Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61         int error = 0;
62
63         if (uptodate <= 0)
64                 error = uptodate ? uptodate : -EIO;
65
66         /*
67          * if failfast is set on a request, override number of sectors and
68          * complete the whole request right now
69          */
70         if (blk_noretry_request(rq) && error)
71                 nr_bytes = rq->hard_nr_sectors << 9;
72
73         if (!blk_fs_request(rq) && error && !rq->errors)
74                 rq->errors = -EIO;
75
76         /*
77          * decide whether to reenable DMA -- 3 is a random magic for now,
78          * if we DMA timeout more than 3 times, just stay in PIO
79          */
80         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81                 drive->state = 0;
82                 ide_dma_on(drive);
83         }
84
85         if (!__blk_end_request(rq, error, nr_bytes)) {
86                 if (dequeue)
87                         HWGROUP(drive)->rq = NULL;
88                 ret = 0;
89         }
90
91         return ret;
92 }
93
94 /**
95  *      ide_end_request         -       complete an IDE I/O
96  *      @drive: IDE device for the I/O
97  *      @uptodate:
98  *      @nr_sectors: number of sectors completed
99  *
100  *      This is our end_request wrapper function. We complete the I/O
101  *      update random number input and dequeue the request, which if
102  *      it was tagged may be out of order.
103  */
104
105 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106 {
107         unsigned int nr_bytes = nr_sectors << 9;
108         struct request *rq;
109         unsigned long flags;
110         int ret = 1;
111
112         /*
113          * room for locking improvements here, the calls below don't
114          * need the queue lock held at all
115          */
116         spin_lock_irqsave(&ide_lock, flags);
117         rq = HWGROUP(drive)->rq;
118
119         if (!nr_bytes) {
120                 if (blk_pc_request(rq))
121                         nr_bytes = rq->data_len;
122                 else
123                         nr_bytes = rq->hard_cur_sectors << 9;
124         }
125
126         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
127
128         spin_unlock_irqrestore(&ide_lock, flags);
129         return ret;
130 }
131 EXPORT_SYMBOL(ide_end_request);
132
133 /*
134  * Power Management state machine. This one is rather trivial for now,
135  * we should probably add more, like switching back to PIO on suspend
136  * to help some BIOSes, re-do the door locking on resume, etc...
137  */
138
139 enum {
140         ide_pm_flush_cache      = ide_pm_state_start_suspend,
141         idedisk_pm_standby,
142
143         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
144         idedisk_pm_idle,
145         ide_pm_restore_dma,
146 };
147
148 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149 {
150         struct request_pm_state *pm = rq->data;
151
152         if (drive->media != ide_disk)
153                 return;
154
155         switch (pm->pm_step) {
156         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
157                 if (pm->pm_state == PM_EVENT_FREEZE)
158                         pm->pm_step = ide_pm_state_completed;
159                 else
160                         pm->pm_step = idedisk_pm_standby;
161                 break;
162         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
163                 pm->pm_step = ide_pm_state_completed;
164                 break;
165         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
166                 pm->pm_step = idedisk_pm_idle;
167                 break;
168         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
169                 pm->pm_step = ide_pm_restore_dma;
170                 break;
171         }
172 }
173
174 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175 {
176         struct request_pm_state *pm = rq->data;
177         ide_task_t *args = rq->special;
178
179         memset(args, 0, sizeof(*args));
180
181         switch (pm->pm_step) {
182         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
183                 if (drive->media != ide_disk)
184                         break;
185                 /* Not supported? Switch to next step now. */
186                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187                         ide_complete_power_step(drive, rq, 0, 0);
188                         return ide_stopped;
189                 }
190                 if (ide_id_has_flush_cache_ext(drive->id))
191                         args->tf.command = WIN_FLUSH_CACHE_EXT;
192                 else
193                         args->tf.command = WIN_FLUSH_CACHE;
194                 goto out_do_tf;
195
196         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
197                 args->tf.command = WIN_STANDBYNOW1;
198                 goto out_do_tf;
199
200         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
201                 ide_set_max_pio(drive);
202                 /*
203                  * skip idedisk_pm_idle for ATAPI devices
204                  */
205                 if (drive->media != ide_disk)
206                         pm->pm_step = ide_pm_restore_dma;
207                 else
208                         ide_complete_power_step(drive, rq, 0, 0);
209                 return ide_stopped;
210
211         case idedisk_pm_idle:           /* Resume step 2 (idle) */
212                 args->tf.command = WIN_IDLEIMMEDIATE;
213                 goto out_do_tf;
214
215         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
216                 /*
217                  * Right now, all we do is call ide_set_dma(drive),
218                  * we could be smarter and check for current xfer_speed
219                  * in struct drive etc...
220                  */
221                 if (drive->hwif->dma_ops == NULL)
222                         break;
223                 /*
224                  * TODO: respect ->using_dma setting
225                  */
226                 ide_set_dma(drive);
227                 break;
228         }
229         pm->pm_step = ide_pm_state_completed;
230         return ide_stopped;
231
232 out_do_tf:
233         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234         args->data_phase = TASKFILE_NO_DATA;
235         return do_rw_taskfile(drive, args);
236 }
237
238 /**
239  *      ide_end_dequeued_request        -       complete an IDE I/O
240  *      @drive: IDE device for the I/O
241  *      @uptodate:
242  *      @nr_sectors: number of sectors completed
243  *
244  *      Complete an I/O that is no longer on the request queue. This
245  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
246  *      We must still finish the old request but we must not tamper with the
247  *      queue in the meantime.
248  *
249  *      NOTE: This path does not handle barrier, but barrier is not supported
250  *      on ide-cd anyway.
251  */
252
253 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254                              int uptodate, int nr_sectors)
255 {
256         unsigned long flags;
257         int ret;
258
259         spin_lock_irqsave(&ide_lock, flags);
260         BUG_ON(!blk_rq_started(rq));
261         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262         spin_unlock_irqrestore(&ide_lock, flags);
263
264         return ret;
265 }
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
267
268
269 /**
270  *      ide_complete_pm_request - end the current Power Management request
271  *      @drive: target drive
272  *      @rq: request
273  *
274  *      This function cleans up the current PM request and stops the queue
275  *      if necessary.
