3 * Optmized version of the standard do_csum() function
5 * Return: a 64bit quantity containing the 16bit Internet checksum
8 * in0: address of buffer to checksum (char *)
9 * in1: length of the buffer (int)
11 * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co
12 * Stephane Eranian <eranian@hpl.hp.com>
14 * 02/04/22 Ken Chen <kenneth.w.chen@intel.com>
15 * Data locality study on the checksum buffer.
16 * More optimization cleanup - remove excessive stop bits.
17 * 02/04/08 David Mosberger <davidm@hpl.hp.com>
18 * More cleanup and tuning.
19 * 01/04/18 Jun Nakajima <jun.nakajima@intel.com>
20 * Clean up and optimize and the software pipeline, loading two
21 * back-to-back 8-byte words per loop. Clean up the initialization
22 * for the loop. Support the cases where load latency = 1 or 2.
23 * Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default).
26 #include <asm/asmmacro.h>
29 // Theory of operations:
30 // The goal is to go as quickly as possible to the point where
31 // we can checksum 16 bytes/loop. Before reaching that point we must
32 // take care of incorrect alignment of first byte.
34 // The code hereafter also takes care of the "tail" part of the buffer
35 // before entering the core loop, if any. The checksum is a sum so it
36 // allows us to commute operations. So we do the "head" and "tail"
37 // first to finish at full speed in the body. Once we get the head and
38 // tail values, we feed them into the pipeline, very handy initialization.
40 // Of course we deal with the special case where the whole buffer fits
41 // into one 8 byte word. In this case we have only one entry in the pipeline.
43 // We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for
44 // possible load latency and also to accommodate for head and tail.
46 // The end of the function deals with folding the checksum from 64bits
47 // down to 16bits taking care of the carry.
49 // This version avoids synchronization in the core loop by also using a
50 // pipeline for the accumulation of the checksum in resultx[] (x=1,2).
54 // | | 0 : new value loaded in pipeline
56 // | | - : in transit data
58 // | | LOAD_LATENCY : current value to add to checksum
60 // | | LOAD_LATENCY+1 : previous value added to checksum
61 // |---| (previous iteration)
65 // | | 0 : initial value
67 // | | LOAD_LATENCY-1 : new checksum
69 // | | LOAD_LATENCY : previous value of checksum
71 // | | LOAD_LATENCY+1 : final checksum when out of the loop
75 // See RFC1071 "Computing the Internet Checksum" for various techniques for
76 // calculating the Internet checksum.
79 // - Maybe another algorithm which would take care of the folding at the
80 // end in a different manner
81 // - Work with people more knowledgeable than me on the network stack
82 // to figure out if we could not split the function depending on the
83 // type of packet or alignment we get. Like the ip_fast_csum() routine
84 // where we know we have at least 20bytes worth of data to checksum.
85 // - Do a better job of handling small packets.
86 // - Note on prefetching: it was found that under various load, i.e. ftp read/write,
87 // nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%
88 // on the data that buffer points to (partly because the checksum is often preceded by
89 // a copy_from_user()). This finding indiate that lfetch will not be beneficial since
90 // the data is already in the cache.
114 #define LOAD_LATENCY 2 // XXX fix me
116 #if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)
117 # error "Only 1 or 2 is supported/tested for LOAD_LATENCY."
120 #define PIPE_DEPTH (LOAD_LATENCY+2)
121 #define ELD p[LOAD_LATENCY] // end of load
122 #define ELD_1 p[LOAD_LATENCY+1] // and next stage
124 // unsigned long do_csum(unsigned char *buf,long len)
126 GLOBAL_ENTRY(do_csum)
128 .save ar.pfs, saved_pfs
129 alloc saved_pfs=ar.pfs,2,16,0,16
130 .rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]
131 .rotp p[PIPE_DEPTH], pC1[2], pC2[2]
132 mov ret0=r0 // in case we have zero length
133 cmp.lt p0,p6=r0,len // check for zero length or negative (32bit len)
135 add tmp1=buf,len // last byte's address
137 mov saved_pr=pr // preserve predicates (rotation)
138 (p6) br.ret.spnt.many rp // return if zero or negative length
140 mov hmask=-1 // initialize head mask
141 tbit.nz p15,p0=buf,0 // is buf an odd address?
142 and first1=-8,buf // 8-byte align down address of first1 element
144 and firstoff=7,buf // how many bytes off for first1 element
145 mov tmask=-1 // initialize tail mask
148 adds tmp2=-1,tmp1 // last-1
149 and lastoff=7,tmp1 // how many bytes off for last element
151 sub tmp1=8,lastoff // complement to lastoff
152 and last=-8,tmp2 // address of word containing last byte
154 sub tmp3=last,first1 // tmp3=distance from first1 to last
155 .save ar.lc, saved_lc
156 mov saved_lc=ar.lc // save lc
157 cmp.eq p8,p9=last,first1 // everything fits in one word ?
