4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/smp_lock.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
37 int sysctl_vfs_cache_pressure __read_mostly = 100;
38 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
41 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43 EXPORT_SYMBOL(dcache_lock);
45 static kmem_cache_t *dentry_cache __read_mostly;
47 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
50 * This is the single most critical data structure when it comes
51 * to the dcache: the hashtable for lookups. Somebody should try
52 * to make this good - I've just made it work.
54 * This hash-function tries to avoid losing too many bits of hash
55 * information, yet avoid using a prime hash-size or similar.
57 #define D_HASHBITS d_hash_shift
58 #define D_HASHMASK d_hash_mask
60 static unsigned int d_hash_mask __read_mostly;
61 static unsigned int d_hash_shift __read_mostly;
62 static struct hlist_head *dentry_hashtable __read_mostly;
63 static LIST_HEAD(dentry_unused);
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
70 static void d_callback(struct rcu_head *head)
72 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
74 if (dname_external(dentry))
75 kfree(dentry->d_name.name);
76 kmem_cache_free(dentry_cache, dentry);
80 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
83 static void d_free(struct dentry *dentry)
85 if (dentry->d_op && dentry->d_op->d_release)
86 dentry->d_op->d_release(dentry);
87 call_rcu(&dentry->d_u.d_rcu, d_callback);
91 * Release the dentry's inode, using the filesystem
92 * d_iput() operation if defined.
93 * Called with dcache_lock and per dentry lock held, drops both.
95 static void dentry_iput(struct dentry * dentry)
97 struct inode *inode = dentry->d_inode;
99 dentry->d_inode = NULL;
100 list_del_init(&dentry->d_alias);
101 spin_unlock(&dentry->d_lock);
102 spin_unlock(&dcache_lock);
104 fsnotify_inoderemove(inode);
105 if (dentry->d_op && dentry->d_op->d_iput)
106 dentry->d_op->d_iput(dentry, inode);
110 spin_unlock(&dentry->d_lock);
111 spin_unlock(&dcache_lock);
118 * This is complicated by the fact that we do not want to put
119 * dentries that are no longer on any hash chain on the unused
120 * list: we'd much rather just get rid of them immediately.
122 * However, that implies that we have to traverse the dentry
123 * tree upwards to the parents which might _also_ now be
124 * scheduled for deletion (it may have been only waiting for
125 * its last child to go away).
127 * This tail recursion is done by hand as we don't want to depend
128 * on the compiler to always get this right (gcc generally doesn't).
129 * Real recursion would eat up our stack space.
133 * dput - release a dentry
134 * @dentry: dentry to release
136 * Release a dentry. This will drop the usage count and if appropriate
137 * call the dentry unlink method as well as removing it from the queues and
138 * releasing its resources. If the parent dentries were scheduled for release
139 * they too may now get deleted.
141 * no dcache lock, please.
144 void dput(struct dentry *dentry)
150 if (atomic_read(&dentry->d_count) == 1)
152 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
155 spin_lock(&dentry->d_lock);
156 if (atomic_read(&dentry->d_count)) {
157 spin_unlock(&dentry->d_lock);
158 spin_unlock(&dcache_lock);
163 * AV: ->d_delete() is _NOT_ allowed to block now.
165 if (dentry->d_op && dentry->d_op->d_delete) {
166 if (dentry->d_op->d_delete(dentry))
169 /* Unreachable? Get rid of it */
170 if (d_unhashed(dentry))
172 if (list_empty(&dentry->d_lru)) {
173 dentry->d_flags |= DCACHE_REFERENCED;
174 list_add(&dentry->d_lru, &dentry_unused);
175 dentry_stat.nr_unused++;
177 spin_unlock(&dentry->d_lock);
178 spin_unlock(&dcache_lock);
185 struct dentry *parent;
187 /* If dentry was on d_lru list
188 * delete it from there
190 if (!list_empty(&dentry->d_lru)) {
191 list_del(&dentry->d_lru);
192 dentry_stat.nr_unused--;
194 list_del(&dentry->d_u.d_child);
195 dentry_stat.nr_dentry--; /* For d_free, below */
196 /*drops the locks, at that point nobody can reach this dentry */
198 parent = dentry->d_parent;
200 if (dentry == parent)
208 * d_invalidate - invalidate a dentry
209 * @dentry: dentry to invalidate
211 * Try to invalidate the dentry if it turns out to be
212 * possible. If there are other dentries that can be
213 * reached through this one we can't delete it and we
214 * return -EBUSY. On success we return 0.
219 int d_invalidate(struct dentry * dentry)
222 * If it's already been dropped, return OK.
224 spin_lock(&dcache_lock);
225 if (d_unhashed(dentry)) {
226 spin_unlock(&dcache_lock);
230 * Check whether to do a partial shrink_dcache
231 * to get rid of unused child entries.
233 if (!list_empty(&dentry->d_subdirs)) {
234 spin_unlock(&dcache_lock);
235 shrink_dcache_parent(dentry);
236 spin_lock(&dcache_lock);
240 * Somebody else still using it?
242 * If it's a directory, we can't drop it
243 * for fear of somebody re-populating it
244 * with children (even though dropping it
245 * would make it unreachable from the root,
246 * we might still populate it if it was a
247 * working directory or similar).
249 spin_lock(&dentry->d_lock);
250 if (atomic_read(&dentry->d_count) > 1) {
251 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
252 spin_unlock(&dentry->d_lock);
253 spin_unlock(&dcache_lock);
259 spin_unlock(&dentry->d_lock);
260 spin_unlock(&dcache_lock);
264 /* This should be called _only_ with dcache_lock held */
266 static inline struct dentry * __dget_locked(struct dentry *dentry)
268 atomic_inc(&dentry->d_count);
269 if (!list_empty(&dentry->d_lru)) {
270 dentry_stat.nr_unused--;
271 list_del_init(&dentry->d_lru);
276 struct dentry * dget_locked(struct dentry *dentry)
278 return __dget_locked(dentry);
282 * d_find_alias - grab a hashed alias of inode
283 * @inode: inode in question
284 * @want_discon: flag, used by d_splice_alias, to request
285 * that only a DISCONNECTED alias be returned.
