3 * Purpose: Generic MCA handling layer
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
55 #include <linux/config.h>
56 #include <linux/types.h>
57 #include <linux/init.h>
58 #include <linux/sched.h>
59 #include <linux/interrupt.h>
60 #include <linux/irq.h>
61 #include <linux/kallsyms.h>
62 #include <linux/smp_lock.h>
63 #include <linux/bootmem.h>
64 #include <linux/acpi.h>
65 #include <linux/timer.h>
66 #include <linux/module.h>
67 #include <linux/kernel.h>
68 #include <linux/smp.h>
69 #include <linux/workqueue.h>
71 #include <asm/delay.h>
72 #include <asm/machvec.h>
73 #include <asm/meminit.h>
75 #include <asm/ptrace.h>
76 #include <asm/system.h>
81 #include <asm/hw_irq.h>
85 #if defined(IA64_MCA_DEBUG_INFO)
86 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
88 # define IA64_MCA_DEBUG(fmt...)
91 /* Used by mca_asm.S */
92 u32 ia64_mca_serialize;
93 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
94 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
95 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
96 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
98 unsigned long __per_cpu_mca[NR_CPUS];
101 extern void ia64_os_init_dispatch_monarch (void);
102 extern void ia64_os_init_dispatch_slave (void);
104 static int monarch_cpu = -1;
106 static ia64_mc_info_t ia64_mc_info;
108 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
109 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
110 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
111 #define CPE_HISTORY_LENGTH 5
112 #define CMC_HISTORY_LENGTH 5
114 static struct timer_list cpe_poll_timer;
115 static struct timer_list cmc_poll_timer;
117 * This variable tells whether we are currently in polling mode.
118 * Start with this in the wrong state so we won't play w/ timers
119 * before the system is ready.
121 static int cmc_polling_enabled = 1;
124 * Clearing this variable prevents CPE polling from getting activated
125 * in mca_late_init. Use it if your system doesn't provide a CPEI,
126 * but encounters problems retrieving CPE logs. This should only be
127 * necessary for debugging.
129 static int cpe_poll_enabled = 1;
131 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
136 * IA64_MCA log support
138 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
139 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
141 typedef struct ia64_state_log_s
145 unsigned long isl_count;
146 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
149 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
151 #define IA64_LOG_ALLOCATE(it, size) \
152 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
153 (ia64_err_rec_t *)alloc_bootmem(size); \
154 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
155 (ia64_err_rec_t *)alloc_bootmem(size);}
156 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
157 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
158 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
159 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
160 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
161 #define IA64_LOG_INDEX_INC(it) \
162 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
163 ia64_state_log[it].isl_count++;}
164 #define IA64_LOG_INDEX_DEC(it) \
165 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
166 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
167 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
168 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
172 * Reset the OS ia64 log buffer
173 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
177 ia64_log_init(int sal_info_type)
181 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
182 IA64_LOG_LOCK_INIT(sal_info_type);
184 // SAL will tell us the maximum size of any error record of this type
185 max_size = ia64_sal_get_state_info_size(sal_info_type);
187 /* alloc_bootmem() doesn't like zero-sized allocations! */
190 // set up OS data structures to hold error info
191 IA64_LOG_ALLOCATE(sal_info_type, max_size);
192 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
193 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
199 * Get the current MCA log from SAL and copy it into the OS log buffer.
201 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
202 * irq_safe whether you can use printk at this point
203 * Outputs : size (total record length)
204 * *buffer (ptr to error record)
208 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
210 sal_log_record_header_t *log_buffer;
214 IA64_LOG_LOCK(sal_info_type);
216 /* Get the process state information */
217 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
219 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
222 IA64_LOG_INDEX_INC(sal_info_type);
223 IA64_LOG_UNLOCK(sal_info_type);
225 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
226 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
228 *buffer = (u8 *) log_buffer;
231 IA64_LOG_UNLOCK(sal_info_type);
237 * ia64_mca_log_sal_error_record
239 * This function retrieves a specified error record type from SAL
240 * and wakes up any processes waiting for error records.
242 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
243 * FIXME: remove MCA and irq_safe.
