))
834                 retval = put_user(cred->sgid, sgid);
835
836         return retval;
837 }
838
839
840 /*
841  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
842  * is used for "access()" and for the NFS daemon (letting nfsd stay at
843  * whatever uid it wants to). It normally shadows "euid", except when
844  * explicitly set by setfsuid() or for access..
845  */
846 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
847 {
848         const struct cred *old;
849         struct cred *new;
850         uid_t old_fsuid;
851
852         new = prepare_creds();
853         if (!new)
854                 return current_fsuid();
855         old = current_cred();
856         old_fsuid = old->fsuid;
857
858         if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
859                 goto error;
860
861         if (uid == old->uid  || uid == old->euid  ||
862             uid == old->suid || uid == old->fsuid ||
863             capable(CAP_SETUID)) {
864                 if (uid != old_fsuid) {
865                         new->fsuid = uid;
866                         if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
867                                 goto change_okay;
868                 }
869         }
870
871 error:
872         abort_creds(new);
873         return old_fsuid;
874
875 change_okay:
876         commit_creds(new);
877         return old_fsuid;
878 }
879
880 /*
881  * Samma pÃ¥ svenska..
882  */
883 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
884 {
885         const struct cred *old;
886         struct cred *new;
887         gid_t old_fsgid;
888
889         new = prepare_creds();
890         if (!new)
891                 return current_fsgid();
892         old = current_cred();
893         old_fsgid = old->fsgid;
894
895         if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
896                 goto error;
897
898         if (gid == old->gid  || gid == old->egid  ||
899             gid == old->sgid || gid == old->fsgid ||
900             capable(CAP_SETGID)) {
901                 if (gid != old_fsgid) {
902                         new->fsgid = gid;
903                         goto change_okay;
904                 }
905         }
906
907 error:
908         abort_creds(new);
909         return old_fsgid;
910
911 change_okay:
912         commit_creds(new);
913         return old_fsgid;
914 }
915
916 void do_sys_times(struct tms *tms)
917 {
918         struct task_cputime cputime;
919         cputime_t cutime, cstime;
920
921         thread_group_cputime(current, &cputime);
922         spin_lock_irq(&current->sighand->siglock);
923         cutime = current->signal->cutime;
924         cstime = current->signal->cstime;
925         spin_unlock_irq(&current->sighand->siglock);
926         tms->tms_utime = cputime_to_clock_t(cputime.utime);
927         tms->tms_stime = cputime_to_clock_t(cputime.stime);
928         tms->tms_cutime = cputime_to_clock_t(cutime);
929         tms->tms_cstime = cputime_to_clock_t(cstime);
930 }
931
932 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
933 {
934         if (tbuf) {
935                 struct tms tmp;
936
937                 do_sys_times(&tmp);
938                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
939                         return -EFAULT;
940         }
941         force_successful_syscall_return();
942         return (long) jiffies_64_to_clock_t(get_jiffies_64());
943 }
944
945 /*
946  * This needs some heavy checking ...
947  * I just haven't the stomach for it. I also don't fully
948  * understand sessions/pgrp etc. Let somebody who does explain it.