287 * If inode has a hashed alias, or is a directory and has any alias,
288 * acquire the reference to alias and return it. Otherwise return NULL.
289 * Notice that if inode is a directory there can be only one alias and
290 * it can be unhashed only if it has no children, or if it is the root
293 * If the inode has a DCACHE_DISCONNECTED alias, then prefer
294 * any other hashed alias over that one unless @want_discon is set,
295 * in which case only return a DCACHE_DISCONNECTED alias.
298 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
300 struct list_head *head, *next, *tmp;
301 struct dentry *alias, *discon_alias=NULL;
303 head = &inode->i_dentry;
304 next = inode->i_dentry.next;
305 while (next != head) {
309 alias = list_entry(tmp, struct dentry, d_alias);
310 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
311 if (alias->d_flags & DCACHE_DISCONNECTED)
312 discon_alias = alias;
313 else if (!want_discon) {
314 __dget_locked(alias);
320 __dget_locked(discon_alias);
324 struct dentry * d_find_alias(struct inode *inode)
326 struct dentry *de = NULL;
328 if (!list_empty(&inode->i_dentry)) {
329 spin_lock(&dcache_lock);
330 de = __d_find_alias(inode, 0);
331 spin_unlock(&dcache_lock);
337 * Try to kill dentries associated with this inode.
338 * WARNING: you must own a reference to inode.
340 void d_prune_aliases(struct inode *inode)
342 struct dentry *dentry;
344 spin_lock(&dcache_lock);
345 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
346 spin_lock(&dentry->d_lock);
347 if (!atomic_read(&dentry->d_count)) {
348 __dget_locked(dentry);
350 spin_unlock(&dentry->d_lock);
351 spin_unlock(&dcache_lock);
355 spin_unlock(&dentry->d_lock);
357 spin_unlock(&dcache_lock);
361 * Throw away a dentry - free the inode, dput the parent. This requires that
362 * the LRU list has already been removed.
364 * Called with dcache_lock, drops it and then regains.
365 * Called with dentry->d_lock held, drops it.
367 static void prune_one_dentry(struct dentry * dentry)
369 struct dentry * parent;
372 list_del(&dentry->d_u.d_child);
373 dentry_stat.nr_dentry--; /* For d_free, below */
375 parent = dentry->d_parent;
377 if (parent != dentry)
379 spin_lock(&dcache_lock);
383 * prune_dcache - shrink the dcache
384 * @count: number of entries to try and free
385 * @sb: if given, ignore dentries for other superblocks
386 * which are being unmounted.
388 * Shrink the dcache. This is done when we need
389 * more memory, or simply when we need to unmount
390 * something (at which point we need to unuse
393 * This function may fail to free any resources if
394 * all the dentries are in use.
397 static void prune_dcache(int count, struct super_block *sb)
399 spin_lock(&dcache_lock);
400 for (; count ; count--) {
401 struct dentry *dentry;
402 struct list_head *tmp;
403 struct rw_semaphore *s_umount;
405 cond_resched_lock(&dcache_lock);
407 tmp = dentry_unused.prev;
409 /* Try to find a dentry for this sb, but don't try
410 * too hard, if they aren't near the tail they will
411 * be moved down again soon
414 while (skip && tmp != &dentry_unused &&
415 list_entry(tmp, struct dentry, d_lru)->d_sb != sb) {
420 if (tmp == &dentry_unused)
423 prefetch(dentry_unused.prev);
424 dentry_stat.nr_unused--;
425 dentry = list_entry(tmp, struct dentry, d_lru);
427 spin_lock(&dentry->d_lock);
429 * We found an inuse dentry which was not removed from
430 * dentry_unused because of laziness during lookup. Do not free
431 * it - just keep it off the dentry_unused list.
433 if (atomic_read(&dentry->d_count)) {
434 spin_unlock(&dentry->d_lock);
437 /* If the dentry was recently referenced, don't free it. */
438 if (dentry->d_flags & DCACHE_REFERENCED) {
439 dentry->d_flags &= ~DCACHE_REFERENCED;
440 list_add(&dentry->d_lru, &dentry_unused);
441 dentry_stat.nr_unused++;
442 spin_unlock(&dentry->d_lock);
446 * If the dentry is not DCACHED_REFERENCED, it is time
447 * to remove it from the dcache, provided the super block is
448 * NULL (which means we are trying to reclaim memory)
449 * or this dentry belongs to the same super block that
453 * If this dentry is for "my" filesystem, then I can prune it
454 * without taking the s_umount lock (I already hold it).
456 if (sb && dentry->d_sb == sb) {
457 prune_one_dentry(dentry);
461 * ...otherwise we need to be sure this filesystem isn't being
462 * unmounted, otherwise we could race with
463 * generic_shutdown_super(), and end up holding a reference to
464 * an inode while the filesystem is unmounted.
465 * So we try to get s_umount, and make sure s_root isn't NULL.
466 * (Take a local copy of s_umount to avoid a use-after-free of
469 s_umount = &dentry->d_sb->s_umount;
470 if (down_read_trylock(s_umount)) {
471 if (dentry->d_sb->s_root != NULL) {
472 prune_one_dentry(dentry);
478 spin_unlock(&dentry->d_lock);
479 /* Cannot remove the first dentry, and it isn't appropriate
480 * to move it to the head of the list, so give up, and try
485 spin_unlock(&dcache_lock);
489 * Shrink the dcache for the specified super block.
490 * This allows us to unmount a device without disturbing
491 * the dcache for the other devices.