246 ia64_mca_log_sal_error_record(int sal_info_type)
249 sal_log_record_header_t *rh;
251 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
252 #ifdef IA64_MCA_DEBUG_INFO
253 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
256 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
260 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
263 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
265 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
267 /* Clear logs from corrected errors in case there's no user-level logger */
268 rh = (sal_log_record_header_t *)buffer;
269 if (rh->severity == sal_log_severity_corrected)
270 ia64_sal_clear_state_info(sal_info_type);
274 * platform dependent error handling
276 #ifndef PLATFORM_MCA_HANDLERS
283 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
285 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
287 static DEFINE_SPINLOCK(cpe_history_lock);
289 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
290 __FUNCTION__, cpe_irq, smp_processor_id());
292 /* SAL spec states this should run w/ interrupts enabled */
295 /* Get the CPE error record and log it */
296 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
298 spin_lock(&cpe_history_lock);
299 if (!cpe_poll_enabled && cpe_vector >= 0) {
301 int i, count = 1; /* we know 1 happened now */
302 unsigned long now = jiffies;
304 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
305 if (now - cpe_history[i] <= HZ)
309 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
310 if (count >= CPE_HISTORY_LENGTH) {
312 cpe_poll_enabled = 1;
313 spin_unlock(&cpe_history_lock);
314 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
317 * Corrected errors will still be corrected, but
318 * make sure there's a log somewhere that indicates
319 * something is generating more than we can handle.
321 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
323 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
325 /* lock already released, get out now */
328 cpe_history[index++] = now;
329 if (index == CPE_HISTORY_LENGTH)
333 spin_unlock(&cpe_history_lock);
337 #endif /* CONFIG_ACPI */
341 * ia64_mca_register_cpev
343 * Register the corrected platform error vector with SAL.
346 * cpev Corrected Platform Error Vector number
352 ia64_mca_register_cpev (int cpev)
354 /* Register the CPE interrupt vector with SAL */
355 struct ia64_sal_retval isrv;
357 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
359 printk(KERN_ERR "Failed to register Corrected Platform "
360 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
364 IA64_MCA_DEBUG("%s: corrected platform error "
365 "vector %#x registered\n", __FUNCTION__, cpev);
367 #endif /* CONFIG_ACPI */
369 #endif /* PLATFORM_MCA_HANDLERS */
372 * ia64_mca_cmc_vector_setup
374 * Setup the corrected machine check vector register in the processor.
375 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
376 * This function is invoked on a per-processor basis.
385 ia64_mca_cmc_vector_setup (void)
389 cmcv.cmcv_regval = 0;
390 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
391 cmcv.cmcv_vector = IA64_CMC_VECTOR;
392 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
394 IA64_MCA_DEBUG("%s: CPU %d corrected "
395 "machine check vector %#x registered.\n",
396 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
398 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
399 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
403 * ia64_mca_cmc_vector_disable
405 * Mask the corrected machine check vector register in the processor.
406 * This function is invoked on a per-processor basis.
415 ia64_mca_cmc_vector_disable (void *dummy)
419 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
421 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
422 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
424 IA64_MCA_DEBUG("%s: CPU %d corrected "
425 "machine check vector %#x disabled.\n",
426 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
430 * ia64_mca_cmc_vector_enable
432 * Unmask the corrected machine check vector register in the processor.
433 * This function is invoked on a per-processor basis.
442 ia64_mca_cmc_vector_enable (void *dummy)
446 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
448 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
449 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
451 IA64_MCA_DEBUG("%s: CPU %d corrected "
452 "machine check vector %#x enabled.\n",
453 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
457 * ia64_mca_cmc_vector_disable_keventd
459 * Called via keventd (smp_call_function() is not safe in interrupt context) to
460 * disable the cmc interrupt vector.
463 ia64_mca_cmc_vector_disable_keventd(void *unused)
465 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
469 * ia64_mca_cmc_vector_enable_keventd
471 * Called via keventd (smp_call_function() is not safe in interrupt context) to
472 * enable the cmc interrupt vector.
475 ia64_mca_cmc_vector_enable_keventd(void *unused)
477 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
483 * Send an inter-cpu interrupt to wake-up a particular cpu
484 * and mark that cpu to be out of rendez.
490 ia64_mca_wakeup(int cpu)
492 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
493 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
498 * ia64_mca_wakeup_all
500 * Wakeup all the cpus which have rendez'ed previously.
506 ia64_mca_wakeup_all(void)
510 /* Clear the Rendez checkin flag for all cpus */
511 for_each_online_cpu(cpu) {
512 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
513 ia64_mca_wakeup(cpu);
519 * ia64_mca_rendez_interrupt_handler
521 * This is handler used to put slave processors into spinloop
522 * while the monarch processor does the mca handling and later
523 * wake each slave up once the monarch is done.
