2 * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
4 * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
6 * Thanks to Essential Communication for providing us with hardware
7 * and very comprehensive documentation without which I would not have
8 * been able to write this driver. A special thank you to John Gibbon
9 * for sorting out the legal issues, with the NDA, allowing the code to
10 * be released under the GPL.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18 * stupid bugs in my code.
20 * Softnet support and various other patches from Val Henson of
23 * PCI DMA mapping code partly based on work by Francois Romieu.
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
45 #include <asm/system.h>
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
50 #include <asm/uaccess.h>
52 #define rr_if_busy(dev) netif_queue_stopped(dev)
53 #define rr_if_running(dev) netif_running(dev)
57 #define RUN_AT(x) (jiffies + (x))
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n";
67 * Implementation notes:
69 * The DMA engine only allows for DMA within physical 64KB chunks of
70 * memory. The current approach of the driver (and stack) is to use
71 * linear blocks of memory for the skbuffs. However, as the data block
72 * is always the first part of the skb and skbs are 2^n aligned so we
73 * are guarantted to get the whole block within one 64KB align 64KB
76 * On the long term, relying on being able to allocate 64KB linear
77 * chunks of memory is not feasible and the skb handling code and the
78 * stack will need to know about I/O vectors or something similar.
82 * These are checked at init time to see if they are at least 256KB
83 * and increased to 256KB if they are not. This is done to avoid ending
84 * up with socket buffers smaller than the MTU size,
86 extern __u32 sysctl_wmem_max;
87 extern __u32 sysctl_rmem_max;
89 static int __devinit rr_init_one(struct pci_dev *pdev,
90 const struct pci_device_id *ent)
92 struct net_device *dev;
93 static int version_disp;
95 struct rr_private *rrpriv;
100 dev = alloc_hippi_dev(sizeof(struct rr_private));
104 ret = pci_enable_device(pdev);
110 rrpriv = netdev_priv(dev);
112 SET_MODULE_OWNER(dev);
113 SET_NETDEV_DEV(dev, &pdev->dev);
115 if (pci_request_regions(pdev, "rrunner")) {
120 pci_set_drvdata(pdev, dev);
122 rrpriv->pci_dev = pdev;
124 spin_lock_init(&rrpriv->lock);
126 dev->irq = pdev->irq;
127 dev->open = &rr_open;
128 dev->hard_start_xmit = &rr_start_xmit;
129 dev->stop = &rr_close;
130 dev->get_stats = &rr_get_stats;
131 dev->do_ioctl = &rr_ioctl;
133 dev->base_addr = pci_resource_start(pdev, 0);
135 /* display version info if adapter is found */
137 /* set display flag to TRUE so that */
138 /* we only display this string ONCE */
143 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
144 if (pci_latency <= 0x58){
146 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
149 pci_set_master(pdev);
151 printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
152 "at 0x%08lx, irq %i, PCI latency %i\n", dev->name,
153 dev->base_addr, dev->irq, pci_latency);
156 * Remap the regs into kernel space.
159 rrpriv->regs = ioremap(dev->base_addr, 0x1000);
162 printk(KERN_ERR "%s: Unable to map I/O register, "
163 "RoadRunner will be disabled.\n", dev->name);
168 tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
169 rrpriv->tx_ring = tmpptr;
170 rrpriv->tx_ring_dma = ring_dma;
177 tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
178 rrpriv->rx_ring = tmpptr;
179 rrpriv->rx_ring_dma = ring_dma;
186 tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
187 rrpriv->evt_ring = tmpptr;
188 rrpriv->evt_ring_dma = ring_dma;
196 * Don't access any register before this point!
199 writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
200 &rrpriv->regs->HostCtrl);
203 * Need to add a case for little-endian 64-bit hosts here.
210 ret = register_netdev(dev);
217 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
218 rrpriv->rx_ring_dma);
220 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
221 rrpriv->tx_ring_dma);
223 iounmap(rrpriv->regs);
225 pci_release_regions(pdev);
226 pci_set_drvdata(pdev, NULL);
234 static void __devexit rr_remove_one (struct pci_dev *pdev)
236 struct net_device *dev = pci_get_drvdata(pdev);
239 struct rr_private *rr = netdev_priv(dev);
241 if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){
242 printk(KERN_ERR "%s: trying to unload running NIC\n",
244 writel(HALT_NIC, &rr->regs->HostCtrl);
247 pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
249 pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
251 pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
253 unregister_netdev(dev);
256 pci_release_regions(pdev);
257 pci_disable_device(pdev);
258 pci_set_drvdata(pdev, NULL);
264 * Commands are considered to be slow, thus there is no reason to
267 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
269 struct rr_regs __iomem *regs;
274 * This is temporary - it will go away in the final version.
275 * We probably also want to make this function inline.
