[CRYPTO] s390-aes: Use correct encrypt/decrypt function in fallback
[linux-2.6] / arch / s390 / kernel / process.c
1 /*
2  *  arch/s390/kernel/process.c
3  *
4  *  S390 version
5  *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
6  *    Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
7  *               Hartmut Penner (hp@de.ibm.com),
8  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
9  *
10  *  Derived from "arch/i386/kernel/process.c"
11  *    Copyright (C) 1995, Linus Torvalds
12  */
13
14 /*
15  * This file handles the architecture-dependent parts of process handling..
16  */
17
18 #include <linux/compiler.h>
19 #include <linux/cpu.h>
20 #include <linux/errno.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/fs.h>
25 #include <linux/smp.h>
26 #include <linux/stddef.h>
27 #include <linux/unistd.h>
28 #include <linux/ptrace.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/user.h>
32 #include <linux/a.out.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/reboot.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/notifier.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/pgtable.h>
42 #include <asm/system.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/irq.h>
46 #include <asm/timer.h>
47 #include <asm/cpu.h>
48
49 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
50
51 /*
52  * Return saved PC of a blocked thread. used in kernel/sched.
53  * resume in entry.S does not create a new stack frame, it
54  * just stores the registers %r6-%r15 to the frame given by
55  * schedule. We want to return the address of the caller of
56  * schedule, so we have to walk the backchain one time to
57  * find the frame schedule() store its return address.
58  */
59 unsigned long thread_saved_pc(struct task_struct *tsk)
60 {
61         struct stack_frame *sf, *low, *high;
62
63         if (!tsk || !task_stack_page(tsk))
64                 return 0;
65         low = task_stack_page(tsk);
66         high = (struct stack_frame *) task_pt_regs(tsk);
67         sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
68         if (sf <= low || sf > high)
69                 return 0;
70         sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
71         if (sf <= low || sf > high)
72                 return 0;
73         return sf->gprs[8];
74 }
75
76 /*
77  * Need to know about CPUs going idle?
78  */
79 static ATOMIC_NOTIFIER_HEAD(idle_chain);
80
81 int register_idle_notifier(struct notifier_block *nb)
82 {
83         return atomic_notifier_chain_register(&idle_chain, nb);
84 }
85 EXPORT_SYMBOL(register_idle_notifier);
86
87 int unregister_idle_notifier(struct notifier_block *nb)
88 {
89         return atomic_notifier_chain_unregister(&idle_chain, nb);
90 }
91 EXPORT_SYMBOL(unregister_idle_notifier);
92
93 void do_monitor_call(struct pt_regs *regs, long interruption_code)
94 {
95 #ifdef CONFIG_SMP
96         struct s390_idle_data *idle;
97
98         idle = &__get_cpu_var(s390_idle);
99         spin_lock(&idle->lock);
100         idle->idle_time += get_clock() - idle->idle_enter;
101         idle->in_idle = 0;
102         spin_unlock(&idle->lock);
103 #endif
104         /* disable monitor call class 0 */
105         __ctl_clear_bit(8, 15);
106
107         atomic_notifier_call_chain(&idle_chain, S390_CPU_NOT_IDLE,
108                                    (void *)(long) smp_processor_id());
109 }
110
111 extern void s390_handle_mcck(void);
112 /*
113  * The idle loop on a S390...
