3 * Copyright (C) 2001 Troy D. Armstrong IBM Corporation
4 * Copyright (C) 2004-2005 Stephen Rothwell IBM Corporation
6 * This modules exists as an interface between a Linux secondary partition
7 * running on an iSeries and the primary partition's Virtual Service
8 * Processor (VSP) object. The VSP has final authority over powering on/off
9 * all partitions in the iSeries. It also provides miscellaneous low-level
10 * machine facility type operations.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 #include <linux/types.h>
29 #include <linux/errno.h>
30 #include <linux/kernel.h>
31 #include <linux/init.h>
32 #include <linux/completion.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bcd.h>
38 #include <asm/uaccess.h>
40 #include <asm/iSeries/vio.h>
41 #include <asm/iSeries/mf.h>
42 #include <asm/iSeries/HvLpConfig.h>
43 #include <asm/iSeries/ItLpQueue.h>
46 * This is the structure layout for the Machine Facilites LPAR event
56 u64 state; /* GetStateOut */
57 u64 ipl_type; /* GetIplTypeOut, Function02SelectIplTypeIn */
58 u64 ipl_mode; /* GetIplModeOut, Function02SelectIplModeIn */
59 u64 page[4]; /* GetSrcHistoryIn */
60 u64 flag; /* GetAutoIplWhenPrimaryIplsOut,
61 SetAutoIplWhenPrimaryIplsIn,
62 WhiteButtonPowerOffIn,
63 Function08FastPowerOffIn,
64 IsSpcnRackPowerIncompleteOut */
71 } kern; /* SetKernelImageIn, GetKernelImageIn,
72 SetKernelCmdLineIn, GetKernelCmdLineIn */
73 u32 length_out; /* GetKernelImageOut, GetKernelCmdLineOut */
79 struct completion com;
80 struct vsp_cmd_data *response;
94 typedef void (*ce_msg_comp_hdlr)(void *token, struct ce_msg_data *vsp_cmd_rsp);
96 struct ce_msg_comp_data {
97 ce_msg_comp_hdlr handler;
104 struct ce_msg_comp_data *completion;
107 struct io_mf_lp_event {
108 struct HvLpEvent hp_lp_event;
109 u16 subtype_result_code;
113 struct alloc_data alloc;
114 struct ce_msg_data ce_msg;
115 struct vsp_cmd_data vsp_cmd;
119 #define subtype_data(a, b, c, d) \
120 (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
123 * All outgoing event traffic is kept on a FIFO queue. The first
124 * pointer points to the one that is outstanding, and all new
125 * requests get stuck on the end. Also, we keep a certain number of
126 * preallocated pending events so that we can operate very early in
127 * the boot up sequence (before kmalloc is ready).
129 struct pending_event {
130 struct pending_event *next;
131 struct io_mf_lp_event event;
132 MFCompleteHandler hdlr;
134 unsigned dma_data_length;
135 unsigned remote_address;
137 static spinlock_t pending_event_spinlock;
138 static struct pending_event *pending_event_head;
139 static struct pending_event *pending_event_tail;
140 static struct pending_event *pending_event_avail;
141 static struct pending_event pending_event_prealloc[16];
144 * Put a pending event onto the available queue, so it can get reused.
145 * Attention! You must have the pending_event_spinlock before calling!
147 static void free_pending_event(struct pending_event *ev)
150 ev->next = pending_event_avail;
151 pending_event_avail = ev;
156 * Enqueue the outbound event onto the stack. If the queue was
157 * empty to begin with, we must also issue it via the Hypervisor
158 * interface. There is a section of code below that will touch
159 * the first stack pointer without the protection of the pending_event_spinlock.
160 * This is OK, because we know that nobody else will be modifying
161 * the first pointer when we do this.
