FS-Cache: Add the FS-Cache netfs API and documentation
[linux-2.6] / kernel / workqueue.c
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36
37 /*
38  * The per-CPU workqueue (if single thread, we always use the first
39  * possible cpu).
40  */
41 struct cpu_workqueue_struct {
42
43         spinlock_t lock;
44
45         struct list_head worklist;
46         wait_queue_head_t more_work;
47         struct work_struct *current_work;
48
49         struct workqueue_struct *wq;
50         struct task_struct *thread;
51 } ____cacheline_aligned;
52
53 /*
54  * The externally visible workqueue abstraction is an array of
55  * per-CPU workqueues:
56  */
57 struct workqueue_struct {
58         struct cpu_workqueue_struct *cpu_wq;
59         struct list_head list;
60         const char *name;
61         int singlethread;
62         int freezeable;         /* Freeze threads during suspend */
63         int rt;
64 #ifdef CONFIG_LOCKDEP
65         struct lockdep_map lockdep_map;
66 #endif
67 };
68
69 /* Serializes the accesses to the list of workqueues. */
70 static DEFINE_SPINLOCK(workqueue_lock);
71 static LIST_HEAD(workqueues);
72
73 static int singlethread_cpu __read_mostly;
74 static const struct cpumask *cpu_singlethread_map __read_mostly;
75 /*
76  * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
77  * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
78  * which comes in between can't use for_each_online_cpu(). We could
79  * use cpu_possible_map, the cpumask below is more a documentation
80  * than optimization.
81  */
82 static cpumask_var_t cpu_populated_map __read_mostly;
83
84 /* If it's single threaded, it isn't in the list of workqueues. */
85 static inline int is_wq_single_threaded(struct workqueue_struct *wq)
86 {
87         return wq->singlethread;
88 }
89
90 static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
91 {
92         return is_wq_single_threaded(wq)
93                 ? cpu_singlethread_map : cpu_populated_map;
94 }
95
96 static
97 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
98 {
99         if (unlikely(is_wq_single_threaded(wq)))
100                 cpu = singlethread_cpu;
101         return per_cpu_ptr(wq->cpu_wq, cpu);
102 }
103
104 /*
105  * Set the workqueue on which a work item is to be run
106  * - Must *only* be called if the pending flag is set
107  */
108 static inline void set_wq_data(struct work_struct *work,
109                                 struct cpu_workqueue_struct *cwq)
110 {
111         unsigned long new;
112
113         BUG_ON(!work_pending(work));
114
115         new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
116         new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
117         atomic_long_set(&work->data, new);
118 }
119
120 static inline
121 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
122 {
123         return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
124 }
125
126 static void insert_work(struct cpu_workqueue_struct *cwq,
127                         struct work_struct *work, struct list_head *head)
128 {
129         set_wq_data(work, cwq);
130         /*
131          * Ensure that we get the right work->data if we see the
132          * result of list_add() below, see try_to_grab_pending().
133          */
134         smp_wmb();
135         list_add_tail(&work->entry, head);
136         wake_up(&cwq->more_work);
137 }
138
139 static void __queue_work(struct cpu_workqueue_struct *cwq,
140                          struct work_struct *work)
141 {
142         unsigned long flags;
143
144         spin_lock_irqsave(&cwq->lock, flags);
145         insert_work(cwq, work, &cwq->worklist);
146         spin_unlock_irqrestore(&cwq->lock, flags);
147 }
148
149 /**
150  * queue_work - queue work on a workqueue
151  * @wq: workqueue to use
152  * @work: work to queue
153  *
154  * Returns 0 if @work was already on a queue, non-zero otherwise.
155  *
156  * We queue the work to the CPU on which it was submitted, but if the CPU dies
157  * it can be processed by another CPU.
158  */
159 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
160 {
161         int ret;
162
163         ret = queue_work_on(get_cpu(), wq, work);
164         put_cpu();
165
166         return ret;
167 }
168 EXPORT_SYMBOL_GPL(queue_work);
169
170 /**
171  * queue_work_on - queue work on specific cpu
172  * @cpu: CPU number to execute work on
173  * @wq: workqueue to use
174  * @work: work to queue
175  *
176  * Returns 0 if @work was already on a queue, non-zero otherwise.