949  *
950  * OK, I think I have the protection semantics right.... this is really
951  * only important on a multi-user system anyway, to make sure one user
952  * can't send a signal to a process owned by another.  -TYT, 12/12/91
953  *
954  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
955  * LBT 04.03.94
956  */
957 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
958 {
959         struct task_struct *p;
960         struct task_struct *group_leader = current->group_leader;
961         struct pid *pgrp;
962         int err;
963
964         if (!pid)
965                 pid = task_pid_vnr(group_leader);
966         if (!pgid)
967                 pgid = pid;
968         if (pgid < 0)
969                 return -EINVAL;
970
971         /* From this point forward we keep holding onto the tasklist lock
972          * so that our parent does not change from under us. -DaveM
973          */
974         write_lock_irq(&tasklist_lock);
975
976         err = -ESRCH;
977         p = find_task_by_vpid(pid);
978         if (!p)
979                 goto out;
980
981         err = -EINVAL;
982         if (!thread_group_leader(p))
983                 goto out;
984
985         if (same_thread_group(p->real_parent, group_leader)) {
986                 err = -EPERM;
987                 if (task_session(p) != task_session(group_leader))
988                         goto out;
989                 err = -EACCES;
990                 if (p->did_exec)
991                         goto out;
992         } else {
993                 err = -ESRCH;
994                 if (p != group_leader)
995                         goto out;
996         }
997
998         err = -EPERM;
999         if (p->signal->leader)
1000                 goto out;
1001
1002         pgrp = task_pid(p);
1003         if (pgid != pid) {
1004                 struct task_struct *g;
1005
1006                 pgrp = find_vpid(pgid);
1007                 g = pid_task(pgrp, PIDTYPE_PGID);
1008                 if (!g || task_session(g) != task_session(group_leader))
1009                         goto out;
1010         }
1011
1012         err = security_task_setpgid(p, pgid);
1013         if (err)
1014                 goto out;
1015
1016         if (task_pgrp(p) != pgrp)
1017                 change_pid(p, PIDTYPE_PGID, pgrp);
1018
1019         err = 0;
1020 out:
1021         /* All paths lead to here, thus we are safe. -DaveM */
1022         write_unlock_irq(&tasklist_lock);
1023         return err;
1024 }
1025
1026 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1027 {
1028         struct task_struct *p;
1029         struct pid *grp;
1030         int retval;
1031
1032         rcu_read_lock();
1033         if (!pid)
1034                 grp = task_pgrp(current);
1035         else {
1036                 retval = -ESRCH;
1037                 p = find_task_by_vpid(pid);
1038                 if (!p)
1039                         goto out;
1040                 grp = task_pgrp(p);
1041                 if (!grp)
1042                         goto out;
1043
1044                 retval = security_task_getpgid(p);
1045                 if (retval)
1046                         goto out;
1047         }
1048         retval = pid_vnr(grp);
1049 out:
1050         rcu_read_unlock();
1051         return retval;
1052 }
1053
1054 #ifdef __ARCH_WANT_SYS_GETPGRP
1055
1056 SYSCALL_DEFINE0(getpgrp)
1057 {
1058         return sys_getpgid(0);
1059 }
1060
1061 #endif
1062
1063 SYSCALL_DEFINE1(getsid, pid_t, pid)
1064 {
1065         struct task_struct *p;
1066         struct pid *sid;
1067         int retval;
1068
1069         rcu_read_lock();
1070         if (!pid)
1071                 sid = task_session(current);
1072         else {
1073                 retval = -ESRCH;
1074                 p = find_task_by_vpid(pid);
1075                 if (!p)
1076                         goto out;
1077                 sid = task_session(p);
1078                 if (!sid)
1079                         goto out;
1080
1081                 retval = security_task_getsid(p);
1082                 if (retval)
1083                         goto out;
1084         }
1085         retval = pid_vnr(sid);
1086 out:
1087         rcu_read_unlock();
1088         return retval;
1089 }
1090
1091 SYSCALL_DEFINE0(setsid)
1092 {
1093         struct task_struct *group_leader = current->group_leader;
1094         struct pid *sid = task_pid(group_leader);
1095         pid_t session = pid_vnr(sid);
1096         int err = -EPERM;
1097
1098         write_lock_irq(&tasklist_lock);
1099         /* Fail if I am already a session leader */
1100         if (group_leader->signal->leader)
1101                 goto out;
1102
1103         /* Fail if a process group id already exists that equals the
1104          * proposed session id.