159 ld8 firstval=[first1],8 // load, ahead of time, "first1" word
160 and tmp1=7, tmp1 // make sure that if tmp1==8 -> tmp1=0
161 shl tmp2=firstoff,3 // number of bits
163 (p9) ld8 lastval=[last] // load, ahead of time, "last" word, if needed
164 shl tmp1=tmp1,3 // number of bits
165 (p9) adds tmp3=-8,tmp3 // effectively loaded
167 (p8) mov lastval=r0 // we don't need lastval if first1==last
168 shl hmask=hmask,tmp2 // build head mask, mask off [0,first1off[
169 shr.u tmask=tmask,tmp1 // build tail mask, mask off ]8,lastoff]
174 (p8) and hmask=hmask,tmask // apply tail mask to head mask if 1 word only
175 (p9) and word2[0]=lastval,tmask // mask last it as appropriate
176 shr.u count=count,3 // how many 8-byte?
178 // If count is odd, finish this 8-byte word so that we can
179 // load two back-to-back 8-byte words per loop thereafter.
180 and word1[0]=firstval,hmask // and mask it as appropriate
181 tbit.nz p10,p11=count,0 // if (count is odd)
183 (p8) mov result1[0]=word1[0]
184 (p9) add result1[0]=word1[0],word2[0]
186 cmp.ltu p6,p0=result1[0],word1[0] // check the carry
187 cmp.eq.or.andcm p8,p0=0,count // exit if zero 8-byte
189 (p6) adds result1[0]=1,result1[0]
190 (p8) br.cond.dptk .do_csum_exit // if (within an 8-byte word)
191 (p11) br.cond.dptk .do_csum16 // if (count is even)
193 // Here count is odd.
194 ld8 word1[1]=[first1],8 // load an 8-byte word
195 cmp.eq p9,p10=1,count // if (count == 1)
196 adds count=-1,count // loaded an 8-byte word
198 add result1[0]=result1[0],word1[1]
200 cmp.ltu p6,p0=result1[0],word1[1]
202 (p6) adds result1[0]=1,result1[0]
203 (p9) br.cond.sptk .do_csum_exit // if (count == 1) exit
204 // Fall through to caluculate the checksum, feeding result1[0] as
205 // the initial value in result1[0].
207 // Calculate the checksum loading two 8-byte words per loop.
211 shr.u count=count,1 // we do 16 bytes per loop
219 mov ar.lc=count // set lc
221 // result1[0] must be initialized in advance.
226 (ELD_1) cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1]
227 (pC1[1])adds carry1=1,carry1
228 (ELD_1) cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1]
229 (pC2[1])adds carry2=1,carry2
230 (ELD) add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY]
231 (ELD) add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]
233 (p[0]) ld8 word1[0]=[first1],16
234 (p[0]) ld8 word2[0]=[first2],16
237 // Since len is a 32-bit value, carry cannot be larger than a 64-bit value.
238 (pC1[1])adds carry1=1,carry1 // since we miss the last one
239 (pC2[1])adds carry2=1,carry2
241 add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1
242 add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2
244 cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1
245 cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2
247 (p6) adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1]
248 (p7) adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]
250 add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]
252 cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]
254 (p6) adds result1[0]=1,result1[0]
258 // now fold 64 into 16 bits taking care of carry
259 // that's not very good because it has lots of sequentiality
263 shr.u tmp2=result1[0],32
265 add result1[0]=tmp1,tmp2
267 and tmp1=result1[0],tmp3
268 shr.u tmp2=result1[0],16
270 add result1[0]=tmp1,tmp2
272 and tmp1=result1[0],tmp3
273 shr.u tmp2=result1[0],16
275 add result1[0]=tmp1,tmp2
277 and tmp1=result1[0],tmp3
278 shr.u tmp2=result1[0],16
281 mov pr=saved_pr,0xffffffffffff0000
283 // if buf was odd then swap bytes
284 mov ar.pfs=saved_pfs // restore ar.ec
285 (p15) mux1 ret0=ret0,@rev // reverse word
288 (p15) shr.u ret0=ret0,64-16 // + shift back to position = swap bytes
291 // I (Jun Nakajima) wrote an equivalent code (see below), but it was
292 // not much better than the original. So keep the original there so that
293 // someone else can challenge.
295 // shr.u word1[0]=result1[0],32
296 // zxt4 result1[0]=result1[0]
298 // add result1[0]=result1[0],word1[0]
300 // zxt2 result2[0]=result1[0]
301 // extr.u word1[0]=result1[0],16,16
302 // shr.u carry1=result1[0],32
304 // add result2[0]=result2[0],word1[0]
306 // add result2[0]=result2[0],carry1
308 // extr.u ret0=result2[0],16,16
310 // add ret0=ret0,result2[0]
313 // mov ar.pfs=saved_pfs // restore ar.ec
314 // mov pr=saved_pr,0xffffffffffff0000
316 // // if buf was odd then swap bytes
317 // mov ar.lc=saved_lc
318 //(p15) mux1 ret0=ret0,@rev // reverse word
320 //(p15) shr.u ret0=ret0,64-16 // + shift back to position = swap bytes
321 // br.ret.sptk.many rp