Pull sony-2.6.24 into release branch
[linux-2.6] / drivers / pci / hotplug / cpqphp_ctrl.c
1 /*
2  * Compaq Hot Plug Controller Driver
3  *
4  * Copyright (C) 1995,2001 Compaq Computer Corporation
5  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6  * Copyright (C) 2001 IBM Corp.
7  *
8  * All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18  * NON INFRINGEMENT.  See the GNU General Public License for more
19  * details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Send feedback to <greg@kroah.com>
26  *
27  */
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/smp_lock.h>
38 #include <linux/pci.h>
39 #include <linux/pci_hotplug.h>
40 #include "cpqphp.h"
41
42 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
43                         u8 behind_bridge, struct resource_lists *resources);
44 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
45                         u8 behind_bridge, struct resource_lists *resources);
46 static void interrupt_event_handler(struct controller *ctrl);
47
48 static struct semaphore event_semaphore;        /* mutex for process loop (up if something to process) */
49 static struct semaphore event_exit;             /* guard ensure thread has exited before calling it quits */
50 static int event_finished;
51 static unsigned long pushbutton_pending;        /* = 0 */
52
53 /* things needed for the long_delay function */
54 static struct semaphore         delay_sem;
55 static wait_queue_head_t        delay_wait;
56
57 /* delay is in jiffies to wait for */
58 static void long_delay(int delay)
59 {
60         DECLARE_WAITQUEUE(wait, current);
61         
62         /* only allow 1 customer into the delay queue at once
63          * yes this makes some people wait even longer, but who really cares?
64          * this is for _huge_ delays to make the hardware happy as the 
65          * signals bounce around
66          */
67         down (&delay_sem);
68
69         init_waitqueue_head(&delay_wait);
70
71         add_wait_queue(&delay_wait, &wait);
72         msleep_interruptible(jiffies_to_msecs(delay));
73         remove_wait_queue(&delay_wait, &wait);
74         
75         up(&delay_sem);
76 }
77
78
79 /* FIXME: The following line needs to be somewhere else... */
80 #define WRONG_BUS_FREQUENCY 0x07
81 static u8 handle_switch_change(u8 change, struct controller * ctrl)
82 {
83         int hp_slot;
84         u8 rc = 0;
85         u16 temp_word;
86         struct pci_func *func;
87         struct event_info *taskInfo;
88
89         if (!change)
90                 return 0;
91
92         /* Switch Change */
93         dbg("cpqsbd:  Switch interrupt received.\n");
94
95         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
96                 if (change & (0x1L << hp_slot)) {
97                         /**********************************
98                          * this one changed.
99                          **********************************/
100                         func = cpqhp_slot_find(ctrl->bus,
101                                 (hp_slot + ctrl->slot_device_offset), 0);
102
103                         /* this is the structure that tells the worker thread
104                          *what to do */
105                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
106                         ctrl->next_event = (ctrl->next_event + 1) % 10;
107                         taskInfo->hp_slot = hp_slot;
108
109                         rc++;
110
111                         temp_word = ctrl->ctrl_int_comp >> 16;
112                         func->presence_save = (temp_word >> hp_slot) & 0x01;
113                         func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
114
115                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
116                                 /**********************************
117                                  * Switch opened
118                                  **********************************/
119
120                                 func->switch_save = 0;
121
122                                 taskInfo->event_type = INT_SWITCH_OPEN;
123                         } else {
124                                 /**********************************
125                                  * Switch closed
126                                  **********************************/
127
128                                 func->switch_save = 0x10;
129
130                                 taskInfo->event_type = INT_SWITCH_CLOSE;
131                         }
132                 }
133         }
134
135         return rc;
136 }
137
138 /**
139  * cpqhp_find_slot: find the struct slot of given device
140  * @ctrl: scan lots of this controller
141  * @device: the device id to find
142  */
143 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
144 {
145         struct slot *slot = ctrl->slot;
146
147         while (slot && (slot->device != device)) {
148                 slot = slot->next;
149         }
150
151         return slot;
152 }
153
154
155 static u8 handle_presence_change(u16 change, struct controller * ctrl)
156 {
157         int hp_slot;
158         u8 rc = 0;
159         u8 temp_byte;
160         u16 temp_word;
161         struct pci_func *func;
162         struct event_info *taskInfo;
163         struct slot *p_slot;
164
165         if (!change)
166                 return 0;
167
168         /**********************************
169          * Presence Change
170          **********************************/
171         dbg("cpqsbd:  Presence/Notify input change.\n");
172         dbg("         Changed bits are 0x%4.4x\n", change );
173
174         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
175                 if (change & (0x0101 << hp_slot)) {
176                         /**********************************
177                          * this one changed.
178                          **********************************/
179                         func = cpqhp_slot_find(ctrl->bus,
180                                 (hp_slot + ctrl->slot_device_offset), 0);
181
182                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
183                         ctrl->next_event = (ctrl->next_event + 1) % 10;
184                         taskInfo->hp_slot = hp_slot;
185
186                         rc++;
187
188                         p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
189                         if (!p_slot)
190                                 return 0;
191
192                         /* If the switch closed, must be a button
193                          * If not in button mode, nevermind */
194                         if (func->switch_save && (ctrl->push_button == 1)) {
195                                 temp_word = ctrl->ctrl_int_comp >> 16;
196                                 temp_byte = (temp_word >> hp_slot) & 0x01;
197                                 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
198
199                                 if (temp_byte != func->presence_save) {
200                                         /**************************************
201                                          * button Pressed (doesn't do anything)
202                                          **************************************/
203                                         dbg("hp_slot %d button pressed\n", hp_slot);
204                                         taskInfo->event_type = INT_BUTTON_PRESS;
205                                 } else {
206                                         /**********************************
207                                          * button Released - TAKE ACTION!!!!
208                                          **********************************/
209                                         dbg("hp_slot %d button released\n", hp_slot);
210                                         taskInfo->event_type = INT_BUTTON_RELEASE;
211
212                                         /* Cancel if we are still blinking */
213                                         if ((p_slot->state == BLINKINGON_STATE)
214                                             || (p_slot->state == BLINKINGOFF_STATE)) {
215                                                 taskInfo->event_type = INT_BUTTON_CANCEL;
216                                                 dbg("hp_slot %d button cancel\n", hp_slot);
217                                         } else if ((p_slot->state == POWERON_STATE)
218                                                    || (p_slot->state == POWEROFF_STATE)) {
219                                                 /* info(msg_button_ignore, p_slot->number); */
220                                                 taskInfo->event_type = INT_BUTTON_IGNORE;
221                                                 dbg("hp_slot %d button ignore\n", hp_slot);
222                                         }
223                                 }
224                         } else {
225                                 /* Switch is open, assume a presence change
226                                  * Save the presence state */
227                                 temp_word = ctrl->ctrl_int_comp >> 16;
228                                 func->presence_save = (temp_word >> hp_slot) & 0x01;
229                                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
230
231                                 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
232                                     (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
233                                         /* Present */
234                                         taskInfo->event_type = INT_PRESENCE_ON;
235                                 } else {
236                                         /* Not Present */
237                                         taskInfo->event_type = INT_PRESENCE_OFF;
238                                 }
239                         }
240                 }
241         }
242
243         return rc;
244 }
245
246
247 static u8 handle_power_fault(u8 change, struct controller * ctrl)
248 {
249         int hp_slot;
250         u8 rc = 0;
251         struct pci_func *func;
252         struct event_info *taskInfo;
253
254         if (!change)
255                 return 0;
256
257         /**********************************
258          * power fault
259          **********************************/
260
261         info("power fault interrupt\n");
262
263         for (hp_slot = 0; hp_slot < 6; hp_slot++) {
264                 if (change & (0x01 << hp_slot)) {
265                         /**********************************
266                          * this one changed.
267                          **********************************/
268                         func = cpqhp_slot_find(ctrl->bus,
269                                 (hp_slot + ctrl->slot_device_offset), 0);
270
271                         taskInfo = &(ctrl->event_queue[ctrl->next_event]);
272                         ctrl->next_event = (ctrl->next_event + 1) % 10;
273                         taskInfo->hp_slot = hp_slot;
274
275                         rc++;
276
277                         if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
278                                 /**********************************
279                                  * power fault Cleared
280                                  **********************************/
281                                 func->status = 0x00;
282
283                                 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
284                         } else {
285                                 /**********************************
286                                  * power fault
287                                  **********************************/
288                                 taskInfo->event_type = INT_POWER_FAULT;
289
290                                 if (ctrl->rev < 4) {
291                                         amber_LED_on (ctrl, hp_slot);
292                                         green_LED_off (ctrl, hp_slot);
293                                         set_SOGO (ctrl);
294
295                                         /* this is a fatal condition, we want
296                                          * to crash the machine to protect from
297                                          * data corruption. simulated_NMI
298                                          * shouldn't ever return */
299                                         /* FIXME
300                                         simulated_NMI(hp_slot, ctrl); */
301
302                                         /* The following code causes a software
303                                          * crash just in case simulated_NMI did
304                                          * return */
305                                         /*FIXME
306                                         panic(msg_power_fault); */
307                                 } else {
308                                         /* set power fault status for this board */
309                                         func->status = 0xFF;
310                                         info("power fault bit %x set\n", hp_slot);
311                                 }
312                         }
313                 }
314         }
315
316         return rc;
317 }
318
319
320 /**
321  * sort_by_size: sort nodes on the list by their length, smallest first.
322  * @head: list to sort
323  *
324  */
325 static int sort_by_size(struct pci_resource **head)
326 {
327         struct pci_resource *current_res;
328         struct pci_resource *next_res;
329         int out_of_order = 1;
330
331         if (!(*head))
332                 return 1;
333
334         if (!((*head)->next))
335                 return 0;
336
337         while (out_of_order) {
338                 out_of_order = 0;
339
340                 /* Special case for swapping list head */
341                 if (((*head)->next) &&
342                     ((*head)->length > (*head)->next->length)) {
343                         out_of_order++;
344                         current_res = *head;
345                         *head = (*head)->next;
346                         current_res->next = (*head)->next;
347                         (*head)->next = current_res;
348                 }
349
350                 current_res = *head;
351
352                 while (current_res->next && current_res->next->next) {
353                         if (current_res->next->length > current_res->next->next->length) {
354                                 out_of_order++;
355                                 next_res = current_res->next;
356                                 current_res->next = current_res->next->next;
357                                 current_res = current_res->next;
358                                 next_res->next = current_res->next;
359                                 current_res->next = next_res;
360                         } else
361                                 current_res = current_res->next;
362                 }
363         }  /* End of out_of_order loop */
364
365         return 0;
366 }
367
368
369 /**
370  * sort_by_max_size: sort nodes on the list by their length, largest first.
