Btrfs: csum_verify_file_block locking fix
[linux-2.6] / fs / btrfs / disk-io.c
1 #include <linux/module.h>
2 #include <linux/fs.h>
3 #include <linux/blkdev.h>
4 #include <linux/crypto.h>
5 #include <linux/scatterlist.h>
6 #include <linux/swap.h>
7 #include "ctree.h"
8 #include "disk-io.h"
9 #include "transaction.h"
10
11 static int check_tree_block(struct btrfs_root *root, struct buffer_head *buf)
12 {
13         struct btrfs_node *node = btrfs_buffer_node(buf);
14         if (buf->b_blocknr != btrfs_header_blocknr(&node->header)) {
15                 BUG();
16         }
17         if (root->node && btrfs_header_parentid(&node->header) !=
18             btrfs_header_parentid(btrfs_buffer_header(root->node))) {
19                 BUG();
20         }
21         return 0;
22 }
23
24 struct buffer_head *btrfs_find_tree_block(struct btrfs_root *root, u64 blocknr)
25 {
26         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
27         int blockbits = root->fs_info->sb->s_blocksize_bits;
28         unsigned long index = blocknr >> (PAGE_CACHE_SHIFT - blockbits);
29         struct page *page;
30         struct buffer_head *bh;
31         struct buffer_head *head;
32         struct buffer_head *ret = NULL;
33
34
35         page = find_lock_page(mapping, index);
36         if (!page)
37                 return NULL;
38
39         if (!page_has_buffers(page))
40                 goto out_unlock;
41
42         head = page_buffers(page);
43         bh = head;
44         do {
45                 if (buffer_mapped(bh) && bh->b_blocknr == blocknr) {
46                         ret = bh;
47                         get_bh(bh);
48                         goto out_unlock;
49                 }
50                 bh = bh->b_this_page;
51         } while (bh != head);
52 out_unlock:
53         unlock_page(page);
54         if (ret) {
55                 touch_buffer(ret);
56         }
57         page_cache_release(page);
58         return ret;
59 }
60
61 struct buffer_head *btrfs_find_create_tree_block(struct btrfs_root *root,
62                                                  u64 blocknr)
63 {
64         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
65         int blockbits = root->fs_info->sb->s_blocksize_bits;
66         unsigned long index = blocknr >> (PAGE_CACHE_SHIFT - blockbits);
67         struct page *page;
68         struct buffer_head *bh;
69         struct buffer_head *head;
70         struct buffer_head *ret = NULL;
71         u64 first_block = index << (PAGE_CACHE_SHIFT - blockbits);
72
73         page = grab_cache_page(mapping, index);
74         if (!page)
75                 return NULL;
76
77         if (!page_has_buffers(page))
78                 create_empty_buffers(page, root->fs_info->sb->s_blocksize, 0);
79         head = page_buffers(page);
80         bh = head;
81         do {
82                 if (!buffer_mapped(bh)) {
83                         bh->b_bdev = root->fs_info->sb->s_bdev;
84                         bh->b_blocknr = first_block;
85                         set_buffer_mapped(bh);
86                 }
87                 if (bh->b_blocknr == blocknr) {
88                         ret = bh;
89                         get_bh(bh);
90                         goto out_unlock;
91                 }
92                 bh = bh->b_this_page;
93                 first_block++;
94         } while (bh != head);
95 out_unlock:
96         unlock_page(page);
97         if (ret)
98                 touch_buffer(ret);
99         page_cache_release(page);
100         return ret;
101 }
102
103 static sector_t max_block(struct block_device *bdev)
104 {
105         sector_t retval = ~((sector_t)0);
106         loff_t sz = i_size_read(bdev->bd_inode);
107
108         if (sz) {
109                 unsigned int size = block_size(bdev);
110                 unsigned int sizebits = blksize_bits(size);
111                 retval = (sz >> sizebits);
112         }
113         return retval;
114 }
115
116 static int btree_get_block(struct inode *inode, sector_t iblock,
117                            struct buffer_head *bh, int create)
118 {
119         if (iblock >= max_block(inode->i_sb->s_bdev)) {
120                 if (create)
121                         return -EIO;
122
123                 /*
124                  * for reads, we're just trying to fill a partial page.