114  */
115 static void default_idle(void)
116 {
117         int cpu, rc;
118 #ifdef CONFIG_SMP
119         struct s390_idle_data *idle;
120 #endif
121
122         /* CPU is going idle. */
123         cpu = smp_processor_id();
124
125         local_irq_disable();
126         if (need_resched()) {
127                 local_irq_enable();
128                 return;
129         }
130
131         rc = atomic_notifier_call_chain(&idle_chain,
132                                         S390_CPU_IDLE, (void *)(long) cpu);
133         if (rc != NOTIFY_OK && rc != NOTIFY_DONE)
134                 BUG();
135         if (rc != NOTIFY_OK) {
136                 local_irq_enable();
137                 return;
138         }
139
140         /* enable monitor call class 0 */
141         __ctl_set_bit(8, 15);
142
143 #ifdef CONFIG_HOTPLUG_CPU
144         if (cpu_is_offline(cpu)) {
145                 preempt_enable_no_resched();
146                 cpu_die();
147         }
148 #endif
149
150         local_mcck_disable();
151         if (test_thread_flag(TIF_MCCK_PENDING)) {
152                 local_mcck_enable();
153                 local_irq_enable();
154                 s390_handle_mcck();
155                 return;
156         }
157 #ifdef CONFIG_SMP
158         idle = &__get_cpu_var(s390_idle);
159         spin_lock(&idle->lock);
160         idle->idle_count++;
161         idle->in_idle = 1;
162         idle->idle_enter = get_clock();
163         spin_unlock(&idle->lock);
164 #endif
165         trace_hardirqs_on();
166         /* Wait for external, I/O or machine check interrupt. */
167         __load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT |
168                         PSW_MASK_IO | PSW_MASK_EXT);
169 }
170
171 void cpu_idle(void)
172 {
173         for (;;) {
174                 while (!need_resched())
175                         default_idle();
176
177                 preempt_enable_no_resched();
178                 schedule();
179                 preempt_disable();
180         }
181 }
182
183 void show_regs(struct pt_regs *regs)
184 {
185         struct task_struct *tsk = current;
186
187         printk("CPU:    %d    %s\n", task_thread_info(tsk)->cpu, print_tainted());
188         printk("Process %s (pid: %d, task: %p, ksp: %p)\n",
189                current->comm, task_pid_nr(current), (void *) tsk,
190                (void *) tsk->thread.ksp);
191
192         show_registers(regs);
193         /* Show stack backtrace if pt_regs is from kernel mode */
194         if (!(regs->psw.mask & PSW_MASK_PSTATE))
195                 show_trace(NULL, (unsigned long *) regs->gprs[15]);
196 }
197
198 extern void kernel_thread_starter(void);
199
200 asm(
201         ".align 4\n"
202         "kernel_thread_starter:\n"
203         "    la    2,0(10)\n"
204         "    basr  14,9\n"
205         "    la    2,0\n"
206         "    br    11\n");
207
208 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
209 {
210         struct pt_regs regs;
211
212         memset(&regs, 0, sizeof(regs));
213         regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT;
214         regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
215         regs.gprs[9] = (unsigned long) fn;
216         regs.gprs[10] = (unsigned long) arg;
217         regs.gprs[11] = (unsigned long) do_exit;
218         regs.orig_gpr2 = -1;
219
220         /* Ok, create the new process.. */
221         return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
222                        0, &regs, 0, NULL, NULL);
223 }
224
225 /*
226  * Free current thread data structures etc..
227  */
228 void exit_thread(void)
229 {
230 }
231
232 void flush_thread(void)
233 {
234         clear_used_math();
235         clear_tsk_thread_flag(current, TIF_USEDFPU);
236 }
237
238 void release_thread(struct task_struct *dead_task)
239 {
240 }
241
242 int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp,
243         unsigned long unused,
244         struct task_struct * p, struct pt_regs * regs)
245 {
246         struct fake_frame
247           {
248             struct stack_frame sf;
249             struct pt_regs childregs;
250           } *frame;
251
252         frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
253         p->thread.ksp = (unsigned long) frame;
254         /* Store access registers to kernel stack of new process. */
255         frame->childregs = *regs;
256         frame->childregs.gprs[2] = 0;   /* child returns 0 on fork. */
257         frame->childregs.gprs[15] = new_stackp;
258         frame->sf.back_chain = 0;
259
260         /* new return point is ret_from_fork */
261         frame->sf.gprs[8] = (unsigned long) ret_from_fork;
262
263         /* fake return stack for resume(), don't go back to schedule */
264         frame->sf.gprs[9] = (unsigned long) frame;
265
266         /* Save access registers to new thread structure. */
267         save_access_regs(&p->thread.acrs[0]);
268
269 #ifndef CONFIG_64BIT
270         /*
271          * save fprs to current->thread.fp_regs to merge them with
272          * the emulated registers and then copy the result to the child.