177  *
178  * We queue the work to a specific CPU, the caller must ensure it
179  * can't go away.
180  */
181 int
182 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
183 {
184         int ret = 0;
185
186         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
187                 BUG_ON(!list_empty(&work->entry));
188                 __queue_work(wq_per_cpu(wq, cpu), work);
189                 ret = 1;
190         }
191         return ret;
192 }
193 EXPORT_SYMBOL_GPL(queue_work_on);
194
195 static void delayed_work_timer_fn(unsigned long __data)
196 {
197         struct delayed_work *dwork = (struct delayed_work *)__data;
198         struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
199         struct workqueue_struct *wq = cwq->wq;
200
201         __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
202 }
203
204 /**
205  * queue_delayed_work - queue work on a workqueue after delay
206  * @wq: workqueue to use
207  * @dwork: delayable work to queue
208  * @delay: number of jiffies to wait before queueing
209  *
210  * Returns 0 if @work was already on a queue, non-zero otherwise.
211  */
212 int queue_delayed_work(struct workqueue_struct *wq,
213                         struct delayed_work *dwork, unsigned long delay)
214 {
215         if (delay == 0)
216                 return queue_work(wq, &dwork->work);
217
218         return queue_delayed_work_on(-1, wq, dwork, delay);
219 }
220 EXPORT_SYMBOL_GPL(queue_delayed_work);
221
222 /**
223  * queue_delayed_work_on - queue work on specific CPU after delay
224  * @cpu: CPU number to execute work on
225  * @wq: workqueue to use
226  * @dwork: work to queue
227  * @delay: number of jiffies to wait before queueing
228  *
229  * Returns 0 if @work was already on a queue, non-zero otherwise.
230  */
231 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
232                         struct delayed_work *dwork, unsigned long delay)
233 {
234         int ret = 0;
235         struct timer_list *timer = &dwork->timer;
236         struct work_struct *work = &dwork->work;
237
238         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
239                 BUG_ON(timer_pending(timer));
240                 BUG_ON(!list_empty(&work->entry));
241
242                 timer_stats_timer_set_start_info(&dwork->timer);
243
244                 /* This stores cwq for the moment, for the timer_fn */
245                 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
246                 timer->expires = jiffies + delay;
247                 timer->data = (unsigned long)dwork;
248                 timer->function = delayed_work_timer_fn;
249
250                 if (unlikely(cpu >= 0))
251                         add_timer_on(timer, cpu);
252                 else
253                         add_timer(timer);
254                 ret = 1;
255         }
256         return ret;
257 }
258 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
259
260 static void run_workqueue(struct cpu_workqueue_struct *cwq)
261 {
262         spin_lock_irq(&cwq->lock);
263         while (!list_empty(&cwq->worklist)) {
264                 struct work_struct *work = list_entry(cwq->worklist.next,
265                                                 struct work_struct, entry);
266                 work_func_t f = work->func;
267 #ifdef CONFIG_LOCKDEP
268                 /*
269                  * It is permissible to free the struct work_struct
270                  * from inside the function that is called from it,
271                  * this we need to take into account for lockdep too.
272                  * To avoid bogus "held lock freed" warnings as well
273                  * as problems when looking into work->lockdep_map,
274                  * make a copy and use that here.