125                  * return a hole, they will have to call get_block again
126                  * before they can fill it, and they will get -EIO at that
127                  * time
128                  */
129                 return 0;
130         }
131         bh->b_bdev = inode->i_sb->s_bdev;
132         bh->b_blocknr = iblock;
133         set_buffer_mapped(bh);
134         return 0;
135 }
136
137 int btrfs_csum_data(struct btrfs_root * root, char *data, size_t len,
138                     char *result)
139 {
140         struct scatterlist sg;
141         struct crypto_hash *tfm = root->fs_info->hash_tfm;
142         struct hash_desc desc;
143         int ret;
144
145         desc.tfm = tfm;
146         desc.flags = 0;
147         sg_init_one(&sg, data, len);
148         spin_lock(&root->fs_info->hash_lock);
149         ret = crypto_hash_digest(&desc, &sg, 1, result);
150         spin_unlock(&root->fs_info->hash_lock);
151         if (ret) {
152                 printk("sha256 digest failed\n");
153         }
154         return ret;
155 }
156 static int csum_tree_block(struct btrfs_root *root, struct buffer_head *bh,
157                            int verify)
158 {
159         char result[BTRFS_CSUM_SIZE];
160         int ret;
161         struct btrfs_node *node;
162
163         ret = btrfs_csum_data(root, bh->b_data + BTRFS_CSUM_SIZE,
164                               bh->b_size - BTRFS_CSUM_SIZE, result);
165         if (ret)
166                 return ret;
167         if (verify) {
168                 if (memcmp(bh->b_data, result, BTRFS_CSUM_SIZE)) {
169                         printk("checksum verify failed on %lu\n",
170                                bh->b_blocknr);
171                         return 1;
172                 }
173         } else {
174                 node = btrfs_buffer_node(bh);
175                 memcpy(node->header.csum, result, BTRFS_CSUM_SIZE);
176         }
177         return 0;
178 }
179
180 static int btree_writepage(struct page *page, struct writeback_control *wbc)
181 {
182         struct buffer_head *bh;
183         struct btrfs_root *root = btrfs_sb(page->mapping->host->i_sb);
184         struct buffer_head *head;
185         if (!page_has_buffers(page)) {
186                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
187                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
188         }
189         head = page_buffers(page);
190         bh = head;
191         do {
192                 if (buffer_dirty(bh))
193                         csum_tree_block(root, bh, 0);
194                 bh = bh->b_this_page;
195         } while (bh != head);
196         return block_write_full_page(page, btree_get_block, wbc);
197 }
198
199 static int btree_readpage(struct file * file, struct page * page)
200 {
201         return block_read_full_page(page, btree_get_block);
202 }
203
204 static struct address_space_operations btree_aops = {
205         .readpage       = btree_readpage,
206         .writepage      = btree_writepage,
207         .sync_page      = block_sync_page,
208 };
209
210 struct buffer_head *read_tree_block(struct btrfs_root *root, u64 blocknr)
211 {
212         struct buffer_head *bh = NULL;
213
214         bh = btrfs_find_create_tree_block(root, blocknr);
215         if (!bh)
216                 return bh;
217         lock_buffer(bh);
218         if (!buffer_uptodate(bh)) {
219                 get_bh(bh);
220                 bh->b_end_io = end_buffer_read_sync;
221                 submit_bh(READ, bh);
222                 wait_on_buffer(bh);
223                 if (!buffer_uptodate(bh))
224                         goto fail;
225                 csum_tree_block(root, bh, 1);
226         } else {
227                 unlock_buffer(bh);
228         }
229         if (check_tree_block(root, bh))
230                 BUG();
231         return bh;
232 fail:
233         brelse(bh);
234         return NULL;
235 }
236
237 int dirty_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
238                      struct buffer_head *buf)
239 {
240         WARN_ON(atomic_read(&buf->b_count) == 0);