493 * This implementation makes just two traversals of the
494 * unused list. On the first pass we move the selected
495 * dentries to the most recent end, and on the second
496 * pass we free them. The second pass must restart after
497 * each dput(), but since the target dentries are all at
498 * the end, it's really just a single traversal.
502 * shrink_dcache_sb - shrink dcache for a superblock
505 * Shrink the dcache for the specified super block. This
506 * is used to free the dcache before unmounting a file
510 void shrink_dcache_sb(struct super_block * sb)
512 struct list_head *tmp, *next;
513 struct dentry *dentry;
516 * Pass one ... move the dentries for the specified
517 * superblock to the most recent end of the unused list.
519 spin_lock(&dcache_lock);
520 list_for_each_safe(tmp, next, &dentry_unused) {
521 dentry = list_entry(tmp, struct dentry, d_lru);
522 if (dentry->d_sb != sb)
524 list_move(tmp, &dentry_unused);
528 * Pass two ... free the dentries for this superblock.
531 list_for_each_safe(tmp, next, &dentry_unused) {
532 dentry = list_entry(tmp, struct dentry, d_lru);
533 if (dentry->d_sb != sb)
535 dentry_stat.nr_unused--;
537 spin_lock(&dentry->d_lock);
538 if (atomic_read(&dentry->d_count)) {
539 spin_unlock(&dentry->d_lock);
542 prune_one_dentry(dentry);
543 cond_resched_lock(&dcache_lock);
546 spin_unlock(&dcache_lock);
550 * Search for at least 1 mount point in the dentry's subdirs.
551 * We descend to the next level whenever the d_subdirs
552 * list is non-empty and continue searching.
556 * have_submounts - check for mounts over a dentry
557 * @parent: dentry to check.
559 * Return true if the parent or its subdirectories contain
563 int have_submounts(struct dentry *parent)
565 struct dentry *this_parent = parent;
566 struct list_head *next;
568 spin_lock(&dcache_lock);
569 if (d_mountpoint(parent))
572 next = this_parent->d_subdirs.next;
574 while (next != &this_parent->d_subdirs) {
575 struct list_head *tmp = next;
576 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
578 /* Have we found a mount point ? */
579 if (d_mountpoint(dentry))
581 if (!list_empty(&dentry->d_subdirs)) {
582 this_parent = dentry;
587 * All done at this level ... ascend and resume the search.
589 if (this_parent != parent) {
590 next = this_parent->d_u.d_child.next;
591 this_parent = this_parent->d_parent;
594 spin_unlock(&dcache_lock);
595 return 0; /* No mount points found in tree */
597 spin_unlock(&dcache_lock);
602 * Search the dentry child list for the specified parent,
603 * and move any unused dentries to the end of the unused
604 * list for prune_dcache(). We descend to the next level
605 * whenever the d_subdirs list is non-empty and continue
608 * It returns zero iff there are no unused children,
609 * otherwise it returns the number of children moved to
610 * the end of the unused list. This may not be the total
611 * number of unused children, because select_parent can
612 * drop the lock and return early due to latency
615 static int select_parent(struct dentry * parent)
617 struct dentry *this_parent = parent;
618 struct list_head *next;
621 spin_lock(&dcache_lock);
623 next = this_parent->d_subdirs.next;
625 while (next != &this_parent->d_subdirs) {
626 struct list_head *tmp = next;
627 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
630 if (!list_empty(&dentry->d_lru)) {
631 dentry_stat.nr_unused--;
632 list_del_init(&dentry->d_lru);
635 * move only zero ref count dentries to the end
636 * of the unused list for prune_dcache
638 if (!atomic_read(&dentry->d_count)) {
639 list_add_tail(&dentry->d_lru, &dentry_unused);
640 dentry_stat.nr_unused++;
645 * We can return to the caller if we have found some (this
646 * ensures forward progress). We'll be coming back to find
649 if (found && need_resched())
653 * Descend a level if the d_subdirs list is non-empty.
655 if (!list_empty(&dentry->d_subdirs)) {
656 this_parent = dentry;
661 * All done at this level ... ascend and resume the search.
663 if (this_parent != parent) {
664 next = this_parent->d_u.d_child.next;
665 this_parent = this_parent->d_parent;
669 spin_unlock(&dcache_lock);
674 * shrink_dcache_parent - prune dcache
675 * @parent: parent of entries to prune
677 * Prune the dcache to remove unused children of the parent dentry.
680 void shrink_dcache_parent(struct dentry * parent)
684 while ((found = select_parent(parent)) != 0)
685 prune_dcache(found, parent->d_sb);
689 * Scan `nr' dentries and return the number which remain.
691 * We need to avoid reentering the filesystem if the caller is performing a
692 * GFP_NOFS allocation attempt. One example deadlock is:
694 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
695 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
696 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
698 * In this case we return -1 to tell the caller that we baled.
700 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
703 if (!(gfp_mask & __GFP_FS))
705 prune_dcache(nr, NULL);
707 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
711 * d_alloc - allocate a dcache entry
712 * @parent: parent of entry to allocate
713 * @name: qstr of the name
715 * Allocates a dentry. It returns %NULL if there is insufficient memory
716 * available. On a success the dentry is returned. The name passed in is
717 * copied and the copy passed in may be reused after this call.