371  * @head: list to sort
372  *
373  */
374 static int sort_by_max_size(struct pci_resource **head)
375 {
376         struct pci_resource *current_res;
377         struct pci_resource *next_res;
378         int out_of_order = 1;
379
380         if (!(*head))
381                 return 1;
382
383         if (!((*head)->next))
384                 return 0;
385
386         while (out_of_order) {
387                 out_of_order = 0;
388
389                 /* Special case for swapping list head */
390                 if (((*head)->next) &&
391                     ((*head)->length < (*head)->next->length)) {
392                         out_of_order++;
393                         current_res = *head;
394                         *head = (*head)->next;
395                         current_res->next = (*head)->next;
396                         (*head)->next = current_res;
397                 }
398
399                 current_res = *head;
400
401                 while (current_res->next && current_res->next->next) {
402                         if (current_res->next->length < current_res->next->next->length) {
403                                 out_of_order++;
404                                 next_res = current_res->next;
405                                 current_res->next = current_res->next->next;
406                                 current_res = current_res->next;
407                                 next_res->next = current_res->next;
408                                 current_res->next = next_res;
409                         } else
410                                 current_res = current_res->next;
411                 }
412         }  /* End of out_of_order loop */
413
414         return 0;
415 }
416
417
418 /**
419  * do_pre_bridge_resource_split: find node of resources that are unused
420  *
421  */
422 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
423                                 struct pci_resource **orig_head, u32 alignment)
424 {
425         struct pci_resource *prevnode = NULL;
426         struct pci_resource *node;
427         struct pci_resource *split_node;
428         u32 rc;
429         u32 temp_dword;
430         dbg("do_pre_bridge_resource_split\n");
431
432         if (!(*head) || !(*orig_head))
433                 return NULL;
434
435         rc = cpqhp_resource_sort_and_combine(head);
436
437         if (rc)
438                 return NULL;
439
440         if ((*head)->base != (*orig_head)->base)
441                 return NULL;
442
443         if ((*head)->length == (*orig_head)->length)
444                 return NULL;
445
446
447         /* If we got here, there the bridge requires some of the resource, but
448          * we may be able to split some off of the front */
449
450         node = *head;
451
452         if (node->length & (alignment -1)) {
453                 /* this one isn't an aligned length, so we'll make a new entry
454                  * and split it up. */
455                 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
456
457                 if (!split_node)
458                         return NULL;
459
460                 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
461
462                 split_node->base = node->base;
463                 split_node->length = temp_dword;
464
465                 node->length -= temp_dword;
466                 node->base += split_node->length;
467
468                 /* Put it in the list */
469                 *head = split_node;
470                 split_node->next = node;
471         }
472
473         if (node->length < alignment)
474                 return NULL;
475
476         /* Now unlink it */
477         if (*head == node) {
478                 *head = node->next;
479         } else {
480                 prevnode = *head;
481                 while (prevnode->next != node)
482                         prevnode = prevnode->next;
483
484                 prevnode->next = node->next;
485         }
486         node->next = NULL;
487
488         return node;
489 }
490
491
492 /**
493  * do_bridge_resource_split: find one node of resources that aren't in use
494  *
495  */
496 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
497 {
498         struct pci_resource *prevnode = NULL;
499         struct pci_resource *node;
500         u32 rc;
501         u32 temp_dword;
502
503         rc = cpqhp_resource_sort_and_combine(head);
504
505         if (rc)
506                 return NULL;
507
508         node = *head;
509
510         while (node->next) {
511                 prevnode = node;
512                 node = node->next;
513                 kfree(prevnode);
514         }
515
516         if (node->length < alignment)
517                 goto error;
518
519         if (node->base & (alignment - 1)) {
520                 /* Short circuit if adjusted size is too small */
521                 temp_dword = (node->base | (alignment-1)) + 1;
522                 if ((node->length - (temp_dword - node->base)) < alignment)
523                         goto error;
524
525                 node->length -= (temp_dword - node->base);
526                 node->base = temp_dword;
527         }
528
529         if (node->length & (alignment - 1))
530                 /* There's stuff in use after this node */
531                 goto error;
532
533         return node;
534 error:
535         kfree(node);
536         return NULL;
537 }
538
539
540 /**
541  * get_io_resource: find first node of given size not in ISA aliasing window.
542  * @head: list to search
543  * @size: size of node to find, must be a power of two.
544  *
545  * Description: this function sorts the resource list by size and then returns
546  * returns the first node of "size" length that is not in the ISA aliasing
547  * window.  If it finds a node larger than "size" it will split it up.
548  *
549  */
550 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
551 {
552         struct pci_resource *prevnode;
553         struct pci_resource *node;
554         struct pci_resource *split_node;
555         u32 temp_dword;
556
557         if (!(*head))
558                 return NULL;
559
560         if ( cpqhp_resource_sort_and_combine(head) )
561                 return NULL;
562
563         if ( sort_by_size(head) )
564                 return NULL;
565
566         for (node = *head; node; node = node->next) {
567                 if (node->length < size)
568                         continue;
569
570                 if (node->base & (size - 1)) {
571                         /* this one isn't base aligned properly
572                          * so we'll make a new entry and split it up */
573                         temp_dword = (node->base | (size-1)) + 1;
574
575                         /* Short circuit if adjusted size is too small */
576                         if ((node->length - (temp_dword - node->base)) < size)
577                                 continue;
578
579                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
580
581                         if (!split_node)
582                                 return NULL;
583
584                         split_node->base = node->base;
585                         split_node->length = temp_dword - node->base;
586                         node->base = temp_dword;
587                         node->length -= split_node->length;
588
589                         /* Put it in the list */
590                         split_node->next = node->next;
591                         node->next = split_node;
592                 } /* End of non-aligned base */
593
594                 /* Don't need to check if too small since we already did */
595                 if (node->length > size) {
596                         /* this one is longer than we need
597                          * so we'll make a new entry and split it up */
598                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
599
600                         if (!split_node)
601                                 return NULL;
602
603                         split_node->base = node->base + size;
604                         split_node->length = node->length - size;
605                         node->length = size;
606
607                         /* Put it in the list */
608                         split_node->next = node->next;
609                         node->next = split_node;
610                 }  /* End of too big on top end */
611
612                 /* For IO make sure it's not in the ISA aliasing space */
613                 if (node->base & 0x300L)
614                         continue;
615
616                 /* If we got here, then it is the right size
617                  * Now take it out of the list and break */
618                 if (*head == node) {
619                         *head = node->next;
620                 } else {
621                         prevnode = *head;
622                         while (prevnode->next != node)
623                                 prevnode = prevnode->next;
624
625                         prevnode->next = node->next;
626                 }
627                 node->next = NULL;
628                 break;
629         }
630
631         return node;
632 }
633
634
635 /**
636  * get_max_resource: get largest node which has at least the given size.
637  * @head: the list to search the node in
638  * @size: the minimum size of the node to find
639  *
640  * Description: Gets the largest node that is at least "size" big from the
641  * list pointed to by head.  It aligns the node on top and bottom
642  * to "size" alignment before returning it.
643  */
644 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
645 {
646         struct pci_resource *max;
647         struct pci_resource *temp;
648         struct pci_resource *split_node;
649         u32 temp_dword;
650
651         if (cpqhp_resource_sort_and_combine(head))
652                 return NULL;
653
654         if (sort_by_max_size(head))
655                 return NULL;
656
657         for (max = *head; max; max = max->next) {
658                 /* If not big enough we could probably just bail, 
659                  * instead we'll continue to the next. */
660                 if (max->length < size)
661                         continue;
662
663                 if (max->base & (size - 1)) {
664                         /* this one isn't base aligned properly
665                          * so we'll make a new entry and split it up */
666                         temp_dword = (max->base | (size-1)) + 1;
667
668                         /* Short circuit if adjusted size is too small */
669                         if ((max->length - (temp_dword - max->base)) < size)
670                                 continue;
671
672                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
673
674                         if (!split_node)
675                                 return NULL;
676
677                         split_node->base = max->base;
678                         split_node->length = temp_dword - max->base;
679                         max->base = temp_dword;
680                         max->length -= split_node->length;
681
682                         split_node->next = max->next;
683                         max->next = split_node;
684                 }
685
686                 if ((max->base + max->length) & (size - 1)) {
687                         /* this one isn't end aligned properly at the top
688                          * so we'll make a new entry and split it up */
689                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
690
691                         if (!split_node)
692                                 return NULL;
693                         temp_dword = ((max->base + max->length) & ~(size - 1));
694                         split_node->base = temp_dword;
695                         split_node->length = max->length + max->base
696                                              - split_node->base;
697                         max->length -= split_node->length;
698
699                         split_node->next = max->next;
700                         max->next = split_node;
701                 }
702
703                 /* Make sure it didn't shrink too much when we aligned it */
704                 if (max->length < size)
705                         continue;
706
707                 /* Now take it out of the list */
708                 temp = *head;
709                 if (temp == max) {
710                         *head = max->next;
711                 } else {
712                         while (temp && temp->next != max) {
713                                 temp = temp->next;
714                         }
715
716                         temp->next = max->next;
717                 }
718
719                 max->next = NULL;
720                 break;
721         }
722
723         return max;
724 }
725
726
727 /**
728  * get_resource: find resource of given size and split up larger ones.
729  * @head: the list to search for resources
730  * @size: the size limit to use
731  *
732  * Description: This function sorts the resource list by size and then
733  * returns the first node of "size" length.  If it finds a node
734  * larger than "size" it will split it up.
735  *
736  * size must be a power of two.
737  */
738 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
739 {
740         struct pci_resource *prevnode;
741         struct pci_resource *node;
742         struct pci_resource *split_node;
743         u32 temp_dword;
744
745         if (cpqhp_resource_sort_and_combine(head))
746                 return NULL;
747
748         if (sort_by_size(head))
749                 return NULL;
750
751         for (node = *head; node; node = node->next) {
752                 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
753                     __FUNCTION__, size, node, node->base, node->length);
754                 if (node->length < size)
755                         continue;
756
757                 if (node->base & (size - 1)) {
758                         dbg("%s: not aligned\n", __FUNCTION__);
759                         /* this one isn't base aligned properly
760                          * so we'll make a new entry and split it up */
761                         temp_dword = (node->base | (size-1)) + 1;
762
763                         /* Short circuit if adjusted size is too small */
764                         if ((node->length - (temp_dword - node->base)) < size)
765                                 continue;
766
767                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
768
769                         if (!split_node)
770                                 return NULL;
771
772                         split_node->base = node->base;
773                         split_node->length = temp_dword - node->base;
774                         node->base = temp_dword;
775                         node->length -= split_node->length;
776
777                         split_node->next = node->next;
778                         node->next = split_node;
779                 } /* End of non-aligned base */
780
781                 /* Don't need to check if too small since we already did */
782                 if (node->length > size) {
783                         dbg("%s: too big\n", __FUNCTION__);
784                         /* this one is longer than we need
785                          * so we'll make a new entry and split it up */
786                         split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
787
788                         if (!split_node)
789                                 return NULL;
790
791                         split_node->base = node->base + size;
792                         split_node->length = node->length - size;
793                         node->length = size;
794
795                         /* Put it in the list */
796                         split_node->next = node->next;
797                         node->next = split_node;
798                 }  /* End of too big on top end */
799
800                 dbg("%s: got one!!!\n", __FUNCTION__);
801                 /* If we got here, then it is the right size
802                  * Now take it out of the list */
803                 if (*head == node) {
804                         *head = node->next;
805                 } else {
806                         prevnode = *head;
807                         while (prevnode->next != node)
808                                 prevnode = prevnode->next;
809
810                         prevnode->next = node->next;
811                 }
812                 node->next = NULL;
813                 break;
814         }
815         return node;
816 }
817
818
819 /**
820  * cpqhp_resource_sort_and_combine: sort nodes by base addresses and clean up.
821  * @head: the list to sort and clean up
822  *
823  * Description: Sorts all of the nodes in the list in ascending order by
824  * their base addresses.  Also does garbage collection by
825  * combining adjacent nodes.