277 if (readl(®s->HostCtrl) & NIC_HALTED){
278 printk("issuing command for halted NIC, code 0x%x, "
279 "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl));
280 if (readl(®s->Mode) & FATAL_ERR)
281 printk("error codes Fail1 %02x, Fail2 %02x\n",
282 readl(®s->Fail1), readl(®s->Fail2));
285 idx = rrpriv->info->cmd_ctrl.pi;
287 writel(*(u32*)(cmd), ®s->CmdRing[idx]);
290 idx = (idx - 1) % CMD_RING_ENTRIES;
291 rrpriv->info->cmd_ctrl.pi = idx;
294 if (readl(®s->Mode) & FATAL_ERR)
295 printk("error code %02x\n", readl(®s->Fail1));
300 * Reset the board in a sensible manner. The NIC is already halted
301 * when we get here and a spin-lock is held.
303 static int rr_reset(struct net_device *dev)
305 struct rr_private *rrpriv;
306 struct rr_regs __iomem *regs;
307 struct eeprom *hw = NULL;
311 rrpriv = netdev_priv(dev);
314 rr_load_firmware(dev);
316 writel(0x01000000, ®s->TX_state);
317 writel(0xff800000, ®s->RX_state);
318 writel(0, ®s->AssistState);
319 writel(CLEAR_INTA, ®s->LocalCtrl);
320 writel(0x01, ®s->BrkPt);
321 writel(0, ®s->Timer);
322 writel(0, ®s->TimerRef);
323 writel(RESET_DMA, ®s->DmaReadState);
324 writel(RESET_DMA, ®s->DmaWriteState);
325 writel(0, ®s->DmaWriteHostHi);
326 writel(0, ®s->DmaWriteHostLo);
327 writel(0, ®s->DmaReadHostHi);
328 writel(0, ®s->DmaReadHostLo);
329 writel(0, ®s->DmaReadLen);
330 writel(0, ®s->DmaWriteLen);
331 writel(0, ®s->DmaWriteLcl);
332 writel(0, ®s->DmaWriteIPchecksum);
333 writel(0, ®s->DmaReadLcl);
334 writel(0, ®s->DmaReadIPchecksum);
335 writel(0, ®s->PciState);
336 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
337 writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode);
338 #elif (BITS_PER_LONG == 64)
339 writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode);
341 writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode);
346 * Don't worry, this is just black magic.
348 writel(0xdf000, ®s->RxBase);
349 writel(0xdf000, ®s->RxPrd);
350 writel(0xdf000, ®s->RxCon);
351 writel(0xce000, ®s->TxBase);
352 writel(0xce000, ®s->TxPrd);
353 writel(0xce000, ®s->TxCon);
354 writel(0, ®s->RxIndPro);
355 writel(0, ®s->RxIndCon);
356 writel(0, ®s->RxIndRef);
357 writel(0, ®s->TxIndPro);
358 writel(0, ®s->TxIndCon);
359 writel(0, ®s->TxIndRef);
360 writel(0xcc000, ®s->pad10[0]);
361 writel(0, ®s->DrCmndPro);
362 writel(0, ®s->DrCmndCon);
363 writel(0, ®s->DwCmndPro);
364 writel(0, ®s->DwCmndCon);
365 writel(0, ®s->DwCmndRef);
366 writel(0, ®s->DrDataPro);
367 writel(0, ®s->DrDataCon);
368 writel(0, ®s->DrDataRef);
369 writel(0, ®s->DwDataPro);
370 writel(0, ®s->DwDataCon);
371 writel(0, ®s->DwDataRef);
374 writel(0xffffffff, ®s->MbEvent);
375 writel(0, ®s->Event);
377 writel(0, ®s->TxPi);
378 writel(0, ®s->IpRxPi);
380 writel(0, ®s->EvtCon);
381 writel(0, ®s->EvtPrd);
383 rrpriv->info->evt_ctrl.pi = 0;
385 for (i = 0; i < CMD_RING_ENTRIES; i++)
386 writel(0, ®s->CmdRing[i]);
389 * Why 32 ? is this not cache line size dependent?
391 writel(RBURST_64|WBURST_64, ®s->PciState);
394 start_pc = rr_read_eeprom_word(rrpriv, &hw->rncd_info.FwStart);
397 printk("%s: Executing firmware at address 0x%06x\n",
398 dev->name, start_pc);
401 writel(start_pc + 0x800, ®s->Pc);
405 writel(start_pc, ®s->Pc);
413 * Read a string from the EEPROM.
415 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
416 unsigned long offset,
418 unsigned long length)
420 struct rr_regs __iomem *regs = rrpriv->regs;
421 u32 misc, io, host, i;
423 io = readl(®s->ExtIo);
424 writel(0, ®s->ExtIo);
425 misc = readl(®s->LocalCtrl);
426 writel(0, ®s->LocalCtrl);
427 host = readl(®s->HostCtrl);
428 writel(host | HALT_NIC, ®s->HostCtrl);
431 for (i = 0; i < length; i++){
432 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
434 buf[i] = (readl(®s->WinData) >> 24) & 0xff;
438 writel(host, ®s->HostCtrl);
439 writel(misc, ®s->LocalCtrl);
440 writel(io, ®s->ExtIo);
447 * Shortcut to read one word (4 bytes) out of the EEPROM and convert
448 * it to our CPU byte-order.