163 static int signal_event(struct pending_event *ev)
168 struct pending_event *ev1;
171 /* enqueue the event */
174 spin_lock_irqsave(&pending_event_spinlock, flags);
175 if (pending_event_head == NULL)
176 pending_event_head = ev;
179 pending_event_tail->next = ev;
181 pending_event_tail = ev;
182 spin_unlock_irqrestore(&pending_event_spinlock, flags);
189 /* any DMA data to send beforehand? */
190 if (pending_event_head->dma_data_length > 0)
191 HvCallEvent_dmaToSp(pending_event_head->dma_data,
192 pending_event_head->remote_address,
193 pending_event_head->dma_data_length,
194 HvLpDma_Direction_LocalToRemote);
196 hv_rc = HvCallEvent_signalLpEvent(
197 &pending_event_head->event.hp_lp_event);
198 if (hv_rc != HvLpEvent_Rc_Good) {
199 printk(KERN_ERR "mf.c: HvCallEvent_signalLpEvent() "
200 "failed with %d\n", (int)hv_rc);
202 spin_lock_irqsave(&pending_event_spinlock, flags);
203 ev1 = pending_event_head;
204 pending_event_head = pending_event_head->next;
205 if (pending_event_head != NULL)
207 spin_unlock_irqrestore(&pending_event_spinlock, flags);
211 else if (ev1->hdlr != NULL)
212 (*ev1->hdlr)((void *)ev1->event.hp_lp_event.xCorrelationToken, -EIO);
214 spin_lock_irqsave(&pending_event_spinlock, flags);
215 free_pending_event(ev1);
216 spin_unlock_irqrestore(&pending_event_spinlock, flags);
224 * Allocate a new pending_event structure, and initialize it.
226 static struct pending_event *new_pending_event(void)
228 struct pending_event *ev = NULL;
229 HvLpIndex primary_lp = HvLpConfig_getPrimaryLpIndex();
231 struct HvLpEvent *hev;
233 spin_lock_irqsave(&pending_event_spinlock, flags);
234 if (pending_event_avail != NULL) {
235 ev = pending_event_avail;
236 pending_event_avail = pending_event_avail->next;
238 spin_unlock_irqrestore(&pending_event_spinlock, flags);
240 ev = kmalloc(sizeof(struct pending_event), GFP_ATOMIC);
242 printk(KERN_ERR "mf.c: unable to kmalloc %ld bytes\n",
243 sizeof(struct pending_event));
247 memset(ev, 0, sizeof(struct pending_event));
248 hev = &ev->event.hp_lp_event;
249 hev->xFlags.xValid = 1;
250 hev->xFlags.xAckType = HvLpEvent_AckType_ImmediateAck;
251 hev->xFlags.xAckInd = HvLpEvent_AckInd_DoAck;
252 hev->xFlags.xFunction = HvLpEvent_Function_Int;
253 hev->xType = HvLpEvent_Type_MachineFac;
254 hev->xSourceLp = HvLpConfig_getLpIndex();
255 hev->xTargetLp = primary_lp;
256 hev->xSizeMinus1 = sizeof(ev->event) - 1;
257 hev->xRc = HvLpEvent_Rc_Good;
258 hev->xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primary_lp,
259 HvLpEvent_Type_MachineFac);
260 hev->xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primary_lp,
261 HvLpEvent_Type_MachineFac);
266 static int signal_vsp_instruction(struct vsp_cmd_data *vsp_cmd)
268 struct pending_event *ev = new_pending_event();
270 struct vsp_rsp_data response;
275 init_completion(&response.com);
276 response.response = vsp_cmd;
277 ev->event.hp_lp_event.xSubtype = 6;
278 ev->event.hp_lp_event.x.xSubtypeData =
279 subtype_data('M', 'F', 'V', 'I');
280 ev->event.data.vsp_cmd.token = (u64)&response;
281 ev->event.data.vsp_cmd.cmd = vsp_cmd->cmd;
282 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
283 ev->event.data.vsp_cmd.result_code = 0xFF;
284 ev->event.data.vsp_cmd.reserved = 0;
285 memcpy(&(ev->event.data.vsp_cmd.sub_data),
286 &(vsp_cmd->sub_data), sizeof(vsp_cmd->sub_data));
289 rc = signal_event(ev);
291 wait_for_completion(&response.com);
297 * Send a 12-byte CE message to the primary partition VSP object
