2 * Blackfin On-Chip Real Time Clock Driver
3 * Supports BF531/BF532/BF533/BF534/BF536/BF537
5 * Copyright 2004-2007 Analog Devices Inc.
7 * Enter bugs at http://blackfin.uclinux.org/
9 * Licensed under the GPL-2 or later.
12 /* The biggest issue we deal with in this driver is that register writes are
13 * synced to the RTC frequency of 1Hz. So if you write to a register and
14 * attempt to write again before the first write has completed, the new write
15 * is simply discarded. This can easily be troublesome if userspace disables
16 * one event (say periodic) and then right after enables an event (say alarm).
17 * Since all events are maintained in the same interrupt mask register, if
18 * we wrote to it to disable the first event and then wrote to it again to
19 * enable the second event, that second event would not be enabled as the
20 * write would be discarded and things quickly fall apart.
22 * To keep this delay from significantly degrading performance (we, in theory,
23 * would have to sleep for up to 1 second everytime we wanted to write a
24 * register), we only check the write pending status before we start to issue
25 * a new write. We bank on the idea that it doesnt matter when the sync
26 * happens so long as we don't attempt another write before it does. The only
27 * time userspace would take this penalty is when they try and do multiple
28 * operations right after another ... but in this case, they need to take the
29 * sync penalty, so we should be OK.
31 * Also note that the RTC_ISTAT register does not suffer this penalty; its
32 * writes to clear status registers complete immediately.
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/bcd.h>
38 #include <linux/rtc.h>
39 #include <linux/init.h>
40 #include <linux/platform_device.h>
41 #include <linux/seq_file.h>
42 #include <linux/interrupt.h>
43 #include <linux/spinlock.h>
44 #include <linux/delay.h>
46 #include <asm/blackfin.h>
48 #define stamp(fmt, args...) pr_debug("%s:%i: " fmt "\n", __FUNCTION__, __LINE__, ## args)
49 #define stampit() stamp("here i am")
52 struct rtc_device *rtc_dev;
53 struct rtc_time rtc_alarm;
57 /* Bit values for the ISTAT / ICTL registers */
58 #define RTC_ISTAT_WRITE_COMPLETE 0x8000
59 #define RTC_ISTAT_WRITE_PENDING 0x4000
60 #define RTC_ISTAT_ALARM_DAY 0x0040
61 #define RTC_ISTAT_24HR 0x0020
62 #define RTC_ISTAT_HOUR 0x0010
63 #define RTC_ISTAT_MIN 0x0008
64 #define RTC_ISTAT_SEC 0x0004
65 #define RTC_ISTAT_ALARM 0x0002
66 #define RTC_ISTAT_STOPWATCH 0x0001
68 /* Shift values for RTC_STAT register */
69 #define DAY_BITS_OFF 17
70 #define HOUR_BITS_OFF 12
71 #define MIN_BITS_OFF 6
72 #define SEC_BITS_OFF 0
74 /* Some helper functions to convert between the common RTC notion of time
75 * and the internal Blackfin notion that is stored in 32bits.
77 static inline u32 rtc_time_to_bfin(unsigned long now)
80 u32 min = (now % (60 * 60)) / 60;
81 u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
82 u32 days = (now / (60 * 60 * 24));
83 return (sec << SEC_BITS_OFF) +
84 (min << MIN_BITS_OFF) +
85 (hour << HOUR_BITS_OFF) +
86 (days << DAY_BITS_OFF);
88 static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
90 return (((rtc_bfin >> SEC_BITS_OFF) & 0x003F)) +
91 (((rtc_bfin >> MIN_BITS_OFF) & 0x003F) * 60) +
92 (((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
93 (((rtc_bfin >> DAY_BITS_OFF) & 0x7FFF) * 60 * 60 * 24);
95 static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
97 rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
100 /* Wait for the previous write to a RTC register to complete.
101 * Unfortunately, we can't sleep here as that introduces a race condition when
102 * turning on interrupt events. Consider this:
103 * - process sets alarm
104 * - process enables alarm
105 * - process sleeps while waiting for rtc write to sync
106 * - interrupt fires while process is sleeping
107 * - interrupt acks the event by writing to ISTAT
108 * - interrupt sets the WRITE PENDING bit
109 * - interrupt handler finishes
110 * - process wakes up, sees WRITE PENDING bit set, goes to sleep
111 * - interrupt fires while process is sleeping
112 * If anyone can point out the obvious solution here, i'm listening :). This
113 * shouldn't be an issue on an SMP or preempt system as this function should
114 * only be called with the rtc lock held.