450 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
455 if ((rr_read_eeprom(rrpriv, (unsigned long)offset,
456 (char *)&word, 4) == 4))
457 return be32_to_cpu(word);
463 * Write a string to the EEPROM.
465 * This is only called when the firmware is not running.
467 static unsigned int write_eeprom(struct rr_private *rrpriv,
468 unsigned long offset,
470 unsigned long length)
472 struct rr_regs __iomem *regs = rrpriv->regs;
473 u32 misc, io, data, i, j, ready, error = 0;
475 io = readl(®s->ExtIo);
476 writel(0, ®s->ExtIo);
477 misc = readl(®s->LocalCtrl);
478 writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl);
481 for (i = 0; i < length; i++){
482 writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase);
486 * Only try to write the data if it is not the same
489 if ((readl(®s->WinData) & 0xff000000) != data){
490 writel(data, ®s->WinData);
496 if ((readl(®s->WinData) & 0xff000000) ==
501 printk("data mismatch: %08x, "
502 "WinData %08x\n", data,
503 readl(®s->WinData));
511 writel(misc, ®s->LocalCtrl);
512 writel(io, ®s->ExtIo);
519 static int __devinit rr_init(struct net_device *dev)
521 struct rr_private *rrpriv;
522 struct rr_regs __iomem *regs;
523 struct eeprom *hw = NULL;
527 rrpriv = netdev_priv(dev);
530 rev = readl(®s->FwRev);
531 rrpriv->fw_rev = rev;
532 if (rev > 0x00020024)
533 printk(" Firmware revision: %i.%i.%i\n", (rev >> 16),
534 ((rev >> 8) & 0xff), (rev & 0xff));
535 else if (rev >= 0x00020000) {
536 printk(" Firmware revision: %i.%i.%i (2.0.37 or "
537 "later is recommended)\n", (rev >> 16),
538 ((rev >> 8) & 0xff), (rev & 0xff));
540 printk(" Firmware revision too old: %i.%i.%i, please "
541 "upgrade to 2.0.37 or later.\n",
542 (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
546 printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng));
550 * Read the hardware address from the eeprom. The HW address
551 * is not really necessary for HIPPI but awfully convenient.
552 * The pointer arithmetic to put it in dev_addr is ugly, but
553 * Donald Becker does it this way for the GigE version of this
554 * card and it's shorter and more portable than any
555 * other method I've seen. -VAL
558 *(u16 *)(dev->dev_addr) =
559 htons(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA));
560 *(u32 *)(dev->dev_addr+2) =
561 htonl(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA[4]));
565 for (i = 0; i < 5; i++)
566 printk("%2.2x:", dev->dev_addr[i]);
567 printk("%2.2x\n", dev->dev_addr[i]);
569 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
570 printk(" SRAM size 0x%06x\n", sram_size);
572 if (sysctl_rmem_max < 262144){
573 printk(" Receive socket buffer limit too low (%i), "
574 "setting to 262144\n", sysctl_rmem_max);
575 sysctl_rmem_max = 262144;
578 if (sysctl_wmem_max < 262144){
579 printk(" Transmit socket buffer limit too low (%i), "
580 "setting to 262144\n", sysctl_wmem_max);
581 sysctl_wmem_max = 262144;
588 static int rr_init1(struct net_device *dev)
590 struct rr_private *rrpriv;
591 struct rr_regs __iomem *regs;
592 unsigned long myjif, flags;
598 rrpriv = netdev_priv(dev);
601 spin_lock_irqsave(&rrpriv->lock, flags);
603 hostctrl = readl(®s->HostCtrl);
604 writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl);
607 if (hostctrl & PARITY_ERR){
608 printk("%s: Parity error halting NIC - this is serious!\n",
610 spin_unlock_irqrestore(&rrpriv->lock, flags);
615 set_rxaddr(regs, rrpriv->rx_ctrl_dma);
616 set_infoaddr(regs, rrpriv->info_dma);
618 rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
619 rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
620 rrpriv->info->evt_ctrl.mode = 0;
621 rrpriv->info->evt_ctrl.pi = 0;
622 set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
624 rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
625 rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
626 rrpriv->info->cmd_ctrl.mode = 0;
627 rrpriv->info->cmd_ctrl.pi = 15;
629 for (i = 0; i < CMD_RING_ENTRIES; i++) {
630 writel(0, ®s->CmdRing[i]);
633 for (i = 0; i < TX_RING_ENTRIES; i++) {
634 rrpriv->tx_ring[i].size = 0;
635 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
636 rrpriv->tx_skbuff[i] = NULL;
638 rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
639 rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
640 rrpriv->info->tx_ctrl.mode = 0;
641 rrpriv->info->tx_ctrl.pi = 0;
642 set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
645 * Set dirty_tx before we start receiving interrupts, otherwise
646 * the interrupt handler might think it is supposed to process
647 * tx ints before we are up and running, which may cause a null
648 * pointer access in the int handler.