299 static int signal_ce_msg(char *ce_msg, struct ce_msg_comp_data *completion)
301 struct pending_event *ev = new_pending_event();
306 ev->event.hp_lp_event.xSubtype = 0;
307 ev->event.hp_lp_event.x.xSubtypeData =
308 subtype_data('M', 'F', 'C', 'E');
309 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
310 ev->event.data.ce_msg.completion = completion;
311 return signal_event(ev);
315 * Send a 12-byte CE message (with no data) to the primary partition VSP object
317 static int signal_ce_msg_simple(u8 ce_op, struct ce_msg_comp_data *completion)
321 memset(ce_msg, 0, sizeof(ce_msg));
323 return signal_ce_msg(ce_msg, completion);
327 * Send a 12-byte CE message and DMA data to the primary partition VSP object
329 static int dma_and_signal_ce_msg(char *ce_msg,
330 struct ce_msg_comp_data *completion, void *dma_data,
331 unsigned dma_data_length, unsigned remote_address)
333 struct pending_event *ev = new_pending_event();
338 ev->event.hp_lp_event.xSubtype = 0;
339 ev->event.hp_lp_event.x.xSubtypeData =
340 subtype_data('M', 'F', 'C', 'E');
341 memcpy(ev->event.data.ce_msg.ce_msg, ce_msg, 12);
342 ev->event.data.ce_msg.completion = completion;
343 memcpy(ev->dma_data, dma_data, dma_data_length);
344 ev->dma_data_length = dma_data_length;
345 ev->remote_address = remote_address;
346 return signal_event(ev);
350 * Initiate a nice (hopefully) shutdown of Linux. We simply are
351 * going to try and send the init process a SIGINT signal. If
352 * this fails (why?), we'll simply force it off in a not-so-nice
355 static int shutdown(void)
357 int rc = kill_proc(1, SIGINT, 1);
360 printk(KERN_ALERT "mf.c: SIGINT to init failed (%d), "
361 "hard shutdown commencing\n", rc);
364 printk(KERN_INFO "mf.c: init has been successfully notified "
365 "to proceed with shutdown\n");
370 * The primary partition VSP object is sending us a new
371 * event flow. Handle it...
373 static void handle_int(struct io_mf_lp_event *event)
375 struct ce_msg_data *ce_msg_data;
376 struct ce_msg_data *pce_msg_data;
378 struct pending_event *pev;
380 /* ack the interrupt */
381 event->hp_lp_event.xRc = HvLpEvent_Rc_Good;
382 HvCallEvent_ackLpEvent(&event->hp_lp_event);
384 /* process interrupt */
385 switch (event->hp_lp_event.xSubtype) {
386 case 0: /* CE message */
387 ce_msg_data = &event->data.ce_msg;
388 switch (ce_msg_data->ce_msg[3]) {
389 case 0x5B: /* power control notification */
390 if ((ce_msg_data->ce_msg[5] & 0x20) != 0) {
391 printk(KERN_INFO "mf.c: Commencing partition shutdown\n");
393 signal_ce_msg_simple(0xDB, NULL);
396 case 0xC0: /* get time */
397 spin_lock_irqsave(&pending_event_spinlock, flags);
398 pev = pending_event_head;
400 pending_event_head = pending_event_head->next;
401 spin_unlock_irqrestore(&pending_event_spinlock, flags);
404 pce_msg_data = &pev->event.data.ce_msg;
405 if (pce_msg_data->ce_msg[3] != 0x40)
407 if (pce_msg_data->completion != NULL) {
408 ce_msg_comp_hdlr handler =
409 pce_msg_data->completion->handler;
410 void *token = pce_msg_data->completion->token;
413 (*handler)(token, ce_msg_data);
415 spin_lock_irqsave(&pending_event_spinlock, flags);
416 free_pending_event(pev);
417 spin_unlock_irqrestore(&pending_event_spinlock, flags);
418 /* send next waiting event */
419 if (pending_event_head != NULL)
424 case 1: /* IT sys shutdown */
425 printk(KERN_INFO "mf.c: Commencing system shutdown\n");
432 * The primary partition VSP object is acknowledging the receipt
433 * of a flow we sent to them. If there are other flows queued
434 * up, we must send another one now...