1105          */
1106         if (pid_task(sid, PIDTYPE_PGID))
1107                 goto out;
1108
1109         group_leader->signal->leader = 1;
1110         __set_special_pids(sid);
1111
1112         proc_clear_tty(group_leader);
1113
1114         err = session;
1115 out:
1116         write_unlock_irq(&tasklist_lock);
1117         return err;
1118 }
1119
1120 /*
1121  * Supplementary group IDs
1122  */
1123
1124 /* init to 2 - one for init_task, one to ensure it is never freed */
1125 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1126
1127 struct group_info *groups_alloc(int gidsetsize)
1128 {
1129         struct group_info *group_info;
1130         int nblocks;
1131         int i;
1132
1133         nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1134         /* Make sure we always allocate at least one indirect block pointer */
1135         nblocks = nblocks ? : 1;
1136         group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1137         if (!group_info)
1138                 return NULL;
1139         group_info->ngroups = gidsetsize;
1140         group_info->nblocks = nblocks;
1141         atomic_set(&group_info->usage, 1);
1142
1143         if (gidsetsize <= NGROUPS_SMALL)
1144                 group_info->blocks[0] = group_info->small_block;
1145         else {
1146                 for (i = 0; i < nblocks; i++) {
1147                         gid_t *b;
1148                         b = (void *)__get_free_page(GFP_USER);
1149                         if (!b)
1150                                 goto out_undo_partial_alloc;
1151                         group_info->blocks[i] = b;
1152                 }
1153         }
1154         return group_info;
1155
1156 out_undo_partial_alloc:
1157         while (--i >= 0) {
1158                 free_page((unsigned long)group_info->blocks[i]);
1159         }
1160         kfree(group_info);
1161         return NULL;
1162 }
1163
1164 EXPORT_SYMBOL(groups_alloc);
1165
1166 void groups_free(struct group_info *group_info)
1167 {
1168         if (group_info->blocks[0] != group_info->small_block) {
1169                 int i;
1170                 for (i = 0; i < group_info->nblocks; i++)
1171                         free_page((unsigned long)group_info->blocks[i]);
1172         }
1173         kfree(group_info);
1174 }
1175
1176 EXPORT_SYMBOL(groups_free);
1177
1178 /* export the group_info to a user-space array */
1179 static int groups_to_user(gid_t __user *grouplist,
1180                           const struct group_info *group_info)
1181 {
1182         int i;
1183         unsigned int count = group_info->ngroups;
1184
1185         for (i = 0; i < group_info->nblocks; i++) {
1186                 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1187                 unsigned int len = cp_count * sizeof(*grouplist);
1188
1189                 if (copy_to_user(grouplist, group_info->blocks[i], len))
1190                         return -EFAULT;
1191
1192                 grouplist += NGROUPS_PER_BLOCK;
1193                 count -= cp_count;
1194         }
1195         return 0;
1196 }
1197
1198 /* fill a group_info from a user-space array - it must be allocated already */
1199 static int groups_from_user(struct group_info *group_info,
1200     gid_t __user *grouplist)
1201 {
1202         int i;
1203         unsigned int count = group_info->ngroups;
1204
1205         for (i = 0; i < group_info->nblocks; i++) {
1206                 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1207                 unsigned int len = cp_count * sizeof(*grouplist);
1208
1209                 if (copy_from_user(group_info->blocks[i], grouplist, len))
1210                         return -EFAULT;
1211
1212                 grouplist += NGROUPS_PER_BLOCK;
1213                 count -= cp_count;
1214         }
1215         return 0;
1216 }
1217
1218 /* a simple Shell sort */
1219 static void groups_sort(struct group_info *group_info)
1220 {
1221         int base, max, stride;
1222         int gidsetsize = group_info->ngroups;
1223
1224         for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1225                 ; /* nothing */
1226         stride /= 3;
1227
1228         while (stride) {
1229                 max = gidsetsize - stride;
1230                 for (base = 0; base < max; base++) {
1231                         int left = base;
1232                         int right = left + stride;
1233                         gid_t tmp = GROUP_AT(group_info, right);
1234
1235                         while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1236                                 GROUP_AT(group_info, right) =
1237                                     GROUP_AT(group_info, left);
1238                                 right = left;
1239                                 left -= stride;
1240                         }
1241                         GROUP_AT(group_info, right) = tmp;
1242                 }
1243                 stride /= 3;
1244         }
1245 }
1246
1247 /* a simple bsearch */
1248 int groups_search(const struct group_info *group_info, gid_t grp)
1249 {
1250         unsigned int left, right;
1251
1252         if (!group_info)
1253                 return 0;
1254
1255         left = 0;
1256         right = group_info->ngroups;
1257         while (left < right) {
1258                 unsigned int mid = (left+right)/2;
1259                 int cmp = grp - GROUP_AT(group_info, mid);
1260                 if (cmp > 0)
1261                         left = mid + 1;
1262                 else if (cmp < 0)
1263                         right = mid;
1264                 else
1265                         return 1;
1266         }
1267         return 0;
1268 }
1269
1270 /**
1271  * set_groups - Change a group subscription in a set of credentials
1272  * @new: The newly prepared set of credentials to alter
1273  * @group_info: The group list to install
1274  *
1275  * Validate a group subscription and, if valid, insert it into a set
1276  * of credentials.