652 rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
657 writel(0x5000, ®s->ConRetry);
658 writel(0x100, ®s->ConRetryTmr);
659 writel(0x500000, ®s->ConTmout);
660 writel(0x60, ®s->IntrTmr);
661 writel(0x500000, ®s->TxDataMvTimeout);
662 writel(0x200000, ®s->RxDataMvTimeout);
663 writel(0x80, ®s->WriteDmaThresh);
664 writel(0x80, ®s->ReadDmaThresh);
666 rrpriv->fw_running = 0;
669 hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
670 writel(hostctrl, ®s->HostCtrl);
673 spin_unlock_irqrestore(&rrpriv->lock, flags);
675 for (i = 0; i < RX_RING_ENTRIES; i++) {
679 rrpriv->rx_ring[i].mode = 0;
680 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
682 printk(KERN_WARNING "%s: Unable to allocate memory "
683 "for receive ring - halting NIC\n", dev->name);
687 rrpriv->rx_skbuff[i] = skb;
688 addr = pci_map_single(rrpriv->pci_dev, skb->data,
689 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
691 * Sanity test to see if we conflict with the DMA
692 * limitations of the Roadrunner.
694 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
695 printk("skb alloc error\n");
697 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
698 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
701 rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
702 rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
703 rrpriv->rx_ctrl[4].mode = 8;
704 rrpriv->rx_ctrl[4].pi = 0;
706 set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
711 * Now start the FirmWare.
713 cmd.code = C_START_FW;
717 rr_issue_cmd(rrpriv, &cmd);
720 * Give the FirmWare time to chew on the `get running' command.
722 myjif = jiffies + 5 * HZ;
723 while (time_before(jiffies, myjif) && !rrpriv->fw_running)
726 netif_start_queue(dev);
732 * We might have gotten here because we are out of memory,
733 * make sure we release everything we allocated before failing
735 for (i = 0; i < RX_RING_ENTRIES; i++) {
736 struct sk_buff *skb = rrpriv->rx_skbuff[i];
739 pci_unmap_single(rrpriv->pci_dev,
740 rrpriv->rx_ring[i].addr.addrlo,
741 dev->mtu + HIPPI_HLEN,
743 rrpriv->rx_ring[i].size = 0;
744 set_rraddr(&rrpriv->rx_ring[i].addr, 0);
746 rrpriv->rx_skbuff[i] = NULL;
754 * All events are considered to be slow (RX/TX ints do not generate
755 * events) and are handled here, outside the main interrupt handler,
756 * to reduce the size of the handler.
758 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
760 struct rr_private *rrpriv;
761 struct rr_regs __iomem *regs;
764 rrpriv = netdev_priv(dev);
767 while (prodidx != eidx){
768 switch (rrpriv->evt_ring[eidx].code){
770 tmp = readl(®s->FwRev);
771 printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
772 "up and running\n", dev->name,
773 (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
774 rrpriv->fw_running = 1;
775 writel(RX_RING_ENTRIES - 1, ®s->IpRxPi);
779 printk(KERN_INFO "%s: Optical link ON\n", dev->name);
782 printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
785 printk(KERN_WARNING "%s: RX data not moving\n",
789 printk(KERN_INFO "%s: The watchdog is here to see "
793 printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
795 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
800 printk(KERN_ERR "%s: Host software error\n",
802 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
810 printk(KERN_WARNING "%s: Connection rejected\n",
812 rrpriv->stats.tx_aborted_errors++;
815 printk(KERN_WARNING "%s: Connection timeout\n",
819 printk(KERN_WARNING "%s: HIPPI disconnect error\n",
821 rrpriv->stats.tx_aborted_errors++;
824 printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
826 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
831 printk(KERN_WARNING "%s: Transmitter idle\n",
835 printk(KERN_WARNING "%s: Link lost during transmit\n",
837 rrpriv->stats.tx_aborted_errors++;
838 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
843 printk(KERN_ERR "%s: Invalid send ring block\n",
845 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
850 printk(KERN_ERR "%s: Invalid send buffer address\n",
852 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
857 printk(KERN_ERR "%s: Invalid descriptor address\n",
859 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
867 printk(KERN_INFO "%s: Receive ring full\n", dev->name);
871 printk(KERN_WARNING "%s: Receive parity error\n",
875 printk(KERN_WARNING "%s: Receive LLRC error\n",
879 printk(KERN_WARNING "%s: Receive packet length "
880 "error\n", dev->name);
883 printk(KERN_WARNING "%s: Data checksum error\n",
887 printk(KERN_WARNING "%s: Unexpected short burst "
888 "error\n", dev->name);
891 printk(KERN_WARNING "%s: Recv. state transition"
892 " error\n", dev->name);
895 printk(KERN_WARNING "%s: Unexpected data error\n",
899 printk(KERN_WARNING "%s: Link lost error\n",
903 printk(KERN_WARNING "%s: Framming Error\n",
907 printk(KERN_WARNING "%s: Flag sync. lost during"
908 "packet\n", dev->name);
911 printk(KERN_ERR "%s: Invalid receive buffer "
912 "address\n", dev->name);
913 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
918 printk(KERN_ERR "%s: Invalid receive descriptor "
919 "address\n", dev->name);
920 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
925 printk(KERN_ERR "%s: Invalid ring block\n",
927 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
932 /* Label packet to be dropped.