436 static void handle_ack(struct io_mf_lp_event *event)
439 struct pending_event *two = NULL;
440 unsigned long free_it = 0;
441 struct ce_msg_data *ce_msg_data;
442 struct ce_msg_data *pce_msg_data;
443 struct vsp_rsp_data *rsp;
445 /* handle current event */
446 if (pending_event_head == NULL) {
447 printk(KERN_ERR "mf.c: stack empty for receiving ack\n");
451 switch (event->hp_lp_event.xSubtype) {
453 ce_msg_data = &event->data.ce_msg;
454 if (ce_msg_data->ce_msg[3] != 0x40) {
458 if (ce_msg_data->ce_msg[2] == 0)
461 pce_msg_data = &pending_event_head->event.data.ce_msg;
462 if (pce_msg_data->completion != NULL) {
463 ce_msg_comp_hdlr handler =
464 pce_msg_data->completion->handler;
465 void *token = pce_msg_data->completion->token;
468 (*handler)(token, ce_msg_data);
471 case 4: /* allocate */
472 case 5: /* deallocate */
473 if (pending_event_head->hdlr != NULL)
474 (*pending_event_head->hdlr)((void *)event->hp_lp_event.xCorrelationToken, event->data.alloc.count);
479 rsp = (struct vsp_rsp_data *)event->data.vsp_cmd.token;
481 printk(KERN_ERR "mf.c: no rsp\n");
484 if (rsp->response != NULL)
485 memcpy(rsp->response, &event->data.vsp_cmd,
486 sizeof(event->data.vsp_cmd));
491 /* remove from queue */
492 spin_lock_irqsave(&pending_event_spinlock, flags);
493 if ((pending_event_head != NULL) && (free_it == 1)) {
494 struct pending_event *oldHead = pending_event_head;
496 pending_event_head = pending_event_head->next;
497 two = pending_event_head;
498 free_pending_event(oldHead);
500 spin_unlock_irqrestore(&pending_event_spinlock, flags);
502 /* send next waiting event */
508 * This is the generic event handler we are registering with
509 * the Hypervisor. Ensure the flows are for us, and then
510 * parse it enough to know if it is an interrupt or an
513 static void hv_handler(struct HvLpEvent *event, struct pt_regs *regs)
515 if ((event != NULL) && (event->xType == HvLpEvent_Type_MachineFac)) {
516 switch(event->xFlags.xFunction) {
517 case HvLpEvent_Function_Ack:
518 handle_ack((struct io_mf_lp_event *)event);
520 case HvLpEvent_Function_Int:
521 handle_int((struct io_mf_lp_event *)event);
524 printk(KERN_ERR "mf.c: non ack/int event received\n");
528 printk(KERN_ERR "mf.c: alien event received\n");
532 * Global kernel interface to allocate and seed events into the
535 void mf_allocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
536 unsigned size, unsigned count, MFCompleteHandler hdlr,
539 struct pending_event *ev = new_pending_event();
545 ev->event.hp_lp_event.xSubtype = 4;
546 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