826  *
827  * returns 0 if success
828  */
829 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
830 {
831         struct pci_resource *node1;
832         struct pci_resource *node2;
833         int out_of_order = 1;
834
835         dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head);
836
837         if (!(*head))
838                 return 1;
839
840         dbg("*head->next = %p\n",(*head)->next);
841
842         if (!(*head)->next)
843                 return 0;       /* only one item on the list, already sorted! */
844
845         dbg("*head->base = 0x%x\n",(*head)->base);
846         dbg("*head->next->base = 0x%x\n",(*head)->next->base);
847         while (out_of_order) {
848                 out_of_order = 0;
849
850                 /* Special case for swapping list head */
851                 if (((*head)->next) &&
852                     ((*head)->base > (*head)->next->base)) {
853                         node1 = *head;
854                         (*head) = (*head)->next;
855                         node1->next = (*head)->next;
856                         (*head)->next = node1;
857                         out_of_order++;
858                 }
859
860                 node1 = (*head);
861
862                 while (node1->next && node1->next->next) {
863                         if (node1->next->base > node1->next->next->base) {
864                                 out_of_order++;
865                                 node2 = node1->next;
866                                 node1->next = node1->next->next;
867                                 node1 = node1->next;
868                                 node2->next = node1->next;
869                                 node1->next = node2;
870                         } else
871                                 node1 = node1->next;
872                 }
873         }  /* End of out_of_order loop */
874
875         node1 = *head;
876
877         while (node1 && node1->next) {
878                 if ((node1->base + node1->length) == node1->next->base) {
879                         /* Combine */
880                         dbg("8..\n");
881                         node1->length += node1->next->length;
882                         node2 = node1->next;
883                         node1->next = node1->next->next;
884                         kfree(node2);
885                 } else
886                         node1 = node1->next;
887         }
888
889         return 0;
890 }
891
892
893 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
894 {
895         struct controller *ctrl = data;
896         u8 schedule_flag = 0;
897         u8 reset;
898         u16 misc;
899         u32 Diff;
900         u32 temp_dword;
901
902         
903         misc = readw(ctrl->hpc_reg + MISC);
904         /***************************************
905          * Check to see if it was our interrupt
906          ***************************************/
907         if (!(misc & 0x000C)) {
908                 return IRQ_NONE;
909         }
910
911         if (misc & 0x0004) {
912                 /**********************************
913                  * Serial Output interrupt Pending
914                  **********************************/
915
916                 /* Clear the interrupt */
917                 misc |= 0x0004;
918                 writew(misc, ctrl->hpc_reg + MISC);
919
920                 /* Read to clear posted writes */
921                 misc = readw(ctrl->hpc_reg + MISC);
922
923                 dbg ("%s - waking up\n", __FUNCTION__);
924                 wake_up_interruptible(&ctrl->queue);
925         }
926
927         if (misc & 0x0008) {
928                 /* General-interrupt-input interrupt Pending */
929                 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
930
931                 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
932
933                 /* Clear the interrupt */
934                 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
935
936                 /* Read it back to clear any posted writes */
937                 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
938
939                 if (!Diff)
940                         /* Clear all interrupts */
941                         writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
942
943                 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
944                 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
945                 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
946         }
947
948         reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
949         if (reset & 0x40) {
950                 /* Bus reset has completed */
951                 reset &= 0xCF;
952                 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
953                 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
954                 wake_up_interruptible(&ctrl->queue);
955         }
956
957         if (schedule_flag) {
958                 up(&event_semaphore);
959                 dbg("Signal event_semaphore\n");
960         }
961         return IRQ_HANDLED;
962 }
963
964
965 /**
966  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
967  * @busnumber - bus where new node is to be located
968  *
969  * Returns pointer to the new node or NULL if unsuccessful
970  */
971 struct pci_func *cpqhp_slot_create(u8 busnumber)
972 {
973         struct pci_func *new_slot;
974         struct pci_func *next;
975
976         new_slot = kmalloc(sizeof(*new_slot), GFP_KERNEL);
977
978         if (new_slot == NULL) {
979                 /* I'm not dead yet!
980                  * You will be. */
981                 return new_slot;
982         }
983
984         memset(new_slot, 0, sizeof(struct pci_func));
985
986         new_slot->next = NULL;
987         new_slot->configured = 1;
988
989         if (cpqhp_slot_list[busnumber] == NULL) {
990                 cpqhp_slot_list[busnumber] = new_slot;
991         } else {
992                 next = cpqhp_slot_list[busnumber];
993                 while (next->next != NULL)
994                         next = next->next;
995                 next->next = new_slot;
996         }
997         return new_slot;
998 }
999
1000
1001 /**
1002  * slot_remove - Removes a node from the linked list of slots.
1003  * @old_slot: slot to remove
1004  *
1005  * Returns 0 if successful, !0 otherwise.
1006  */
1007 static int slot_remove(struct pci_func * old_slot)
1008 {
1009         struct pci_func *next;
1010
1011         if (old_slot == NULL)
1012                 return 1;
1013
1014         next = cpqhp_slot_list[old_slot->bus];
1015
1016         if (next == NULL) {
1017                 return 1;
1018         }
1019
1020         if (next == old_slot) {
1021                 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1022                 cpqhp_destroy_board_resources(old_slot);
1023                 kfree(old_slot);
1024                 return 0;
1025         }
1026
1027         while ((next->next != old_slot) && (next->next != NULL)) {
1028                 next = next->next;
1029         }
1030
1031         if (next->next == old_slot) {
1032                 next->next = old_slot->next;
1033                 cpqhp_destroy_board_resources(old_slot);
1034                 kfree(old_slot);
1035                 return 0;
1036         } else
1037                 return 2;
1038 }
1039
1040
1041 /**
1042  * bridge_slot_remove - Removes a node from the linked list of slots.
1043  * @bridge: bridge to remove
1044  *
1045  * Returns 0 if successful, !0 otherwise.
1046  */
1047 static int bridge_slot_remove(struct pci_func *bridge)
1048 {
1049         u8 subordinateBus, secondaryBus;
1050         u8 tempBus;
1051         struct pci_func *next;
1052
1053         secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1054         subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1055
1056         for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1057                 next = cpqhp_slot_list[tempBus];
1058
1059                 while (!slot_remove(next)) {
1060                         next = cpqhp_slot_list[tempBus];
1061                 }
1062         }
1063
1064         next = cpqhp_slot_list[bridge->bus];
1065
1066         if (next == NULL)
1067                 return 1;
1068
1069         if (next == bridge) {
1070                 cpqhp_slot_list[bridge->bus] = bridge->next;
1071                 goto out;
1072         }
1073
1074         while ((next->next != bridge) && (next->next != NULL))
1075                 next = next->next;
1076
1077         if (next->next != bridge)
1078                 return 2;
1079         next->next = bridge->next;
1080 out:
1081         kfree(bridge);
1082         return 0;
1083 }
1084
1085
1086 /**
1087  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1088  * @bus: bus to find
1089  * @device: device to find
1090  * @index: is 0 for first function found, 1 for the second...
1091  *
1092  * Returns pointer to the node if successful, %NULL otherwise.
1093  */
1094 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1095 {
1096         int found = -1;
1097         struct pci_func *func;
1098
1099         func = cpqhp_slot_list[bus];
1100
1101         if ((func == NULL) || ((func->device == device) && (index == 0)))
1102                 return func;
1103
1104         if (func->device == device)
1105                 found++;
1106
1107         while (func->next != NULL) {
1108                 func = func->next;
1109
1110                 if (func->device == device)
1111                         found++;
1112
1113                 if (found == index)
1114                         return func;
1115         }
1116
1117         return NULL;
1118 }
1119
1120
1121 /* DJZ: I don't think is_bridge will work as is.
1122  * FIXME */
1123 static int is_bridge(struct pci_func * func)
1124 {
1125         /* Check the header type */
1126         if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1127                 return 1;
1128         else
1129                 return 0;
1130 }
1131
1132
1133 /**
1134  * set_controller_speed - set the frequency and/or mode of a specific
1135  * controller segment.
1136  *
1137  * @ctrl: controller to change frequency/mode for.
1138  * @adapter_speed: the speed of the adapter we want to match.
1139  * @hp_slot: the slot number where the adapter is installed.
1140  *
1141  * Returns 0 if we successfully change frequency and/or mode to match the
1142  * adapter speed.
1143  * 
1144  */
1145 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1146 {
1147         struct slot *slot;
1148         u8 reg;
1149         u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1150         u16 reg16;
1151         u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1152         
1153         if (ctrl->speed == adapter_speed)
1154                 return 0;
1155         
1156         /* We don't allow freq/mode changes if we find another adapter running
1157          * in another slot on this controller */
1158         for(slot = ctrl->slot; slot; slot = slot->next) {
1159                 if (slot->device == (hp_slot + ctrl->slot_device_offset)) 
1160                         continue;
1161                 if (!slot->hotplug_slot && !slot->hotplug_slot->info) 
1162                         continue;
1163                 if (slot->hotplug_slot->info->adapter_status == 0) 
1164                         continue;
1165                 /* If another adapter is running on the same segment but at a
1166                  * lower speed/mode, we allow the new adapter to function at
1167                  * this rate if supported */
1168                 if (ctrl->speed < adapter_speed) 
1169                         return 0;
1170
1171                 return 1;
1172         }
1173         
1174         /* If the controller doesn't support freq/mode changes and the
1175          * controller is running at a higher mode, we bail */
1176         if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1177                 return 1;
1178         
1179         /* But we allow the adapter to run at a lower rate if possible */
1180         if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1181                 return 0;
1182
1183         /* We try to set the max speed supported by both the adapter and
1184          * controller */
1185         if (ctrl->speed_capability < adapter_speed) {
1186                 if (ctrl->speed == ctrl->speed_capability)
1187                         return 0;
1188                 adapter_speed = ctrl->speed_capability;
1189         }
1190
1191         writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1192         writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1193         
1194         set_SOGO(ctrl); 
1195         wait_for_ctrl_irq(ctrl);
1196         
1197         if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1198                 reg = 0xF5;
1199         else
1200                 reg = 0xF4;     
1201         pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1202         
1203         reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1204         reg16 &= ~0x000F;
1205         switch(adapter_speed) {
1206                 case(PCI_SPEED_133MHz_PCIX): 
1207                         reg = 0x75;
1208                         reg16 |= 0xB; 
1209                         break;
1210                 case(PCI_SPEED_100MHz_PCIX):
1211                         reg = 0x74;
1212                         reg16 |= 0xA;
1213                         break;
1214                 case(PCI_SPEED_66MHz_PCIX):
1215                         reg = 0x73;
1216                         reg16 |= 0x9;
1217                         break;
1218                 case(PCI_SPEED_66MHz):
1219                         reg = 0x73;
1220                         reg16 |= 0x1;
1221                         break;
1222                 default: /* 33MHz PCI 2.2 */
1223                         reg = 0x71;
1224                         break;
1225                         
1226         }
1227         reg16 |= 0xB << 12;
1228         writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1229         
1230         mdelay(5); 
1231         
1232         /* Reenable interrupts */
1233         writel(0, ctrl->hpc_reg + INT_MASK);
1234
1235         pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 
1236         
1237         /* Restart state machine */
1238         reg = ~0xF;
1239         pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1240         pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1241         
1242         /* Only if mode change...*/
1243         if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1244                 ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 
1245                         set_SOGO(ctrl);
1246         
1247         wait_for_ctrl_irq(ctrl);
1248         mdelay(1100);
1249         
1250         /* Restore LED/Slot state */
1251         writel(leds, ctrl->hpc_reg + LED_CONTROL);
1252         writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1253         
1254         set_SOGO(ctrl);
1255         wait_for_ctrl_irq(ctrl);
1256
1257         ctrl->speed = adapter_speed;
1258         slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1259
1260         info("Successfully changed frequency/mode for adapter in slot %d\n", 
1261                         slot->number);
1262         return 0;
1263 }
1264
1265 /* the following routines constitute the bulk of the 
1266    hotplug controller logic
1267  */
1268
1269
1270 /**
1271  * board_replaced - Called after a board has been replaced in the system.
1272  *
1273  * This is only used if we don't have resources for hot add
1274  * Turns power on for the board
1275  * Checks to see if board is the same
1276  * If board is same, reconfigures it
1277  * If board isn't same, turns it back off.
