4 * Copyright (c) 1999 Al Smith
6 * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/efs_fs.h>
12 #include <linux/efs_vh.h>
13 #include <linux/efs_fs_sb.h>
14 #include <linux/exportfs.h>
15 #include <linux/slab.h>
16 #include <linux/buffer_head.h>
17 #include <linux/vfs.h>
19 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
20 static int efs_fill_super(struct super_block *s, void *d, int silent);
22 static int efs_get_sb(struct file_system_type *fs_type,
23 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
25 return get_sb_bdev(fs_type, flags, dev_name, data, efs_fill_super, mnt);
28 static struct file_system_type efs_fs_type = {
32 .kill_sb = kill_block_super,
33 .fs_flags = FS_REQUIRES_DEV,
36 static struct pt_types sgi_pt_types[] = {
38 {0x01, "SGI trkrepl"},
39 {0x02, "SGI secrepl"},
42 {SGI_SYSV, "SGI sysv"},
51 {0x83, "Linux native"},
56 static struct kmem_cache * efs_inode_cachep;
58 static struct inode *efs_alloc_inode(struct super_block *sb)
60 struct efs_inode_info *ei;
61 ei = (struct efs_inode_info *)kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL);
64 return &ei->vfs_inode;
67 static void efs_destroy_inode(struct inode *inode)
69 kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
72 static void init_once(struct kmem_cache *cachep, void *foo)
74 struct efs_inode_info *ei = (struct efs_inode_info *) foo;
76 inode_init_once(&ei->vfs_inode);
79 static int init_inodecache(void)
81 efs_inode_cachep = kmem_cache_create("efs_inode_cache",
82 sizeof(struct efs_inode_info),
83 0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
85 if (efs_inode_cachep == NULL)
90 static void destroy_inodecache(void)
92 kmem_cache_destroy(efs_inode_cachep);
95 static void efs_put_super(struct super_block *s)
101 static int efs_remount(struct super_block *sb, int *flags, char *data)
107 static const struct super_operations efs_superblock_operations = {
108 .alloc_inode = efs_alloc_inode,
109 .destroy_inode = efs_destroy_inode,
110 .put_super = efs_put_super,
111 .statfs = efs_statfs,
112 .remount_fs = efs_remount,
115 static const struct export_operations efs_export_ops = {
116 .fh_to_dentry = efs_fh_to_dentry,
117 .fh_to_parent = efs_fh_to_parent,
118 .get_parent = efs_get_parent,
121 static int __init init_efs_fs(void) {
123 printk("EFS: "EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
124 err = init_inodecache();
127 err = register_filesystem(&efs_fs_type);
132 destroy_inodecache();
137 static void __exit exit_efs_fs(void) {
138 unregister_filesystem(&efs_fs_type);
139 destroy_inodecache();
142 module_init(init_efs_fs)
143 module_exit(exit_efs_fs)
145 static efs_block_t efs_validate_vh(struct volume_header *vh) {
149 efs_block_t sblock = 0; /* shuts up gcc */
150 struct pt_types *pt_entry;
151 int pt_type, slice = -1;
153 if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
155 * assume that we're dealing with a partition and allow
156 * read_super() to try and detect a valid superblock
162 ui = ((__be32 *) (vh + 1)) - 1;
163 for(csum = 0; ui >= ((__be32 *) vh);) {
165 csum += be32_to_cpu(cs);
168 printk(KERN_INFO "EFS: SGI disklabel: checksum bad, label corrupted\n");
173 printk(KERN_DEBUG "EFS: bf: \"%16s\"\n", vh->vh_bootfile);
175 for(i = 0; i < NVDIR; i++) {
177 char name[VDNAMESIZE+1];
179 for(j = 0; j < VDNAMESIZE; j++) {
180 name[j] = vh->vh_vd[i].vd_name[j];
185 printk(KERN_DEBUG "EFS: vh: %8s block: 0x%08x size: 0x%08x\n",
187 (int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
188 (int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
193 for(i = 0; i < NPARTAB; i++) {
194 pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
195 for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
196 if (pt_type == pt_entry->pt_type) break;
199 if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
200 printk(KERN_DEBUG "EFS: pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
202 (int) be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
203 (int) be32_to_cpu(vh->vh_pt[i].pt_nblks),
205 (pt_entry->pt_name) ? pt_entry->pt_name : "unknown");
208 if (IS_EFS(pt_type)) {
209 sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
215 printk(KERN_NOTICE "EFS: partition table contained no EFS partitions\n");
218 printk(KERN_INFO "EFS: using slice %d (type %s, offset 0x%x)\n",
220 (pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
227 static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
229 if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
232 sb->fs_magic = be32_to_cpu(super->fs_magic);
233 sb->total_blocks = be32_to_cpu(super->fs_size);
234 sb->first_block = be32_to_cpu(super->fs_firstcg);
235 sb->group_size = be32_to_cpu(super->fs_cgfsize);
236 sb->data_free = be32_to_cpu(super->fs_tfree);
237 sb->inode_free = be32_to_cpu(super->fs_tinode);
238 sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
239 sb->total_groups = be16_to_cpu(super->fs_ncg);
244 static int efs_fill_super(struct super_block *s, void *d, int silent)
246 struct efs_sb_info *sb;
247 struct buffer_head *bh;
251 sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
256 s->s_magic = EFS_SUPER_MAGIC;
257 if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
258 printk(KERN_ERR "EFS: device does not support %d byte blocks\n",
263 /* read the vh (volume header) block */
267 printk(KERN_ERR "EFS: cannot read volume header\n");
272 * if this returns zero then we didn't find any partition table.
273 * this isn't (yet) an error - just assume for the moment that
274 * the device is valid and go on to search for a superblock.
276 sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
279 if (sb->fs_start == -1) {
283 bh = sb_bread(s, sb->fs_start + EFS_SUPER);
285 printk(KERN_ERR "EFS: cannot read superblock\n");
289 if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
291 printk(KERN_WARNING "EFS: invalid superblock at block %u\n", sb->fs_start + EFS_SUPER);
298 if (!(s->s_flags & MS_RDONLY)) {
300 printk(KERN_INFO "EFS: forcing read-only mode\n");
302 s->s_flags |= MS_RDONLY;
304 s->s_op = &efs_superblock_operations;
305 s->s_export_op = &efs_export_ops;
306 root = efs_iget(s, EFS_ROOTINODE);
308 printk(KERN_ERR "EFS: get root inode failed\n");
313 s->s_root = d_alloc_root(root);
315 printk(KERN_ERR "EFS: get root dentry failed\n");
330 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
331 struct efs_sb_info *sb = SUPER_INFO(dentry->d_sb);
333 buf->f_type = EFS_SUPER_MAGIC; /* efs magic number */
334 buf->f_bsize = EFS_BLOCKSIZE; /* blocksize */
335 buf->f_blocks = sb->total_groups * /* total data blocks */
336 (sb->group_size - sb->inode_blocks);
337 buf->f_bfree = sb->data_free; /* free data blocks */
338 buf->f_bavail = sb->data_free; /* free blocks for non-root */
339 buf->f_files = sb->total_groups * /* total inodes */
341 (EFS_BLOCKSIZE / sizeof(struct efs_dinode));
342 buf->f_ffree = sb->inode_free; /* free inodes */
343 buf->f_fsid.val[0] = (sb->fs_magic >> 16) & 0xffff; /* fs ID */
344 buf->f_fsid.val[1] = sb->fs_magic & 0xffff; /* fs ID */
345 buf->f_namelen = EFS_MAXNAMELEN; /* max filename length */