547 ev->event.hp_lp_event.x.xSubtypeData =
548 subtype_data('M', 'F', 'M', 'A');
549 ev->event.data.alloc.target_lp = target_lp;
550 ev->event.data.alloc.type = type;
551 ev->event.data.alloc.size = size;
552 ev->event.data.alloc.count = count;
554 rc = signal_event(ev);
556 if ((rc != 0) && (hdlr != NULL))
557 (*hdlr)(user_token, rc);
559 EXPORT_SYMBOL(mf_allocate_lp_events);
562 * Global kernel interface to unseed and deallocate events already in
565 void mf_deallocate_lp_events(HvLpIndex target_lp, HvLpEvent_Type type,
566 unsigned count, MFCompleteHandler hdlr, void *user_token)
568 struct pending_event *ev = new_pending_event();
574 ev->event.hp_lp_event.xSubtype = 5;
575 ev->event.hp_lp_event.xCorrelationToken = (u64)user_token;
576 ev->event.hp_lp_event.x.xSubtypeData =
577 subtype_data('M', 'F', 'M', 'D');
578 ev->event.data.alloc.target_lp = target_lp;
579 ev->event.data.alloc.type = type;
580 ev->event.data.alloc.count = count;
582 rc = signal_event(ev);
584 if ((rc != 0) && (hdlr != NULL))
585 (*hdlr)(user_token, rc);
587 EXPORT_SYMBOL(mf_deallocate_lp_events);
590 * Global kernel interface to tell the VSP object in the primary
591 * partition to power this partition off.
593 void mf_power_off(void)
595 printk(KERN_INFO "mf.c: Down it goes...\n");
596 signal_ce_msg_simple(0x4d, NULL);
602 * Global kernel interface to tell the VSP object in the primary
603 * partition to reboot this partition.
607 printk(KERN_INFO "mf.c: Preparing to bounce...\n");
608 signal_ce_msg_simple(0x4e, NULL);
614 * Display a single word SRC onto the VSP control panel.
616 void mf_display_src(u32 word)
620 memset(ce, 0, sizeof(ce));
627 signal_ce_msg(ce, NULL);
631 * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
633 void mf_display_progress(u16 value)
638 memcpy(ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12);
639 memcpy(src, "\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00"
640 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
641 "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
642 "\x00\x00\x00\x00PROGxxxx ",
645 src[7] = value & 255;
646 src[44] = "0123456789ABCDEF"[(value >> 12) & 15];
647 src[45] = "0123456789ABCDEF"[(value >> 8) & 15];
648 src[46] = "0123456789ABCDEF"[(value >> 4) & 15];
649 src[47] = "0123456789ABCDEF"[value & 15];
650 dma_and_signal_ce_msg(ce, NULL, src, sizeof(src), 9 * 64 * 1024);
654 * Clear the VSP control panel. Used to "erase" an SRC that was
655 * previously displayed.
657 void mf_clear_src(void)
659 signal_ce_msg_simple(0x4b, NULL);
663 * Initialization code here.