275                  */
276                 struct lockdep_map lockdep_map = work->lockdep_map;
277 #endif
278
279                 cwq->current_work = work;
280                 list_del_init(cwq->worklist.next);
281                 spin_unlock_irq(&cwq->lock);
282
283                 BUG_ON(get_wq_data(work) != cwq);
284                 work_clear_pending(work);
285                 lock_map_acquire(&cwq->wq->lockdep_map);
286                 lock_map_acquire(&lockdep_map);
287                 f(work);
288                 lock_map_release(&lockdep_map);
289                 lock_map_release(&cwq->wq->lockdep_map);
290
291                 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
292                         printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
293                                         "%s/0x%08x/%d\n",
294                                         current->comm, preempt_count(),
295                                         task_pid_nr(current));
296                         printk(KERN_ERR "    last function: ");
297                         print_symbol("%s\n", (unsigned long)f);
298                         debug_show_held_locks(current);
299                         dump_stack();
300                 }
301
302                 spin_lock_irq(&cwq->lock);
303                 cwq->current_work = NULL;
304         }
305         spin_unlock_irq(&cwq->lock);
306 }
307
308 static int worker_thread(void *__cwq)
309 {
310         struct cpu_workqueue_struct *cwq = __cwq;
311         DEFINE_WAIT(wait);
312
313         if (cwq->wq->freezeable)
314                 set_freezable();
315
316         set_user_nice(current, -5);
317
318         for (;;) {
319                 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
320                 if (!freezing(current) &&
321                     !kthread_should_stop() &&
322                     list_empty(&cwq->worklist))
323                         schedule();
324                 finish_wait(&cwq->more_work, &wait);
325
326                 try_to_freeze();
327
328                 if (kthread_should_stop())
329                         break;
330
331                 run_workqueue(cwq);
332         }
333
334         return 0;
335 }
336
337 struct wq_barrier {
338         struct work_struct      work;
339         struct completion       done;
340 };
341
342 static void wq_barrier_func(struct work_struct *work)
343 {
344         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
345         complete(&barr->done);
346 }
347
348 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
349                         struct wq_barrier *barr, struct list_head *head)
350 {
351         INIT_WORK(&barr->work, wq_barrier_func);
352         __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
353
354         init_completion(&barr->done);
355
356         insert_work(cwq, &barr->work, head);
357 }
358
359 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
360 {
361         int active = 0;
362         struct wq_barrier barr;
363
364         WARN_ON(cwq->thread == current);
365
366         spin_lock_irq(&cwq->lock);
367         if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
368                 insert_wq_barrier(cwq, &barr, &cwq->worklist);
369                 active = 1;
370         }
371         spin_unlock_irq(&cwq->lock);
372
373         if (active)
374                 wait_for_completion(&barr.done);
375
376         return active;
377 }
378
379 /**
380  * flush_workqueue - ensure that any scheduled work has run to completion.
381  * @wq: workqueue to flush
382  *
383  * Forces execution of the workqueue and blocks until its completion.
384  * This is typically used in driver shutdown handlers.
385  *
386  * We sleep until all works which were queued on entry have been handled,
387  * but we are not livelocked by new incoming ones.
388  *
389  * This function used to run the workqueues itself.  Now we just wait for the
390  * helper threads to do it.
391  */
392 void flush_workqueue(struct workqueue_struct *wq)
393 {
394         const struct cpumask *cpu_map = wq_cpu_map(wq);
395         int cpu;
396
397         might_sleep();
398         lock_map_acquire(&wq->lockdep_map);
399         lock_map_release(&wq->lockdep_map);
400         for_each_cpu(cpu, cpu_map)
401                 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
402 }
403 EXPORT_SYMBOL_GPL(flush_workqueue);
404
405 /**
406  * flush_work - block until a work_struct's callback has terminated
407  * @work: the work which is to be flushed
408  *
409  * Returns false if @work has already terminated.
410  *
411  * It is expected that, prior to calling flush_work(), the caller has
412  * arranged for the work to not be requeued, otherwise it doesn't make
413  * sense to use this function.
414  */
415 int flush_work(struct work_struct *work)
416 {
417         struct cpu_workqueue_struct *cwq;
418         struct list_head *prev;
419         struct wq_barrier barr;
420
421         might_sleep();
422         cwq = get_wq_data(work);
423         if (!cwq)
424                 return 0;
425
426         lock_map_acquire(&cwq->wq->lockdep_map);
427         lock_map_release(&cwq->wq->lockdep_map);
428
429         prev = NULL;
430         spin_lock_irq(&cwq->lock);
431         if (!list_empty(&work->entry)) {
432                 /*
433                  * See the comment near try_to_grab_pending()->smp_rmb().
434                  * If it was re-queued under us we are not going to wait.
435                  */
436                 smp_rmb();
437                 if (unlikely(cwq != get_wq_data(work)))
438                         goto out;
439                 prev = &work->entry;
440         } else {
441                 if (cwq->current_work != work)
442                         goto out;
443                 prev = &cwq->worklist;
444         }
445         insert_wq_barrier(cwq, &barr, prev->next);
446 out:
447         spin_unlock_irq(&cwq->lock);
448         if (!prev)
449                 return 0;
450
451         wait_for_completion(&barr.done);
452         return 1;
453 }
454 EXPORT_SYMBOL_GPL(flush_work);
455
456 /*
457  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
458  * so this work can't be re-armed in any way.