529 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs)
532 int cpu = smp_processor_id();
534 /* Mask all interrupts */
535 local_irq_save(flags);
537 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
538 /* Register with the SAL monarch that the slave has
541 ia64_sal_mc_rendez();
543 /* Wait for the monarch cpu to exit. */
544 while (monarch_cpu != -1)
545 cpu_relax(); /* spin until monarch leaves */
547 /* Enable all interrupts */
548 local_irq_restore(flags);
553 * ia64_mca_wakeup_int_handler
555 * The interrupt handler for processing the inter-cpu interrupt to the
556 * slave cpu which was spinning in the rendez loop.
557 * Since this spinning is done by turning off the interrupts and
558 * polling on the wakeup-interrupt bit in the IRR, there is
559 * nothing useful to be done in the handler.
561 * Inputs : wakeup_irq (Wakeup-interrupt bit)
562 * arg (Interrupt handler specific argument)
563 * ptregs (Exception frame at the time of the interrupt)
568 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
573 /* Function pointer for extra MCA recovery */
574 int (*ia64_mca_ucmc_extension)
575 (void*,struct ia64_sal_os_state*)
579 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
581 if (ia64_mca_ucmc_extension)
584 ia64_mca_ucmc_extension = fn;
589 ia64_unreg_MCA_extension(void)
591 if (ia64_mca_ucmc_extension)
592 ia64_mca_ucmc_extension = NULL;
595 EXPORT_SYMBOL(ia64_reg_MCA_extension);
596 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
600 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
602 u64 fslot, tslot, nat;
604 fslot = ((unsigned long)fr >> 3) & 63;
605 tslot = ((unsigned long)tr >> 3) & 63;
606 *tnat &= ~(1UL << tslot);
607 nat = (fnat >> fslot) & 1;
608 *tnat |= (nat << tslot);
611 /* On entry to this routine, we are running on the per cpu stack, see
612 * mca_asm.h. The original stack has not been touched by this event. Some of
613 * the original stack's registers will be in the RBS on this stack. This stack
614 * also contains a partial pt_regs and switch_stack, the rest of the data is in
617 * The first thing to do is modify the original stack to look like a blocked
618 * task so we can run backtrace on the original task. Also mark the per cpu
619 * stack as current to ensure that we use the correct task state, it also means
620 * that we can do backtrace on the MCA/INIT handler code itself.
624 ia64_mca_modify_original_stack(struct pt_regs *regs,
625 const struct switch_stack *sw,
626 struct ia64_sal_os_state *sos,
629 char *p, comm[sizeof(current->comm)];
631 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
632 const pal_min_state_area_t *ms = sos->pal_min_state;
633 task_t *previous_current;
634 struct pt_regs *old_regs;
635 struct switch_stack *old_sw;
636 unsigned size = sizeof(struct pt_regs) +
637 sizeof(struct switch_stack) + 16;
638 u64 *old_bspstore, *old_bsp;
639 u64 *new_bspstore, *new_bsp;
640 u64 old_unat, old_rnat, new_rnat, nat;
641 u64 slots, loadrs = regs->loadrs;
642 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
643 u64 ar_bspstore = regs->ar_bspstore;
644 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
647 int cpu = smp_processor_id();
649 previous_current = curr_task(cpu);
650 set_curr_task(cpu, current);
651 if ((p = strchr(current->comm, ' ')))
654 /* Best effort attempt to cope with MCA/INIT delivered while in
657 regs->cr_ipsr = ms->pmsa_ipsr;
658 if (ia64_psr(regs)->dt == 0) {
670 if (ia64_psr(regs)->rt == 0) {
683 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
684 * have been copied to the old stack, the old stack may fail the
685 * validation tests below. So ia64_old_stack() must restore the dirty
686 * registers from the new stack. The old and new bspstore probably
687 * have different alignments, so loadrs calculated on the old bsp
688 * cannot be used to restore from the new bsp. Calculate a suitable
689 * loadrs for the new stack and save it in the new pt_regs, where
690 * ia64_old_stack() can get it.