670 spin_lock_init(&pending_event_spinlock);
672 i < sizeof(pending_event_prealloc) / sizeof(*pending_event_prealloc);
674 free_pending_event(&pending_event_prealloc[i]);
675 HvLpEvent_registerHandler(HvLpEvent_Type_MachineFac, &hv_handler);
677 /* virtual continue ack */
678 signal_ce_msg_simple(0x57, NULL);
680 /* initialization complete */
681 printk(KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities "
685 struct rtc_time_data {
686 struct completion com;
687 struct ce_msg_data ce_msg;
691 static void get_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
693 struct rtc_time_data *rtc = token;
695 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
700 static int rtc_set_tm(int rc, u8 *ce_msg, struct rtc_time *tm)
715 if ((ce_msg[2] == 0xa9) ||
716 (ce_msg[2] == 0xaf)) {
717 /* TOD clock is not set */
755 int mf_get_rtc(struct rtc_time *tm)
757 struct ce_msg_comp_data ce_complete;
758 struct rtc_time_data rtc_data;
761 memset(&ce_complete, 0, sizeof(ce_complete));
762 memset(&rtc_data, 0, sizeof(rtc_data));
763 init_completion(&rtc_data.com);
764 ce_complete.handler = &get_rtc_time_complete;
765 ce_complete.token = &rtc_data;
766 rc = signal_ce_msg_simple(0x40, &ce_complete);
769 wait_for_completion(&rtc_data.com);
770 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
773 struct boot_rtc_time_data {
775 struct ce_msg_data ce_msg;
779 static void get_boot_rtc_time_complete(void *token, struct ce_msg_data *ce_msg)
781 struct boot_rtc_time_data *rtc = token;
783 memcpy(&rtc->ce_msg, ce_msg, sizeof(rtc->ce_msg));
788 int mf_get_boot_rtc(struct rtc_time *tm)
790 struct ce_msg_comp_data ce_complete;
791 struct boot_rtc_time_data rtc_data;
794 memset(&ce_complete, 0, sizeof(ce_complete));
795 memset(&rtc_data, 0, sizeof(rtc_data));
797 ce_complete.handler = &get_boot_rtc_time_complete;
798 ce_complete.token = &rtc_data;
799 rc = signal_ce_msg_simple(0x40, &ce_complete);
802 /* We need to poll here as we are not yet taking interrupts */
803 while (rtc_data.busy) {
804 if (hvlpevent_is_pending())
805 process_hvlpevents(NULL);
807 return rtc_set_tm(rtc_data.rc, rtc_data.ce_msg.ce_msg, tm);
810 int mf_set_rtc(struct rtc_time *tm)
813 u8 day, mon, hour, min, sec, y1, y2;
816 year = 1900 + tm->tm_year;
824 mon = tm->tm_mon + 1;
834 memset(ce_time, 0, sizeof(ce_time));
844 return signal_ce_msg(ce_time, NULL);
847 #ifdef CONFIG_PROC_FS
849 static int proc_mf_dump_cmdline(char *page, char **start, off_t off,
850 int count, int *eof, void *data)
854 struct vsp_cmd_data vsp_cmd;
858 /* The HV appears to return no more than 256 bytes of command line */
861 if ((off + count) > 256)
864 dma_addr = dma_map_single(iSeries_vio_dev, page, off + count,
866 if (dma_mapping_error(dma_addr))
868 memset(page, 0, off + count);
869 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
871 vsp_cmd.sub_data.kern.token = dma_addr;
872 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
873 vsp_cmd.sub_data.kern.side = (u64)data;
874 vsp_cmd.sub_data.kern.length = off + count;
876 rc = signal_vsp_instruction(&vsp_cmd);
877 dma_unmap_single(iSeries_vio_dev, dma_addr, off + count,
881 if (vsp_cmd.result_code != 0)
885 while (len < (off + count)) {
886 if ((*p == '\0') || (*p == '\n')) {
906 static int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
908 struct vsp_cmd_data vsp_cmd;