933 * Actual dropping occurs in rx
936 * The index of packet we get to drop is
937 * the index of the packet following
938 * the bad packet. -kbf
941 u16 index = rrpriv->evt_ring[eidx].index;
942 index = (index + (RX_RING_ENTRIES - 1)) %
944 rrpriv->rx_ring[index].mode |=
945 (PACKET_BAD | PACKET_END);
949 printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
950 dev->name, rrpriv->evt_ring[eidx].code);
952 eidx = (eidx + 1) % EVT_RING_ENTRIES;
955 rrpriv->info->evt_ctrl.pi = eidx;
961 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
963 struct rr_private *rrpriv = netdev_priv(dev);
964 struct rr_regs __iomem *regs = rrpriv->regs;
967 struct rx_desc *desc;
970 desc = &(rrpriv->rx_ring[index]);
971 pkt_len = desc->size;
973 printk("index %i, rxlimit %i\n", index, rxlimit);
974 printk("len %x, mode %x\n", pkt_len, desc->mode);
976 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
977 rrpriv->stats.rx_dropped++;
982 struct sk_buff *skb, *rx_skb;
984 rx_skb = rrpriv->rx_skbuff[index];
986 if (pkt_len < PKT_COPY_THRESHOLD) {
987 skb = alloc_skb(pkt_len, GFP_ATOMIC);
989 printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
990 rrpriv->stats.rx_dropped++;
993 pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
998 memcpy(skb_put(skb, pkt_len),
999 rx_skb->data, pkt_len);
1001 pci_dma_sync_single_for_device(rrpriv->pci_dev,
1004 PCI_DMA_FROMDEVICE);
1007 struct sk_buff *newskb;
1009 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
1014 pci_unmap_single(rrpriv->pci_dev,
1015 desc->addr.addrlo, dev->mtu +
1016 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1018 skb_put(skb, pkt_len);
1019 rrpriv->rx_skbuff[index] = newskb;
1020 addr = pci_map_single(rrpriv->pci_dev,
1022 dev->mtu + HIPPI_HLEN,
1023 PCI_DMA_FROMDEVICE);
1024 set_rraddr(&desc->addr, addr);
1026 printk("%s: Out of memory, deferring "
1027 "packet\n", dev->name);
1028 rrpriv->stats.rx_dropped++;
1032 skb->protocol = hippi_type_trans(skb, dev);
1034 netif_rx(skb); /* send it up */
1036 dev->last_rx = jiffies;
1037 rrpriv->stats.rx_packets++;
1038 rrpriv->stats.rx_bytes += pkt_len;
1042 desc->size = dev->mtu + HIPPI_HLEN;
1044 if ((index & 7) == 7)
1045 writel(index, ®s->IpRxPi);
1047 index = (index + 1) % RX_RING_ENTRIES;
1048 } while(index != rxlimit);
1050 rrpriv->cur_rx = index;
1055 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1057 struct rr_private *rrpriv;
1058 struct rr_regs __iomem *regs;
1059 struct net_device *dev = (struct net_device *)dev_id;
1060 u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1062 rrpriv = netdev_priv(dev);
1063 regs = rrpriv->regs;
1065 if (!(readl(®s->HostCtrl) & RR_INT))
1068 spin_lock(&rrpriv->lock);
1070 prodidx = readl(®s->EvtPrd);
1071 txcsmr = (prodidx >> 8) & 0xff;
1072 rxlimit = (prodidx >> 16) & 0xff;
1076 printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1077 prodidx, rrpriv->info->evt_ctrl.pi);
1080 * Order here is important. We must handle events
1081 * before doing anything else in order to catch
1082 * such things as LLRC errors, etc -kbf
1085 eidx = rrpriv->info->evt_ctrl.pi;
1086 if (prodidx != eidx)
1087 eidx = rr_handle_event(dev, prodidx, eidx);
1089 rxindex = rrpriv->cur_rx;
1090 if (rxindex != rxlimit)
1091 rx_int(dev, rxlimit, rxindex);
1093 txcon = rrpriv->dirty_tx;
1094 if (txcsmr != txcon) {
1096 /* Due to occational firmware TX producer/consumer out
1097 * of sync. error need to check entry in ring -kbf
1099 if(rrpriv->tx_skbuff[txcon]){
1100 struct tx_desc *desc;
1101 struct sk_buff *skb;
1103 desc = &(rrpriv->tx_ring[txcon]);
1104 skb = rrpriv->tx_skbuff[txcon];
1106 rrpriv->stats.tx_packets++;
1107 rrpriv->stats.tx_bytes += skb->len;
1109 pci_unmap_single(rrpriv->pci_dev,
1110 desc->addr.addrlo, skb->len,
1112 dev_kfree_skb_irq(skb);
1114 rrpriv->tx_skbuff[txcon] = NULL;
1116 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1119 txcon = (txcon + 1) % TX_RING_ENTRIES;
1120 } while (txcsmr != txcon);
1123 rrpriv->dirty_tx = txcon;
1124 if (rrpriv->tx_full && rr_if_busy(dev) &&
1125 (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1126 != rrpriv->dirty_tx)){
1127 rrpriv->tx_full = 0;
1128 netif_wake_queue(dev);
1132 eidx |= ((txcsmr << 8) | (rxlimit << 16));
1133 writel(eidx, ®s->EvtCon);
1136 spin_unlock(&rrpriv->lock);
1140 static inline void rr_raz_tx(struct rr_private *rrpriv,
1141 struct net_device *dev)
1145 for (i = 0; i < TX_RING_ENTRIES; i++) {
1146 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1149 struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1151 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1152 skb->len, PCI_DMA_TODEVICE);
1154 set_rraddr(&desc->addr, 0);
1156 rrpriv->tx_skbuff[i] = NULL;
1162 static inline void rr_raz_rx(struct rr_private *rrpriv,
1163 struct net_device *dev)
1167 for (i = 0; i < RX_RING_ENTRIES; i++) {