459  */
460 static int try_to_grab_pending(struct work_struct *work)
461 {
462         struct cpu_workqueue_struct *cwq;
463         int ret = -1;
464
465         if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
466                 return 0;
467
468         /*
469          * The queueing is in progress, or it is already queued. Try to
470          * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
471          */
472
473         cwq = get_wq_data(work);
474         if (!cwq)
475                 return ret;
476
477         spin_lock_irq(&cwq->lock);
478         if (!list_empty(&work->entry)) {
479                 /*
480                  * This work is queued, but perhaps we locked the wrong cwq.
481                  * In that case we must see the new value after rmb(), see
482                  * insert_work()->wmb().
483                  */
484                 smp_rmb();
485                 if (cwq == get_wq_data(work)) {
486                         list_del_init(&work->entry);
487                         ret = 1;
488                 }
489         }
490         spin_unlock_irq(&cwq->lock);
491
492         return ret;
493 }
494
495 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
496                                 struct work_struct *work)
497 {
498         struct wq_barrier barr;
499         int running = 0;
500
501         spin_lock_irq(&cwq->lock);
502         if (unlikely(cwq->current_work == work)) {
503                 insert_wq_barrier(cwq, &barr, cwq->worklist.next);
504                 running = 1;
505         }
506         spin_unlock_irq(&cwq->lock);
507
508         if (unlikely(running))
509                 wait_for_completion(&barr.done);
510 }
511
512 static void wait_on_work(struct work_struct *work)
513 {
514         struct cpu_workqueue_struct *cwq;
515         struct workqueue_struct *wq;
516         const struct cpumask *cpu_map;
517         int cpu;
518
519         might_sleep();
520
521         lock_map_acquire(&work->lockdep_map);
522         lock_map_release(&work->lockdep_map);
523
524         cwq = get_wq_data(work);
525         if (!cwq)
526                 return;
527
528         wq = cwq->wq;
529         cpu_map = wq_cpu_map(wq);
530
531         for_each_cpu(cpu, cpu_map)
532                 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
533 }
534
535 static int __cancel_work_timer(struct work_struct *work,
536                                 struct timer_list* timer)
537 {
538         int ret;
539
540         do {
541                 ret = (timer && likely(del_timer(timer)));
542                 if (!ret)
543                         ret = try_to_grab_pending(work);
544                 wait_on_work(work);
545         } while (unlikely(ret < 0));
546
547         work_clear_pending(work);
548         return ret;
549 }
550
551 /**
552  * cancel_work_sync - block until a work_struct's callback has terminated
553  * @work: the work which is to be flushed
554  *
555  * Returns true if @work was pending.
556  *
557  * cancel_work_sync() will cancel the work if it is queued. If the work's
558  * callback appears to be running, cancel_work_sync() will block until it
559  * has completed.
560  *
561  * It is possible to use this function if the work re-queues itself. It can
562  * cancel the work even if it migrates to another workqueue, however in that
563  * case it only guarantees that work->func() has completed on the last queued
564  * workqueue.
565  *
566  * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
567  * pending, otherwise it goes into a busy-wait loop until the timer expires.
568  *
569  * The caller must ensure that workqueue_struct on which this work was last
570  * queued can't be destroyed before this function returns.
571  */
572 int cancel_work_sync(struct work_struct *work)
573 {
574         return __cancel_work_timer(work, NULL);
575 }
576 EXPORT_SYMBOL_GPL(cancel_work_sync);
577
578 /**
579  * cancel_delayed_work_sync - reliably kill off a delayed work.
580  * @dwork: the delayed work struct
581  *
582  * Returns true if @dwork was pending.
583  *
584  * It is possible to use this function if @dwork rearms itself via queue_work()
585  * or queue_delayed_work(). See also the comment for cancel_work_sync().
586  */
587 int cancel_delayed_work_sync(struct delayed_work *dwork)
588 {
589         return __cancel_work_timer(&dwork->work, &dwork->timer);
590 }
591 EXPORT_SYMBOL(cancel_delayed_work_sync);
592
593 static struct workqueue_struct *keventd_wq __read_mostly;
594
595 /**
596  * schedule_work - put work task in global workqueue
597  * @work: job to be done
598  *
599  * This puts a job in the kernel-global workqueue.