913 dma_addr = dma_map_single(iSeries_vio_dev, buffer, len,
915 memset(buffer, 0, len);
916 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
918 vsp_cmd.sub_data.kern.token = dma_addr;
919 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
920 vsp_cmd.sub_data.kern.side = side;
921 vsp_cmd.sub_data.kern.offset = offset;
922 vsp_cmd.sub_data.kern.length = len;
924 rc = signal_vsp_instruction(&vsp_cmd);
926 if (vsp_cmd.result_code == 0)
927 *size = vsp_cmd.sub_data.length_out;
932 dma_unmap_single(iSeries_vio_dev, dma_addr, len, DMA_FROM_DEVICE);
937 static int proc_mf_dump_vmlinux(char *page, char **start, off_t off,
938 int count, int *eof, void *data)
940 int sizeToGet = count;
942 if (!capable(CAP_SYS_ADMIN))
945 if (mf_getVmlinuxChunk(page, &sizeToGet, off, (u64)data) == 0) {
946 if (sizeToGet != 0) {
958 static int proc_mf_dump_side(char *page, char **start, off_t off,
959 int count, int *eof, void *data)
962 char mf_current_side = ' ';
963 struct vsp_cmd_data vsp_cmd;
965 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
967 vsp_cmd.sub_data.ipl_type = 0;
970 if (signal_vsp_instruction(&vsp_cmd) == 0) {
971 if (vsp_cmd.result_code == 0) {
972 switch (vsp_cmd.sub_data.ipl_type) {
973 case 0: mf_current_side = 'A';
975 case 1: mf_current_side = 'B';
977 case 2: mf_current_side = 'C';
979 default: mf_current_side = 'D';
985 len = sprintf(page, "%c\n", mf_current_side);
987 if (len <= (off + count))
998 static int proc_mf_change_side(struct file *file, const char __user *buffer,
999 unsigned long count, void *data)
1003 struct vsp_cmd_data vsp_cmd;
1005 if (!capable(CAP_SYS_ADMIN))
1011 if (get_user(side, buffer))
1015 case 'A': newSide = 0;
1017 case 'B': newSide = 1;
1019 case 'C': newSide = 2;
1021 case 'D': newSide = 3;
1024 printk(KERN_ERR "mf_proc.c: proc_mf_change_side: invalid side\n");
1028 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1029 vsp_cmd.sub_data.ipl_type = newSide;
1032 (void)signal_vsp_instruction(&vsp_cmd);
1038 static void mf_getSrcHistory(char *buffer, int size)
1040 struct IplTypeReturnStuff return_stuff;
1041 struct pending_event *ev = new_pending_event();
1045 pages[0] = kmalloc(4096, GFP_ATOMIC);
1046 pages[1] = kmalloc(4096, GFP_ATOMIC);
1047 pages[2] = kmalloc(4096, GFP_ATOMIC);
1048 pages[3] = kmalloc(4096, GFP_ATOMIC);
1049 if ((ev == NULL) || (pages[0] == NULL) || (pages[1] == NULL)
1050 || (pages[2] == NULL) || (pages[3] == NULL))
1053 return_stuff.xType = 0;
1054 return_stuff.xRc = 0;
1055 return_stuff.xDone = 0;
1056 ev->event.hp_lp_event.xSubtype = 6;
1057 ev->event.hp_lp_event.x.xSubtypeData =
1058 subtype_data('M', 'F', 'V', 'I');
1059 ev->event.data.vsp_cmd.xEvent = &return_stuff;
1060 ev->event.data.vsp_cmd.cmd = 4;
1061 ev->event.data.vsp_cmd.lp_index = HvLpConfig_getLpIndex();
1062 ev->event.data.vsp_cmd.result_code = 0xFF;
1063 ev->event.data.vsp_cmd.reserved = 0;
1064 ev->event.data.vsp_cmd.sub_data.page[0] = ISERIES_HV_ADDR(pages[0]);
1065 ev->event.data.vsp_cmd.sub_data.page[1] = ISERIES_HV_ADDR(pages[1]);
1066 ev->event.data.vsp_cmd.sub_data.page[2] = ISERIES_HV_ADDR(pages[2]);
1067 ev->event.data.vsp_cmd.sub_data.page[3] = ISERIES_HV_ADDR(pages[3]);
1069 if (signal_event(ev) != 0)
1072 while (return_stuff.xDone != 1)
1074 if (return_stuff.xRc == 0)
1075 memcpy(buffer, pages[0], size);
1083 static int proc_mf_dump_src(char *page, char **start, off_t off,