276  */
277 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
278 {
279         unsigned long flags;
280
281 #ifdef DEBUG_PM
282         printk("%s: completing PM request, %s\n", drive->name,
283                blk_pm_suspend_request(rq) ? "suspend" : "resume");
284 #endif
285         spin_lock_irqsave(&ide_lock, flags);
286         if (blk_pm_suspend_request(rq)) {
287                 blk_stop_queue(drive->queue);
288         } else {
289                 drive->blocked = 0;
290                 blk_start_queue(drive->queue);
291         }
292         HWGROUP(drive)->rq = NULL;
293         if (__blk_end_request(rq, 0, 0))
294                 BUG();
295         spin_unlock_irqrestore(&ide_lock, flags);
296 }
297
298 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
299 {
300         ide_hwif_t *hwif = drive->hwif;
301         struct ide_taskfile *tf = &task->tf;
302
303         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
304                 u16 data = hwif->INW(hwif->io_ports[IDE_DATA_OFFSET]);
305
306                 tf->data = data & 0xff;
307                 tf->hob_data = (data >> 8) & 0xff;
308         }
309
310         /* be sure we're looking at the low order bits */
311         hwif->OUTB(drive->ctl & ~0x80, hwif->io_ports[IDE_CONTROL_OFFSET]);
312
313         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
314                 tf->nsect  = hwif->INB(hwif->io_ports[IDE_NSECTOR_OFFSET]);
315         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
316                 tf->lbal   = hwif->INB(hwif->io_ports[IDE_SECTOR_OFFSET]);
317         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
318                 tf->lbam   = hwif->INB(hwif->io_ports[IDE_LCYL_OFFSET]);
319         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
320                 tf->lbah   = hwif->INB(hwif->io_ports[IDE_HCYL_OFFSET]);
321         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
322                 tf->device = hwif->INB(hwif->io_ports[IDE_SELECT_OFFSET]);
323
324         if (task->tf_flags & IDE_TFLAG_LBA48) {
325                 hwif->OUTB(drive->ctl | 0x80,
326                            hwif->io_ports[IDE_CONTROL_OFFSET]);
327
328                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329                         tf->hob_feature =
330                                 hwif->INB(hwif->io_ports[IDE_FEATURE_OFFSET]);
331                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
332                         tf->hob_nsect   =
333                                 hwif->INB(hwif->io_ports[IDE_NSECTOR_OFFSET]);
334                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
335                         tf->hob_lbal    =
336                                 hwif->INB(hwif->io_ports[IDE_SECTOR_OFFSET]);
337                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
338                         tf->hob_lbam    =
339                                 hwif->INB(hwif->io_ports[IDE_LCYL_OFFSET]);
340                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
341                         tf->hob_lbah    =
342                                 hwif->INB(hwif->io_ports[IDE_HCYL_OFFSET]);
343         }
344 }
345
346 /**
347  *      ide_end_drive_cmd       -       end an explicit drive command
348  *      @drive: command 
349  *      @stat: status bits
350  *      @err: error bits
351  *
352  *      Clean up after success/failure of an explicit drive command.
353  *      These get thrown onto the queue so they are synchronized with
354  *      real I/O operations on the drive.
355  *
356  *      In LBA48 mode we have to read the register set twice to get
357  *      all the extra information out.
358  */
359  
360 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
361 {
362         unsigned long flags;
363         struct request *rq;
364
365         spin_lock_irqsave(&ide_lock, flags);
366         rq = HWGROUP(drive)->rq;
367         spin_unlock_irqrestore(&ide_lock, flags);
368
369         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
370                 ide_task_t *task = (ide_task_t *)rq->special;
371
372                 if (rq->errors == 0)
373                         rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
374
375                 if (task) {
376                         struct ide_taskfile *tf = &task->tf;
377
378                         tf->error = err;
379                         tf->status = stat;
380
381                         ide_tf_read(drive, task);
382
383                         if (task->tf_flags & IDE_TFLAG_DYN)
384                                 kfree(task);
385                 }
386         } else if (blk_pm_request(rq)) {
387                 struct request_pm_state *pm = rq->data;
388 #ifdef DEBUG_PM
389                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
390                         drive->name, rq->pm->pm_step, stat, err);
391 #endif
392                 ide_complete_power_step(drive, rq, stat, err);
393                 if (pm->pm_step == ide_pm_state_completed)
394                         ide_complete_pm_request(drive, rq);
395                 return;
396         }
397
398         spin_lock_irqsave(&ide_lock, flags);
399         HWGROUP(drive)->rq = NULL;
400         rq->errors = err;
401         if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
402                                        blk_rq_bytes(rq))))
403                 BUG();
404         spin_unlock_irqrestore(&ide_lock, flags);
405 }
406
407 EXPORT_SYMBOL(ide_end_drive_cmd);
408
409 /**
410  *      try_to_flush_leftover_data      -       flush junk
411  *      @drive: drive to flush
412  *
413  *      try_to_flush_leftover_data() is invoked in response to a drive
414  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
415  *      resetting the drive, this routine tries to clear the condition
416  *      by read a sector's worth of data from the drive.  Of course,
417  *      this may not help if the drive is *waiting* for data from *us*.
418  */
419 static void try_to_flush_leftover_data (ide_drive_t *drive)
420 {
421         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
422
423         if (drive->media != ide_disk)
424                 return;
425         while (i > 0) {
426                 u32 buffer[16];
427                 u32 wcount = (i > 16) ? 16 : i;
428
429                 i -= wcount;
430                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
431         }
432 }
433
434 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
435 {
436         if (rq->rq_disk) {
437                 ide_driver_t *drv;
438
439                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
440                 drv->end_request(drive, 0, 0);
441         } else
442                 ide_end_request(drive, 0, 0);
443 }
444
445 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
446 {
447         ide_hwif_t *hwif = drive->hwif;
448
449         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
450                 /* other bits are useless when BUSY */
451                 rq->errors |= ERROR_RESET;
452         } else if (stat & ERR_STAT) {
453                 /* err has different meaning on cdrom and tape */
454                 if (err == ABRT_ERR) {
455                         if (drive->select.b.lba &&
456                             /* some newer drives don't support WIN_SPECIFY */
457                             hwif->INB(hwif->io_ports[IDE_COMMAND_OFFSET]) ==
458                                 WIN_SPECIFY)
459                                 return ide_stopped;
460                 } else if ((err & BAD_CRC) == BAD_CRC) {
461                         /* UDMA crc error, just retry the operation */
462                         drive->crc_count++;
463                 } else if (err & (BBD_ERR | ECC_ERR)) {
464                         /* retries won't help these */
465                         rq->errors = ERROR_MAX;
466                 } else if (err & TRK0_ERR) {
467                         /* help it find track zero */
468                         rq->errors |= ERROR_RECAL;
469                 }
470         }
471
472         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
473             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
474                 try_to_flush_leftover_data(drive);
475
476         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
477                 ide_kill_rq(drive, rq);
478                 return ide_stopped;
479         }
480
481         if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
482                 rq->errors |= ERROR_RESET;
483
484         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
485                 ++rq->errors;
486                 return ide_do_reset(drive);
487         }
488
489         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
490                 drive->special.b.recalibrate = 1;
491
492         ++rq->errors;
493
494         return ide_stopped;
495 }
496
497 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
498 {
499         ide_hwif_t *hwif = drive->hwif;
500
501         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
502                 /* other bits are useless when BUSY */
503                 rq->errors |= ERROR_RESET;
504         } else {
505                 /* add decoding error stuff */
506         }
507
508         if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
509                 /* force an abort */
510                 hwif->OUTB(WIN_IDLEIMMEDIATE,
511                            hwif->io_ports[IDE_COMMAND_OFFSET]);
512
513         if (rq->errors >= ERROR_MAX) {
514                 ide_kill_rq(drive, rq);
515         } else {
516                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
517                         ++rq->errors;
518                         return ide_do_reset(drive);
519                 }
520                 ++rq->errors;
521         }
522
523         return ide_stopped;
524 }
525
526 ide_startstop_t
527 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
528 {
529         if (drive->media == ide_disk)
530                 return ide_ata_error(drive, rq, stat, err);
531         return ide_atapi_error(drive, rq, stat, err);
532 }
533
534 EXPORT_SYMBOL_GPL(__ide_error);
535
536 /**
537  *      ide_error       -       handle an error on the IDE
538  *      @drive: drive the error occurred on
539  *      @msg: message to report
540  *      @stat: status bits
541  *
542  *      ide_error() takes action based on the error returned by the drive.