1278  *
1279  */
1280 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1281 {
1282         u8 hp_slot;
1283         u8 temp_byte;
1284         u8 adapter_speed;
1285         u32 rc = 0;
1286
1287         hp_slot = func->device - ctrl->slot_device_offset;
1288
1289         if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
1290                 /**********************************
1291                  * The switch is open.
1292                  **********************************/
1293                 rc = INTERLOCK_OPEN;
1294         } else if (is_slot_enabled (ctrl, hp_slot)) {
1295                 /**********************************
1296                  * The board is already on
1297                  **********************************/
1298                 rc = CARD_FUNCTIONING;
1299         } else {
1300                 mutex_lock(&ctrl->crit_sect);
1301
1302                 /* turn on board without attaching to the bus */
1303                 enable_slot_power (ctrl, hp_slot);
1304
1305                 set_SOGO(ctrl);
1306
1307                 /* Wait for SOBS to be unset */
1308                 wait_for_ctrl_irq (ctrl);
1309
1310                 /* Change bits in slot power register to force another shift out
1311                  * NOTE: this is to work around the timer bug */
1312                 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1313                 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1314                 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1315
1316                 set_SOGO(ctrl);
1317
1318                 /* Wait for SOBS to be unset */
1319                 wait_for_ctrl_irq (ctrl);
1320                 
1321                 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1322                 if (ctrl->speed != adapter_speed)
1323                         if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1324                                 rc = WRONG_BUS_FREQUENCY;
1325
1326                 /* turn off board without attaching to the bus */
1327                 disable_slot_power (ctrl, hp_slot);
1328
1329                 set_SOGO(ctrl);
1330
1331                 /* Wait for SOBS to be unset */
1332                 wait_for_ctrl_irq (ctrl);
1333
1334                 mutex_unlock(&ctrl->crit_sect);
1335
1336                 if (rc)
1337                         return rc;
1338
1339                 mutex_lock(&ctrl->crit_sect);
1340
1341                 slot_enable (ctrl, hp_slot);
1342                 green_LED_blink (ctrl, hp_slot);
1343
1344                 amber_LED_off (ctrl, hp_slot);
1345
1346                 set_SOGO(ctrl);
1347
1348                 /* Wait for SOBS to be unset */
1349                 wait_for_ctrl_irq (ctrl);
1350
1351                 mutex_unlock(&ctrl->crit_sect);
1352
1353                 /* Wait for ~1 second because of hot plug spec */
1354                 long_delay(1*HZ);
1355
1356                 /* Check for a power fault */
1357                 if (func->status == 0xFF) {
1358                         /* power fault occurred, but it was benign */
1359                         rc = POWER_FAILURE;
1360                         func->status = 0;
1361                 } else
1362                         rc = cpqhp_valid_replace(ctrl, func);
1363
1364                 if (!rc) {
1365                         /* It must be the same board */
1366
1367                         rc = cpqhp_configure_board(ctrl, func);
1368
1369                         /* If configuration fails, turn it off
1370                          * Get slot won't work for devices behind
1371                          * bridges, but in this case it will always be
1372                          * called for the "base" bus/dev/func of an
1373                          * adapter. */
1374
1375                         mutex_lock(&ctrl->crit_sect);
1376
1377                         amber_LED_on (ctrl, hp_slot);
1378                         green_LED_off (ctrl, hp_slot);
1379                         slot_disable (ctrl, hp_slot);
1380
1381                         set_SOGO(ctrl);
1382
1383                         /* Wait for SOBS to be unset */
1384                         wait_for_ctrl_irq (ctrl);
1385
1386                         mutex_unlock(&ctrl->crit_sect);
1387
1388                         if (rc)
1389                                 return rc;
1390                         else
1391                                 return 1;
1392
1393                 } else {
1394                         /* Something is wrong
1395
1396                          * Get slot won't work for devices behind bridges, but
1397                          * in this case it will always be called for the "base"
1398                          * bus/dev/func of an adapter. */
1399
1400                         mutex_lock(&ctrl->crit_sect);
1401
1402                         amber_LED_on (ctrl, hp_slot);
1403                         green_LED_off (ctrl, hp_slot);
1404                         slot_disable (ctrl, hp_slot);
1405
1406                         set_SOGO(ctrl);
1407
1408                         /* Wait for SOBS to be unset */
1409                         wait_for_ctrl_irq (ctrl);
1410
1411                         mutex_unlock(&ctrl->crit_sect);
1412                 }
1413
1414         }
1415         return rc;
1416
1417 }
1418
1419
1420 /**
1421  * board_added - Called after a board has been added to the system.
1422  *
1423  * Turns power on for the board
1424  * Configures board
1425  *
1426  */
1427 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1428 {
1429         u8 hp_slot;
1430         u8 temp_byte;
1431         u8 adapter_speed;
1432         int index;
1433         u32 temp_register = 0xFFFFFFFF;
1434         u32 rc = 0;
1435         struct pci_func *new_slot = NULL;
1436         struct slot *p_slot;
1437         struct resource_lists res_lists;
1438
1439         hp_slot = func->device - ctrl->slot_device_offset;
1440         dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1441             __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot);
1442
1443         mutex_lock(&ctrl->crit_sect);
1444
1445         /* turn on board without attaching to the bus */
1446         enable_slot_power(ctrl, hp_slot);
1447
1448         set_SOGO(ctrl);
1449
1450         /* Wait for SOBS to be unset */
1451         wait_for_ctrl_irq (ctrl);
1452
1453         /* Change bits in slot power register to force another shift out
1454          * NOTE: this is to work around the timer bug */
1455         temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1456         writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1457         writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1458
1459         set_SOGO(ctrl);
1460
1461         /* Wait for SOBS to be unset */
1462         wait_for_ctrl_irq (ctrl);
1463         
1464         adapter_speed = get_adapter_speed(ctrl, hp_slot);
1465         if (ctrl->speed != adapter_speed)
1466                 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1467                         rc = WRONG_BUS_FREQUENCY;
1468         
1469         /* turn off board without attaching to the bus */
1470         disable_slot_power (ctrl, hp_slot);
1471
1472         set_SOGO(ctrl);
1473
1474         /* Wait for SOBS to be unset */
1475         wait_for_ctrl_irq(ctrl);
1476
1477         mutex_unlock(&ctrl->crit_sect);
1478
1479         if (rc)
1480                 return rc;
1481         
1482         p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1483
1484         /* turn on board and blink green LED */
1485
1486         dbg("%s: before down\n", __FUNCTION__);
1487         mutex_lock(&ctrl->crit_sect);
1488         dbg("%s: after down\n", __FUNCTION__);
1489
1490         dbg("%s: before slot_enable\n", __FUNCTION__);
1491         slot_enable (ctrl, hp_slot);
1492
1493         dbg("%s: before green_LED_blink\n", __FUNCTION__);
1494         green_LED_blink (ctrl, hp_slot);
1495
1496         dbg("%s: before amber_LED_blink\n", __FUNCTION__);
1497         amber_LED_off (ctrl, hp_slot);
1498
1499         dbg("%s: before set_SOGO\n", __FUNCTION__);
1500         set_SOGO(ctrl);
1501
1502         /* Wait for SOBS to be unset */
1503         dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__);
1504         wait_for_ctrl_irq (ctrl);
1505         dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__);
1506
1507         dbg("%s: before up\n", __FUNCTION__);
1508         mutex_unlock(&ctrl->crit_sect);
1509         dbg("%s: after up\n", __FUNCTION__);
1510
1511         /* Wait for ~1 second because of hot plug spec */
1512         dbg("%s: before long_delay\n", __FUNCTION__);
1513         long_delay(1*HZ);
1514         dbg("%s: after long_delay\n", __FUNCTION__);
1515
1516         dbg("%s: func status = %x\n", __FUNCTION__, func->status);
1517         /* Check for a power fault */
1518         if (func->status == 0xFF) {
1519                 /* power fault occurred, but it was benign */
1520                 temp_register = 0xFFFFFFFF;
1521                 dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register);
1522                 rc = POWER_FAILURE;
1523                 func->status = 0;
1524         } else {
1525                 /* Get vendor/device ID u32 */
1526                 ctrl->pci_bus->number = func->bus;
1527                 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1528                 dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__, rc);
1529                 dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register);
1530
1531                 if (rc != 0) {
1532                         /* Something's wrong here */
1533                         temp_register = 0xFFFFFFFF;
1534                         dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register);
1535                 }
1536                 /* Preset return code.  It will be changed later if things go okay. */
1537                 rc = NO_ADAPTER_PRESENT;
1538         }
1539
1540         /* All F's is an empty slot or an invalid board */
1541         if (temp_register != 0xFFFFFFFF) {        /* Check for a board in the slot */
1542                 res_lists.io_head = ctrl->io_head;
1543                 res_lists.mem_head = ctrl->mem_head;
1544                 res_lists.p_mem_head = ctrl->p_mem_head;
1545                 res_lists.bus_head = ctrl->bus_head;
1546                 res_lists.irqs = NULL;
1547
1548                 rc = configure_new_device(ctrl, func, 0, &res_lists);
1549
1550                 dbg("%s: back from configure_new_device\n", __FUNCTION__);
1551                 ctrl->io_head = res_lists.io_head;
1552                 ctrl->mem_head = res_lists.mem_head;
1553                 ctrl->p_mem_head = res_lists.p_mem_head;
1554                 ctrl->bus_head = res_lists.bus_head;
1555
1556                 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1557                 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1558                 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1559                 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1560
1561                 if (rc) {
1562                         mutex_lock(&ctrl->crit_sect);
1563
1564                         amber_LED_on (ctrl, hp_slot);
1565                         green_LED_off (ctrl, hp_slot);
1566                         slot_disable (ctrl, hp_slot);
1567
1568                         set_SOGO(ctrl);
1569
1570                         /* Wait for SOBS to be unset */
1571                         wait_for_ctrl_irq (ctrl);
1572
1573                         mutex_unlock(&ctrl->crit_sect);
1574                         return rc;
1575                 } else {
1576                         cpqhp_save_slot_config(ctrl, func);
1577                 }
1578
1579
1580                 func->status = 0;
1581                 func->switch_save = 0x10;
1582                 func->is_a_board = 0x01;
1583
1584                 /* next, we will instantiate the linux pci_dev structures (with
1585                  * appropriate driver notification, if already present) */
1586                 dbg("%s: configure linux pci_dev structure\n", __FUNCTION__);
1587                 index = 0;
1588                 do {
1589                         new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1590                         if (new_slot && !new_slot->pci_dev) {
1591                                 cpqhp_configure_device(ctrl, new_slot);
1592                         }
1593                 } while (new_slot);
1594
1595                 mutex_lock(&ctrl->crit_sect);
1596
1597                 green_LED_on (ctrl, hp_slot);
1598
1599                 set_SOGO(ctrl);
1600
1601                 /* Wait for SOBS to be unset */
1602                 wait_for_ctrl_irq (ctrl);
1603
1604                 mutex_unlock(&ctrl->crit_sect);
1605         } else {
1606                 mutex_lock(&ctrl->crit_sect);
1607
1608                 amber_LED_on (ctrl, hp_slot);
1609                 green_LED_off (ctrl, hp_slot);
1610                 slot_disable (ctrl, hp_slot);
1611
1612                 set_SOGO(ctrl);
1613
1614                 /* Wait for SOBS to be unset */
1615                 wait_for_ctrl_irq (ctrl);
1616
1617                 mutex_unlock(&ctrl->crit_sect);
1618
1619                 return rc;
1620         }
1621         return 0;
1622 }
1623
1624
1625 /**
1626  * remove_board - Turns off slot and LED's
1627  *
1628  */
1629 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1630 {
1631         int index;
1632         u8 skip = 0;
1633         u8 device;
1634         u8 hp_slot;
1635         u8 temp_byte;
1636         u32 rc;
1637         struct resource_lists res_lists;
1638         struct pci_func *temp_func;
1639
1640         if (cpqhp_unconfigure_device(func))
1641                 return 1;
1642
1643         device = func->device;
1644
1645         hp_slot = func->device - ctrl->slot_device_offset;
1646         dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot);
1647
1648         /* When we get here, it is safe to change base address registers.