116 static void rtc_bfin_sync_pending(void)
119 while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE)) {
120 if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
123 bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
126 static void rtc_bfin_reset(struct bfin_rtc *rtc)
128 /* Initialize the RTC. Enable pre-scaler to scale RTC clock
129 * to 1Hz and clear interrupt/status registers. */
130 spin_lock_irq(&rtc->lock);
131 rtc_bfin_sync_pending();
132 bfin_write_RTC_PREN(0x1);
133 bfin_write_RTC_ICTL(0);
134 bfin_write_RTC_SWCNT(0);
135 bfin_write_RTC_ALARM(0);
136 bfin_write_RTC_ISTAT(0xFFFF);
137 spin_unlock_irq(&rtc->lock);
140 static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
142 struct platform_device *pdev = to_platform_device(dev_id);
143 struct bfin_rtc *rtc = platform_get_drvdata(pdev);
144 unsigned long events = 0;
149 spin_lock_irq(&rtc->lock);
151 rtc_istat = bfin_read_RTC_ISTAT();
153 if (rtc_istat & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) {
154 bfin_write_RTC_ISTAT(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
155 events |= RTC_AF | RTC_IRQF;
158 if (rtc_istat & RTC_ISTAT_STOPWATCH) {
159 bfin_write_RTC_ISTAT(RTC_ISTAT_STOPWATCH);
160 events |= RTC_PF | RTC_IRQF;
161 bfin_write_RTC_SWCNT(rtc->rtc_dev->irq_freq);
164 if (rtc_istat & RTC_ISTAT_SEC) {
165 bfin_write_RTC_ISTAT(RTC_ISTAT_SEC);
166 events |= RTC_UF | RTC_IRQF;
169 rtc_update_irq(rtc->rtc_dev, 1, events);
171 spin_unlock_irq(&rtc->lock);
176 static int bfin_rtc_open(struct device *dev)
178 struct bfin_rtc *rtc = dev_get_drvdata(dev);
183 ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, IRQF_DISABLED, "rtc-bfin", dev);
185 dev_err(dev, "request RTC IRQ failed with %d\n", ret);
194 static void bfin_rtc_release(struct device *dev)
196 struct bfin_rtc *rtc = dev_get_drvdata(dev);
199 free_irq(IRQ_RTC, dev);
202 static int bfin_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
204 struct bfin_rtc *rtc = dev_get_drvdata(dev);
211 spin_lock_irq(&rtc->lock);
212 rtc_bfin_sync_pending();
213 bfin_write_RTC_ISTAT(RTC_ISTAT_STOPWATCH);
214 bfin_write_RTC_SWCNT(rtc->rtc_dev->irq_freq);
215 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | RTC_ISTAT_STOPWATCH);
216 spin_unlock_irq(&rtc->lock);
220 spin_lock_irq(&rtc->lock);
221 rtc_bfin_sync_pending();
222 bfin_write_RTC_SWCNT(0);
223 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & ~RTC_ISTAT_STOPWATCH);
224 spin_unlock_irq(&rtc->lock);
229 spin_lock_irq(&rtc->lock);
230 rtc_bfin_sync_pending();
231 bfin_write_RTC_ISTAT(RTC_ISTAT_SEC);
232 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | RTC_ISTAT_SEC);
233 spin_unlock_irq(&rtc->lock);
237 spin_lock_irq(&rtc->lock);
238 rtc_bfin_sync_pending();
239 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & ~RTC_ISTAT_SEC);
240 spin_unlock_irq(&rtc->lock);
244 unsigned long rtc_alarm;
250 spin_lock_irq(&rtc->lock);
252 rtc_bfin_sync_pending();
253 if (rtc->rtc_alarm.tm_yday == -1) {
255 rtc_bfin_to_tm(bfin_read_RTC_STAT(), &now);
256 now.tm_sec = rtc->rtc_alarm.tm_sec;
257 now.tm_min = rtc->rtc_alarm.tm_min;
258 now.tm_hour = rtc->rtc_alarm.tm_hour;
259 ret = rtc_tm_to_time(&now, &rtc_alarm);
260 which_alarm = RTC_ISTAT_ALARM;
262 ret = rtc_tm_to_time(&rtc->rtc_alarm, &rtc_alarm);
263 which_alarm = RTC_ISTAT_ALARM_DAY;
266 bfin_write_RTC_ISTAT(which_alarm);
267 bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
268 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | which_alarm);
271 spin_unlock_irq(&rtc->lock);
277 spin_lock_irq(&rtc->lock);
278 rtc_bfin_sync_pending();
279 bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & ~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