1168 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1171 struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1173 pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1174 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1176 set_rraddr(&desc->addr, 0);
1178 rrpriv->rx_skbuff[i] = NULL;
1183 static void rr_timer(unsigned long data)
1185 struct net_device *dev = (struct net_device *)data;
1186 struct rr_private *rrpriv = netdev_priv(dev);
1187 struct rr_regs __iomem *regs = rrpriv->regs;
1188 unsigned long flags;
1190 if (readl(®s->HostCtrl) & NIC_HALTED){
1191 printk("%s: Restarting nic\n", dev->name);
1192 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1193 memset(rrpriv->info, 0, sizeof(struct rr_info));
1196 rr_raz_tx(rrpriv, dev);
1197 rr_raz_rx(rrpriv, dev);
1199 if (rr_init1(dev)) {
1200 spin_lock_irqsave(&rrpriv->lock, flags);
1201 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1203 spin_unlock_irqrestore(&rrpriv->lock, flags);
1206 rrpriv->timer.expires = RUN_AT(5*HZ);
1207 add_timer(&rrpriv->timer);
1211 static int rr_open(struct net_device *dev)
1213 struct rr_private *rrpriv = netdev_priv(dev);
1214 struct pci_dev *pdev = rrpriv->pci_dev;
1215 struct rr_regs __iomem *regs;
1217 unsigned long flags;
1218 dma_addr_t dma_addr;
1220 regs = rrpriv->regs;
1222 if (rrpriv->fw_rev < 0x00020000) {
1223 printk(KERN_WARNING "%s: trying to configure device with "
1224 "obsolete firmware\n", dev->name);
1229 rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1230 256 * sizeof(struct ring_ctrl),
1232 if (!rrpriv->rx_ctrl) {
1236 rrpriv->rx_ctrl_dma = dma_addr;
1237 memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1239 rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1241 if (!rrpriv->info) {
1245 rrpriv->info_dma = dma_addr;
1246 memset(rrpriv->info, 0, sizeof(struct rr_info));
1249 spin_lock_irqsave(&rrpriv->lock, flags);
1250 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
1251 readl(®s->HostCtrl);
1252 spin_unlock_irqrestore(&rrpriv->lock, flags);
1254 if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1255 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1256 dev->name, dev->irq);
1261 if ((ecode = rr_init1(dev)))
1264 /* Set the timer to switch to check for link beat and perhaps switch
1265 to an alternate media type. */
1266 init_timer(&rrpriv->timer);
1267 rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */
1268 rrpriv->timer.data = (unsigned long)dev;
1269 rrpriv->timer.function = &rr_timer; /* timer handler */
1270 add_timer(&rrpriv->timer);
1272 netif_start_queue(dev);
1277 spin_lock_irqsave(&rrpriv->lock, flags);
1278 writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl);
1279 spin_unlock_irqrestore(&rrpriv->lock, flags);
1282 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1284 rrpriv->info = NULL;
1286 if (rrpriv->rx_ctrl) {
1287 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1288 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1289 rrpriv->rx_ctrl = NULL;
1292 netif_stop_queue(dev);
1298 static void rr_dump(struct net_device *dev)
1300 struct rr_private *rrpriv;
1301 struct rr_regs __iomem *regs;
1306 rrpriv = netdev_priv(dev);
1307 regs = rrpriv->regs;
1309 printk("%s: dumping NIC TX rings\n", dev->name);
1311 printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1312 readl(®s->RxPrd), readl(®s->TxPrd),
1313 readl(®s->EvtPrd), readl(®s->TxPi),
1314 rrpriv->info->tx_ctrl.pi);
1316 printk("Error code 0x%x\n", readl(®s->Fail1));
1318 index = (((readl(®s->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES;
1319 cons = rrpriv->dirty_tx;
1320 printk("TX ring index %i, TX consumer %i\n",
1323 if (rrpriv->tx_skbuff[index]){
1324 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1325 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1326 for (i = 0; i < len; i++){
1329 printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1334 if (rrpriv->tx_skbuff[cons]){
1335 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1336 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1337 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1338 rrpriv->tx_ring[cons].mode,
1339 rrpriv->tx_ring[cons].size,
1340 (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1341 (unsigned long)rrpriv->tx_skbuff[cons]->data,
1342 (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1343 for (i = 0; i < len; i++){
1346 printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1351 printk("dumping TX ring info:\n");
1352 for (i = 0; i < TX_RING_ENTRIES; i++)
1353 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1354 rrpriv->tx_ring[i].mode,
1355 rrpriv->tx_ring[i].size,
1356 (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1361 static int rr_close(struct net_device *dev)
1363 struct rr_private *rrpriv;
1364 struct rr_regs __iomem *regs;
1365 unsigned long flags;
1369 netif_stop_queue(dev);
1371 rrpriv = netdev_priv(dev);
1372 regs = rrpriv->regs;
1375 * Lock to make sure we are not cleaning up while another CPU
1376 * is handling interrupts.