543  *      For normal I/O that may well include retries. We deal with
544  *      both new-style (taskfile) and old style command handling here.
545  *      In the case of taskfile command handling there is work left to
546  *      do
547  */
548  
549 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
550 {
551         struct request *rq;
552         u8 err;
553
554         err = ide_dump_status(drive, msg, stat);
555
556         if ((rq = HWGROUP(drive)->rq) == NULL)
557                 return ide_stopped;
558
559         /* retry only "normal" I/O: */
560         if (!blk_fs_request(rq)) {
561                 rq->errors = 1;
562                 ide_end_drive_cmd(drive, stat, err);
563                 return ide_stopped;
564         }
565
566         if (rq->rq_disk) {
567                 ide_driver_t *drv;
568
569                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
570                 return drv->error(drive, rq, stat, err);
571         } else
572                 return __ide_error(drive, rq, stat, err);
573 }
574
575 EXPORT_SYMBOL_GPL(ide_error);
576
577 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
578 {
579         if (drive->media != ide_disk)
580                 rq->errors |= ERROR_RESET;
581
582         ide_kill_rq(drive, rq);
583
584         return ide_stopped;
585 }
586
587 EXPORT_SYMBOL_GPL(__ide_abort);
588
589 /**
590  *      ide_abort       -       abort pending IDE operations
591  *      @drive: drive the error occurred on
592  *      @msg: message to report
593  *
594  *      ide_abort kills and cleans up when we are about to do a 
595  *      host initiated reset on active commands. Longer term we
596  *      want handlers to have sensible abort handling themselves
597  *
598  *      This differs fundamentally from ide_error because in 
599  *      this case the command is doing just fine when we
600  *      blow it away.
601  */
602  
603 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
604 {
605         struct request *rq;
606
607         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
608                 return ide_stopped;
609
610         /* retry only "normal" I/O: */
611         if (!blk_fs_request(rq)) {
612                 rq->errors = 1;
613                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
614                 return ide_stopped;
615         }
616
617         if (rq->rq_disk) {
618                 ide_driver_t *drv;
619
620                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
621                 return drv->abort(drive, rq);
622         } else
623                 return __ide_abort(drive, rq);
624 }
625
626 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
627 {
628         tf->nsect   = drive->sect;
629         tf->lbal    = drive->sect;
630         tf->lbam    = drive->cyl;
631         tf->lbah    = drive->cyl >> 8;
632         tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
633         tf->command = WIN_SPECIFY;
634 }
635
636 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
637 {
638         tf->nsect   = drive->sect;
639         tf->command = WIN_RESTORE;
640 }
641
642 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
643 {
644         tf->nsect   = drive->mult_req;
645         tf->command = WIN_SETMULT;
646 }
647
648 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
649 {
650         special_t *s = &drive->special;
651         ide_task_t args;
652
653         memset(&args, 0, sizeof(ide_task_t));
654         args.data_phase = TASKFILE_NO_DATA;
655
656         if (s->b.set_geometry) {
657                 s->b.set_geometry = 0;
658                 ide_tf_set_specify_cmd(drive, &args.tf);
659         } else if (s->b.recalibrate) {
660                 s->b.recalibrate = 0;
661                 ide_tf_set_restore_cmd(drive, &args.tf);
662         } else if (s->b.set_multmode) {
663                 s->b.set_multmode = 0;
664                 if (drive->mult_req > drive->id->max_multsect)
665                         drive->mult_req = drive->id->max_multsect;
666                 ide_tf_set_setmult_cmd(drive, &args.tf);
667         } else if (s->all) {
668                 int special = s->all;
669                 s->all = 0;
670                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
671                 return ide_stopped;
672         }
673
674         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
675                         IDE_TFLAG_CUSTOM_HANDLER;
676
677         do_rw_taskfile(drive, &args);
678
679         return ide_started;
680 }
681
682 /*
683  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
684  */
685 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
686 {
687         switch (req_pio) {
688         case 202:
689         case 201:
690         case 200:
691         case 102:
692         case 101:
693         case 100:
694                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
695         case 9:
696         case 8:
697                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
698         case 7:
699         case 6:
700                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
701         default:
702                 return 0;
703         }
704 }
705
706 /**
707  *      do_special              -       issue some special commands
708  *      @drive: drive the command is for
709  *
710  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
711  *      commands to a drive.  It used to do much more, but has been scaled
712  *      back.