692 old_bspstore = (u64 *)ar_bspstore;
693 old_bsp = (u64 *)ar_bsp;
694 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
695 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
696 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
697 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
699 /* Verify the previous stack state before we change it */
700 if (user_mode(regs)) {
701 msg = "occurred in user space";
704 if (r13 != sos->prev_IA64_KR_CURRENT) {
705 msg = "inconsistent previous current and r13";
708 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
709 msg = "inconsistent r12 and r13";
712 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
713 msg = "inconsistent ar.bspstore and r13";
718 msg = "old_bspstore is in the wrong region";
721 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
722 msg = "inconsistent ar.bsp and r13";
725 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
726 if (ar_bspstore + size > r12) {
727 msg = "no room for blocked state";
731 /* Change the comm field on the MCA/INT task to include the pid that
732 * was interrupted, it makes for easier debugging. If that pid was 0
733 * (swapper or nested MCA/INIT) then use the start of the previous comm
734 * field suffixed with its cpu.
736 if (previous_current->pid)
737 snprintf(comm, sizeof(comm), "%s %d",
738 current->comm, previous_current->pid);
741 if ((p = strchr(previous_current->comm, ' ')))
742 l = p - previous_current->comm;
744 l = strlen(previous_current->comm);
745 snprintf(comm, sizeof(comm), "%s %*s %d",
746 current->comm, l, previous_current->comm,
747 previous_current->thread_info->cpu);
749 memcpy(current->comm, comm, sizeof(current->comm));
751 /* Make the original task look blocked. First stack a struct pt_regs,
752 * describing the state at the time of interrupt. mca_asm.S built a
753 * partial pt_regs, copy it and fill in the blanks using minstate.
755 p = (char *)r12 - sizeof(*regs);
756 old_regs = (struct pt_regs *)p;
757 memcpy(old_regs, regs, sizeof(*regs));
758 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
759 * pmsa_{xip,xpsr,xfs}
761 if (ia64_psr(regs)->ic) {
762 old_regs->cr_iip = ms->pmsa_iip;
763 old_regs->cr_ipsr = ms->pmsa_ipsr;
764 old_regs->cr_ifs = ms->pmsa_ifs;
766 old_regs->cr_iip = ms->pmsa_xip;
767 old_regs->cr_ipsr = ms->pmsa_xpsr;
768 old_regs->cr_ifs = ms->pmsa_xfs;
770 old_regs->pr = ms->pmsa_pr;
771 old_regs->b0 = ms->pmsa_br0;
772 old_regs->loadrs = loadrs;
773 old_regs->ar_rsc = ms->pmsa_rsc;
774 old_unat = old_regs->ar_unat;
775 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
776 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
777 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
778 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
779 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
780 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
781 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
782 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
783 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
784 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
785 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
786 if (ia64_psr(old_regs)->bn)
787 bank = ms->pmsa_bank1_gr;
789 bank = ms->pmsa_bank0_gr;
790 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
791 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
792 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
793 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
794 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
795 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
796 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
797 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
798 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
799 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
800 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
801 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
802 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
803 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
804 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
805 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
807 /* Next stack a struct switch_stack. mca_asm.S built a partial
808 * switch_stack, copy it and fill in the blanks using pt_regs and
811 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
812 * ar.pfs is set to 0.
814 * unwind.c::unw_unwind() does special processing for interrupt frames.
815 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
816 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
817 * that this is documented, of course. Set PRED_NON_SYSCALL in the
818 * switch_stack on the original stack so it will unwind correctly when
819 * unwind.c reads pt_regs.
821 * thread.ksp is updated to point to the synthesized switch_stack.
823 p -= sizeof(struct switch_stack);
824 old_sw = (struct switch_stack *)p;
825 memcpy(old_sw, sw, sizeof(*sw));
826 old_sw->caller_unat = old_unat;
827 old_sw->ar_fpsr = old_regs->ar_fpsr;
828 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
829 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
830 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
831 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
832 old_sw->b0 = (u64)ia64_leave_kernel;
833 old_sw->b1 = ms->pmsa_br1;
835 old_sw->ar_unat = old_unat;
836 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
837 previous_current->thread.ksp = (u64)p - 16;
839 /* Finally copy the original stack's registers back to its RBS.
840 * Registers from ar.bspstore through ar.bsp at the time of the event
841 * are in the current RBS, copy them back to the original stack. The
842 * copy must be done register by register because the original bspstore
843 * and the current one have different alignments, so the saved RNAT
844 * data occurs at different places.