241         mark_buffer_dirty(buf);
242         return 0;
243 }
244
245 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
246                      struct buffer_head *buf)
247 {
248         WARN_ON(atomic_read(&buf->b_count) == 0);
249         clear_buffer_dirty(buf);
250         return 0;
251 }
252
253 static int __setup_root(int blocksize,
254                         struct btrfs_root *root,
255                         struct btrfs_fs_info *fs_info,
256                         u64 objectid)
257 {
258         root->node = NULL;
259         root->commit_root = NULL;
260         root->blocksize = blocksize;
261         root->ref_cows = 0;
262         root->fs_info = fs_info;
263         memset(&root->root_key, 0, sizeof(root->root_key));
264         memset(&root->root_item, 0, sizeof(root->root_item));
265         return 0;
266 }
267
268 static int find_and_setup_root(int blocksize,
269                                struct btrfs_root *tree_root,
270                                struct btrfs_fs_info *fs_info,
271                                u64 objectid,
272                                struct btrfs_root *root)
273 {
274         int ret;
275
276         __setup_root(blocksize, root, fs_info, objectid);
277         ret = btrfs_find_last_root(tree_root, objectid,
278                                    &root->root_item, &root->root_key);
279         BUG_ON(ret);
280
281         root->node = read_tree_block(root,
282                                      btrfs_root_blocknr(&root->root_item));
283         BUG_ON(!root->node);
284         return 0;
285 }
286
287 struct btrfs_root *open_ctree(struct super_block *sb)
288 {
289         struct btrfs_root *root = kmalloc(sizeof(struct btrfs_root),
290                                           GFP_NOFS);
291         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
292                                                  GFP_NOFS);
293         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
294                                                GFP_NOFS);
295         struct btrfs_root *inode_root = kmalloc(sizeof(struct btrfs_root),
296                                                 GFP_NOFS);
297         struct btrfs_fs_info *fs_info = kmalloc(sizeof(*fs_info),
298                                                 GFP_NOFS);
299         int ret;
300         struct btrfs_super_block *disk_super;
301
302         init_bit_radix(&fs_info->pinned_radix);
303         init_bit_radix(&fs_info->pending_del_radix);
304         sb_set_blocksize(sb, 4096);
305         fs_info->running_transaction = NULL;
306         fs_info->fs_root = root;
307         fs_info->tree_root = tree_root;
308         fs_info->extent_root = extent_root;
309         fs_info->inode_root = inode_root;
310         fs_info->last_inode_alloc = 0;
311         fs_info->last_inode_alloc_dirid = 0;
312         fs_info->sb = sb;
313         fs_info->btree_inode = new_inode(sb);
314         fs_info->btree_inode->i_ino = 1;
315         fs_info->btree_inode->i_nlink = 1;
316         fs_info->btree_inode->i_size = sb->s_bdev->bd_inode->i_size;
317         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
318         insert_inode_hash(fs_info->btree_inode);
319         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
320         fs_info->hash_tfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);
321         spin_lock_init(&fs_info->hash_lock);
322         if (!fs_info->hash_tfm || IS_ERR(fs_info->hash_tfm)) {
323                 printk("failed to allocate sha256 hash\n");
324                 return NULL;
325         }
326         mutex_init(&fs_info->trans_mutex);
327         mutex_init(&fs_info->fs_mutex);
328         memset(&fs_info->current_insert, 0, sizeof(fs_info->current_insert));
329         memset(&fs_info->last_insert, 0, sizeof(fs_info->last_insert));
330
331         __setup_root(sb->s_blocksize, tree_root,
332                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
333         fs_info->sb_buffer = read_tree_block(tree_root,
334                                              BTRFS_SUPER_INFO_OFFSET /