713  */
714
715 static ide_startstop_t do_special (ide_drive_t *drive)
716 {
717         special_t *s = &drive->special;
718
719 #ifdef DEBUG
720         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
721 #endif
722         if (s->b.set_tune) {
723                 ide_hwif_t *hwif = drive->hwif;
724                 const struct ide_port_ops *port_ops = hwif->port_ops;
725                 u8 req_pio = drive->tune_req;
726
727                 s->b.set_tune = 0;
728
729                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
730                         /*
731                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
732                          */
733                         if (req_pio == 8 || req_pio == 9) {
734                                 unsigned long flags;
735
736                                 spin_lock_irqsave(&ide_lock, flags);
737                                 port_ops->set_pio_mode(drive, req_pio);
738                                 spin_unlock_irqrestore(&ide_lock, flags);
739                         } else
740                                 port_ops->set_pio_mode(drive, req_pio);
741                 } else {
742                         int keep_dma = drive->using_dma;
743
744                         ide_set_pio(drive, req_pio);
745
746                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
747                                 if (keep_dma)
748                                         ide_dma_on(drive);
749                         }
750                 }
751
752                 return ide_stopped;
753         } else {
754                 if (drive->media == ide_disk)
755                         return ide_disk_special(drive);
756
757                 s->all = 0;
758                 drive->mult_req = 0;
759                 return ide_stopped;
760         }
761 }
762
763 void ide_map_sg(ide_drive_t *drive, struct request *rq)
764 {
765         ide_hwif_t *hwif = drive->hwif;
766         struct scatterlist *sg = hwif->sg_table;
767
768         if (hwif->sg_mapped)    /* needed by ide-scsi */
769                 return;
770
771         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
772                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
773         } else {
774                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
775                 hwif->sg_nents = 1;
776         }
777 }
778
779 EXPORT_SYMBOL_GPL(ide_map_sg);
780
781 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
782 {
783         ide_hwif_t *hwif = drive->hwif;
784
785         hwif->nsect = hwif->nleft = rq->nr_sectors;
786         hwif->cursg_ofs = 0;
787         hwif->cursg = NULL;
788 }
789
790 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
791
792 /**
793  *      execute_drive_command   -       issue special drive command
794  *      @drive: the drive to issue the command on
795  *      @rq: the request structure holding the command
796  *
797  *      execute_drive_cmd() issues a special drive command,  usually 
798  *      initiated by ioctl() from the external hdparm program. The
799  *      command can be a drive command, drive task or taskfile 
800  *      operation. Weirdly you can call it with NULL to wait for
801  *      all commands to finish. Don't do this as that is due to change
802  */
803
804 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
805                 struct request *rq)
806 {
807         ide_hwif_t *hwif = HWIF(drive);
808         ide_task_t *task = rq->special;
809
810         if (task) {
811                 hwif->data_phase = task->data_phase;
812
813                 switch (hwif->data_phase) {
814                 case TASKFILE_MULTI_OUT:
815                 case TASKFILE_OUT:
816                 case TASKFILE_MULTI_IN:
817                 case TASKFILE_IN:
818                         ide_init_sg_cmd(drive, rq);
819                         ide_map_sg(drive, rq);
820                 default:
821                         break;
822                 }
823
824                 return do_rw_taskfile(drive, task);
825         }
826
827         /*
828          * NULL is actually a valid way of waiting for
829          * all current requests to be flushed from the queue.
830          */
831 #ifdef DEBUG
832         printk("%s: DRIVE_CMD (null)\n", drive->name);
833 #endif
834         ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive));
835
836         return ide_stopped;
837 }
838
839 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
840 {
841         struct request_pm_state *pm = rq->data;
842
843         if (blk_pm_suspend_request(rq) &&
844             pm->pm_step == ide_pm_state_start_suspend)
845                 /* Mark drive blocked when starting the suspend sequence. */
846                 drive->blocked = 1;
847         else if (blk_pm_resume_request(rq) &&
848                  pm->pm_step == ide_pm_state_start_resume) {
849                 /* 
850                  * The first thing we do on wakeup is to wait for BSY bit to
851                  * go away (with a looong timeout) as a drive on this hwif may
852                  * just be POSTing itself.
853                  * We do that before even selecting as the "other" device on
854                  * the bus may be broken enough to walk on our toes at this
855                  * point.
856                  */
857                 int rc;
858 #ifdef DEBUG_PM
859                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
860 #endif
861                 rc = ide_wait_not_busy(HWIF(drive), 35000);
862                 if (rc)
863                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
864                 SELECT_DRIVE(drive);
865                 ide_set_irq(drive, 1);
866                 rc = ide_wait_not_busy(HWIF(drive), 100000);
867                 if (rc)
868                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
869         }
870 }
871
872 /**
873  *      start_request   -       start of I/O and command issuing for IDE
874  *
875  *      start_request() initiates handling of a new I/O request. It
876  *      accepts commands and I/O (read/write) requests. It also does
877  *      the final remapping for weird stuff like EZDrive. Once 
878  *      device mapper can work sector level the EZDrive stuff can go away
879  *
880  *      FIXME: this function needs a rename
881  */
882  
883 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
884 {
885         ide_startstop_t startstop;
886         sector_t block;
887
888         BUG_ON(!blk_rq_started(rq));
889
890 #ifdef DEBUG
891         printk("%s: start_request: current=0x%08lx\n",
892                 HWIF(drive)->name, (unsigned long) rq);
893 #endif
894
895         /* bail early if we've exceeded max_failures */
896         if (drive->max_failures && (drive->failures > drive->max_failures)) {
897                 rq->cmd_flags |= REQ_FAILED;
898                 goto kill_rq;
899         }
900
901         block    = rq->sector;
902         if (blk_fs_request(rq) &&
903             (drive->media == ide_disk || drive->media == ide_floppy)) {
904                 block += drive->sect0;
905         }
906         /* Yecch - this will shift the entire interval,
907            possibly killing some innocent following sector */
908         if (block == 0 && drive->remap_0_to_1 == 1)
909                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
910
911         if (blk_pm_request(rq))
912                 ide_check_pm_state(drive, rq);
913
914         SELECT_DRIVE(drive);
915         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
916                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
917                 return startstop;
918         }
919         if (!drive->special.all) {
920                 ide_driver_t *drv;
921
922                 /*
923                  * We reset the drive so we need to issue a SETFEATURES.
924                  * Do it _after_ do_special() restored device parameters.
925                  */
926                 if (drive->current_speed == 0xff)
927                         ide_config_drive_speed(drive, drive->desired_speed);
928
929                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
930                         return execute_drive_cmd(drive, rq);
931                 else if (blk_pm_request(rq)) {
932                         struct request_pm_state *pm = rq->data;
933 #ifdef DEBUG_PM
934                         printk("%s: start_power_step(step: %d)\n",
935                                 drive->name, rq->pm->pm_step);
936 #endif
937                         startstop = ide_start_power_step(drive, rq);
938                         if (startstop == ide_stopped &&
939                             pm->pm_step == ide_pm_state_completed)
940                                 ide_complete_pm_request(drive, rq);
941                         return startstop;
942                 }
943
944                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
945                 return drv->do_request(drive, rq, block);
946         }
947         return do_special(drive);
948 kill_rq:
949         ide_kill_rq(drive, rq);
950         return ide_stopped;
951 }
952
953 /**
954  *      ide_stall_queue         -       pause an IDE device
955  *      @drive: drive to stall
956  *      @timeout: time to stall for (jiffies)
957  *
958  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
959  *      to the hwgroup by sleeping for timeout jiffies.