1649          * We will attempt to save the base address register lengths */
1650         if (replace_flag || !ctrl->add_support)
1651                 rc = cpqhp_save_base_addr_length(ctrl, func);
1652         else if (!func->bus_head && !func->mem_head &&
1653                  !func->p_mem_head && !func->io_head) {
1654                 /* Here we check to see if we've saved any of the board's
1655                  * resources already.  If so, we'll skip the attempt to
1656                  * determine what's being used. */
1657                 index = 0;
1658                 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1659                 while (temp_func) {
1660                         if (temp_func->bus_head || temp_func->mem_head
1661                             || temp_func->p_mem_head || temp_func->io_head) {
1662                                 skip = 1;
1663                                 break;
1664                         }
1665                         temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1666                 }
1667
1668                 if (!skip)
1669                         rc = cpqhp_save_used_resources(ctrl, func);
1670         }
1671         /* Change status to shutdown */
1672         if (func->is_a_board)
1673                 func->status = 0x01;
1674         func->configured = 0;
1675
1676         mutex_lock(&ctrl->crit_sect);
1677
1678         green_LED_off (ctrl, hp_slot);
1679         slot_disable (ctrl, hp_slot);
1680
1681         set_SOGO(ctrl);
1682
1683         /* turn off SERR for slot */
1684         temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1685         temp_byte &= ~(0x01 << hp_slot);
1686         writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1687
1688         /* Wait for SOBS to be unset */
1689         wait_for_ctrl_irq (ctrl);
1690
1691         mutex_unlock(&ctrl->crit_sect);
1692
1693         if (!replace_flag && ctrl->add_support) {
1694                 while (func) {
1695                         res_lists.io_head = ctrl->io_head;
1696                         res_lists.mem_head = ctrl->mem_head;
1697                         res_lists.p_mem_head = ctrl->p_mem_head;
1698                         res_lists.bus_head = ctrl->bus_head;
1699
1700                         cpqhp_return_board_resources(func, &res_lists);
1701
1702                         ctrl->io_head = res_lists.io_head;
1703                         ctrl->mem_head = res_lists.mem_head;
1704                         ctrl->p_mem_head = res_lists.p_mem_head;
1705                         ctrl->bus_head = res_lists.bus_head;
1706
1707                         cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1708                         cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1709                         cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1710                         cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1711
1712                         if (is_bridge(func)) {
1713                                 bridge_slot_remove(func);
1714                         } else
1715                                 slot_remove(func);
1716
1717                         func = cpqhp_slot_find(ctrl->bus, device, 0);
1718                 }
1719
1720                 /* Setup slot structure with entry for empty slot */
1721                 func = cpqhp_slot_create(ctrl->bus);
1722
1723                 if (func == NULL)
1724                         return 1;
1725
1726                 func->bus = ctrl->bus;
1727                 func->device = device;
1728                 func->function = 0;
1729                 func->configured = 0;
1730                 func->switch_save = 0x10;
1731                 func->is_a_board = 0;
1732                 func->p_task_event = NULL;
1733         }
1734
1735         return 0;
1736 }
1737
1738 static void pushbutton_helper_thread(unsigned long data)
1739 {
1740         pushbutton_pending = data;
1741         up(&event_semaphore);
1742 }
1743
1744
1745 /* this is the main worker thread */
1746 static int event_thread(void* data)
1747 {
1748         struct controller *ctrl;
1749
1750         daemonize("phpd_event");
1751
1752         while (1) {
1753                 dbg("!!!!event_thread sleeping\n");
1754                 down_interruptible (&event_semaphore);
1755                 dbg("event_thread woken finished = %d\n", event_finished);
1756                 if (event_finished) break;
1757                 /* Do stuff here */
1758                 if (pushbutton_pending)
1759                         cpqhp_pushbutton_thread(pushbutton_pending);
1760                 else
1761                         for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1762                                 interrupt_event_handler(ctrl);
1763         }
1764         dbg("event_thread signals exit\n");
1765         up(&event_exit);
1766         return 0;
1767 }
1768
1769
1770 int cpqhp_event_start_thread(void)
1771 {
1772         int pid;
1773
1774         /* initialize our semaphores */
1775         init_MUTEX(&delay_sem);
1776         init_MUTEX_LOCKED(&event_semaphore);
1777         init_MUTEX_LOCKED(&event_exit);
1778         event_finished=0;
1779
1780         pid = kernel_thread(event_thread, NULL, 0);
1781         if (pid < 0) {
1782                 err ("Can't start up our event thread\n");
1783                 return -1;
1784         }
1785         dbg("Our event thread pid = %d\n", pid);
1786         return 0;
1787 }
1788
1789
1790 void cpqhp_event_stop_thread(void)
1791 {
1792         event_finished = 1;
1793         dbg("event_thread finish command given\n");
1794         up(&event_semaphore);
1795         dbg("wait for event_thread to exit\n");
1796         down(&event_exit);
1797 }
1798
1799
1800 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1801 {
1802         struct hotplug_slot_info *info;
1803         int result;
1804
1805         info = kmalloc(sizeof(*info), GFP_KERNEL);
1806         if (!info)
1807                 return -ENOMEM;
1808
1809         info->power_status = get_slot_enabled(ctrl, slot);
1810         info->attention_status = cpq_get_attention_status(ctrl, slot);
1811         info->latch_status = cpq_get_latch_status(ctrl, slot);
1812         info->adapter_status = get_presence_status(ctrl, slot);
1813         result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1814         kfree (info);
1815         return result;
1816 }
1817
1818 static void interrupt_event_handler(struct controller *ctrl)
1819 {
1820         int loop = 0;
1821         int change = 1;
1822         struct pci_func *func;
1823         u8 hp_slot;
1824         struct slot *p_slot;
1825
1826         while (change) {
1827                 change = 0;
1828
1829                 for (loop = 0; loop < 10; loop++) {
1830                         /* dbg("loop %d\n", loop); */
1831                         if (ctrl->event_queue[loop].event_type != 0) {
1832                                 hp_slot = ctrl->event_queue[loop].hp_slot;
1833
1834                                 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1835                                 if (!func)
1836                                         return;
1837
1838                                 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1839                                 if (!p_slot)
1840                                         return;
1841
1842                                 dbg("hp_slot %d, func %p, p_slot %p\n",
1843                                     hp_slot, func, p_slot);
1844
1845                                 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1846                                         dbg("button pressed\n");
1847                                 } else if (ctrl->event_queue[loop].event_type == 
1848                                            INT_BUTTON_CANCEL) {
1849                                         dbg("button cancel\n");
1850                                         del_timer(&p_slot->task_event);
1851
1852                                         mutex_lock(&ctrl->crit_sect);
1853
1854                                         if (p_slot->state == BLINKINGOFF_STATE) {
1855                                                 /* slot is on */
1856                                                 dbg("turn on green LED\n");
1857                                                 green_LED_on (ctrl, hp_slot);
1858                                         } else if (p_slot->state == BLINKINGON_STATE) {
1859                                                 /* slot is off */
1860                                                 dbg("turn off green LED\n");
1861                                                 green_LED_off (ctrl, hp_slot);
1862                                         }
1863
1864                                         info(msg_button_cancel, p_slot->number);
1865
1866                                         p_slot->state = STATIC_STATE;
1867
1868                                         amber_LED_off (ctrl, hp_slot);
1869
1870                                         set_SOGO(ctrl);
1871
1872                                         /* Wait for SOBS to be unset */
1873                                         wait_for_ctrl_irq (ctrl);
1874
1875                                         mutex_unlock(&ctrl->crit_sect);
1876                                 }
1877                                 /*** button Released (No action on press...) */
1878                                 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1879                                         dbg("button release\n");
1880
1881                                         if (is_slot_enabled (ctrl, hp_slot)) {
1882                                                 dbg("slot is on\n");
1883                                                 p_slot->state = BLINKINGOFF_STATE;
1884                                                 info(msg_button_off, p_slot->number);
1885                                         } else {
1886                                                 dbg("slot is off\n");
1887                                                 p_slot->state = BLINKINGON_STATE;
1888                                                 info(msg_button_on, p_slot->number);
1889                                         }
1890                                         mutex_lock(&ctrl->crit_sect);
1891                                         
1892                                         dbg("blink green LED and turn off amber\n");
1893                                         
1894                                         amber_LED_off (ctrl, hp_slot);
1895                                         green_LED_blink (ctrl, hp_slot);
1896                                         
1897                                         set_SOGO(ctrl);
1898
1899                                         /* Wait for SOBS to be unset */
1900                                         wait_for_ctrl_irq (ctrl);
1901
1902                                         mutex_unlock(&ctrl->crit_sect);
1903                                         init_timer(&p_slot->task_event);
1904                                         p_slot->hp_slot = hp_slot;
1905                                         p_slot->ctrl = ctrl;
1906 /*                                      p_slot->physical_slot = physical_slot; */
1907                                         p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1908                                         p_slot->task_event.function = pushbutton_helper_thread;
1909                                         p_slot->task_event.data = (u32) p_slot;
1910
1911                                         dbg("add_timer p_slot = %p\n", p_slot);
1912                                         add_timer(&p_slot->task_event);
1913                                 }
1914                                 /***********POWER FAULT */
1915                                 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1916                                         dbg("power fault\n");
1917                                 } else {
1918                                         /* refresh notification */
1919                                         if (p_slot)
1920                                                 update_slot_info(ctrl, p_slot);
1921                                 }
1922
1923                                 ctrl->event_queue[loop].event_type = 0;
1924
1925                                 change = 1;
1926                         }
1927                 }               /* End of FOR loop */
1928         }
1929
1930         return;
1931 }
1932
1933
1934 /**
1935  * cpqhp_pushbutton_thread
1936  *
1937  * Scheduled procedure to handle blocking stuff for the pushbuttons
1938  * Handles all pending events and exits.