600  */
601 int schedule_work(struct work_struct *work)
602 {
603         return queue_work(keventd_wq, work);
604 }
605 EXPORT_SYMBOL(schedule_work);
606
607 /*
608  * schedule_work_on - put work task on a specific cpu
609  * @cpu: cpu to put the work task on
610  * @work: job to be done
611  *
612  * This puts a job on a specific cpu
613  */
614 int schedule_work_on(int cpu, struct work_struct *work)
615 {
616         return queue_work_on(cpu, keventd_wq, work);
617 }
618 EXPORT_SYMBOL(schedule_work_on);
619
620 /**
621  * schedule_delayed_work - put work task in global workqueue after delay
622  * @dwork: job to be done
623  * @delay: number of jiffies to wait or 0 for immediate execution
624  *
625  * After waiting for a given time this puts a job in the kernel-global
626  * workqueue.
627  */
628 int schedule_delayed_work(struct delayed_work *dwork,
629                                         unsigned long delay)
630 {
631         return queue_delayed_work(keventd_wq, dwork, delay);
632 }
633 EXPORT_SYMBOL(schedule_delayed_work);
634
635 /**
636  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
637  * @cpu: cpu to use
638  * @dwork: job to be done
639  * @delay: number of jiffies to wait
640  *
641  * After waiting for a given time this puts a job in the kernel-global
642  * workqueue on the specified CPU.
643  */
644 int schedule_delayed_work_on(int cpu,
645                         struct delayed_work *dwork, unsigned long delay)
646 {
647         return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
648 }
649 EXPORT_SYMBOL(schedule_delayed_work_on);
650
651 /**
652  * schedule_on_each_cpu - call a function on each online CPU from keventd
653  * @func: the function to call
654  *
655  * Returns zero on success.
656  * Returns -ve errno on failure.
657  *
658  * schedule_on_each_cpu() is very slow.
659  */
660 int schedule_on_each_cpu(work_func_t func)
661 {
662         int cpu;
663         struct work_struct *works;
664
665         works = alloc_percpu(struct work_struct);
666         if (!works)
667                 return -ENOMEM;
668
669         get_online_cpus();
670         for_each_online_cpu(cpu) {
671                 struct work_struct *work = per_cpu_ptr(works, cpu);
672
673                 INIT_WORK(work, func);
674                 schedule_work_on(cpu, work);
675         }
676         for_each_online_cpu(cpu)
677                 flush_work(per_cpu_ptr(works, cpu));
678         put_online_cpus();
679         free_percpu(works);
680         return 0;
681 }
682
683 void flush_scheduled_work(void)
684 {
685         flush_workqueue(keventd_wq);
686 }
687 EXPORT_SYMBOL(flush_scheduled_work);
688
689 /**
690  * execute_in_process_context - reliably execute the routine with user context
691  * @fn:         the function to execute
692  * @ew:         guaranteed storage for the execute work structure (must
693  *              be available when the work executes)
694  *
695  * Executes the function immediately if process context is available,
696  * otherwise schedules the function for delayed execution.
697  *
698  * Returns:     0 - function was executed
699  *              1 - function was scheduled for execution
700  */
701 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
702 {
703         if (!in_interrupt()) {
704                 fn(&ew->work);
705                 return 0;
706         }
707
708         INIT_WORK(&ew->work, fn);
709         schedule_work(&ew->work);
710
711         return 1;
712 }
713 EXPORT_SYMBOL_GPL(execute_in_process_context);
714
715 int keventd_up(void)
716 {
717         return keventd_wq != NULL;
718 }
719
720 int current_is_keventd(void)
721 {
722         struct cpu_workqueue_struct *cwq;
723         int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
724         int ret = 0;
725
726         BUG_ON(!keventd_wq);
727
728         cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
729         if (current == cwq->thread)
730                 ret = 1;
731
732         return ret;
733
734 }
735
736 static struct cpu_workqueue_struct *
737 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
738 {
739         struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
740
741         cwq->wq = wq;
742         spin_lock_init(&cwq->lock);
743         INIT_LIST_HEAD(&cwq->worklist);
744         init_waitqueue_head(&cwq->more_work);
745
746         return cwq;
747 }
748
749 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
750 {
751         struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
752         struct workqueue_struct *wq = cwq->wq;
753         const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
754         struct task_struct *p;
755
756         p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
757         /*
758          * Nobody can add the work_struct to this cwq,
759          *      if (caller is __create_workqueue)
760          *              nobody should see this wq
761          *      else // caller is CPU_UP_PREPARE
762          *              cpu is not on cpu_online_map
763          * so we can abort safely.