846 * mca_asm does cover, so the old_bsp already includes all registers at
847 * the time of MCA/INIT. It also does flushrs, so all registers before
848 * this function have been written to backing store on the MCA/INIT
851 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
852 old_rnat = regs->ar_rnat;
854 if (ia64_rse_is_rnat_slot(new_bspstore)) {
855 new_rnat = ia64_get_rnat(new_bspstore++);
857 if (ia64_rse_is_rnat_slot(old_bspstore)) {
858 *old_bspstore++ = old_rnat;
861 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
862 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
863 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
864 *old_bspstore++ = *new_bspstore++;
866 old_sw->ar_bspstore = (unsigned long)old_bspstore;
867 old_sw->ar_rnat = old_rnat;
869 sos->prev_task = previous_current;
870 return previous_current;
873 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
874 smp_processor_id(), type, msg);
875 return previous_current;
878 /* The monarch/slave interaction is based on monarch_cpu and requires that all
879 * slaves have entered rendezvous before the monarch leaves. If any cpu has
880 * not entered rendezvous yet then wait a bit. The assumption is that any
881 * slave that has not rendezvoused after a reasonable time is never going to do
882 * so. In this context, slave includes cpus that respond to the MCA rendezvous
883 * interrupt, as well as cpus that receive the INIT slave event.
887 ia64_wait_for_slaves(int monarch)
890 for_each_online_cpu(c) {
893 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
894 udelay(1000); /* short wait first */
901 for_each_online_cpu(c) {
904 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
905 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
914 * This is uncorrectable machine check handler called from OS_MCA
915 * dispatch code which is in turn called from SAL_CHECK().
916 * This is the place where the core of OS MCA handling is done.
917 * Right now the logs are extracted and displayed in a well-defined
918 * format. This handler code is supposed to be run only on the
919 * monarch processor. Once the monarch is done with MCA handling
920 * further MCA logging is enabled by clearing logs.
921 * Monarch also has the duty of sending wakeup-IPIs to pull the
922 * slave processors out of rendezvous spinloop.
925 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
926 struct ia64_sal_os_state *sos)
928 pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
929 &sos->proc_state_param;
930 int recover, cpu = smp_processor_id();
931 task_t *previous_current;
933 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
934 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
936 ia64_wait_for_slaves(cpu);
938 /* Wakeup all the processors which are spinning in the rendezvous loop.
939 * They will leave SAL, then spin in the OS with interrupts disabled
940 * until this monarch cpu leaves the MCA handler. That gets control
941 * back to the OS so we can backtrace the other cpus, backtrace when
942 * spinning in SAL does not work.
944 ia64_mca_wakeup_all();
946 /* Get the MCA error record and log it */
947 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
949 /* TLB error is only exist in this SAL error record */
950 recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
951 /* other error recovery */
952 || (ia64_mca_ucmc_extension
953 && ia64_mca_ucmc_extension(
954 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
958 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
959 rh->severity = sal_log_severity_corrected;
960 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
961 sos->os_status = IA64_MCA_CORRECTED;
964 set_curr_task(cpu, previous_current);
968 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
969 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
972 * ia64_mca_cmc_int_handler
974 * This is corrected machine check interrupt handler.
975 * Right now the logs are extracted and displayed in a well-defined
980 * client data arg ptr
981 * saved registers ptr
987 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
989 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
991 static DEFINE_SPINLOCK(cmc_history_lock);
993 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
994 __FUNCTION__, cmc_irq, smp_processor_id());
996 /* SAL spec states this should run w/ interrupts enabled */
999 /* Get the CMC error record and log it */
1000 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1002 spin_lock(&cmc_history_lock);
1003 if (!cmc_polling_enabled) {
1004 int i, count = 1; /* we know 1 happened now */
1005 unsigned long now = jiffies;
1007 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1008 if (now - cmc_history[i] <= HZ)
1012 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1013 if (count >= CMC_HISTORY_LENGTH) {
1015 cmc_polling_enabled = 1;
1016 spin_unlock(&cmc_history_lock);
1017 /* If we're being hit with CMC interrupts, we won't
1018 * ever execute the schedule_work() below. Need to
1019 * disable CMC interrupts on this processor now.
1021 ia64_mca_cmc_vector_disable(NULL);
1022 schedule_work(&cmc_disable_work);
1025 * Corrected errors will still be corrected, but
1026 * make sure there's a log somewhere that indicates
1027 * something is generating more than we can handle.
1029 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1031 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1033 /* lock already released, get out now */
1036 cmc_history[index++] = now;
1037 if (index == CMC_HISTORY_LENGTH)
1041 spin_unlock(&cmc_history_lock);
1046 * ia64_mca_cmc_int_caller
1048 * Triggered by sw interrupt from CMC polling routine. Calls
1049 * real interrupt handler and either triggers a sw interrupt
1050 * on the next cpu or does cleanup at the end.