1939  *
1940  */
1941 void cpqhp_pushbutton_thread(unsigned long slot)
1942 {
1943         u8 hp_slot;
1944         u8 device;
1945         struct pci_func *func;
1946         struct slot *p_slot = (struct slot *) slot;
1947         struct controller *ctrl = (struct controller *) p_slot->ctrl;
1948
1949         pushbutton_pending = 0;
1950         hp_slot = p_slot->hp_slot;
1951
1952         device = p_slot->device;
1953
1954         if (is_slot_enabled(ctrl, hp_slot)) {
1955                 p_slot->state = POWEROFF_STATE;
1956                 /* power Down board */
1957                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1958                 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1959                 if (!func) {
1960                         dbg("Error! func NULL in %s\n", __FUNCTION__);
1961                         return ;
1962                 }
1963
1964                 if (func != NULL && ctrl != NULL) {
1965                         if (cpqhp_process_SS(ctrl, func) != 0) {
1966                                 amber_LED_on (ctrl, hp_slot);
1967                                 green_LED_on (ctrl, hp_slot);
1968                                 
1969                                 set_SOGO(ctrl);
1970
1971                                 /* Wait for SOBS to be unset */
1972                                 wait_for_ctrl_irq (ctrl);
1973                         }
1974                 }
1975
1976                 p_slot->state = STATIC_STATE;
1977         } else {
1978                 p_slot->state = POWERON_STATE;
1979                 /* slot is off */
1980
1981                 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1982                 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1983                 if (!func) {
1984                         dbg("Error! func NULL in %s\n", __FUNCTION__);
1985                         return ;
1986                 }
1987
1988                 if (func != NULL && ctrl != NULL) {
1989                         if (cpqhp_process_SI(ctrl, func) != 0) {
1990                                 amber_LED_on(ctrl, hp_slot);
1991                                 green_LED_off(ctrl, hp_slot);
1992                                 
1993                                 set_SOGO(ctrl);
1994
1995                                 /* Wait for SOBS to be unset */
1996                                 wait_for_ctrl_irq (ctrl);
1997                         }
1998                 }
1999
2000                 p_slot->state = STATIC_STATE;
2001         }
2002
2003         return;
2004 }
2005
2006
2007 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
2008 {
2009         u8 device, hp_slot;
2010         u16 temp_word;
2011         u32 tempdword;
2012         int rc;
2013         struct slot* p_slot;
2014         int physical_slot = 0;
2015
2016         tempdword = 0;
2017
2018         device = func->device;
2019         hp_slot = device - ctrl->slot_device_offset;
2020         p_slot = cpqhp_find_slot(ctrl, device);
2021         if (p_slot)
2022                 physical_slot = p_slot->number;
2023
2024         /* Check to see if the interlock is closed */
2025         tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2026
2027         if (tempdword & (0x01 << hp_slot)) {
2028                 return 1;
2029         }
2030
2031         if (func->is_a_board) {
2032                 rc = board_replaced(func, ctrl);
2033         } else {
2034                 /* add board */
2035                 slot_remove(func);
2036
2037                 func = cpqhp_slot_create(ctrl->bus);
2038                 if (func == NULL)
2039                         return 1;
2040
2041                 func->bus = ctrl->bus;
2042                 func->device = device;
2043                 func->function = 0;
2044                 func->configured = 0;
2045                 func->is_a_board = 1;
2046
2047                 /* We have to save the presence info for these slots */
2048                 temp_word = ctrl->ctrl_int_comp >> 16;
2049                 func->presence_save = (temp_word >> hp_slot) & 0x01;
2050                 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2051
2052                 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2053                         func->switch_save = 0;
2054                 } else {
2055                         func->switch_save = 0x10;
2056                 }
2057
2058                 rc = board_added(func, ctrl);
2059                 if (rc) {
2060                         if (is_bridge(func)) {
2061                                 bridge_slot_remove(func);
2062                         } else
2063                                 slot_remove(func);
2064
2065                         /* Setup slot structure with entry for empty slot */
2066                         func = cpqhp_slot_create(ctrl->bus);
2067
2068                         if (func == NULL)
2069                                 return 1;
2070
2071                         func->bus = ctrl->bus;
2072                         func->device = device;
2073                         func->function = 0;
2074                         func->configured = 0;
2075                         func->is_a_board = 0;
2076
2077                         /* We have to save the presence info for these slots */
2078                         temp_word = ctrl->ctrl_int_comp >> 16;
2079                         func->presence_save = (temp_word >> hp_slot) & 0x01;
2080                         func->presence_save |=
2081                         (temp_word >> (hp_slot + 7)) & 0x02;
2082
2083                         if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2084                                 func->switch_save = 0;
2085                         } else {
2086                                 func->switch_save = 0x10;
2087                         }
2088                 }
2089         }
2090
2091         if (rc) {
2092                 dbg("%s: rc = %d\n", __FUNCTION__, rc);
2093         }
2094
2095         if (p_slot)
2096                 update_slot_info(ctrl, p_slot);
2097
2098         return rc;
2099 }
2100
2101
2102 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2103 {
2104         u8 device, class_code, header_type, BCR;
2105         u8 index = 0;
2106         u8 replace_flag;
2107         u32 rc = 0;
2108         unsigned int devfn;
2109         struct slot* p_slot;
2110         struct pci_bus *pci_bus = ctrl->pci_bus;
2111         int physical_slot=0;
2112
2113         device = func->device; 
2114         func = cpqhp_slot_find(ctrl->bus, device, index++);
2115         p_slot = cpqhp_find_slot(ctrl, device);
2116         if (p_slot) {
2117                 physical_slot = p_slot->number;
2118         }
2119
2120         /* Make sure there are no video controllers here */
2121         while (func && !rc) {
2122                 pci_bus->number = func->bus;
2123                 devfn = PCI_DEVFN(func->device, func->function);
2124
2125                 /* Check the Class Code */
2126                 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2127                 if (rc)
2128                         return rc;
2129
2130                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2131                         /* Display/Video adapter (not supported) */
2132                         rc = REMOVE_NOT_SUPPORTED;
2133                 } else {
2134                         /* See if it's a bridge */
2135                         rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2136                         if (rc)
2137                                 return rc;
2138
2139                         /* If it's a bridge, check the VGA Enable bit */
2140                         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2141                                 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2142                                 if (rc)
2143                                         return rc;
2144
2145                                 /* If the VGA Enable bit is set, remove isn't
2146                                  * supported */
2147                                 if (BCR & PCI_BRIDGE_CTL_VGA) {
2148                                         rc = REMOVE_NOT_SUPPORTED;
2149                                 }
2150                         }
2151                 }
2152
2153                 func = cpqhp_slot_find(ctrl->bus, device, index++);
2154         }
2155
2156         func = cpqhp_slot_find(ctrl->bus, device, 0);
2157         if ((func != NULL) && !rc) {
2158                 /* FIXME: Replace flag should be passed into process_SS */
2159                 replace_flag = !(ctrl->add_support);
2160                 rc = remove_board(func, replace_flag, ctrl);
2161         } else if (!rc) {
2162                 rc = 1;
2163         }
2164
2165         if (p_slot)
2166                 update_slot_info(ctrl, p_slot);
2167
2168         return rc;
2169 }
2170
2171 /**
2172  * switch_leds: switch the leds, go from one site to the other.
2173  * @ctrl: controller to use
2174  * @num_of_slots: number of slots to use
2175  * @direction: 1 to start from the left side, 0 to start right.
2176  */
2177 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2178                         u32 *work_LED, const int direction)
2179 {
2180         int loop;
2181
2182         for (loop = 0; loop < num_of_slots; loop++) {
2183                 if (direction)
2184                         *work_LED = *work_LED >> 1;
2185                 else
2186                         *work_LED = *work_LED << 1;
2187                 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2188
2189                 set_SOGO(ctrl);
2190
2191                 /* Wait for SOGO interrupt */
2192                 wait_for_ctrl_irq(ctrl);
2193
2194                 /* Get ready for next iteration */
2195                 long_delay((2*HZ)/10);
2196         }
2197 }
2198
2199 /**
2200  * hardware_test - runs hardware tests
2201  *
2202  * For hot plug ctrl folks to play with.
2203  * test_num is the number written to the "test" file in sysfs
2204  *
2205  */
2206 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2207 {
2208         u32 save_LED;
2209         u32 work_LED;
2210         int loop;
2211         int num_of_slots;
2212
2213         num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2214
2215         switch (test_num) {
2216                 case 1:
2217                         /* Do stuff here! */
2218
2219                         /* Do that funky LED thing */
2220                         /* so we can restore them later */
2221                         save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2222                         work_LED = 0x01010101;
2223                         switch_leds(ctrl, num_of_slots, &work_LED, 0);
2224                         switch_leds(ctrl, num_of_slots, &work_LED, 1);
2225                         switch_leds(ctrl, num_of_slots, &work_LED, 0);
2226                         switch_leds(ctrl, num_of_slots, &work_LED, 1);
2227
2228                         work_LED = 0x01010000;
2229                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2230                         switch_leds(ctrl, num_of_slots, &work_LED, 0);
2231                         switch_leds(ctrl, num_of_slots, &work_LED, 1);
2232                         work_LED = 0x00000101;
2233                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2234                         switch_leds(ctrl, num_of_slots, &work_LED, 0);
2235                         switch_leds(ctrl, num_of_slots, &work_LED, 1);
2236
2237                         work_LED = 0x01010000;
2238                         writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2239                         for (loop = 0; loop < num_of_slots; loop++) {
2240                                 set_SOGO(ctrl);
2241
2242                                 /* Wait for SOGO interrupt */
2243                                 wait_for_ctrl_irq (ctrl);
2244
2245                                 /* Get ready for next iteration */
2246                                 long_delay((3*HZ)/10);
2247                                 work_LED = work_LED >> 16;
2248                                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2249                                 
2250                                 set_SOGO(ctrl);
2251
2252                                 /* Wait for SOGO interrupt */
2253                                 wait_for_ctrl_irq (ctrl);
2254
2255                                 /* Get ready for next iteration */
2256                                 long_delay((3*HZ)/10);
2257                                 work_LED = work_LED << 16;
2258                                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2259                                 work_LED = work_LED << 1;
2260                                 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2261                         }
2262
2263                         /* put it back the way it was */
2264                         writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2265
2266                         set_SOGO(ctrl);
2267
2268                         /* Wait for SOBS to be unset */
2269                         wait_for_ctrl_irq (ctrl);
2270                         break;
2271                 case 2:
2272                         /* Do other stuff here! */
2273                         break;
2274                 case 3:
2275                         /* and more... */
2276                         break;
2277         }
2278         return 0;
2279 }
2280
2281
2282 /**
2283  * configure_new_device - Configures the PCI header information of one board.
2284  *
2285  * @ctrl: pointer to controller structure
2286  * @func: pointer to function structure
2287  * @behind_bridge: 1 if this is a recursive call, 0 if not
2288  * @resources: pointer to set of resource lists
2289  *
2290  * Returns 0 if success
2291  *
2292  */
2293 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2294                                  u8 behind_bridge, struct resource_lists * resources)
2295 {
2296         u8 temp_byte, function, max_functions, stop_it;
2297         int rc;
2298         u32 ID;
2299         struct pci_func *new_slot;
2300         int index;
2301
2302         new_slot = func;
2303
2304         dbg("%s\n", __FUNCTION__);
2305         /* Check for Multi-function device */
2306         ctrl->pci_bus->number = func->bus;
2307         rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2308         if (rc) {
2309                 dbg("%s: rc = %d\n", __FUNCTION__, rc);
2310                 return rc;
2311         }
2312
2313         if (temp_byte & 0x80)   /* Multi-function device */
2314                 max_functions = 8;
2315         else
2316                 max_functions = 1;
2317
2318         function = 0;
2319
2320         do {
2321                 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2322
2323                 if (rc) {
2324                         dbg("configure_new_function failed %d\n",rc);
2325                         index = 0;
2326
2327                         while (new_slot) {
2328                                 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2329
2330                                 if (new_slot)
2331                                         cpqhp_return_board_resources(new_slot, resources);
2332                         }
2333
2334                         return rc;
2335                 }
2336
2337                 function++;
2338
2339                 stop_it = 0;
2340
2341                 /* The following loop skips to the next present function
2342                  * and creates a board structure */
2343
2344                 while ((function < max_functions) && (!stop_it)) {
2345                         pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2346
2347                         if (ID == 0xFFFFFFFF) {   /* There's nothing there. */
2348                                 function++;
2349                         } else {  /* There's something there */
2350                                 /* Setup slot structure. */
2351                                 new_slot = cpqhp_slot_create(func->bus);
2352
2353                                 if (new_slot == NULL)
2354                                         return 1;
2355
2356                                 new_slot->bus = func->bus;
2357                                 new_slot->device = func->device;
2358                                 new_slot->function = function;
2359                                 new_slot->is_a_board = 1;
2360                                 new_slot->status = 0;
2361
2362                                 stop_it++;
2363                         }
2364                 }
2365
2366         } while (function < max_functions);
2367         dbg("returning from configure_new_device\n");
2368
2369         return 0;
2370 }
2371
2372
2373 /*
2374   Configuration logic that involves the hotplug data structures and 
2375   their bookkeeping
2376  */
2377
2378
2379 /**
2380  * configure_new_function - Configures the PCI header information of one device
2381  *
2382  * @ctrl: pointer to controller structure
2383  * @func: pointer to function structure
2384  * @behind_bridge: 1 if this is a recursive call, 0 if not
2385  * @resources: pointer to set of resource lists
2386  *
2387  * Calls itself recursively for bridged devices.