1378 spin_lock_irqsave(&rrpriv->lock, flags);
1380 tmp = readl(®s->HostCtrl);
1381 if (tmp & NIC_HALTED){
1382 printk("%s: NIC already halted\n", dev->name);
1385 tmp |= HALT_NIC | RR_CLEAR_INT;
1386 writel(tmp, ®s->HostCtrl);
1387 readl(®s->HostCtrl);
1390 rrpriv->fw_running = 0;
1392 del_timer_sync(&rrpriv->timer);
1394 writel(0, ®s->TxPi);
1395 writel(0, ®s->IpRxPi);
1397 writel(0, ®s->EvtCon);
1398 writel(0, ®s->EvtPrd);
1400 for (i = 0; i < CMD_RING_ENTRIES; i++)
1401 writel(0, ®s->CmdRing[i]);
1403 rrpriv->info->tx_ctrl.entries = 0;
1404 rrpriv->info->cmd_ctrl.pi = 0;
1405 rrpriv->info->evt_ctrl.pi = 0;
1406 rrpriv->rx_ctrl[4].entries = 0;
1408 rr_raz_tx(rrpriv, dev);
1409 rr_raz_rx(rrpriv, dev);
1411 pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl),
1412 rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1413 rrpriv->rx_ctrl = NULL;
1415 pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info),
1416 rrpriv->info, rrpriv->info_dma);
1417 rrpriv->info = NULL;
1419 free_irq(dev->irq, dev);
1420 spin_unlock_irqrestore(&rrpriv->lock, flags);
1426 static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev)
1428 struct rr_private *rrpriv = netdev_priv(dev);
1429 struct rr_regs __iomem *regs = rrpriv->regs;
1430 struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1431 struct ring_ctrl *txctrl;
1432 unsigned long flags;
1433 u32 index, len = skb->len;
1435 struct sk_buff *new_skb;
1437 if (readl(®s->Mode) & FATAL_ERR)
1438 printk("error codes Fail1 %02x, Fail2 %02x\n",
1439 readl(®s->Fail1), readl(®s->Fail2));
1442 * We probably need to deal with tbusy here to prevent overruns.
1445 if (skb_headroom(skb) < 8){
1446 printk("incoming skb too small - reallocating\n");
1447 if (!(new_skb = dev_alloc_skb(len + 8))) {
1449 netif_wake_queue(dev);
1452 skb_reserve(new_skb, 8);
1453 skb_put(new_skb, len);
1454 skb_copy_from_linear_data(skb, new_skb->data, len);
1459 ifield = (u32 *)skb_push(skb, 8);
1462 ifield[1] = hcb->ifield;
1465 * We don't need the lock before we are actually going to start
1466 * fiddling with the control blocks.
1468 spin_lock_irqsave(&rrpriv->lock, flags);
1470 txctrl = &rrpriv->info->tx_ctrl;
1474 rrpriv->tx_skbuff[index] = skb;
1475 set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1476 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1477 rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1478 rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1479 txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1481 writel(txctrl->pi, ®s->TxPi);
1483 if (txctrl->pi == rrpriv->dirty_tx){
1484 rrpriv->tx_full = 1;
1485 netif_stop_queue(dev);
1488 spin_unlock_irqrestore(&rrpriv->lock, flags);
1490 dev->trans_start = jiffies;
1495 static struct net_device_stats *rr_get_stats(struct net_device *dev)
1497 struct rr_private *rrpriv;
1499 rrpriv = netdev_priv(dev);
1501 return(&rrpriv->stats);
1506 * Read the firmware out of the EEPROM and put it into the SRAM
1507 * (or from user space - later)
1509 * This operation requires the NIC to be halted and is performed with
1510 * interrupts disabled and with the spinlock hold.