1277  */
1278 int set_groups(struct cred *new, struct group_info *group_info)
1279 {
1280         int retval;
1281
1282         retval = security_task_setgroups(group_info);
1283         if (retval)
1284                 return retval;
1285
1286         put_group_info(new->group_info);
1287         groups_sort(group_info);
1288         get_group_info(group_info);
1289         new->group_info = group_info;
1290         return 0;
1291 }
1292
1293 EXPORT_SYMBOL(set_groups);
1294
1295 /**
1296  * set_current_groups - Change current's group subscription
1297  * @group_info: The group list to impose
1298  *
1299  * Validate a group subscription and, if valid, impose it upon current's task
1300  * security record.
1301  */
1302 int set_current_groups(struct group_info *group_info)
1303 {
1304         struct cred *new;
1305         int ret;
1306
1307         new = prepare_creds();
1308         if (!new)
1309                 return -ENOMEM;
1310
1311         ret = set_groups(new, group_info);
1312         if (ret < 0) {
1313                 abort_creds(new);
1314                 return ret;
1315         }
1316
1317         return commit_creds(new);
1318 }
1319
1320 EXPORT_SYMBOL(set_current_groups);
1321
1322 SYSCALL_DEFINE2(getgroups, int, gidsetsize, gid_t __user *, grouplist)
1323 {
1324         const struct cred *cred = current_cred();
1325         int i;
1326
1327         if (gidsetsize < 0)
1328                 return -EINVAL;
1329
1330         /* no need to grab task_lock here; it cannot change */
1331         i = cred->group_info->ngroups;
1332         if (gidsetsize) {
1333                 if (i > gidsetsize) {
1334                         i = -EINVAL;
1335                         goto out;
1336                 }
1337                 if (groups_to_user(grouplist, cred->group_info)) {
1338                         i = -EFAULT;
1339                         goto out;
1340                 }
1341         }
1342 out:
1343         return i;
1344 }
1345
1346 /*
1347  *      SMP: Our groups are copy-on-write. We can set them safely
1348  *      without another task interfering.
1349  */
1350  
1351 SYSCALL_DEFINE2(setgroups, int, gidsetsize, gid_t __user *, grouplist)
1352 {
1353         struct group_info *group_info;
1354         int retval;
1355
1356         if (!capable(CAP_SETGID))
1357                 return -EPERM;
1358         if ((unsigned)gidsetsize > NGROUPS_MAX)
1359                 return -EINVAL;
1360
1361         group_info = groups_alloc(gidsetsize);
1362         if (!group_info)
1363                 return -ENOMEM;
1364         retval = groups_from_user(group_info, grouplist);
1365         if (retval) {
1366                 put_group_info(group_info);
1367                 return retval;
1368         }
1369
1370         retval = set_current_groups(group_info);
1371         put_group_info(group_info);
1372
1373         return retval;
1374 }
1375
1376 /*
1377  * Check whether we're fsgid/egid or in the supplemental group..