1054 * client data arg ptr
1055 * saved registers ptr
1060 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1062 static int start_count = -1;
1065 cpuid = smp_processor_id();
1067 /* If first cpu, update count */
1068 if (start_count == -1)
1069 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1071 ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1073 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1075 if (cpuid < NR_CPUS) {
1076 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1078 /* If no log record, switch out of polling mode */
1079 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1081 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1082 schedule_work(&cmc_enable_work);
1083 cmc_polling_enabled = 0;
1087 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1099 * Poll for Corrected Machine Checks (CMCs)
1101 * Inputs : dummy(unused)
1106 ia64_mca_cmc_poll (unsigned long dummy)
1108 /* Trigger a CMC interrupt cascade */
1109 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1113 * ia64_mca_cpe_int_caller
1115 * Triggered by sw interrupt from CPE polling routine. Calls
1116 * real interrupt handler and either triggers a sw interrupt
1117 * on the next cpu or does cleanup at the end.
1121 * client data arg ptr
1122 * saved registers ptr
1129 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1131 static int start_count = -1;
1132 static int poll_time = MIN_CPE_POLL_INTERVAL;
1135 cpuid = smp_processor_id();
1137 /* If first cpu, update count */
1138 if (start_count == -1)
1139 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1141 ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1143 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1145 if (cpuid < NR_CPUS) {
1146 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1149 * If a log was recorded, increase our polling frequency,
1150 * otherwise, backoff or return to interrupt mode.
1152 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1153 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1154 } else if (cpe_vector < 0) {
1155 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1157 poll_time = MIN_CPE_POLL_INTERVAL;
1159 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1160 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1161 cpe_poll_enabled = 0;
1164 if (cpe_poll_enabled)
1165 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1175 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1176 * on first cpu, from there it will trickle through all the cpus.
1178 * Inputs : dummy(unused)
1183 ia64_mca_cpe_poll (unsigned long dummy)
1185 /* Trigger a CPE interrupt cascade */
1186 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1189 #endif /* CONFIG_ACPI */
1192 * C portion of the OS INIT handler
1194 * Called from ia64_os_init_dispatch
1196 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1197 * this event. This code is used for both monarch and slave INIT events, see
1200 * All INIT events switch to the INIT stack and change the previous process to
1201 * blocked status. If one of the INIT events is the monarch then we are
1202 * probably processing the nmi button/command. Use the monarch cpu to dump all
1203 * the processes. The slave INIT events all spin until the monarch cpu
1204 * returns. We can also get INIT slave events for MCA, in which case the MCA
1205 * process is the monarch.
1209 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1210 struct ia64_sal_os_state *sos)
1212 static atomic_t slaves;
1213 static atomic_t monarchs;
1214 task_t *previous_current;
1215 int cpu = smp_processor_id(), c;
1216 struct task_struct *g, *t;
1218 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
1219 console_loglevel = 15; /* make sure printks make it to console */
1221 printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1222 sos->proc_state_param, cpu, sos->monarch);
1223 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1225 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1226 sos->os_status = IA64_INIT_RESUME;
1228 /* FIXME: Workaround for broken proms that drive all INIT events as
1229 * slaves. The last slave that enters is promoted to be a monarch.
1230 * Remove this code in September 2006, that gives platforms a year to
1231 * fix their proms and get their customers updated.
1233 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1234 printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1236 atomic_dec(&slaves);
1240 /* FIXME: Workaround for broken proms that drive all INIT events as
1241 * monarchs. Second and subsequent monarchs are demoted to slaves.
1242 * Remove this code in September 2006, that gives platforms a year to
1243 * fix their proms and get their customers updated.