764          */
765         if (IS_ERR(p))
766                 return PTR_ERR(p);
767         if (cwq->wq->rt)
768                 sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
769         cwq->thread = p;
770
771         return 0;
772 }
773
774 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
775 {
776         struct task_struct *p = cwq->thread;
777
778         if (p != NULL) {
779                 if (cpu >= 0)
780                         kthread_bind(p, cpu);
781                 wake_up_process(p);
782         }
783 }
784
785 struct workqueue_struct *__create_workqueue_key(const char *name,
786                                                 int singlethread,
787                                                 int freezeable,
788                                                 int rt,
789                                                 struct lock_class_key *key,
790                                                 const char *lock_name)
791 {
792         struct workqueue_struct *wq;
793         struct cpu_workqueue_struct *cwq;
794         int err = 0, cpu;
795
796         wq = kzalloc(sizeof(*wq), GFP_KERNEL);
797         if (!wq)
798                 return NULL;
799
800         wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
801         if (!wq->cpu_wq) {
802                 kfree(wq);
803                 return NULL;
804         }
805
806         wq->name = name;
807         lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
808         wq->singlethread = singlethread;
809         wq->freezeable = freezeable;
810         wq->rt = rt;
811         INIT_LIST_HEAD(&wq->list);
812
813         if (singlethread) {
814                 cwq = init_cpu_workqueue(wq, singlethread_cpu);
815                 err = create_workqueue_thread(cwq, singlethread_cpu);
816                 start_workqueue_thread(cwq, -1);
817         } else {
818                 cpu_maps_update_begin();
819                 /*
820                  * We must place this wq on list even if the code below fails.
821                  * cpu_down(cpu) can remove cpu from cpu_populated_map before
822                  * destroy_workqueue() takes the lock, in that case we leak
823                  * cwq[cpu]->thread.
824                  */
825                 spin_lock(&workqueue_lock);
826                 list_add(&wq->list, &workqueues);
827                 spin_unlock(&workqueue_lock);
828                 /*
829                  * We must initialize cwqs for each possible cpu even if we
830                  * are going to call destroy_workqueue() finally. Otherwise
831                  * cpu_up() can hit the uninitialized cwq once we drop the
832                  * lock.
833                  */
834                 for_each_possible_cpu(cpu) {
835                         cwq = init_cpu_workqueue(wq, cpu);
836                         if (err || !cpu_online(cpu))
837                                 continue;
838                         err = create_workqueue_thread(cwq, cpu);
839                         start_workqueue_thread(cwq, cpu);
840                 }
841                 cpu_maps_update_done();
842         }
843
844         if (err) {
845                 destroy_workqueue(wq);
846                 wq = NULL;
847         }
848         return wq;
849 }
850 EXPORT_SYMBOL_GPL(__create_workqueue_key);
851
852 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
853 {
854         /*
855          * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
856          * cpu_add_remove_lock protects cwq->thread.
857          */
858         if (cwq->thread == NULL)
859                 return;
860
861         lock_map_acquire(&cwq->wq->lockdep_map);
862         lock_map_release(&cwq->wq->lockdep_map);
863
864         flush_cpu_workqueue(cwq);
865         /*
866          * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
867          * a concurrent flush_workqueue() can insert a barrier after us.
868          * However, in that case run_workqueue() won't return and check
869          * kthread_should_stop() until it flushes all work_struct's.
870          * When ->worklist becomes empty it is safe to exit because no
871          * more work_structs can be queued on this cwq: flush_workqueue
872          * checks list_empty(), and a "normal" queue_work() can't use
873          * a dead CPU.
874          */
875         kthread_stop(cwq->thread);
876         cwq->thread = NULL;
877 }
878
879 /**
880  * destroy_workqueue - safely terminate a workqueue
881  * @wq: target workqueue
882  *
883  * Safely destroy a workqueue. All work currently pending will be done first.