720 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
722 struct dentry *dentry;
725 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
729 if (name->len > DNAME_INLINE_LEN-1) {
730 dname = kmalloc(name->len + 1, GFP_KERNEL);
732 kmem_cache_free(dentry_cache, dentry);
736 dname = dentry->d_iname;
738 dentry->d_name.name = dname;
740 dentry->d_name.len = name->len;
741 dentry->d_name.hash = name->hash;
742 memcpy(dname, name->name, name->len);
743 dname[name->len] = 0;
745 atomic_set(&dentry->d_count, 1);
746 dentry->d_flags = DCACHE_UNHASHED;
747 spin_lock_init(&dentry->d_lock);
748 dentry->d_inode = NULL;
749 dentry->d_parent = NULL;
752 dentry->d_fsdata = NULL;
753 dentry->d_mounted = 0;
754 #ifdef CONFIG_PROFILING
755 dentry->d_cookie = NULL;
757 INIT_HLIST_NODE(&dentry->d_hash);
758 INIT_LIST_HEAD(&dentry->d_lru);
759 INIT_LIST_HEAD(&dentry->d_subdirs);
760 INIT_LIST_HEAD(&dentry->d_alias);
763 dentry->d_parent = dget(parent);
764 dentry->d_sb = parent->d_sb;
766 INIT_LIST_HEAD(&dentry->d_u.d_child);
769 spin_lock(&dcache_lock);
771 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
772 dentry_stat.nr_dentry++;
773 spin_unlock(&dcache_lock);
778 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
783 q.len = strlen(name);
784 q.hash = full_name_hash(q.name, q.len);
785 return d_alloc(parent, &q);
789 * d_instantiate - fill in inode information for a dentry
790 * @entry: dentry to complete
791 * @inode: inode to attach to this dentry
793 * Fill in inode information in the entry.
795 * This turns negative dentries into productive full members
798 * NOTE! This assumes that the inode count has been incremented
799 * (or otherwise set) by the caller to indicate that it is now
800 * in use by the dcache.
803 void d_instantiate(struct dentry *entry, struct inode * inode)
805 BUG_ON(!list_empty(&entry->d_alias));
806 spin_lock(&dcache_lock);
808 list_add(&entry->d_alias, &inode->i_dentry);
809 entry->d_inode = inode;
810 fsnotify_d_instantiate(entry, inode);
811 spin_unlock(&dcache_lock);
812 security_d_instantiate(entry, inode);
816 * d_instantiate_unique - instantiate a non-aliased dentry
817 * @entry: dentry to instantiate
818 * @inode: inode to attach to this dentry
820 * Fill in inode information in the entry. On success, it returns NULL.
821 * If an unhashed alias of "entry" already exists, then we return the
822 * aliased dentry instead and drop one reference to inode.
824 * Note that in order to avoid conflicts with rename() etc, the caller
825 * had better be holding the parent directory semaphore.
827 * This also assumes that the inode count has been incremented
828 * (or otherwise set) by the caller to indicate that it is now
829 * in use by the dcache.
831 static struct dentry *__d_instantiate_unique(struct dentry *entry,
834 struct dentry *alias;
835 int len = entry->d_name.len;
836 const char *name = entry->d_name.name;
837 unsigned int hash = entry->d_name.hash;
840 entry->d_inode = NULL;
844 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
845 struct qstr *qstr = &alias->d_name;
847 if (qstr->hash != hash)
849 if (alias->d_parent != entry->d_parent)
851 if (qstr->len != len)
853 if (memcmp(qstr->name, name, len))
859 list_add(&entry->d_alias, &inode->i_dentry);
860 entry->d_inode = inode;
861 fsnotify_d_instantiate(entry, inode);
865 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
867 struct dentry *result;
869 BUG_ON(!list_empty(&entry->d_alias));
871 spin_lock(&dcache_lock);
872 result = __d_instantiate_unique(entry, inode);
873 spin_unlock(&dcache_lock);
876 security_d_instantiate(entry, inode);
880 BUG_ON(!d_unhashed(result));
885 EXPORT_SYMBOL(d_instantiate_unique);
888 * d_alloc_root - allocate root dentry
889 * @root_inode: inode to allocate the root for
891 * Allocate a root ("/") dentry for the inode given. The inode is
892 * instantiated and returned. %NULL is returned if there is insufficient
893 * memory or the inode passed is %NULL.
896 struct dentry * d_alloc_root(struct inode * root_inode)
898 struct dentry *res = NULL;
901 static const struct qstr name = { .name = "/", .len = 1 };
903 res = d_alloc(NULL, &name);
905 res->d_sb = root_inode->i_sb;
907 d_instantiate(res, root_inode);
913 static inline struct hlist_head *d_hash(struct dentry *parent,
916 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
917 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
918 return dentry_hashtable + (hash & D_HASHMASK);
922 * d_alloc_anon - allocate an anonymous dentry
923 * @inode: inode to allocate the dentry for
925 * This is similar to d_alloc_root. It is used by filesystems when
926 * creating a dentry for a given inode, often in the process of
927 * mapping a filehandle to a dentry. The returned dentry may be
928 * anonymous, or may have a full name (if the inode was already
929 * in the cache). The file system may need to make further
930 * efforts to connect this dentry into the dcache properly.
932 * When called on a directory inode, we must ensure that
933 * the inode only ever has one dentry. If a dentry is
934 * found, that is returned instead of allocating a new one.
936 * On successful return, the reference to the inode has been transferred
937 * to the dentry. If %NULL is returned (indicating kmalloc failure),
938 * the reference on the inode has not been released.
941 struct dentry * d_alloc_anon(struct inode *inode)
943 static const struct qstr anonstring = { .name = "" };
947 if ((res = d_find_alias(inode))) {
952 tmp = d_alloc(NULL, &anonstring);
956 tmp->d_parent = tmp; /* make sure dput doesn't croak */
958 spin_lock(&dcache_lock);
959 res = __d_find_alias(inode, 0);
961 /* attach a disconnected dentry */
964 spin_lock(&res->d_lock);
965 res->d_sb = inode->i_sb;
967 res->d_inode = inode;
968 res->d_flags |= DCACHE_DISCONNECTED;
969 res->d_flags &= ~DCACHE_UNHASHED;
970 list_add(&res->d_alias, &inode->i_dentry);
971 hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
972 spin_unlock(&res->d_lock);
974 inode = NULL; /* don't drop reference */
976 spin_unlock(&dcache_lock);
987 * d_splice_alias - splice a disconnected dentry into the tree if one exists
988 * @inode: the inode which may have a disconnected dentry
989 * @dentry: a negative dentry which we want to point to the inode.