960  */
961  
962 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
963 {
964         if (timeout > WAIT_WORSTCASE)
965                 timeout = WAIT_WORSTCASE;
966         drive->sleep = timeout + jiffies;
967         drive->sleeping = 1;
968 }
969
970 EXPORT_SYMBOL(ide_stall_queue);
971
972 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
973
974 /**
975  *      choose_drive            -       select a drive to service
976  *      @hwgroup: hardware group to select on
977  *
978  *      choose_drive() selects the next drive which will be serviced.
979  *      This is necessary because the IDE layer can't issue commands
980  *      to both drives on the same cable, unlike SCSI.
981  */
982  
983 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
984 {
985         ide_drive_t *drive, *best;
986
987 repeat: 
988         best = NULL;
989         drive = hwgroup->drive;
990
991         /*
992          * drive is doing pre-flush, ordered write, post-flush sequence. even
993          * though that is 3 requests, it must be seen as a single transaction.
994          * we must not preempt this drive until that is complete
995          */
996         if (blk_queue_flushing(drive->queue)) {
997                 /*
998                  * small race where queue could get replugged during
999                  * the 3-request flush cycle, just yank the plug since
1000                  * we want it to finish asap
1001                  */
1002                 blk_remove_plug(drive->queue);
1003                 return drive;
1004         }
1005
1006         do {
1007                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1008                     && !elv_queue_empty(drive->queue)) {
1009                         if (!best
1010                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1011                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1012                         {
1013                                 if (!blk_queue_plugged(drive->queue))
1014                                         best = drive;
1015                         }
1016                 }
1017         } while ((drive = drive->next) != hwgroup->drive);
1018         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1019                 long t = (signed long)(WAKEUP(best) - jiffies);
1020                 if (t >= WAIT_MIN_SLEEP) {
1021                 /*
1022                  * We *may* have some time to spare, but first let's see if
1023                  * someone can potentially benefit from our nice mood today..
1024                  */
1025                         drive = best->next;
1026                         do {
1027                                 if (!drive->sleeping
1028                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1029                                  && time_before(WAKEUP(drive), jiffies + t))
1030                                 {
1031                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1032                                         goto repeat;
1033                                 }
1034                         } while ((drive = drive->next) != best);
1035                 }
1036         }
1037         return best;
1038 }
1039
1040 /*
1041  * Issue a new request to a drive from hwgroup
1042  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1043  *
1044  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1045  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1046  * may have both interfaces in a single hwgroup to "serialize" access.
1047  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1048  * together into one hwgroup for serialized access.
1049  *
1050  * Note also that several hwgroups can end up sharing a single IRQ,
1051  * possibly along with many other devices.  This is especially common in
1052  * PCI-based systems with off-board IDE controller cards.
1053  *
1054  * The IDE driver uses the single global ide_lock spinlock to protect
1055  * access to the request queues, and to protect the hwgroup->busy flag.
1056  *
1057  * The first thread into the driver for a particular hwgroup sets the
1058  * hwgroup->busy flag to indicate that this hwgroup is now active,
1059  * and then initiates processing of the top request from the request queue.
1060  *
1061  * Other threads attempting entry notice the busy setting, and will simply
1062  * queue their new requests and exit immediately.  Note that hwgroup->busy
1063  * remains set even when the driver is merely awaiting the next interrupt.
1064  * Thus, the meaning is "this hwgroup is busy processing a request".
1065  *
1066  * When processing of a request completes, the completing thread or IRQ-handler
1067  * will start the next request from the queue.  If no more work remains,
1068  * the driver will clear the hwgroup->busy flag and exit.
1069  *
1070  * The ide_lock (spinlock) is used to protect all access to the
1071  * hwgroup->busy flag, but is otherwise not needed for most processing in
1072  * the driver.  This makes the driver much more friendlier to shared IRQs
1073  * than previous designs, while remaining 100% (?) SMP safe and capable.
1074  */
1075 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1076 {
1077         ide_drive_t     *drive;
1078         ide_hwif_t      *hwif;
1079         struct request  *rq;
1080         ide_startstop_t startstop;
1081         int             loops = 0;
1082
1083         /* for atari only: POSSIBLY BROKEN HERE(?) */
1084         ide_get_lock(ide_intr, hwgroup);
1085
1086         /* caller must own ide_lock */
1087         BUG_ON(!irqs_disabled());
1088
1089         while (!hwgroup->busy) {
1090                 hwgroup->busy = 1;
1091                 drive = choose_drive(hwgroup);
1092                 if (drive == NULL) {
1093                         int sleeping = 0;
1094                         unsigned long sleep = 0; /* shut up, gcc */
1095                         hwgroup->rq = NULL;
1096                         drive = hwgroup->drive;
1097                         do {
1098                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1099                                         sleeping = 1;
1100                                         sleep = drive->sleep;
1101                                 }
1102                         } while ((drive = drive->next) != hwgroup->drive);
1103                         if (sleeping) {
1104                 /*
1105                  * Take a short snooze, and then wake up this hwgroup again.
1106                  * This gives other hwgroups on the same a chance to
1107                  * play fairly with us, just in case there are big differences
1108                  * in relative throughputs.. don't want to hog the cpu too much.
1109                  */
1110                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1111                                         sleep = jiffies + WAIT_MIN_SLEEP;
1112 #if 1
1113                                 if (timer_pending(&hwgroup->timer))
1114                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1115 #endif
1116                                 /* so that ide_timer_expiry knows what to do */
1117                                 hwgroup->sleeping = 1;
1118                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1119                                 mod_timer(&hwgroup->timer, sleep);
1120                                 /* we purposely leave hwgroup->busy==1
1121                                  * while sleeping */
1122                         } else {
1123                                 /* Ugly, but how can we sleep for the lock
1124                                  * otherwise? perhaps from tq_disk?