884  */
885 void destroy_workqueue(struct workqueue_struct *wq)
886 {
887         const struct cpumask *cpu_map = wq_cpu_map(wq);
888         int cpu;
889
890         cpu_maps_update_begin();
891         spin_lock(&workqueue_lock);
892         list_del(&wq->list);
893         spin_unlock(&workqueue_lock);
894
895         for_each_cpu(cpu, cpu_map)
896                 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
897         cpu_maps_update_done();
898
899         free_percpu(wq->cpu_wq);
900         kfree(wq);
901 }
902 EXPORT_SYMBOL_GPL(destroy_workqueue);
903
904 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
905                                                 unsigned long action,
906                                                 void *hcpu)
907 {
908         unsigned int cpu = (unsigned long)hcpu;
909         struct cpu_workqueue_struct *cwq;
910         struct workqueue_struct *wq;
911         int ret = NOTIFY_OK;
912
913         action &= ~CPU_TASKS_FROZEN;
914
915         switch (action) {
916         case CPU_UP_PREPARE:
917                 cpumask_set_cpu(cpu, cpu_populated_map);
918         }
919 undo:
920         list_for_each_entry(wq, &workqueues, list) {
921                 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
922
923                 switch (action) {
924                 case CPU_UP_PREPARE:
925                         if (!create_workqueue_thread(cwq, cpu))
926                                 break;
927                         printk(KERN_ERR "workqueue [%s] for %i failed\n",
928                                 wq->name, cpu);
929                         action = CPU_UP_CANCELED;
930                         ret = NOTIFY_BAD;
931                         goto undo;
932
933                 case CPU_ONLINE:
934                         start_workqueue_thread(cwq, cpu);
935                         break;
936
937                 case CPU_UP_CANCELED:
938                         start_workqueue_thread(cwq, -1);
939                 case CPU_POST_DEAD:
940                         cleanup_workqueue_thread(cwq);
941                         break;
942                 }
943         }
944
945         switch (action) {
946         case CPU_UP_CANCELED:
947         case CPU_POST_DEAD:
948                 cpumask_clear_cpu(cpu, cpu_populated_map);
949         }
950
951         return ret;
952 }
953
954 #ifdef CONFIG_SMP
955 static struct workqueue_struct *work_on_cpu_wq __read_mostly;
956
957 struct work_for_cpu {
958         struct work_struct work;
959         long (*fn)(void *);
960         void *arg;
961         long ret;
962 };
963
964 static void do_work_for_cpu(struct work_struct *w)
965 {
966         struct work_for_cpu *wfc = container_of(w, struct work_for_cpu, work);
967
968         wfc->ret = wfc->fn(wfc->arg);
969 }
970
971 /**
972  * work_on_cpu - run a function in user context on a particular cpu
973  * @cpu: the cpu to run on
974  * @fn: the function to run
975  * @arg: the function arg
976  *
977  * This will return the value @fn returns.
978  * It is up to the caller to ensure that the cpu doesn't go offline.
979  */
980 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
981 {
982         struct work_for_cpu wfc;
983
984         INIT_WORK(&wfc.work, do_work_for_cpu);
985         wfc.fn = fn;
986         wfc.arg = arg;
987         queue_work_on(cpu, work_on_cpu_wq, &wfc.work);
988         flush_work(&wfc.work);
989
990         return wfc.ret;
991 }
992 EXPORT_SYMBOL_GPL(work_on_cpu);
993 #endif /* CONFIG_SMP */
994
995 void __init init_workqueues(void)
996 {
997         alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
998
999         cpumask_copy(cpu_populated_map, cpu_online_mask);
1000         singlethread_cpu = cpumask_first(cpu_possible_mask);
1001         cpu_singlethread_map = cpumask_of(singlethread_cpu);
1002         hotcpu_notifier(workqueue_cpu_callback, 0);
1003         keventd_wq = create_workqueue("events");
1004         BUG_ON(!keventd_wq);
1005 #ifdef CONFIG_SMP
1006         work_on_cpu_wq = create_workqueue("work_on_cpu");
1007         BUG_ON(!work_on_cpu_wq);
1008 #endif
1009 }