991 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
992 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
993 * and return it, else simply d_add the inode to the dentry and return NULL.
995 * This is needed in the lookup routine of any filesystem that is exportable
996 * (via knfsd) so that we can build dcache paths to directories effectively.
998 * If a dentry was found and moved, then it is returned. Otherwise NULL
999 * is returned. This matches the expected return value of ->lookup.
1002 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1004 struct dentry *new = NULL;
1007 spin_lock(&dcache_lock);
1008 new = __d_find_alias(inode, 1);
1010 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1011 fsnotify_d_instantiate(new, inode);
1012 spin_unlock(&dcache_lock);
1013 security_d_instantiate(new, inode);
1015 d_move(new, dentry);
1018 /* d_instantiate takes dcache_lock, so we do it by hand */
1019 list_add(&dentry->d_alias, &inode->i_dentry);
1020 dentry->d_inode = inode;
1021 fsnotify_d_instantiate(dentry, inode);
1022 spin_unlock(&dcache_lock);
1023 security_d_instantiate(dentry, inode);
1027 d_add(dentry, inode);
1033 * d_lookup - search for a dentry
1034 * @parent: parent dentry
1035 * @name: qstr of name we wish to find
1037 * Searches the children of the parent dentry for the name in question. If
1038 * the dentry is found its reference count is incremented and the dentry
1039 * is returned. The caller must use d_put to free the entry when it has
1040 * finished using it. %NULL is returned on failure.
1042 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1043 * Memory barriers are used while updating and doing lockless traversal.
1044 * To avoid races with d_move while rename is happening, d_lock is used.
1046 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1047 * and name pointer in one structure pointed by d_qstr.
1049 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1050 * lookup is going on.
1052 * dentry_unused list is not updated even if lookup finds the required dentry
1053 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1054 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1057 * d_lookup() is protected against the concurrent renames in some unrelated
1058 * directory using the seqlockt_t rename_lock.
1061 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1063 struct dentry * dentry = NULL;
1067 seq = read_seqbegin(&rename_lock);
1068 dentry = __d_lookup(parent, name);
1071 } while (read_seqretry(&rename_lock, seq));
1075 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1077 unsigned int len = name->len;
1078 unsigned int hash = name->hash;
1079 const unsigned char *str = name->name;
1080 struct hlist_head *head = d_hash(parent,hash);
1081 struct dentry *found = NULL;
1082 struct hlist_node *node;
1083 struct dentry *dentry;
1087 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1090 if (dentry->d_name.hash != hash)
1092 if (dentry->d_parent != parent)
1095 spin_lock(&dentry->d_lock);
1098 * Recheck the dentry after taking the lock - d_move may have
1099 * changed things. Don't bother checking the hash because we're
1100 * about to compare the whole name anyway.
1102 if (dentry->d_parent != parent)
1106 * It is safe to compare names since d_move() cannot
1107 * change the qstr (protected by d_lock).
1109 qstr = &dentry->d_name;
1110 if (parent->d_op && parent->d_op->d_compare) {
1111 if (parent->d_op->d_compare(parent, qstr, name))
1114 if (qstr->len != len)
1116 if (memcmp(qstr->name, str, len))
1120 if (!d_unhashed(dentry)) {
1121 atomic_inc(&dentry->d_count);
1124 spin_unlock(&dentry->d_lock);
1127 spin_unlock(&dentry->d_lock);
1135 * d_hash_and_lookup - hash the qstr then search for a dentry
1136 * @dir: Directory to search in
1137 * @name: qstr of name we wish to find
1139 * On hash failure or on lookup failure NULL is returned.
1141 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1143 struct dentry *dentry = NULL;
1146 * Check for a fs-specific hash function. Note that we must
1147 * calculate the standard hash first, as the d_op->d_hash()
1148 * routine may choose to leave the hash value unchanged.
1150 name->hash = full_name_hash(name->name, name->len);
1151 if (dir->d_op && dir->d_op->d_hash) {
1152 if (dir->d_op->d_hash(dir, name) < 0)
1155 dentry = d_lookup(dir, name);
1161 * d_validate - verify dentry provided from insecure source
1162 * @dentry: The dentry alleged to be valid child of @dparent
1163 * @dparent: The parent dentry (known to be valid)
1164 * @hash: Hash of the dentry
1165 * @len: Length of the name
1167 * An insecure source has sent us a dentry, here we verify it and dget() it.
1168 * This is used by ncpfs in its readdir implementation.
1169 * Zero is returned in the dentry is invalid.
1172 int d_validate(struct dentry *dentry, struct dentry *dparent)
1174 struct hlist_head *base;
1175 struct hlist_node *lhp;
1177 /* Check whether the ptr might be valid at all.. */
1178 if (!kmem_ptr_validate(dentry_cache, dentry))
1181 if (dentry->d_parent != dparent)
1184 spin_lock(&dcache_lock);
1185 base = d_hash(dparent, dentry->d_name.hash);
1186 hlist_for_each(lhp,base) {
1187 /* hlist_for_each_entry_rcu() not required for d_hash list
1188 * as it is parsed under dcache_lock
1190 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1191 __dget_locked(dentry);
1192 spin_unlock(&dcache_lock);
1196 spin_unlock(&dcache_lock);
1202 * When a file is deleted, we have two options:
1203 * - turn this dentry into a negative dentry
1204 * - unhash this dentry and free it.