335                                              sb->s_blocksize);
336
337         if (!fs_info->sb_buffer) {
338 printk("failed2\n");
339                 return NULL;
340         }
341         disk_super = (struct btrfs_super_block *)fs_info->sb_buffer->b_data;
342         if (!btrfs_super_root(disk_super)) {
343                 return NULL;
344         }
345         fs_info->disk_super = disk_super;
346         tree_root->node = read_tree_block(tree_root,
347                                           btrfs_super_root(disk_super));
348         BUG_ON(!tree_root->node);
349
350         mutex_lock(&fs_info->fs_mutex);
351         ret = find_and_setup_root(sb->s_blocksize, tree_root, fs_info,
352                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
353         BUG_ON(ret);
354
355         ret = find_and_setup_root(sb->s_blocksize, tree_root, fs_info,
356                                   BTRFS_INODE_MAP_OBJECTID, inode_root);
357         BUG_ON(ret);
358
359         ret = find_and_setup_root(sb->s_blocksize, tree_root, fs_info,
360                                   BTRFS_FS_TREE_OBJECTID, root);
361         mutex_unlock(&fs_info->fs_mutex);
362         BUG_ON(ret);
363         root->commit_root = root->node;
364         get_bh(root->node);
365         root->ref_cows = 1;
366         root->fs_info->generation = root->root_key.offset + 1;
367         return root;
368 }
369
370 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
371                       *root)
372 {
373         struct buffer_head *bh = root->fs_info->sb_buffer;
374
375         btrfs_set_super_root(root->fs_info->disk_super,
376                              root->fs_info->tree_root->node->b_blocknr);
377         lock_buffer(bh);
378         WARN_ON(atomic_read(&bh->b_count) < 1);
379         clear_buffer_dirty(bh);
380         csum_tree_block(root, bh, 0);
381         bh->b_end_io = end_buffer_write_sync;
382         get_bh(bh);
383         submit_bh(WRITE, bh);
384         wait_on_buffer(bh);
385         if (!buffer_uptodate(bh)) {
386                 WARN_ON(1);
387                 return -EIO;
388         }
389         return 0;
390 }
391
392 int close_ctree(struct btrfs_root *root)
393 {
394         int ret;
395         struct btrfs_trans_handle *trans;
396
397         mutex_lock(&root->fs_info->fs_mutex);
398         trans = btrfs_start_transaction(root, 1);
399         btrfs_commit_transaction(trans, root);
400         /* run commit again to  drop the original snapshot */
401         trans = btrfs_start_transaction(root, 1);
402         btrfs_commit_transaction(trans, root);
403         ret = btrfs_write_and_wait_transaction(NULL, root);
404         BUG_ON(ret);
405         write_ctree_super(NULL, root);
406         mutex_unlock(&root->fs_info->fs_mutex);
407
408         if (root->node)
409                 btrfs_block_release(root, root->node);
410         if (root->fs_info->extent_root->node)
411                 btrfs_block_release(root->fs_info->extent_root,
412                                     root->fs_info->extent_root->node);
413         if (root->fs_info->inode_root->node)
414                 btrfs_block_release(root->fs_info->inode_root,
415                                     root->fs_info->inode_root->node);
416         if (root->fs_info->tree_root->node)
417                 btrfs_block_release(root->fs_info->tree_root,
418                                     root->fs_info->tree_root->node);
419         btrfs_block_release(root, root->commit_root);
420         btrfs_block_release(root, root->fs_info->sb_buffer);
421         crypto_free_hash(root->fs_info->hash_tfm);
422         truncate_inode_pages(root->fs_info->btree_inode->i_mapping, 0);
423         iput(root->fs_info->btree_inode);
424         kfree(root->fs_info->extent_root);
425         kfree(root->fs_info->inode_root);
426         kfree(root->fs_info->tree_root);
427         kfree(root->fs_info);
428         kfree(root);
429         return 0;
430 }
431
432 void btrfs_block_release(struct btrfs_root *root, struct buffer_head *buf)
433 {
434         brelse(buf);
435 }
436