1378  */
1379 int in_group_p(gid_t grp)
1380 {
1381         const struct cred *cred = current_cred();
1382         int retval = 1;
1383
1384         if (grp != cred->fsgid)
1385                 retval = groups_search(cred->group_info, grp);
1386         return retval;
1387 }
1388
1389 EXPORT_SYMBOL(in_group_p);
1390
1391 int in_egroup_p(gid_t grp)
1392 {
1393         const struct cred *cred = current_cred();
1394         int retval = 1;
1395
1396         if (grp != cred->egid)
1397                 retval = groups_search(cred->group_info, grp);
1398         return retval;
1399 }
1400
1401 EXPORT_SYMBOL(in_egroup_p);
1402
1403 DECLARE_RWSEM(uts_sem);
1404
1405 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1406 {
1407         int errno = 0;
1408
1409         down_read(&uts_sem);
1410         if (copy_to_user(name, utsname(), sizeof *name))
1411                 errno = -EFAULT;
1412         up_read(&uts_sem);
1413         return errno;
1414 }
1415
1416 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1417 {
1418         int errno;
1419         char tmp[__NEW_UTS_LEN];
1420
1421         if (!capable(CAP_SYS_ADMIN))
1422                 return -EPERM;
1423         if (len < 0 || len > __NEW_UTS_LEN)
1424                 return -EINVAL;
1425         down_write(&uts_sem);
1426         errno = -EFAULT;
1427         if (!copy_from_user(tmp, name, len)) {
1428                 struct new_utsname *u = utsname();
1429
1430                 memcpy(u->nodename, tmp, len);
1431                 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1432                 errno = 0;
1433         }
1434         up_write(&uts_sem);
1435         return errno;
1436 }
1437
1438 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1439
1440 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1441 {
1442         int i, errno;
1443         struct new_utsname *u;
1444
1445         if (len < 0)
1446                 return -EINVAL;
1447         down_read(&uts_sem);
1448         u = utsname();
1449         i = 1 + strlen(u->nodename);
1450         if (i > len)
1451                 i = len;
1452         errno = 0;
1453         if (copy_to_user(name, u->nodename, i))
1454                 errno = -EFAULT;
1455         up_read(&uts_sem);
1456         return errno;
1457 }
1458
1459 #endif
1460
1461 /*
1462  * Only setdomainname; getdomainname can be implemented by calling
1463  * uname()
1464  */
1465 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1466 {
1467         int errno;
1468         char tmp[__NEW_UTS_LEN];
1469
1470         if (!capable(CAP_SYS_ADMIN))
1471                 return -EPERM;
1472         if (len < 0 || len > __NEW_UTS_LEN)
1473                 return -EINVAL;
1474
1475         down_write(&uts_sem);
1476         errno = -EFAULT;
1477         if (!copy_from_user(tmp, name, len)) {
1478                 struct new_utsname *u = utsname();
1479
1480                 memcpy(u->domainname, tmp, len);
1481                 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1482                 errno = 0;
1483         }
1484         up_write(&uts_sem);
1485         return errno;
1486 }
1487
1488 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1489 {
1490         if (resource >= RLIM_NLIMITS)
1491                 return -EINVAL;
1492         else {
1493                 struct rlimit value;
1494                 task_lock(current->group_leader);
1495                 value = current->signal->rlim[resource];
1496                 task_unlock(current->group_leader);
1497                 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1498         }
1499 }
1500
1501 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1502
1503 /*
1504  *      Back compatibility for getrlimit. Needed for some apps.