2388  * Returns 0 if success
2389  *
2390  */
2391 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2392                                    u8 behind_bridge,
2393                                    struct resource_lists *resources)
2394 {
2395         int cloop;
2396         u8 IRQ = 0;
2397         u8 temp_byte;
2398         u8 device;
2399         u8 class_code;
2400         u16 command;
2401         u16 temp_word;
2402         u32 temp_dword;
2403         u32 rc;
2404         u32 temp_register;
2405         u32 base;
2406         u32 ID;
2407         unsigned int devfn;
2408         struct pci_resource *mem_node;
2409         struct pci_resource *p_mem_node;
2410         struct pci_resource *io_node;
2411         struct pci_resource *bus_node;
2412         struct pci_resource *hold_mem_node;
2413         struct pci_resource *hold_p_mem_node;
2414         struct pci_resource *hold_IO_node;
2415         struct pci_resource *hold_bus_node;
2416         struct irq_mapping irqs;
2417         struct pci_func *new_slot;
2418         struct pci_bus *pci_bus;
2419         struct resource_lists temp_resources;
2420
2421         pci_bus = ctrl->pci_bus;
2422         pci_bus->number = func->bus;
2423         devfn = PCI_DEVFN(func->device, func->function);
2424
2425         /* Check for Bridge */
2426         rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2427         if (rc)
2428                 return rc;
2429
2430         if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
2431                 /* set Primary bus */
2432                 dbg("set Primary bus = %d\n", func->bus);
2433                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2434                 if (rc)
2435                         return rc;
2436
2437                 /* find range of busses to use */
2438                 dbg("find ranges of buses to use\n");
2439                 bus_node = get_max_resource(&(resources->bus_head), 1);
2440
2441                 /* If we don't have any busses to allocate, we can't continue */
2442                 if (!bus_node)
2443                         return -ENOMEM;
2444
2445                 /* set Secondary bus */
2446                 temp_byte = bus_node->base;
2447                 dbg("set Secondary bus = %d\n", bus_node->base);
2448                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2449                 if (rc)
2450                         return rc;
2451
2452                 /* set subordinate bus */
2453                 temp_byte = bus_node->base + bus_node->length - 1;
2454                 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2455                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2456                 if (rc)
2457                         return rc;
2458
2459                 /* set subordinate Latency Timer and base Latency Timer */
2460                 temp_byte = 0x40;
2461                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2462                 if (rc)
2463                         return rc;
2464                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2465                 if (rc)
2466                         return rc;
2467
2468                 /* set Cache Line size */
2469                 temp_byte = 0x08;
2470                 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2471                 if (rc)
2472                         return rc;
2473
2474                 /* Setup the IO, memory, and prefetchable windows */
2475                 io_node = get_max_resource(&(resources->io_head), 0x1000);
2476                 if (!io_node)
2477                         return -ENOMEM;
2478                 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2479                 if (!mem_node)
2480                         return -ENOMEM;
2481                 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2482                 if (!p_mem_node)
2483                         return -ENOMEM;
2484                 dbg("Setup the IO, memory, and prefetchable windows\n");
2485                 dbg("io_node\n");
2486                 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2487                                         io_node->length, io_node->next);
2488                 dbg("mem_node\n");
2489                 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2490                                         mem_node->length, mem_node->next);
2491                 dbg("p_mem_node\n");
2492                 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2493                                         p_mem_node->length, p_mem_node->next);
2494
2495                 /* set up the IRQ info */
2496                 if (!resources->irqs) {
2497                         irqs.barber_pole = 0;
2498                         irqs.interrupt[0] = 0;
2499                         irqs.interrupt[1] = 0;
2500                         irqs.interrupt[2] = 0;
2501                         irqs.interrupt[3] = 0;
2502                         irqs.valid_INT = 0;
2503                 } else {
2504                         irqs.barber_pole = resources->irqs->barber_pole;
2505                         irqs.interrupt[0] = resources->irqs->interrupt[0];
2506                         irqs.interrupt[1] = resources->irqs->interrupt[1];
2507                         irqs.interrupt[2] = resources->irqs->interrupt[2];
2508                         irqs.interrupt[3] = resources->irqs->interrupt[3];
2509                         irqs.valid_INT = resources->irqs->valid_INT;
2510                 }
2511
2512                 /* set up resource lists that are now aligned on top and bottom
2513                  * for anything behind the bridge. */
2514                 temp_resources.bus_head = bus_node;
2515                 temp_resources.io_head = io_node;
2516                 temp_resources.mem_head = mem_node;
2517                 temp_resources.p_mem_head = p_mem_node;
2518                 temp_resources.irqs = &irqs;
2519
2520                 /* Make copies of the nodes we are going to pass down so that
2521                  * if there is a problem,we can just use these to free resources */
2522                 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2523                 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2524                 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2525                 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2526
2527                 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2528                         kfree(hold_bus_node);
2529                         kfree(hold_IO_node);
2530                         kfree(hold_mem_node);
2531                         kfree(hold_p_mem_node);
2532
2533                         return 1;
2534                 }
2535
2536                 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2537
2538                 bus_node->base += 1;
2539                 bus_node->length -= 1;
2540                 bus_node->next = NULL;
2541
2542                 /* If we have IO resources copy them and fill in the bridge's
2543                  * IO range registers */
2544                 if (io_node) {
2545                         memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2546                         io_node->next = NULL;
2547
2548                         /* set IO base and Limit registers */
2549                         temp_byte = io_node->base >> 8;
2550                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2551
2552                         temp_byte = (io_node->base + io_node->length - 1) >> 8;
2553                         rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2554                 } else {
2555                         kfree(hold_IO_node);
2556                         hold_IO_node = NULL;
2557                 }
2558
2559                 /* If we have memory resources copy them and fill in the
2560                  * bridge's memory range registers.  Otherwise, fill in the
2561                  * range registers with values that disable them. */
2562                 if (mem_node) {
2563                         memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2564                         mem_node->next = NULL;
2565
2566                         /* set Mem base and Limit registers */
2567                         temp_word = mem_node->base >> 16;
2568                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2569
2570                         temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2571                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2572                 } else {
2573                         temp_word = 0xFFFF;
2574                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2575
2576                         temp_word = 0x0000;
2577                         rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2578
2579                         kfree(hold_mem_node);
2580                         hold_mem_node = NULL;
2581                 }
2582
2583                 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2584                 p_mem_node->next = NULL;
2585
2586                 /* set Pre Mem base and Limit registers */
2587                 temp_word = p_mem_node->base >> 16;
2588                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2589
2590                 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2591                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2592
2593                 /* Adjust this to compensate for extra adjustment in first loop */
2594                 irqs.barber_pole--;
2595
2596                 rc = 0;
2597
2598                 /* Here we actually find the devices and configure them */
2599                 for (device = 0; (device <= 0x1F) && !rc; device++) {
2600                         irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2601
2602                         ID = 0xFFFFFFFF;
2603                         pci_bus->number = hold_bus_node->base;
2604                         pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2605                         pci_bus->number = func->bus;
2606
2607                         if (ID != 0xFFFFFFFF) {   /*  device present */
2608                                 /* Setup slot structure. */
2609                                 new_slot = cpqhp_slot_create(hold_bus_node->base);
2610
2611                                 if (new_slot == NULL) {
2612                                         rc = -ENOMEM;
2613                                         continue;
2614                                 }
2615
2616                                 new_slot->bus = hold_bus_node->base;
2617                                 new_slot->device = device;
2618                                 new_slot->function = 0;
2619                                 new_slot->is_a_board = 1;
2620                                 new_slot->status = 0;
2621
2622                                 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2623                                 dbg("configure_new_device rc=0x%x\n",rc);
2624                         }       /* End of IF (device in slot?) */
2625                 }               /* End of FOR loop */
2626
2627                 if (rc)
2628                         goto free_and_out;
2629                 /* save the interrupt routing information */
2630                 if (resources->irqs) {
2631                         resources->irqs->interrupt[0] = irqs.interrupt[0];
2632                         resources->irqs->interrupt[1] = irqs.interrupt[1];
2633                         resources->irqs->interrupt[2] = irqs.interrupt[2];
2634                         resources->irqs->interrupt[3] = irqs.interrupt[3];
2635                         resources->irqs->valid_INT = irqs.valid_INT;
2636                 } else if (!behind_bridge) {
2637                         /* We need to hook up the interrupts here */
2638                         for (cloop = 0; cloop < 4; cloop++) {
2639                                 if (irqs.valid_INT & (0x01 << cloop)) {
2640                                         rc = cpqhp_set_irq(func->bus, func->device,
2641                                                            0x0A + cloop, irqs.interrupt[cloop]);
2642                                         if (rc)
2643                                                 goto free_and_out;
2644                                 }
2645                         }       /* end of for loop */
2646                 }
2647                 /* Return unused bus resources
2648                  * First use the temporary node to store information for
2649                  * the board */
2650                 if (hold_bus_node && bus_node && temp_resources.bus_head) {
2651                         hold_bus_node->length = bus_node->base - hold_bus_node->base;
2652
2653                         hold_bus_node->next = func->bus_head;
2654                         func->bus_head = hold_bus_node;
2655
2656                         temp_byte = temp_resources.bus_head->base - 1;
2657
2658                         /* set subordinate bus */
2659                         rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2660
2661                         if (temp_resources.bus_head->length == 0) {
2662                                 kfree(temp_resources.bus_head);
2663                                 temp_resources.bus_head = NULL;
2664                         } else {
2665                                 return_resource(&(resources->bus_head), temp_resources.bus_head);
2666                         }
2667                 }
2668
2669                 /* If we have IO space available and there is some left,
2670                  * return the unused portion */
2671                 if (hold_IO_node && temp_resources.io_head) {
2672                         io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2673                                                                &hold_IO_node, 0x1000);
2674
2675                         /* Check if we were able to split something off */
2676                         if (io_node) {
2677                                 hold_IO_node->base = io_node->base + io_node->length;
2678
2679                                 temp_byte = (hold_IO_node->base) >> 8;
2680                                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2681
2682                                 return_resource(&(resources->io_head), io_node);
2683                         }
2684
2685                         io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2686
2687                         /* Check if we were able to split something off */
2688                         if (io_node) {
2689                                 /* First use the temporary node to store
2690                                  * information for the board */
2691                                 hold_IO_node->length = io_node->base - hold_IO_node->base;
2692
2693                                 /* If we used any, add it to the board's list */
2694                                 if (hold_IO_node->length) {
2695                                         hold_IO_node->next = func->io_head;
2696                                         func->io_head = hold_IO_node;
2697
2698                                         temp_byte = (io_node->base - 1) >> 8;
2699                                         rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2700
2701                                         return_resource(&(resources->io_head), io_node);
2702                                 } else {
2703                                         /* it doesn't need any IO */
2704                                         temp_word = 0x0000;
2705                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2706
2707                                         return_resource(&(resources->io_head), io_node);
2708                                         kfree(hold_IO_node);
2709                                 }
2710                         } else {
2711                                 /* it used most of the range */
2712                                 hold_IO_node->next = func->io_head;
2713                                 func->io_head = hold_IO_node;
2714                         }
2715                 } else if (hold_IO_node) {
2716                         /* it used the whole range */
2717                         hold_IO_node->next = func->io_head;
2718                         func->io_head = hold_IO_node;
2719                 }
2720                 /* If we have memory space available and there is some left,
2721                  * return the unused portion */
2722                 if (hold_mem_node && temp_resources.mem_head) {
2723                         mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2724                                                                 &hold_mem_node, 0x100000);
2725
2726                         /* Check if we were able to split something off */
2727                         if (mem_node) {
2728                                 hold_mem_node->base = mem_node->base + mem_node->length;
2729
2730                                 temp_word = (hold_mem_node->base) >> 16;
2731                                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2732