1206 * Usually, we want to just turn this into
1207 * a negative dentry, but if anybody else is
1208 * currently using the dentry or the inode
1209 * we can't do that and we fall back on removing
1210 * it from the hash queues and waiting for
1211 * it to be deleted later when it has no users
1215 * d_delete - delete a dentry
1216 * @dentry: The dentry to delete
1218 * Turn the dentry into a negative dentry if possible, otherwise
1219 * remove it from the hash queues so it can be deleted later
1222 void d_delete(struct dentry * dentry)
1226 * Are we the only user?
1228 spin_lock(&dcache_lock);
1229 spin_lock(&dentry->d_lock);
1230 isdir = S_ISDIR(dentry->d_inode->i_mode);
1231 if (atomic_read(&dentry->d_count) == 1) {
1232 dentry_iput(dentry);
1233 fsnotify_nameremove(dentry, isdir);
1235 /* remove this and other inotify debug checks after 2.6.18 */
1236 dentry->d_flags &= ~DCACHE_INOTIFY_PARENT_WATCHED;
1240 if (!d_unhashed(dentry))
1243 spin_unlock(&dentry->d_lock);
1244 spin_unlock(&dcache_lock);
1246 fsnotify_nameremove(dentry, isdir);
1249 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1252 entry->d_flags &= ~DCACHE_UNHASHED;
1253 hlist_add_head_rcu(&entry->d_hash, list);
1256 static void _d_rehash(struct dentry * entry)
1258 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1262 * d_rehash - add an entry back to the hash
1263 * @entry: dentry to add to the hash
1265 * Adds a dentry to the hash according to its name.
1268 void d_rehash(struct dentry * entry)
1270 spin_lock(&dcache_lock);
1271 spin_lock(&entry->d_lock);
1273 spin_unlock(&entry->d_lock);
1274 spin_unlock(&dcache_lock);
1277 #define do_switch(x,y) do { \
1278 __typeof__ (x) __tmp = x; \
1279 x = y; y = __tmp; } while (0)
1282 * When switching names, the actual string doesn't strictly have to
1283 * be preserved in the target - because we're dropping the target
1284 * anyway. As such, we can just do a simple memcpy() to copy over
1285 * the new name before we switch.
1287 * Note that we have to be a lot more careful about getting the hash
1288 * switched - we have to switch the hash value properly even if it
1289 * then no longer matches the actual (corrupted) string of the target.
1290 * The hash value has to match the hash queue that the dentry is on..
1292 static void switch_names(struct dentry *dentry, struct dentry *target)
1294 if (dname_external(target)) {
1295 if (dname_external(dentry)) {
1297 * Both external: swap the pointers
1299 do_switch(target->d_name.name, dentry->d_name.name);
1302 * dentry:internal, target:external. Steal target's
1303 * storage and make target internal.
1305 dentry->d_name.name = target->d_name.name;
1306 target->d_name.name = target->d_iname;
1309 if (dname_external(dentry)) {
1311 * dentry:external, target:internal. Give dentry's
1312 * storage to target and make dentry internal
1314 memcpy(dentry->d_iname, target->d_name.name,
1315 target->d_name.len + 1);
1316 target->d_name.name = dentry->d_name.name;
1317 dentry->d_name.name = dentry->d_iname;
1320 * Both are internal. Just copy target to dentry
1322 memcpy(dentry->d_iname, target->d_name.name,
1323 target->d_name.len + 1);
1329 * We cannibalize "target" when moving dentry on top of it,
1330 * because it's going to be thrown away anyway. We could be more
1331 * polite about it, though.
1333 * This forceful removal will result in ugly /proc output if
1334 * somebody holds a file open that got deleted due to a rename.
1335 * We could be nicer about the deleted file, and let it show
1336 * up under the name it got deleted rather than the name that
1341 * d_move - move a dentry
1342 * @dentry: entry to move
1343 * @target: new dentry
1345 * Update the dcache to reflect the move of a file name. Negative
1346 * dcache entries should not be moved in this way.
1349 void d_move(struct dentry * dentry, struct dentry * target)
1351 struct hlist_head *list;
1353 if (!dentry->d_inode)
1354 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1356 spin_lock(&dcache_lock);
1357 write_seqlock(&rename_lock);
1359 * XXXX: do we really need to take target->d_lock?
1361 if (target < dentry) {
1362 spin_lock(&target->d_lock);
1363 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1365 spin_lock(&dentry->d_lock);
1366 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1369 /* Move the dentry to the target hash queue, if on different bucket */
1370 if (dentry->d_flags & DCACHE_UNHASHED)
1371 goto already_unhashed;
1373 hlist_del_rcu(&dentry->d_hash);
1376 list = d_hash(target->d_parent, target->d_name.hash);
1377 __d_rehash(dentry, list);
1379 /* Unhash the target: dput() will then get rid of it */
1382 list_del(&dentry->d_u.d_child);
1383 list_del(&target->d_u.d_child);
1385 /* Switch the names.. */
1386 switch_names(dentry, target);
1387 do_switch(dentry->d_name.len, target->d_name.len);
1388 do_switch(dentry->d_name.hash, target->d_name.hash);
1390 /* ... and switch the parents */
1391 if (IS_ROOT(dentry)) {
1392 dentry->d_parent = target->d_parent;
1393 target->d_parent = target;
1394 INIT_LIST_HEAD(&target->d_u.d_child);
1396 do_switch(dentry->d_parent, target->d_parent);
1398 /* And add them back to the (new) parent lists */
1399 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1402 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1403 spin_unlock(&target->d_lock);
1404 fsnotify_d_move(dentry);
1405 spin_unlock(&dentry->d_lock);
1406 write_sequnlock(&rename_lock);
1407 spin_unlock(&dcache_lock);
1411 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1412 * named dentry in place of the dentry to be replaced.