1084 int count, int *eof, void *data)
1089 mf_getSrcHistory(page, count);
1098 *start = page + off;
1105 static int proc_mf_change_src(struct file *file, const char __user *buffer,
1106 unsigned long count, void *data)
1110 if (!capable(CAP_SYS_ADMIN))
1113 if ((count < 4) && (count != 1)) {
1114 printk(KERN_ERR "mf_proc: invalid src\n");
1118 if (count > (sizeof(stkbuf) - 1))
1119 count = sizeof(stkbuf) - 1;
1120 if (copy_from_user(stkbuf, buffer, count))
1123 if ((count == 1) && (*stkbuf == '\0'))
1126 mf_display_src(*(u32 *)stkbuf);
1131 static int proc_mf_change_cmdline(struct file *file, const char __user *buffer,
1132 unsigned long count, void *data)
1134 struct vsp_cmd_data vsp_cmd;
1135 dma_addr_t dma_addr;
1139 if (!capable(CAP_SYS_ADMIN))
1143 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1150 if (copy_from_user(page, buffer, count))
1153 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1155 vsp_cmd.sub_data.kern.token = dma_addr;
1156 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1157 vsp_cmd.sub_data.kern.side = (u64)data;
1158 vsp_cmd.sub_data.kern.length = count;
1160 (void)signal_vsp_instruction(&vsp_cmd);
1164 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1169 static ssize_t proc_mf_change_vmlinux(struct file *file,
1170 const char __user *buf,
1171 size_t count, loff_t *ppos)
1173 struct proc_dir_entry *dp = PDE(file->f_dentry->d_inode);
1175 dma_addr_t dma_addr;
1177 struct vsp_cmd_data vsp_cmd;
1180 if (!capable(CAP_SYS_ADMIN))
1184 page = dma_alloc_coherent(iSeries_vio_dev, count, &dma_addr,
1188 printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
1192 if (copy_from_user(page, buf, count))
1195 memset(&vsp_cmd, 0, sizeof(vsp_cmd));
1197 vsp_cmd.sub_data.kern.token = dma_addr;
1198 vsp_cmd.sub_data.kern.address_type = HvLpDma_AddressType_TceIndex;
1199 vsp_cmd.sub_data.kern.side = (u64)dp->data;
1200 vsp_cmd.sub_data.kern.offset = *ppos;
1201 vsp_cmd.sub_data.kern.length = count;
1203 rc = signal_vsp_instruction(&vsp_cmd);
1207 if (vsp_cmd.result_code != 0)
1213 dma_free_coherent(iSeries_vio_dev, count, page, dma_addr);
1218 static struct file_operations proc_vmlinux_operations = {
1219 .write = proc_mf_change_vmlinux,
1222 static int __init mf_proc_init(void)
1224 struct proc_dir_entry *mf_proc_root;
1225 struct proc_dir_entry *ent;
1226 struct proc_dir_entry *mf;
1230 mf_proc_root = proc_mkdir("iSeries/mf", NULL);
1235 for (i = 0; i < 4; i++) {
1237 mf = proc_mkdir(name, mf_proc_root);
1241 ent = create_proc_entry("cmdline", S_IFREG|S_IRUSR|S_IWUSR, mf);
1245 ent->data = (void *)(long)i;
1246 ent->read_proc = proc_mf_dump_cmdline;
1247 ent->write_proc = proc_mf_change_cmdline;
1249 if (i == 3) /* no vmlinux entry for 'D' */
1252 ent = create_proc_entry("vmlinux", S_IFREG|S_IWUSR, mf);
1256 ent->data = (void *)(long)i;
1257 ent->proc_fops = &proc_vmlinux_operations;
1260 ent = create_proc_entry("side", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1264 ent->data = (void *)0;
1265 ent->read_proc = proc_mf_dump_side;
1266 ent->write_proc = proc_mf_change_side;
1268 ent = create_proc_entry("src", S_IFREG|S_IRUSR|S_IWUSR, mf_proc_root);
1272 ent->data = (void *)0;
1273 ent->read_proc = proc_mf_dump_src;
1274 ent->write_proc = proc_mf_change_src;
1279 __initcall(mf_proc_init);
1281 #endif /* CONFIG_PROC_FS */