1245 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1246 printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1248 atomic_dec(&monarchs);
1252 if (!sos->monarch) {
1253 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1254 while (monarch_cpu == -1)
1255 cpu_relax(); /* spin until monarch enters */
1256 while (monarch_cpu != -1)
1257 cpu_relax(); /* spin until monarch leaves */
1258 printk("Slave on cpu %d returning to normal service.\n", cpu);
1259 set_curr_task(cpu, previous_current);
1260 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1261 atomic_dec(&slaves);
1268 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1269 * generated via the BMC's command-line interface, but since the console is on the
1270 * same serial line, the user will need some time to switch out of the BMC before
1273 printk("Delaying for 5 seconds...\n");
1275 ia64_wait_for_slaves(cpu);
1276 printk(KERN_ERR "Processes interrupted by INIT -");
1277 for_each_online_cpu(c) {
1278 struct ia64_sal_os_state *s;
1279 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1280 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1284 printk(" %d", g->pid);
1286 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1290 if (read_trylock(&tasklist_lock)) {
1291 do_each_thread (g, t) {
1292 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1293 show_stack(t, NULL);
1294 } while_each_thread (g, t);
1295 read_unlock(&tasklist_lock);
1297 printk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1298 atomic_dec(&monarchs);
1299 set_curr_task(cpu, previous_current);
1305 ia64_mca_disable_cpe_polling(char *str)
1307 cpe_poll_enabled = 0;
1311 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1313 static struct irqaction cmci_irqaction = {
1314 .handler = ia64_mca_cmc_int_handler,
1315 .flags = SA_INTERRUPT,
1319 static struct irqaction cmcp_irqaction = {
1320 .handler = ia64_mca_cmc_int_caller,
1321 .flags = SA_INTERRUPT,
1325 static struct irqaction mca_rdzv_irqaction = {
1326 .handler = ia64_mca_rendez_int_handler,
1327 .flags = SA_INTERRUPT,
1331 static struct irqaction mca_wkup_irqaction = {
1332 .handler = ia64_mca_wakeup_int_handler,
1333 .flags = SA_INTERRUPT,
1338 static struct irqaction mca_cpe_irqaction = {
1339 .handler = ia64_mca_cpe_int_handler,
1340 .flags = SA_INTERRUPT,
1344 static struct irqaction mca_cpep_irqaction = {
1345 .handler = ia64_mca_cpe_int_caller,
1346 .flags = SA_INTERRUPT,
1349 #endif /* CONFIG_ACPI */
1351 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1352 * these stacks can never sleep, they cannot return from the kernel to user
1353 * space, they do not appear in a normal ps listing. So there is no need to
1354 * format most of the fields.
1358 format_mca_init_stack(void *mca_data, unsigned long offset,
1359 const char *type, int cpu)
1361 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1362 struct thread_info *ti;
1363 memset(p, 0, KERNEL_STACK_SIZE);
1364 ti = (struct thread_info *)((char *)p + IA64_TASK_SIZE);
1365 ti->flags = _TIF_MCA_INIT;
1366 ti->preempt_count = 1;
1369 p->thread_info = ti;
1370 p->state = TASK_UNINTERRUPTIBLE;
1371 __set_bit(cpu, &p->cpus_allowed);
1372 INIT_LIST_HEAD(&p->tasks);
1373 p->parent = p->real_parent = p->group_leader = p;
1374 INIT_LIST_HEAD(&p->children);
1375 INIT_LIST_HEAD(&p->sibling);
1376 strncpy(p->comm, type, sizeof(p->comm)-1);
1379 /* Do per-CPU MCA-related initialization. */
1382 ia64_mca_cpu_init(void *cpu_data)
1386 if (smp_processor_id() == 0) {
1390 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1391 * NR_CPUS + KERNEL_STACK_SIZE);
1392 mca_data = (void *)(((unsigned long)mca_data +
1393 KERNEL_STACK_SIZE - 1) &
1394 (-KERNEL_STACK_SIZE));
1395 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1396 format_mca_init_stack(mca_data,
1397 offsetof(struct ia64_mca_cpu, mca_stack),
1399 format_mca_init_stack(mca_data,
1400 offsetof(struct ia64_mca_cpu, init_stack),
1402 __per_cpu_mca[cpu] = __pa(mca_data);
1403 mca_data += sizeof(struct ia64_mca_cpu);
1408 * The MCA info structure was allocated earlier and its
1409 * physical address saved in __per_cpu_mca[cpu]. Copy that
1410 * address * to ia64_mca_data so we can access it as a per-CPU
1413 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1416 * Stash away a copy of the PTE needed to map the per-CPU page.
1417 * We may need it during MCA recovery.
1419 __get_cpu_var(ia64_mca_per_cpu_pte) =
1420 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1423 * Also, stash away a copy of the PAL address and the PTE
1426 pal_vaddr = efi_get_pal_addr();
1429 __get_cpu_var(ia64_mca_pal_base) =
1430 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1431 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1438 * Do all the system level mca specific initialization.
1440 * 1. Register spinloop and wakeup request interrupt vectors
1442 * 2. Register OS_MCA handler entry point
1444 * 3. Register OS_INIT handler entry point
1446 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1448 * Note that this initialization is done very early before some kernel
1449 * services are available.