1505  */
1506  
1507 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1508                 struct rlimit __user *, rlim)
1509 {
1510         struct rlimit x;
1511         if (resource >= RLIM_NLIMITS)
1512                 return -EINVAL;
1513
1514         task_lock(current->group_leader);
1515         x = current->signal->rlim[resource];
1516         task_unlock(current->group_leader);
1517         if (x.rlim_cur > 0x7FFFFFFF)
1518                 x.rlim_cur = 0x7FFFFFFF;
1519         if (x.rlim_max > 0x7FFFFFFF)
1520                 x.rlim_max = 0x7FFFFFFF;
1521         return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1522 }
1523
1524 #endif
1525
1526 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1527 {
1528         struct rlimit new_rlim, *old_rlim;
1529         int retval;
1530
1531         if (resource >= RLIM_NLIMITS)
1532                 return -EINVAL;
1533         if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1534                 return -EFAULT;
1535         if (new_rlim.rlim_cur > new_rlim.rlim_max)
1536                 return -EINVAL;
1537         old_rlim = current->signal->rlim + resource;
1538         if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1539             !capable(CAP_SYS_RESOURCE))
1540                 return -EPERM;
1541         if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1542                 return -EPERM;
1543
1544         retval = security_task_setrlimit(resource, &new_rlim);
1545         if (retval)
1546                 return retval;
1547
1548         if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1549                 /*
1550                  * The caller is asking for an immediate RLIMIT_CPU
1551                  * expiry.  But we use the zero value to mean "it was
1552                  * never set".  So let's cheat and make it one second
1553                  * instead
1554                  */
1555                 new_rlim.rlim_cur = 1;
1556         }
1557
1558         task_lock(current->group_leader);
1559         *old_rlim = new_rlim;
1560         task_unlock(current->group_leader);
1561
1562         if (resource != RLIMIT_CPU)
1563                 goto out;
1564
1565         /*
1566          * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1567          * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1568          * very long-standing error, and fixing it now risks breakage of
1569          * applications, so we live with it
1570          */
1571         if (new_rlim.rlim_cur == RLIM_INFINITY)
1572                 goto out;
1573
1574         update_rlimit_cpu(new_rlim.rlim_cur);
1575 out:
1576         return 0;
1577 }
1578
1579 /*
1580  * It would make sense to put struct rusage in the task_struct,
1581  * except that would make the task_struct be *really big*.  After
1582  * task_struct gets moved into malloc'ed memory, it would
1583  * make sense to do this.  It will make moving the rest of the information
1584  * a lot simpler!  (Which we're not doing right now because we're not
1585  * measuring them yet).
1586  *
1587  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1588  * races with threads incrementing their own counters.  But since word
1589  * reads are atomic, we either get new values or old values and we don't
1590  * care which for the sums.  We always take the siglock to protect reading
1591  * the c* fields from p->signal from races with exit.c updating those
1592  * fields when reaping, so a sample either gets all the additions of a
1593  * given child after it's reaped, or none so this sample is before reaping.
1594  *
1595  * Locking:
1596  * We need to take the siglock for CHILDEREN, SELF and BOTH
1597  * for  the cases current multithreaded, non-current single threaded
1598  * non-current multithreaded.  Thread traversal is now safe with
1599  * the siglock held.
1600  * Strictly speaking, we donot need to take the siglock if we are current and
1601  * single threaded,  as no one else can take our signal_struct away, no one
1602  * else can  reap the  children to update signal->c* counters, and no one else
1603  * can race with the signal-> fields. If we do not take any lock, the
1604  * signal-> fields could be read out of order while another thread was just
1605  * exiting. So we should  place a read memory barrier when we avoid the lock.
1606  * On the writer side,  write memory barrier is implied in  __exit_signal
1607  * as __exit_signal releases  the siglock spinlock after updating the signal->
1608  * fields. But we don't do this yet to keep things simple.