1512 static int rr_load_firmware(struct net_device *dev)
1514 struct rr_private *rrpriv;
1515 struct rr_regs __iomem *regs;
1516 unsigned long eptr, segptr;
1518 u32 localctrl, sptr, len, tmp;
1519 u32 p2len, p2size, nr_seg, revision, io, sram_size;
1520 struct eeprom *hw = NULL;
1522 rrpriv = netdev_priv(dev);
1523 regs = rrpriv->regs;
1525 if (dev->flags & IFF_UP)
1528 if (!(readl(®s->HostCtrl) & NIC_HALTED)){
1529 printk("%s: Trying to load firmware to a running NIC.\n",
1534 localctrl = readl(®s->LocalCtrl);
1535 writel(0, ®s->LocalCtrl);
1537 writel(0, ®s->EvtPrd);
1538 writel(0, ®s->RxPrd);
1539 writel(0, ®s->TxPrd);
1542 * First wipe the entire SRAM, otherwise we might run into all
1543 * kinds of trouble ... sigh, this took almost all afternoon
1546 io = readl(®s->ExtIo);
1547 writel(0, ®s->ExtIo);
1548 sram_size = rr_read_eeprom_word(rrpriv, (void *)8);
1550 for (i = 200; i < sram_size / 4; i++){
1551 writel(i * 4, ®s->WinBase);
1553 writel(0, ®s->WinData);
1556 writel(io, ®s->ExtIo);
1559 eptr = (unsigned long)rr_read_eeprom_word(rrpriv,
1560 &hw->rncd_info.AddrRunCodeSegs);
1561 eptr = ((eptr & 0x1fffff) >> 3);
1563 p2len = rr_read_eeprom_word(rrpriv, (void *)(0x83*4));
1564 p2len = (p2len << 2);
1565 p2size = rr_read_eeprom_word(rrpriv, (void *)(0x84*4));
1566 p2size = ((p2size & 0x1fffff) >> 3);
1568 if ((eptr < p2size) || (eptr > (p2size + p2len))){
1569 printk("%s: eptr is invalid\n", dev->name);
1573 revision = rr_read_eeprom_word(rrpriv, &hw->manf.HeaderFmt);
1576 printk("%s: invalid firmware format (%i)\n",
1577 dev->name, revision);
1581 nr_seg = rr_read_eeprom_word(rrpriv, (void *)eptr);
1584 printk("%s: nr_seg %i\n", dev->name, nr_seg);
1587 for (i = 0; i < nr_seg; i++){
1588 sptr = rr_read_eeprom_word(rrpriv, (void *)eptr);
1590 len = rr_read_eeprom_word(rrpriv, (void *)eptr);
1592 segptr = (unsigned long)rr_read_eeprom_word(rrpriv, (void *)eptr);
1593 segptr = ((segptr & 0x1fffff) >> 3);
1596 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1597 dev->name, i, sptr, len, segptr);
1599 for (j = 0; j < len; j++){
1600 tmp = rr_read_eeprom_word(rrpriv, (void *)segptr);
1601 writel(sptr, ®s->WinBase);
1603 writel(tmp, ®s->WinData);
1611 writel(localctrl, ®s->LocalCtrl);
1617 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1619 struct rr_private *rrpriv;
1620 unsigned char *image, *oldimage;
1621 unsigned long flags;
1623 int error = -EOPNOTSUPP;
1625 rrpriv = netdev_priv(dev);
1629 if (!capable(CAP_SYS_RAWIO)){
1633 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1635 printk(KERN_ERR "%s: Unable to allocate memory "
1636 "for EEPROM image\n", dev->name);
1641 if (rrpriv->fw_running){
1642 printk("%s: Firmware already running\n", dev->name);
1647 spin_lock_irqsave(&rrpriv->lock, flags);
1648 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1649 spin_unlock_irqrestore(&rrpriv->lock, flags);
1650 if (i != EEPROM_BYTES){
1651 printk(KERN_ERR "%s: Error reading EEPROM\n",
1656 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1664 if (!capable(CAP_SYS_RAWIO)){
1668 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1669 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1670 if (!image || !oldimage) {
1671 printk(KERN_ERR "%s: Unable to allocate memory "
1672 "for EEPROM image\n", dev->name);
1677 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1683 if (rrpriv->fw_running){
1684 printk("%s: Firmware already running\n", dev->name);
1689 printk("%s: Updating EEPROM firmware\n", dev->name);
1691 spin_lock_irqsave(&rrpriv->lock, flags);
1692 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1694 printk(KERN_ERR "%s: Error writing EEPROM\n",
1697 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1698 spin_unlock_irqrestore(&rrpriv->lock, flags);
1700 if (i != EEPROM_BYTES)
1701 printk(KERN_ERR "%s: Error reading back EEPROM "
1702 "image\n", dev->name);
1704 error = memcmp(image, oldimage, EEPROM_BYTES);
1706 printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1716 return put_user(0x52523032, (int __user *)rq->ifr_data);
1722 static struct pci_device_id rr_pci_tbl[] = {
1723 { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1724 PCI_ANY_ID, PCI_ANY_ID, },
1727 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1729 static struct pci_driver rr_driver = {
1731 .id_table = rr_pci_tbl,
1732 .probe = rr_init_one,
1733 .remove = __devexit_p(rr_remove_one),
1736 static int __init rr_init_module(void)
1738 return pci_register_driver(&rr_driver);
1741 static void __exit rr_cleanup_module(void)
1743 pci_unregister_driver(&rr_driver);
1746 module_init(rr_init_module);
1747 module_exit(rr_cleanup_module);
1751 * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c"