1125                                  */
1126
1127                                 /* for atari only */
1128                                 ide_release_lock();
1129                                 hwgroup->busy = 0;
1130                         }
1131
1132                         /* no more work for this hwgroup (for now) */
1133                         return;
1134                 }
1135         again:
1136                 hwif = HWIF(drive);
1137                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1138                         /*
1139                          * set nIEN for previous hwif, drives in the
1140                          * quirk_list may not like intr setups/cleanups
1141                          */
1142                         if (drive->quirk_list != 1)
1143                                 ide_set_irq(drive, 0);
1144                 }
1145                 hwgroup->hwif = hwif;
1146                 hwgroup->drive = drive;
1147                 drive->sleeping = 0;
1148                 drive->service_start = jiffies;
1149
1150                 if (blk_queue_plugged(drive->queue)) {
1151                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1152                         break;
1153                 }
1154
1155                 /*
1156                  * we know that the queue isn't empty, but this can happen
1157                  * if the q->prep_rq_fn() decides to kill a request
1158                  */
1159                 rq = elv_next_request(drive->queue);
1160                 if (!rq) {
1161                         hwgroup->busy = 0;
1162                         break;
1163                 }
1164
1165                 /*
1166                  * Sanity: don't accept a request that isn't a PM request
1167                  * if we are currently power managed. This is very important as
1168                  * blk_stop_queue() doesn't prevent the elv_next_request()
1169                  * above to return us whatever is in the queue. Since we call
1170                  * ide_do_request() ourselves, we end up taking requests while
1171                  * the queue is blocked...
1172                  * 
1173                  * We let requests forced at head of queue with ide-preempt
1174                  * though. I hope that doesn't happen too much, hopefully not
1175                  * unless the subdriver triggers such a thing in its own PM
1176                  * state machine.
1177                  *
1178                  * We count how many times we loop here to make sure we service
1179                  * all drives in the hwgroup without looping for ever
1180                  */
1181                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1182                         drive = drive->next ? drive->next : hwgroup->drive;
1183                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1184                                 goto again;
1185                         /* We clear busy, there should be no pending ATA command at this point. */
1186                         hwgroup->busy = 0;
1187                         break;
1188                 }
1189
1190                 hwgroup->rq = rq;
1191
1192                 /*
1193                  * Some systems have trouble with IDE IRQs arriving while
1194                  * the driver is still setting things up.  So, here we disable
1195                  * the IRQ used by this interface while the request is being started.
1196                  * This may look bad at first, but pretty much the same thing
1197                  * happens anyway when any interrupt comes in, IDE or otherwise
1198                  *  -- the kernel masks the IRQ while it is being handled.
1199                  */
1200                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1201                         disable_irq_nosync(hwif->irq);
1202                 spin_unlock(&ide_lock);
1203                 local_irq_enable_in_hardirq();
1204                         /* allow other IRQs while we start this request */
1205                 startstop = start_request(drive, rq);
1206                 spin_lock_irq(&ide_lock);
1207                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1208                         enable_irq(hwif->irq);
1209                 if (startstop == ide_stopped)
1210                         hwgroup->busy = 0;
1211         }
1212 }
1213
1214 /*
1215  * Passes the stuff to ide_do_request
1216  */
1217 void do_ide_request(struct request_queue *q)
1218 {
1219         ide_drive_t *drive = q->queuedata;
1220
1221         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1222 }
1223
1224 /*
1225  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1226  * retry the current request in pio mode instead of risking tossing it
1227  * all away
1228  */
1229 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1230 {
1231         ide_hwif_t *hwif = HWIF(drive);
1232         struct request *rq;
1233         ide_startstop_t ret = ide_stopped;
1234
1235         /*
1236          * end current dma transaction
1237          */
1238
1239         if (error < 0) {
1240                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1241                 (void)hwif->dma_ops->dma_end(drive);
1242                 ret = ide_error(drive, "dma timeout error",
1243                                 ide_read_status(drive));
1244         } else {
1245                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1246                 hwif->dma_ops->dma_timeout(drive);
1247         }
1248
1249         /*
1250          * disable dma for now, but remember that we did so because of
1251          * a timeout -- we'll reenable after we finish this next request
1252          * (or rather the first chunk of it) in pio.
1253          */
1254         drive->retry_pio++;
1255         drive->state = DMA_PIO_RETRY;
1256         ide_dma_off_quietly(drive);
1257
1258         /*
1259          * un-busy drive etc (hwgroup->busy is cleared on return) and
1260          * make sure request is sane
1261          */
1262         rq = HWGROUP(drive)->rq;
1263
1264         if (!rq)
1265                 goto out;
1266
1267         HWGROUP(drive)->rq = NULL;
1268
1269         rq->errors = 0;
1270
1271         if (!rq->bio)
1272                 goto out;
1273
1274         rq->sector = rq->bio->bi_sector;
1275         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1276         rq->hard_cur_sectors = rq->current_nr_sectors;
1277         rq->buffer = bio_data(rq->bio);
1278 out:
1279         return ret;
1280 }
1281
1282 /**
1283  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1284  *      @data: timer callback magic (hwgroup)
1285  *
1286  *      An IDE command has timed out before the expected drive return
1287  *      occurred. At this point we attempt to clean up the current
1288  *      mess. If the current handler includes an expiry handler then
1289  *      we invoke the expiry handler, and providing it is happy the
1290  *      work is done. If that fails we apply generic recovery rules
1291  *      invoking the handler and checking the drive DMA status. We
1292  *      have an excessively incestuous relationship with the DMA
1293  *      logic that wants cleaning up.
1294  */
1295  
1296 void ide_timer_expiry (unsigned long data)
1297 {
1298         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1299         ide_handler_t   *handler;
1300         ide_expiry_t    *expiry;
1301         unsigned long   flags;
1302         unsigned long   wait = -1;
1303
1304         spin_lock_irqsave(&ide_lock, flags);
1305
1306         if (((handler = hwgroup->handler) == NULL) ||
1307             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1308                 /*
1309                  * Either a marginal timeout occurred
1310                  * (got the interrupt just as timer expired),
1311                  * or we were "sleeping" to give other devices a chance.
1312                  * Either way, we don't really want to complain about anything.