1458 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1459 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1460 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1463 struct ia64_sal_retval isrv;
1464 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1466 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1468 /* Clear the Rendez checkin flag for all cpus */
1469 for(i = 0 ; i < NR_CPUS; i++)
1470 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1473 * Register the rendezvous spinloop and wakeup mechanism with SAL
1476 /* Register the rendezvous interrupt vector with SAL */
1478 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1479 SAL_MC_PARAM_MECHANISM_INT,
1480 IA64_MCA_RENDEZ_VECTOR,
1482 SAL_MC_PARAM_RZ_ALWAYS);
1487 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1488 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1492 printk(KERN_ERR "Failed to register rendezvous interrupt "
1493 "with SAL (status %ld)\n", rc);
1497 /* Register the wakeup interrupt vector with SAL */
1498 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1499 SAL_MC_PARAM_MECHANISM_INT,
1500 IA64_MCA_WAKEUP_VECTOR,
1504 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1505 "(status %ld)\n", rc);
1509 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1511 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1513 * XXX - disable SAL checksum by setting size to 0; should be
1514 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1516 ia64_mc_info.imi_mca_handler_size = 0;
1518 /* Register the os mca handler with SAL */
1519 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1520 ia64_mc_info.imi_mca_handler,
1521 ia64_tpa(mca_hldlr_ptr->gp),
1522 ia64_mc_info.imi_mca_handler_size,
1525 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1526 "(status %ld)\n", rc);
1530 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1531 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1534 * XXX - disable SAL checksum by setting size to 0, should be
1535 * size of the actual init handler in mca_asm.S.
1537 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1538 ia64_mc_info.imi_monarch_init_handler_size = 0;
1539 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1540 ia64_mc_info.imi_slave_init_handler_size = 0;
1542 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1543 ia64_mc_info.imi_monarch_init_handler);
1545 /* Register the os init handler with SAL */
1546 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1547 ia64_mc_info.imi_monarch_init_handler,
1548 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1549 ia64_mc_info.imi_monarch_init_handler_size,
1550 ia64_mc_info.imi_slave_init_handler,
1551 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1552 ia64_mc_info.imi_slave_init_handler_size)))
1554 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1555 "(status %ld)\n", rc);
1559 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1562 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1563 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1565 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1566 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1567 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1569 /* Setup the MCA rendezvous interrupt vector */
1570 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1572 /* Setup the MCA wakeup interrupt vector */
1573 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1576 /* Setup the CPEI/P handler */
1577 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1580 /* Initialize the areas set aside by the OS to buffer the
1581 * platform/processor error states for MCA/INIT/CMC
1584 ia64_log_init(SAL_INFO_TYPE_MCA);
1585 ia64_log_init(SAL_INFO_TYPE_INIT);
1586 ia64_log_init(SAL_INFO_TYPE_CMC);
1587 ia64_log_init(SAL_INFO_TYPE_CPE);
1590 printk(KERN_INFO "MCA related initialization done\n");
1594 * ia64_mca_late_init
1596 * Opportunity to setup things that require initialization later
1597 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1598 * platform doesn't support an interrupt driven mechanism.
1604 ia64_mca_late_init(void)
1609 /* Setup the CMCI/P vector and handler */
1610 init_timer(&cmc_poll_timer);
1611 cmc_poll_timer.function = ia64_mca_cmc_poll;
1613 /* Unmask/enable the vector */
1614 cmc_polling_enabled = 0;
1615 schedule_work(&cmc_enable_work);
1617 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1620 /* Setup the CPEI/P vector and handler */
1621 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1622 init_timer(&cpe_poll_timer);
1623 cpe_poll_timer.function = ia64_mca_cpe_poll;
1629 if (cpe_vector >= 0) {
1630 /* If platform supports CPEI, enable the irq. */
1631 cpe_poll_enabled = 0;
1632 for (irq = 0; irq < NR_IRQS; ++irq)
1633 if (irq_to_vector(irq) == cpe_vector) {
1634 desc = irq_descp(irq);
1635 desc->status |= IRQ_PER_CPU;
1636 setup_irq(irq, &mca_cpe_irqaction);
1638 ia64_mca_register_cpev(cpe_vector);
1639 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1641 /* If platform doesn't support CPEI, get the timer going. */
1642 if (cpe_poll_enabled) {
1643 ia64_mca_cpe_poll(0UL);
1644 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1653 device_initcall(ia64_mca_late_init);