273          */
274         save_fp_regs(&current->thread.fp_regs);
275         memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
276                sizeof(s390_fp_regs));
277         /* Set a new TLS ?  */
278         if (clone_flags & CLONE_SETTLS)
279                 p->thread.acrs[0] = regs->gprs[6];
280 #else /* CONFIG_64BIT */
281         /* Save the fpu registers to new thread structure. */
282         save_fp_regs(&p->thread.fp_regs);
283         /* Set a new TLS ?  */
284         if (clone_flags & CLONE_SETTLS) {
285                 if (test_thread_flag(TIF_31BIT)) {
286                         p->thread.acrs[0] = (unsigned int) regs->gprs[6];
287                 } else {
288                         p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
289                         p->thread.acrs[1] = (unsigned int) regs->gprs[6];
290                 }
291         }
292 #endif /* CONFIG_64BIT */
293         /* start new process with ar4 pointing to the correct address space */
294         p->thread.mm_segment = get_fs();
295         /* Don't copy debug registers */
296         memset(&p->thread.per_info,0,sizeof(p->thread.per_info));
297
298         return 0;
299 }
300
301 asmlinkage long sys_fork(void)
302 {
303         struct pt_regs *regs = task_pt_regs(current);
304         return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
305 }
306
307 asmlinkage long sys_clone(void)
308 {
309         struct pt_regs *regs = task_pt_regs(current);
310         unsigned long clone_flags;
311         unsigned long newsp;
312         int __user *parent_tidptr, *child_tidptr;
313
314         clone_flags = regs->gprs[3];
315         newsp = regs->orig_gpr2;
316         parent_tidptr = (int __user *) regs->gprs[4];
317         child_tidptr = (int __user *) regs->gprs[5];
318         if (!newsp)
319                 newsp = regs->gprs[15];
320         return do_fork(clone_flags, newsp, regs, 0,
321                        parent_tidptr, child_tidptr);
322 }
323
324 /*
325  * This is trivial, and on the face of it looks like it
326  * could equally well be done in user mode.
327  *
328  * Not so, for quite unobvious reasons - register pressure.
329  * In user mode vfork() cannot have a stack frame, and if
330  * done by calling the "clone()" system call directly, you
331  * do not have enough call-clobbered registers to hold all
332  * the information you need.
333  */
334 asmlinkage long sys_vfork(void)
335 {
336         struct pt_regs *regs = task_pt_regs(current);
337         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
338                        regs->gprs[15], regs, 0, NULL, NULL);
339 }
340
341 asmlinkage void execve_tail(void)
342 {
343         task_lock(current);
344         current->ptrace &= ~PT_DTRACE;
345         task_unlock(current);
346         current->thread.fp_regs.fpc = 0;
347         if (MACHINE_HAS_IEEE)
348                 asm volatile("sfpc %0,%0" : : "d" (0));
349 }
350
351 /*
352  * sys_execve() executes a new program.
353  */
354 asmlinkage long sys_execve(void)
355 {
356         struct pt_regs *regs = task_pt_regs(current);
357         char *filename;
358         unsigned long result;
359         int rc;
360
361         filename = getname((char __user *) regs->orig_gpr2);
362         if (IS_ERR(filename)) {
363                 result = PTR_ERR(filename);
364                 goto out;
365         }
366         rc = do_execve(filename, (char __user * __user *) regs->gprs[3],
367                        (char __user * __user *) regs->gprs[4], regs);
368         if (rc) {
369                 result = rc;
370                 goto out_putname;
371         }
372         execve_tail();
373         result = regs->gprs[2];
374 out_putname:
375         putname(filename);
376 out:
377         return result;
378 }
379
380 /*
381  * fill in the FPU structure for a core dump.
382  */
383 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
384 {
385 #ifndef CONFIG_64BIT
386         /*
387          * save fprs to current->thread.fp_regs to merge them with
388          * the emulated registers and then copy the result to the dump.
389          */
390         save_fp_regs(&current->thread.fp_regs);
391         memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
392 #else /* CONFIG_64BIT */
393         save_fp_regs(fpregs);
394 #endif /* CONFIG_64BIT */
395         return 1;
396 }
397
398 unsigned long get_wchan(struct task_struct *p)
399 {
400         struct stack_frame *sf, *low, *high;
401         unsigned long return_address;
402         int count;
403
404         if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
405                 return 0;
406         low = task_stack_page(p);
407         high = (struct stack_frame *) task_pt_regs(p);
408         sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
409         if (sf <= low || sf > high)
410                 return 0;
411         for (count = 0; count < 16; count++) {
412                 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
413                 if (sf <= low || sf > high)
414                         return 0;
415                 return_address = sf->gprs[8] & PSW_ADDR_INSN;
416                 if (!in_sched_functions(return_address))
417                         return return_address;
418         }
419         return 0;
420 }
421