1313                  */
1314                 if (hwgroup->sleeping) {
1315                         hwgroup->sleeping = 0;
1316                         hwgroup->busy = 0;
1317                 }
1318         } else {
1319                 ide_drive_t *drive = hwgroup->drive;
1320                 if (!drive) {
1321                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1322                         hwgroup->handler = NULL;
1323                 } else {
1324                         ide_hwif_t *hwif;
1325                         ide_startstop_t startstop = ide_stopped;
1326                         if (!hwgroup->busy) {
1327                                 hwgroup->busy = 1;      /* paranoia */
1328                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1329                         }
1330                         if ((expiry = hwgroup->expiry) != NULL) {
1331                                 /* continue */
1332                                 if ((wait = expiry(drive)) > 0) {
1333                                         /* reset timer */
1334                                         hwgroup->timer.expires  = jiffies + wait;
1335                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1336                                         add_timer(&hwgroup->timer);
1337                                         spin_unlock_irqrestore(&ide_lock, flags);
1338                                         return;
1339                                 }
1340                         }
1341                         hwgroup->handler = NULL;
1342                         /*
1343                          * We need to simulate a real interrupt when invoking
1344                          * the handler() function, which means we need to
1345                          * globally mask the specific IRQ:
1346                          */
1347                         spin_unlock(&ide_lock);
1348                         hwif  = HWIF(drive);
1349                         /* disable_irq_nosync ?? */
1350                         disable_irq(hwif->irq);
1351                         /* local CPU only,
1352                          * as if we were handling an interrupt */
1353                         local_irq_disable();
1354                         if (hwgroup->polling) {
1355                                 startstop = handler(drive);
1356                         } else if (drive_is_ready(drive)) {
1357                                 if (drive->waiting_for_dma)
1358                                         hwif->dma_ops->dma_lost_irq(drive);
1359                                 (void)ide_ack_intr(hwif);
1360                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1361                                 startstop = handler(drive);
1362                         } else {
1363                                 if (drive->waiting_for_dma) {
1364                                         startstop = ide_dma_timeout_retry(drive, wait);
1365                                 } else
1366                                         startstop =
1367                                         ide_error(drive, "irq timeout",
1368                                                   ide_read_status(drive));
1369                         }
1370                         drive->service_time = jiffies - drive->service_start;
1371                         spin_lock_irq(&ide_lock);
1372                         enable_irq(hwif->irq);
1373                         if (startstop == ide_stopped)
1374                                 hwgroup->busy = 0;
1375                 }
1376         }
1377         ide_do_request(hwgroup, IDE_NO_IRQ);
1378         spin_unlock_irqrestore(&ide_lock, flags);
1379 }
1380
1381 /**
1382  *      unexpected_intr         -       handle an unexpected IDE interrupt
1383  *      @irq: interrupt line
1384  *      @hwgroup: hwgroup being processed
1385  *
1386  *      There's nothing really useful we can do with an unexpected interrupt,
1387  *      other than reading the status register (to clear it), and logging it.
1388  *      There should be no way that an irq can happen before we're ready for it,
1389  *      so we needn't worry much about losing an "important" interrupt here.
1390  *
1391  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1392  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1393  *      looks "good", we just ignore the interrupt completely.
1394  *
1395  *      This routine assumes __cli() is in effect when called.
1396  *
1397  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1398  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1399  *      we could screw up by interfering with a new request being set up for 
1400  *      irq15.
1401  *
1402  *      In reality, this is a non-issue.  The new command is not sent unless 
1403  *      the drive is ready to accept one, in which case we know the drive is
1404  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1405  *      before completing the issuance of any new drive command, so we will not
1406  *      be accidentally invoked as a result of any valid command completion
1407  *      interrupt.
1408  *
1409  *      Note that we must walk the entire hwgroup here. We know which hwif
1410  *      is doing the current command, but we don't know which hwif burped
1411  *      mysteriously.
1412  */
1413  
1414 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1415 {
1416         u8 stat;
1417         ide_hwif_t *hwif = hwgroup->hwif;
1418
1419         /*
1420          * handle the unexpected interrupt
1421          */
1422         do {
1423                 if (hwif->irq == irq) {
1424                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1425                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1426                                 /* Try to not flood the console with msgs */
1427                                 static unsigned long last_msgtime, count;
1428                                 ++count;
1429                                 if (time_after(jiffies, last_msgtime + HZ)) {
1430                                         last_msgtime = jiffies;
1431                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1432                                                 "status=0x%02x, count=%ld\n",
1433                                                 hwif->name,
1434                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1435                                 }
1436                         }
1437                 }
1438         } while ((hwif = hwif->next) != hwgroup->hwif);
1439 }
1440
1441 /**
1442  *      ide_intr        -       default IDE interrupt handler
1443  *      @irq: interrupt number
1444  *      @dev_id: hwif group
1445  *      @regs: unused weirdness from the kernel irq layer
1446  *
1447  *      This is the default IRQ handler for the IDE layer. You should
1448  *      not need to override it. If you do be aware it is subtle in
1449  *      places
1450  *
1451  *      hwgroup->hwif is the interface in the group currently performing
1452  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1453  *      the IRQ handler to call. As we issue a command the handlers
1454  *      step through multiple states, reassigning the handler to the
1455  *      next step in the process. Unlike a smart SCSI controller IDE
1456  *      expects the main processor to sequence the various transfer
1457  *      stages. We also manage a poll timer to catch up with most
1458  *      timeout situations. There are still a few where the handlers
1459  *      don't ever decide to give up.
1460  *
1461  *      The handler eventually returns ide_stopped to indicate the
1462  *      request completed. At this point we issue the next request
1463  *      on the hwgroup and the process begins again.
1464  */
1465  
1466 irqreturn_t ide_intr (int irq, void *dev_id)
1467 {
1468         unsigned long flags;
1469         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1470         ide_hwif_t *hwif;
1471         ide_drive_t *drive;
1472         ide_handler_t *handler;
1473         ide_startstop_t startstop;
1474
1475         spin_lock_irqsave(&ide_lock, flags);
1476         hwif = hwgroup->hwif;
1477
1478         if (!ide_ack_intr(hwif)) {
1479                 spin_unlock_irqrestore(&ide_lock, flags);
1480                 return IRQ_NONE;
1481         }
1482
1483         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1484                 /*
1485                  * Not expecting an interrupt from this drive.
1486                  * That means this could be:
1487                  *      (1) an interrupt from another PCI device
1488                  *      sharing the same PCI INT# as us.
1489                  * or   (2) a drive just entered sleep or standby mode,
1490                  *      and is interrupting to let us know.
1491                  * or   (3) a spurious interrupt of unknown origin.
1492                  *
1493                  * For PCI, we cannot tell the difference,
1494                  * so in that case we just ignore it and hope it goes away.
1495                  *
1496                  * FIXME: unexpected_intr should be hwif-> then we can
1497                  * remove all the ifdef PCI crap
1498                  */
1499 #ifdef CONFIG_BLK_DEV_IDEPCI
1500                 if (hwif->chipset != ide_pci)
1501 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1502                 {
1503                         /*
1504                          * Probably not a shared PCI interrupt,
1505                          * so we can safely try to do something about it:
1506                          */
1507                         unexpected_intr(irq, hwgroup);
1508 #ifdef CONFIG_BLK_DEV_IDEPCI
1509                 } else {
1510                         /*
1511                          * Whack the status register, just in case
1512                          * we have a leftover pending IRQ.