1414 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1416 struct dentry *dparent, *aparent;
1418 switch_names(dentry, anon);
1419 do_switch(dentry->d_name.len, anon->d_name.len);
1420 do_switch(dentry->d_name.hash, anon->d_name.hash);
1422 dparent = dentry->d_parent;
1423 aparent = anon->d_parent;
1425 dentry->d_parent = (aparent == anon) ? dentry : aparent;
1426 list_del(&dentry->d_u.d_child);
1427 if (!IS_ROOT(dentry))
1428 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1430 INIT_LIST_HEAD(&dentry->d_u.d_child);
1432 anon->d_parent = (dparent == dentry) ? anon : dparent;
1433 list_del(&anon->d_u.d_child);
1435 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1437 INIT_LIST_HEAD(&anon->d_u.d_child);
1439 anon->d_flags &= ~DCACHE_DISCONNECTED;
1443 * d_materialise_unique - introduce an inode into the tree
1444 * @dentry: candidate dentry
1445 * @inode: inode to bind to the dentry, to which aliases may be attached
1447 * Introduces an dentry into the tree, substituting an extant disconnected
1448 * root directory alias in its place if there is one
1450 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1452 struct dentry *alias, *actual;
1454 BUG_ON(!d_unhashed(dentry));
1456 spin_lock(&dcache_lock);
1460 dentry->d_inode = NULL;
1464 /* See if a disconnected directory already exists as an anonymous root
1465 * that we should splice into the tree instead */
1466 if (S_ISDIR(inode->i_mode) && (alias = __d_find_alias(inode, 1))) {
1467 spin_lock(&alias->d_lock);
1469 /* Is this a mountpoint that we could splice into our tree? */
1471 goto connect_mountpoint;
1473 if (alias->d_name.len == dentry->d_name.len &&
1474 alias->d_parent == dentry->d_parent &&
1475 memcmp(alias->d_name.name,
1476 dentry->d_name.name,
1477 dentry->d_name.len) == 0)
1478 goto replace_with_alias;
1480 spin_unlock(&alias->d_lock);
1482 /* Doh! Seem to be aliasing directories for some reason... */
1486 /* Add a unique reference */
1487 actual = __d_instantiate_unique(dentry, inode);
1490 else if (unlikely(!d_unhashed(actual)))
1491 goto shouldnt_be_hashed;
1494 spin_lock(&actual->d_lock);
1497 spin_unlock(&actual->d_lock);
1498 spin_unlock(&dcache_lock);
1500 if (actual == dentry) {
1501 security_d_instantiate(dentry, inode);
1508 /* Convert the anonymous/root alias into an ordinary dentry */
1510 __d_materialise_dentry(dentry, alias);
1512 /* Replace the candidate dentry with the alias in the tree */
1519 spin_unlock(&dcache_lock);
1521 goto shouldnt_be_hashed;
1525 * d_path - return the path of a dentry
1526 * @dentry: dentry to report
1527 * @vfsmnt: vfsmnt to which the dentry belongs
1528 * @root: root dentry
1529 * @rootmnt: vfsmnt to which the root dentry belongs
1530 * @buffer: buffer to return value in
1531 * @buflen: buffer length
1533 * Convert a dentry into an ASCII path name. If the entry has been deleted
1534 * the string " (deleted)" is appended. Note that this is ambiguous.
1536 * Returns the buffer or an error code if the path was too long.
1538 * "buflen" should be positive. Caller holds the dcache_lock.
1540 static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt,
1541 struct dentry *root, struct vfsmount *rootmnt,
1542 char *buffer, int buflen)
1544 char * end = buffer+buflen;
1550 if (!IS_ROOT(dentry) && d_unhashed(dentry)) {
1555 memcpy(end, " (deleted)", 10);
1565 struct dentry * parent;
1567 if (dentry == root && vfsmnt == rootmnt)
1569 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1571 spin_lock(&vfsmount_lock);
1572 if (vfsmnt->mnt_parent == vfsmnt) {
1573 spin_unlock(&vfsmount_lock);
1576 dentry = vfsmnt->mnt_mountpoint;
1577 vfsmnt = vfsmnt->mnt_parent;
1578 spin_unlock(&vfsmount_lock);
1581 parent = dentry->d_parent;
1583 namelen = dentry->d_name.len;
1584 buflen -= namelen + 1;
1588 memcpy(end, dentry->d_name.name, namelen);
1597 namelen = dentry->d_name.len;
1601 retval -= namelen-1; /* hit the slash */
1602 memcpy(retval, dentry->d_name.name, namelen);
1605 return ERR_PTR(-ENAMETOOLONG);
1608 /* write full pathname into buffer and return start of pathname */
1609 char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
1610 char *buf, int buflen)
1613 struct vfsmount *rootmnt;
1614 struct dentry *root;
1616 read_lock(¤t->fs->lock);
1617 rootmnt = mntget(current->fs->rootmnt);
1618 root = dget(current->fs->root);
1619 read_unlock(¤t->fs->lock);
1620 spin_lock(&dcache_lock);
1621 res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
1622 spin_unlock(&dcache_lock);
1629 * NOTE! The user-level library version returns a
1630 * character pointer. The kernel system call just
1631 * returns the length of the buffer filled (which
1632 * includes the ending '\0' character), or a negative
1633 * error value. So libc would do something like
1635 * char *getcwd(char * buf, size_t size)
1639 * retval = sys_getcwd(buf, size);
1646 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1649 struct vfsmount *pwdmnt, *rootmnt;
1650 struct dentry *pwd, *root;
1651 char *page = (char *) __get_free_page(GFP_USER);
1656 read_lock(¤t->fs->lock);
1657 pwdmnt = mntget(current->fs->pwdmnt);
1658 pwd = dget(current->fs->pwd);
1659 rootmnt = mntget(current->fs->rootmnt);
1660 root = dget(current->fs->root);
1661 read_unlock(¤t->fs->lock);
1664 /* Has the current directory has been unlinked? */
1665 spin_lock(&dcache_lock);
1666 if (pwd->d_parent == pwd || !d_unhashed(pwd)) {
1670 cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
1671 spin_unlock(&dcache_lock);
1673 error = PTR_ERR(cwd);
1678 len = PAGE_SIZE + page - cwd;
1681 if (copy_to_user(buf, cwd, len))
1685 spin_unlock(&dcache_lock);
1692 free_page((unsigned long) page);
1697 * Test whether new_dentry is a subdirectory of old_dentry.