1609  *
1610  */
1611
1612 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1613 {
1614         r->ru_nvcsw += t->nvcsw;
1615         r->ru_nivcsw += t->nivcsw;
1616         r->ru_minflt += t->min_flt;
1617         r->ru_majflt += t->maj_flt;
1618         r->ru_inblock += task_io_get_inblock(t);
1619         r->ru_oublock += task_io_get_oublock(t);
1620 }
1621
1622 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1623 {
1624         struct task_struct *t;
1625         unsigned long flags;
1626         cputime_t utime, stime;
1627         struct task_cputime cputime;
1628
1629         memset((char *) r, 0, sizeof *r);
1630         utime = stime = cputime_zero;
1631
1632         if (who == RUSAGE_THREAD) {
1633                 utime = task_utime(current);
1634                 stime = task_stime(current);
1635                 accumulate_thread_rusage(p, r);
1636                 goto out;
1637         }
1638
1639         if (!lock_task_sighand(p, &flags))
1640                 return;
1641
1642         switch (who) {
1643                 case RUSAGE_BOTH:
1644                 case RUSAGE_CHILDREN:
1645                         utime = p->signal->cutime;
1646                         stime = p->signal->cstime;
1647                         r->ru_nvcsw = p->signal->cnvcsw;
1648                         r->ru_nivcsw = p->signal->cnivcsw;
1649                         r->ru_minflt = p->signal->cmin_flt;
1650                         r->ru_majflt = p->signal->cmaj_flt;
1651                         r->ru_inblock = p->signal->cinblock;
1652                         r->ru_oublock = p->signal->coublock;
1653
1654                         if (who == RUSAGE_CHILDREN)
1655                                 break;
1656
1657                 case RUSAGE_SELF:
1658                         thread_group_cputime(p, &cputime);
1659                         utime = cputime_add(utime, cputime.utime);
1660                         stime = cputime_add(stime, cputime.stime);
1661                         r->ru_nvcsw += p->signal->nvcsw;
1662                         r->ru_nivcsw += p->signal->nivcsw;
1663                         r->ru_minflt += p->signal->min_flt;
1664                         r->ru_majflt += p->signal->maj_flt;
1665                         r->ru_inblock += p->signal->inblock;
1666                         r->ru_oublock += p->signal->oublock;
1667                         t = p;
1668                         do {
1669                                 accumulate_thread_rusage(t, r);
1670                                 t = next_thread(t);
1671                         } while (t != p);
1672                         break;
1673
1674                 default:
1675                         BUG();
1676         }
1677         unlock_task_sighand(p, &flags);
1678
1679 out:
1680         cputime_to_timeval(utime, &r->ru_utime);
1681         cputime_to_timeval(stime, &r->ru_stime);
1682 }
1683
1684 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1685 {
1686         struct rusage r;
1687         k_getrusage(p, who, &r);
1688         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1689 }
1690
1691 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1692 {
1693         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1694             who != RUSAGE_THREAD)
1695                 return -EINVAL;
1696         return getrusage(current, who, ru);
1697 }
1698
1699 SYSCALL_DEFINE1(umask, int, mask)
1700 {
1701         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1702         return mask;
1703 }
1704
1705 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1706                 unsigned long, arg4, unsigned long, arg5)
1707 {
1708         struct task_struct *me = current;
1709         unsigned char comm[sizeof(me->comm)];
1710         long error;
1711
1712         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1713         if (error != -ENOSYS)
1714                 return error;
1715
1716         error = 0;
1717         switch (option) {
1718                 case PR_SET_PDEATHSIG:
1719                         if (!valid_signal(arg2)) {
1720                                 error = -EINVAL;
1721                                 break;
1722                         }
1723                         me->pdeath_signal = arg2;
1724                         error = 0;
1725                         break;
1726                 case PR_GET_PDEATHSIG:
1727                         error = put_user(me->pdeath_signal, (int __user *)arg2);
1728                         break;
1729                 case PR_GET_DUMPABLE:
1730                         error = get_dumpable(me->mm);
1731                         break;
1732                 case PR_SET_DUMPABLE:
1733                         if (arg2 < 0 || arg2 > 1) {
1734                                 error = -EINVAL;
1735                                 break;
1736                         }
1737                         set_dumpable(me->mm, arg2);
1738                         error = 0;
1739                         break;
1740
1741                 case PR_SET_UNALIGN:
1742                         error = SET_UNALIGN_CTL(me, arg2);
1743                         break;
1744                 case PR_GET_UNALIGN:
1745                         error = GET_UNALIGN_CTL(me, arg2);
1746                         break;
1747                 case PR_SET_FPEMU:
1748                         error = SET_FPEMU_CTL(me, arg2);
1749                         break;