280 spin_unlock_irq(&rtc->lock);
287 static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
289 struct bfin_rtc *rtc = dev_get_drvdata(dev);
293 spin_lock_irq(&rtc->lock);
294 rtc_bfin_sync_pending();
295 rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);
296 spin_unlock_irq(&rtc->lock);
301 static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
303 struct bfin_rtc *rtc = dev_get_drvdata(dev);
309 spin_lock_irq(&rtc->lock);
311 ret = rtc_tm_to_time(tm, &now);
313 rtc_bfin_sync_pending();
314 bfin_write_RTC_STAT(rtc_time_to_bfin(now));
317 spin_unlock_irq(&rtc->lock);
322 static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
324 struct bfin_rtc *rtc = dev_get_drvdata(dev);
326 memcpy(&alrm->time, &rtc->rtc_alarm, sizeof(struct rtc_time));
327 alrm->pending = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
331 static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
333 struct bfin_rtc *rtc = dev_get_drvdata(dev);
335 memcpy(&rtc->rtc_alarm, &alrm->time, sizeof(struct rtc_time));
339 static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
341 #define yesno(x) (x ? "yes" : "no")
342 u16 ictl = bfin_read_RTC_ICTL();
344 seq_printf(seq, "alarm_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_ALARM));
345 seq_printf(seq, "wkalarm_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_ALARM_DAY));
346 seq_printf(seq, "seconds_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_SEC));
347 seq_printf(seq, "periodic_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_STOPWATCH));
349 seq_printf(seq, "RTC_STAT\t: 0x%08X\n", bfin_read_RTC_STAT());
350 seq_printf(seq, "RTC_ICTL\t: 0x%04X\n", bfin_read_RTC_ICTL());
351 seq_printf(seq, "RTC_ISTAT\t: 0x%04X\n", bfin_read_RTC_ISTAT());
352 seq_printf(seq, "RTC_SWCNT\t: 0x%04X\n", bfin_read_RTC_SWCNT());
353 seq_printf(seq, "RTC_ALARM\t: 0x%08X\n", bfin_read_RTC_ALARM());
354 seq_printf(seq, "RTC_PREN\t: 0x%04X\n", bfin_read_RTC_PREN());
359 static int bfin_irq_set_freq(struct device *dev, int freq)
361 struct bfin_rtc *rtc = dev_get_drvdata(dev);
363 rtc->rtc_dev->irq_freq = freq;
367 static struct rtc_class_ops bfin_rtc_ops = {
368 .open = bfin_rtc_open,
369 .release = bfin_rtc_release,
370 .ioctl = bfin_rtc_ioctl,
371 .read_time = bfin_rtc_read_time,
372 .set_time = bfin_rtc_set_time,
373 .read_alarm = bfin_rtc_read_alarm,
374 .set_alarm = bfin_rtc_set_alarm,
375 .proc = bfin_rtc_proc,
376 .irq_set_freq = bfin_irq_set_freq,
379 static int __devinit bfin_rtc_probe(struct platform_device *pdev)
381 struct bfin_rtc *rtc;
386 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
390 spin_lock_init(&rtc->lock);
392 rtc->rtc_dev = rtc_device_register(pdev->name, &pdev->dev, &bfin_rtc_ops, THIS_MODULE);
393 if (unlikely(IS_ERR(rtc))) {
394 ret = PTR_ERR(rtc->rtc_dev);
397 rtc->rtc_dev->irq_freq = 0;
398 rtc->rtc_dev->max_user_freq = (2 << 16); /* stopwatch is an unsigned 16 bit reg */
400 platform_set_drvdata(pdev, rtc);
409 static int __devexit bfin_rtc_remove(struct platform_device *pdev)
411 struct bfin_rtc *rtc = platform_get_drvdata(pdev);
413 rtc_device_unregister(rtc->rtc_dev);
414 platform_set_drvdata(pdev, NULL);
420 static struct platform_driver bfin_rtc_driver = {
423 .owner = THIS_MODULE,
425 .probe = bfin_rtc_probe,
426 .remove = __devexit_p(bfin_rtc_remove),
429 static int __init bfin_rtc_init(void)
432 return platform_driver_register(&bfin_rtc_driver);
435 static void __exit bfin_rtc_exit(void)
437 platform_driver_unregister(&bfin_rtc_driver);
440 module_init(bfin_rtc_init);
441 module_exit(bfin_rtc_exit);
443 MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
444 MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
445 MODULE_LICENSE("GPL");