1699 * Trivially implemented using the dcache structure
1703 * is_subdir - is new dentry a subdirectory of old_dentry
1704 * @new_dentry: new dentry
1705 * @old_dentry: old dentry
1707 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1708 * Returns 0 otherwise.
1709 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1712 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
1715 struct dentry * saved = new_dentry;
1718 /* need rcu_readlock to protect against the d_parent trashing due to
1723 /* for restarting inner loop in case of seq retry */
1726 seq = read_seqbegin(&rename_lock);
1728 if (new_dentry != old_dentry) {
1729 struct dentry * parent = new_dentry->d_parent;
1730 if (parent == new_dentry)
1732 new_dentry = parent;
1738 } while (read_seqretry(&rename_lock, seq));
1744 void d_genocide(struct dentry *root)
1746 struct dentry *this_parent = root;
1747 struct list_head *next;
1749 spin_lock(&dcache_lock);
1751 next = this_parent->d_subdirs.next;
1753 while (next != &this_parent->d_subdirs) {
1754 struct list_head *tmp = next;
1755 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1757 if (d_unhashed(dentry)||!dentry->d_inode)
1759 if (!list_empty(&dentry->d_subdirs)) {
1760 this_parent = dentry;
1763 atomic_dec(&dentry->d_count);
1765 if (this_parent != root) {
1766 next = this_parent->d_u.d_child.next;
1767 atomic_dec(&this_parent->d_count);
1768 this_parent = this_parent->d_parent;
1771 spin_unlock(&dcache_lock);
1775 * find_inode_number - check for dentry with name
1776 * @dir: directory to check
1777 * @name: Name to find.
1779 * Check whether a dentry already exists for the given name,
1780 * and return the inode number if it has an inode. Otherwise
1783 * This routine is used to post-process directory listings for
1784 * filesystems using synthetic inode numbers, and is necessary
1785 * to keep getcwd() working.
1788 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
1790 struct dentry * dentry;
1793 dentry = d_hash_and_lookup(dir, name);
1795 if (dentry->d_inode)
1796 ino = dentry->d_inode->i_ino;
1802 static __initdata unsigned long dhash_entries;
1803 static int __init set_dhash_entries(char *str)
1807 dhash_entries = simple_strtoul(str, &str, 0);
1810 __setup("dhash_entries=", set_dhash_entries);
1812 static void __init dcache_init_early(void)
1816 /* If hashes are distributed across NUMA nodes, defer
1817 * hash allocation until vmalloc space is available.
1823 alloc_large_system_hash("Dentry cache",
1824 sizeof(struct hlist_head),
1832 for (loop = 0; loop < (1 << d_hash_shift); loop++)
1833 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1836 static void __init dcache_init(unsigned long mempages)
1841 * A constructor could be added for stable state like the lists,
1842 * but it is probably not worth it because of the cache nature
1845 dentry_cache = kmem_cache_create("dentry_cache",
1846 sizeof(struct dentry),
1848 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1852 set_shrinker(DEFAULT_SEEKS, shrink_dcache_memory);
1854 /* Hash may have been set up in dcache_init_early */
1859 alloc_large_system_hash("Dentry cache",
1860 sizeof(struct hlist_head),
1868 for (loop = 0; loop < (1 << d_hash_shift); loop++)
1869 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1872 /* SLAB cache for __getname() consumers */
1873 kmem_cache_t *names_cachep __read_mostly;
1875 /* SLAB cache for file structures */
1876 kmem_cache_t *filp_cachep __read_mostly;
1878 EXPORT_SYMBOL(d_genocide);
1880 extern void bdev_cache_init(void);
1881 extern void chrdev_init(void);
1883 void __init vfs_caches_init_early(void)
1885 dcache_init_early();
1889 void __init vfs_caches_init(unsigned long mempages)
1891 unsigned long reserve;
1893 /* Base hash sizes on available memory, with a reserve equal to
1894 150% of current kernel size */
1896 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
1897 mempages -= reserve;
1899 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
1900 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1902 filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
1903 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1905 dcache_init(mempages);
1906 inode_init(mempages);
1907 files_init(mempages);
1913 EXPORT_SYMBOL(d_alloc);
1914 EXPORT_SYMBOL(d_alloc_anon);
1915 EXPORT_SYMBOL(d_alloc_root);
1916 EXPORT_SYMBOL(d_delete);
1917 EXPORT_SYMBOL(d_find_alias);
1918 EXPORT_SYMBOL(d_instantiate);
1919 EXPORT_SYMBOL(d_invalidate);
1920 EXPORT_SYMBOL(d_lookup);
1921 EXPORT_SYMBOL(d_move);
1922 EXPORT_SYMBOL_GPL(d_materialise_unique);
1923 EXPORT_SYMBOL(d_path);
1924 EXPORT_SYMBOL(d_prune_aliases);
1925 EXPORT_SYMBOL(d_rehash);
1926 EXPORT_SYMBOL(d_splice_alias);
1927 EXPORT_SYMBOL(d_validate);
1928 EXPORT_SYMBOL(dget_locked);
1929 EXPORT_SYMBOL(dput);
1930 EXPORT_SYMBOL(find_inode_number);
1931 EXPORT_SYMBOL(have_submounts);
1932 EXPORT_SYMBOL(names_cachep);
1933 EXPORT_SYMBOL(shrink_dcache_parent);
1934 EXPORT_SYMBOL(shrink_dcache_sb);