1750                 case PR_GET_FPEMU:
1751                         error = GET_FPEMU_CTL(me, arg2);
1752                         break;
1753                 case PR_SET_FPEXC:
1754                         error = SET_FPEXC_CTL(me, arg2);
1755                         break;
1756                 case PR_GET_FPEXC:
1757                         error = GET_FPEXC_CTL(me, arg2);
1758                         break;
1759                 case PR_GET_TIMING:
1760                         error = PR_TIMING_STATISTICAL;
1761                         break;
1762                 case PR_SET_TIMING:
1763                         if (arg2 != PR_TIMING_STATISTICAL)
1764                                 error = -EINVAL;
1765                         else
1766                                 error = 0;
1767                         break;
1768
1769                 case PR_SET_NAME:
1770                         comm[sizeof(me->comm)-1] = 0;
1771                         if (strncpy_from_user(comm, (char __user *)arg2,
1772                                               sizeof(me->comm) - 1) < 0)
1773                                 return -EFAULT;
1774                         set_task_comm(me, comm);
1775                         return 0;
1776                 case PR_GET_NAME:
1777                         get_task_comm(comm, me);
1778                         if (copy_to_user((char __user *)arg2, comm,
1779                                          sizeof(comm)))
1780                                 return -EFAULT;
1781                         return 0;
1782                 case PR_GET_ENDIAN:
1783                         error = GET_ENDIAN(me, arg2);
1784                         break;
1785                 case PR_SET_ENDIAN:
1786                         error = SET_ENDIAN(me, arg2);
1787                         break;
1788
1789                 case PR_GET_SECCOMP:
1790                         error = prctl_get_seccomp();
1791                         break;
1792                 case PR_SET_SECCOMP:
1793                         error = prctl_set_seccomp(arg2);
1794                         break;
1795                 case PR_GET_TSC:
1796                         error = GET_TSC_CTL(arg2);
1797                         break;
1798                 case PR_SET_TSC:
1799                         error = SET_TSC_CTL(arg2);
1800                         break;
1801                 case PR_GET_TIMERSLACK:
1802                         error = current->timer_slack_ns;
1803                         break;
1804                 case PR_SET_TIMERSLACK:
1805                         if (arg2 <= 0)
1806                                 current->timer_slack_ns =
1807                                         current->default_timer_slack_ns;
1808                         else
1809                                 current->timer_slack_ns = arg2;
1810                         error = 0;
1811                         break;
1812                 default:
1813                         error = -EINVAL;
1814                         break;
1815         }
1816         return error;
1817 }
1818
1819 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1820                 struct getcpu_cache __user *, unused)
1821 {
1822         int err = 0;
1823         int cpu = raw_smp_processor_id();
1824         if (cpup)
1825                 err |= put_user(cpu, cpup);
1826         if (nodep)
1827                 err |= put_user(cpu_to_node(cpu), nodep);
1828         return err ? -EFAULT : 0;
1829 }
1830
1831 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1832
1833 static void argv_cleanup(char **argv, char **envp)
1834 {
1835         argv_free(argv);
1836 }
1837
1838 /**
1839  * orderly_poweroff - Trigger an orderly system poweroff
1840  * @force: force poweroff if command execution fails
1841  *
1842  * This may be called from any context to trigger a system shutdown.
1843  * If the orderly shutdown fails, it will force an immediate shutdown.
1844  */
1845 int orderly_poweroff(bool force)
1846 {
1847         int argc;
1848         char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1849         static char *envp[] = {
1850                 "HOME=/",
1851                 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1852                 NULL
1853         };
1854         int ret = -ENOMEM;
1855         struct subprocess_info *info;
1856
1857         if (argv == NULL) {
1858                 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1859                        __func__, poweroff_cmd);
1860                 goto out;
1861         }
1862
1863         info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1864         if (info == NULL) {
1865                 argv_free(argv);
1866                 goto out;
1867         }
1868
1869         call_usermodehelper_setcleanup(info, argv_cleanup);
1870
1871         ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1872
1873   out:
1874         if (ret && force) {
1875                 printk(KERN_WARNING "Failed to start orderly shutdown: "
1876                        "forcing the issue\n");
1877
1878                 /* I guess this should try to kick off some daemon to
1879                    sync and poweroff asap.  Or not even bother syncing
1880                    if we're doing an emergency shutdown? */
1881                 emergency_sync();
1882                 kernel_power_off();
1883         }
1884
1885         return ret;
1886 }
1887 EXPORT_SYMBOL_GPL(orderly_poweroff);