2733                                 return_resource(&(resources->mem_head), mem_node);
2734                         }
2735
2736                         mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2737
2738                         /* Check if we were able to split something off */
2739                         if (mem_node) {
2740                                 /* First use the temporary node to store
2741                                  * information for the board */
2742                                 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2743
2744                                 if (hold_mem_node->length) {
2745                                         hold_mem_node->next = func->mem_head;
2746                                         func->mem_head = hold_mem_node;
2747
2748                                         /* configure end address */
2749                                         temp_word = (mem_node->base - 1) >> 16;
2750                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2751
2752                                         /* Return unused resources to the pool */
2753                                         return_resource(&(resources->mem_head), mem_node);
2754                                 } else {
2755                                         /* it doesn't need any Mem */
2756                                         temp_word = 0x0000;
2757                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2758
2759                                         return_resource(&(resources->mem_head), mem_node);
2760                                         kfree(hold_mem_node);
2761                                 }
2762                         } else {
2763                                 /* it used most of the range */
2764                                 hold_mem_node->next = func->mem_head;
2765                                 func->mem_head = hold_mem_node;
2766                         }
2767                 } else if (hold_mem_node) {
2768                         /* it used the whole range */
2769                         hold_mem_node->next = func->mem_head;
2770                         func->mem_head = hold_mem_node;
2771                 }
2772                 /* If we have prefetchable memory space available and there
2773                  * is some left at the end, return the unused portion */
2774                 if (hold_p_mem_node && temp_resources.p_mem_head) {
2775                         p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2776                                                                   &hold_p_mem_node, 0x100000);
2777
2778                         /* Check if we were able to split something off */
2779                         if (p_mem_node) {
2780                                 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2781
2782                                 temp_word = (hold_p_mem_node->base) >> 16;
2783                                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2784
2785                                 return_resource(&(resources->p_mem_head), p_mem_node);
2786                         }
2787
2788                         p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2789
2790                         /* Check if we were able to split something off */
2791                         if (p_mem_node) {
2792                                 /* First use the temporary node to store
2793                                  * information for the board */
2794                                 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2795
2796                                 /* If we used any, add it to the board's list */
2797                                 if (hold_p_mem_node->length) {
2798                                         hold_p_mem_node->next = func->p_mem_head;
2799                                         func->p_mem_head = hold_p_mem_node;
2800
2801                                         temp_word = (p_mem_node->base - 1) >> 16;
2802                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2803
2804                                         return_resource(&(resources->p_mem_head), p_mem_node);
2805                                 } else {
2806                                         /* it doesn't need any PMem */
2807                                         temp_word = 0x0000;
2808                                         rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2809
2810                                         return_resource(&(resources->p_mem_head), p_mem_node);
2811                                         kfree(hold_p_mem_node);
2812                                 }
2813                         } else {
2814                                 /* it used the most of the range */
2815                                 hold_p_mem_node->next = func->p_mem_head;
2816                                 func->p_mem_head = hold_p_mem_node;
2817                         }
2818                 } else if (hold_p_mem_node) {
2819                         /* it used the whole range */
2820                         hold_p_mem_node->next = func->p_mem_head;
2821                         func->p_mem_head = hold_p_mem_node;
2822                 }
2823                 /* We should be configuring an IRQ and the bridge's base address
2824                  * registers if it needs them.  Although we have never seen such
2825                  * a device */
2826
2827                 /* enable card */
2828                 command = 0x0157;       /* = PCI_COMMAND_IO |
2829                                          *   PCI_COMMAND_MEMORY |
2830                                          *   PCI_COMMAND_MASTER |
2831                                          *   PCI_COMMAND_INVALIDATE |
2832                                          *   PCI_COMMAND_PARITY |
2833                                          *   PCI_COMMAND_SERR */
2834                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2835
2836                 /* set Bridge Control Register */
2837                 command = 0x07;         /* = PCI_BRIDGE_CTL_PARITY |
2838                                          *   PCI_BRIDGE_CTL_SERR |
2839                                          *   PCI_BRIDGE_CTL_NO_ISA */
2840                 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2841         } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2842                 /* Standard device */
2843                 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2844
2845                 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2846                         /* Display (video) adapter (not supported) */
2847                         return DEVICE_TYPE_NOT_SUPPORTED;
2848                 }
2849                 /* Figure out IO and memory needs */
2850                 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2851                         temp_register = 0xFFFFFFFF;
2852
2853                         dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2854                         rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2855
2856                         rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2857                         dbg("CND: base = 0x%x\n", temp_register);
2858
2859                         if (temp_register) {      /* If this register is implemented */
2860                                 if ((temp_register & 0x03L) == 0x01) {
2861                                         /* Map IO */
2862
2863                                         /* set base = amount of IO space */
2864                                         base = temp_register & 0xFFFFFFFC;
2865                                         base = ~base + 1;
2866
2867                                         dbg("CND:      length = 0x%x\n", base);
2868                                         io_node = get_io_resource(&(resources->io_head), base);
2869                                         dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2870                                             io_node->base, io_node->length, io_node->next);
2871                                         dbg("func (%p) io_head (%p)\n", func, func->io_head);
2872
2873                                         /* allocate the resource to the board */
2874                                         if (io_node) {
2875                                                 base = io_node->base;
2876
2877                                                 io_node->next = func->io_head;
2878                                                 func->io_head = io_node;
2879                                         } else
2880                                                 return -ENOMEM;
2881                                 } else if ((temp_register & 0x0BL) == 0x08) {
2882                                         /* Map prefetchable memory */
2883                                         base = temp_register & 0xFFFFFFF0;
2884                                         base = ~base + 1;
2885
2886                                         dbg("CND:      length = 0x%x\n", base);
2887                                         p_mem_node = get_resource(&(resources->p_mem_head), base);
2888
2889                                         /* allocate the resource to the board */
2890                                         if (p_mem_node) {
2891                                                 base = p_mem_node->base;
2892
2893                                                 p_mem_node->next = func->p_mem_head;
2894                                                 func->p_mem_head = p_mem_node;
2895                                         } else
2896                                                 return -ENOMEM;
2897                                 } else if ((temp_register & 0x0BL) == 0x00) {
2898                                         /* Map memory */
2899                                         base = temp_register & 0xFFFFFFF0;
2900                                         base = ~base + 1;
2901
2902                                         dbg("CND:      length = 0x%x\n", base);
2903                                         mem_node = get_resource(&(resources->mem_head), base);
2904
2905                                         /* allocate the resource to the board */
2906                                         if (mem_node) {
2907                                                 base = mem_node->base;
2908
2909                                                 mem_node->next = func->mem_head;
2910                                                 func->mem_head = mem_node;
2911                                         } else
2912                                                 return -ENOMEM;
2913                                 } else if ((temp_register & 0x0BL) == 0x04) {
2914                                         /* Map memory */
2915                                         base = temp_register & 0xFFFFFFF0;
2916                                         base = ~base + 1;
2917
2918                                         dbg("CND:      length = 0x%x\n", base);
2919                                         mem_node = get_resource(&(resources->mem_head), base);
2920
2921                                         /* allocate the resource to the board */
2922                                         if (mem_node) {
2923                                                 base = mem_node->base;
2924
2925                                                 mem_node->next = func->mem_head;
2926                                                 func->mem_head = mem_node;
2927                                         } else
2928                                                 return -ENOMEM;
2929                                 } else if ((temp_register & 0x0BL) == 0x06) {
2930                                         /* Those bits are reserved, we can't handle this */
2931                                         return 1;
2932                                 } else {
2933                                         /* Requesting space below 1M */
2934                                         return NOT_ENOUGH_RESOURCES;
2935                                 }
2936
2937                                 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2938
2939                                 /* Check for 64-bit base */
2940                                 if ((temp_register & 0x07L) == 0x04) {
2941                                         cloop += 4;
2942
2943                                         /* Upper 32 bits of address always zero
2944                                          * on today's systems */
2945                                         /* FIXME this is probably not true on
2946                                          * Alpha and ia64??? */
2947                                         base = 0;
2948                                         rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2949                                 }
2950                         }
2951                 }               /* End of base register loop */
2952                 if (cpqhp_legacy_mode) {
2953                         /* Figure out which interrupt pin this function uses */
2954                         rc = pci_bus_read_config_byte (pci_bus, devfn, 
2955                                 PCI_INTERRUPT_PIN, &temp_byte);
2956
2957                         /* If this function needs an interrupt and we are behind
2958                          * a bridge and the pin is tied to something that's
2959                          * alread mapped, set this one the same */
2960                         if (temp_byte && resources->irqs && 
2961                             (resources->irqs->valid_INT & 
2962                              (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2963                                 /* We have to share with something already set up */
2964                                 IRQ = resources->irqs->interrupt[(temp_byte + 
2965                                         resources->irqs->barber_pole - 1) & 0x03];
2966                         } else {
2967                                 /* Program IRQ based on card type */
2968                                 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2969
2970                                 if (class_code == PCI_BASE_CLASS_STORAGE) {
2971                                         IRQ = cpqhp_disk_irq;
2972                                 } else {
2973                                         IRQ = cpqhp_nic_irq;
2974                                 }
2975                         }
2976
2977                         /* IRQ Line */
2978                         rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2979                 }
2980
2981                 if (!behind_bridge) {
2982                         rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ);
2983                         if (rc)
2984                                 return 1;
2985                 } else {
2986                         /* TBD - this code may also belong in the other clause
2987                          * of this If statement */
2988                         resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2989                         resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2990                 }
2991
2992                 /* Latency Timer */
2993                 temp_byte = 0x40;
2994                 rc = pci_bus_write_config_byte(pci_bus, devfn,
2995                                         PCI_LATENCY_TIMER, temp_byte);
2996
2997                 /* Cache Line size */
2998                 temp_byte = 0x08;
2999                 rc = pci_bus_write_config_byte(pci_bus, devfn,
3000                                         PCI_CACHE_LINE_SIZE, temp_byte);
3001
3002                 /* disable ROM base Address */
3003                 temp_dword = 0x00L;
3004                 rc = pci_bus_write_config_word(pci_bus, devfn,
3005                                         PCI_ROM_ADDRESS, temp_dword);
3006
3007                 /* enable card */
3008                 temp_word = 0x0157;     /* = PCI_COMMAND_IO |
3009                                          *   PCI_COMMAND_MEMORY |
3010                                          *   PCI_COMMAND_MASTER |
3011                                          *   PCI_COMMAND_INVALIDATE |
3012                                          *   PCI_COMMAND_PARITY |
3013                                          *   PCI_COMMAND_SERR */
3014                 rc = pci_bus_write_config_word (pci_bus, devfn,
3015                                         PCI_COMMAND, temp_word);
3016         } else {                /* End of Not-A-Bridge else */
3017                 /* It's some strange type of PCI adapter (Cardbus?) */
3018                 return DEVICE_TYPE_NOT_SUPPORTED;
3019         }
3020
3021         func->configured = 1;
3022
3023         return 0;
3024 free_and_out:
3025         cpqhp_destroy_resource_list (&temp_resources);
3026
3027         return_resource(&(resources-> bus_head), hold_bus_node);
3028         return_resource(&(resources-> io_head), hold_IO_node);
3029         return_resource(&(resources-> mem_head), hold_mem_node);
3030         return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3031         return rc;
3032 }