1513                          */
1514                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1515 #endif /* CONFIG_BLK_DEV_IDEPCI */
1516                 }
1517                 spin_unlock_irqrestore(&ide_lock, flags);
1518                 return IRQ_NONE;
1519         }
1520         drive = hwgroup->drive;
1521         if (!drive) {
1522                 /*
1523                  * This should NEVER happen, and there isn't much
1524                  * we could do about it here.
1525                  *
1526                  * [Note - this can occur if the drive is hot unplugged]
1527                  */
1528                 spin_unlock_irqrestore(&ide_lock, flags);
1529                 return IRQ_HANDLED;
1530         }
1531         if (!drive_is_ready(drive)) {
1532                 /*
1533                  * This happens regularly when we share a PCI IRQ with
1534                  * another device.  Unfortunately, it can also happen
1535                  * with some buggy drives that trigger the IRQ before
1536                  * their status register is up to date.  Hopefully we have
1537                  * enough advance overhead that the latter isn't a problem.
1538                  */
1539                 spin_unlock_irqrestore(&ide_lock, flags);
1540                 return IRQ_NONE;
1541         }
1542         if (!hwgroup->busy) {
1543                 hwgroup->busy = 1;      /* paranoia */
1544                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1545         }
1546         hwgroup->handler = NULL;
1547         hwgroup->req_gen++;
1548         del_timer(&hwgroup->timer);
1549         spin_unlock(&ide_lock);
1550
1551         /* Some controllers might set DMA INTR no matter DMA or PIO;
1552          * bmdma status might need to be cleared even for
1553          * PIO interrupts to prevent spurious/lost irq.
1554          */
1555         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1556                 /* ide_dma_end() needs bmdma status for error checking.
1557                  * So, skip clearing bmdma status here and leave it
1558                  * to ide_dma_end() if this is dma interrupt.
1559                  */
1560                 hwif->ide_dma_clear_irq(drive);
1561
1562         if (drive->unmask)
1563                 local_irq_enable_in_hardirq();
1564         /* service this interrupt, may set handler for next interrupt */
1565         startstop = handler(drive);
1566         spin_lock_irq(&ide_lock);
1567
1568         /*
1569          * Note that handler() may have set things up for another
1570          * interrupt to occur soon, but it cannot happen until
1571          * we exit from this routine, because it will be the
1572          * same irq as is currently being serviced here, and Linux
1573          * won't allow another of the same (on any CPU) until we return.
1574          */
1575         drive->service_time = jiffies - drive->service_start;
1576         if (startstop == ide_stopped) {
1577                 if (hwgroup->handler == NULL) { /* paranoia */
1578                         hwgroup->busy = 0;
1579                         ide_do_request(hwgroup, hwif->irq);
1580                 } else {
1581                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1582                                 "on exit\n", drive->name);
1583                 }
1584         }
1585         spin_unlock_irqrestore(&ide_lock, flags);
1586         return IRQ_HANDLED;
1587 }
1588
1589 /**
1590  *      ide_init_drive_cmd      -       initialize a drive command request
1591  *      @rq: request object
1592  *
1593  *      Initialize a request before we fill it in and send it down to
1594  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1595  *      now it doesn't do a lot, but if that changes abusers will have a
1596  *      nasty surprise.
1597  */
1598
1599 void ide_init_drive_cmd (struct request *rq)
1600 {
1601         memset(rq, 0, sizeof(*rq));
1602         rq->ref_count = 1;
1603 }
1604
1605 EXPORT_SYMBOL(ide_init_drive_cmd);
1606
1607 /**
1608  *      ide_do_drive_cmd        -       issue IDE special command
1609  *      @drive: device to issue command
1610  *      @rq: request to issue
1611  *      @action: action for processing
1612  *
1613  *      This function issues a special IDE device request
1614  *      onto the request queue.
1615  *
1616  *      If action is ide_wait, then the rq is queued at the end of the
1617  *      request queue, and the function sleeps until it has been processed.
1618  *      This is for use when invoked from an ioctl handler.
1619  *
1620  *      If action is ide_preempt, then the rq is queued at the head of
1621  *      the request queue, displacing the currently-being-processed
1622  *      request and this function returns immediately without waiting
1623  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1624  *      intended for careful use by the ATAPI tape/cdrom driver code.
1625  *
1626  *      If action is ide_end, then the rq is queued at the end of the
1627  *      request queue, and the function returns immediately without waiting
1628  *      for the new rq to be completed. This is again intended for careful
1629  *      use by the ATAPI tape/cdrom driver code.
1630  */
1631  
1632 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1633 {
1634         unsigned long flags;
1635         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1636         DECLARE_COMPLETION_ONSTACK(wait);
1637         int where = ELEVATOR_INSERT_BACK, err;
1638         int must_wait = (action == ide_wait || action == ide_head_wait);
1639
1640         rq->errors = 0;
1641
1642         /*
1643          * we need to hold an extra reference to request for safe inspection
1644          * after completion
1645          */
1646         if (must_wait) {
1647                 rq->ref_count++;
1648                 rq->end_io_data = &wait;
1649                 rq->end_io = blk_end_sync_rq;
1650         }
1651
1652         spin_lock_irqsave(&ide_lock, flags);
1653         if (action == ide_preempt)
1654                 hwgroup->rq = NULL;
1655         if (action == ide_preempt || action == ide_head_wait) {
1656                 where = ELEVATOR_INSERT_FRONT;
1657                 rq->cmd_flags |= REQ_PREEMPT;
1658         }
1659         __elv_add_request(drive->queue, rq, where, 0);
1660         ide_do_request(hwgroup, IDE_NO_IRQ);
1661         spin_unlock_irqrestore(&ide_lock, flags);
1662
1663         err = 0;
1664         if (must_wait) {
1665                 wait_for_completion(&wait);
1666                 if (rq->errors)
1667                         err = -EIO;
1668
1669                 blk_put_request(rq);
1670         }
1671
1672         return err;
1673 }
1674
1675 EXPORT_SYMBOL(ide_do_drive_cmd);
1676
1677 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1678 {
1679         ide_task_t task;
1680
1681         memset(&task, 0, sizeof(task));
1682         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1683                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1684         task.tf.feature = dma;          /* Use PIO/DMA */
1685         task.tf.lbam    = bcount & 0xff;
1686         task.tf.lbah    = (bcount >> 8) & 0xff;
1687
1688         ide_tf_load(drive, &task);
1689 }
1690
1691 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);