NFS: Fix more sparse warnings
[linux-2.6] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <linux/dma-mapping.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/semaphore.h>
32
33 #include "fw-transaction.h"
34 #include "fw-ohci.h"
35
36 #define DESCRIPTOR_OUTPUT_MORE          0
37 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
38 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
39 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
40 #define DESCRIPTOR_STATUS               (1 << 11)
41 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
42 #define DESCRIPTOR_PING                 (1 << 7)
43 #define DESCRIPTOR_YY                   (1 << 6)
44 #define DESCRIPTOR_NO_IRQ               (0 << 4)
45 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
46 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
47 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
48 #define DESCRIPTOR_WAIT                 (3 << 0)
49
50 struct descriptor {
51         __le16 req_count;
52         __le16 control;
53         __le32 data_address;
54         __le32 branch_address;
55         __le16 res_count;
56         __le16 transfer_status;
57 } __attribute__((aligned(16)));
58
59 struct db_descriptor {
60         __le16 first_size;
61         __le16 control;
62         __le16 second_req_count;
63         __le16 first_req_count;
64         __le32 branch_address;
65         __le16 second_res_count;
66         __le16 first_res_count;
67         __le32 reserved0;
68         __le32 first_buffer;
69         __le32 second_buffer;
70         __le32 reserved1;
71 } __attribute__((aligned(16)));
72
73 #define CONTROL_SET(regs)       (regs)
74 #define CONTROL_CLEAR(regs)     ((regs) + 4)
75 #define COMMAND_PTR(regs)       ((regs) + 12)
76 #define CONTEXT_MATCH(regs)     ((regs) + 16)
77
78 struct ar_buffer {
79         struct descriptor descriptor;
80         struct ar_buffer *next;
81         __le32 data[0];
82 };
83
84 struct ar_context {
85         struct fw_ohci *ohci;
86         struct ar_buffer *current_buffer;
87         struct ar_buffer *last_buffer;
88         void *pointer;
89         u32 regs;
90         struct tasklet_struct tasklet;
91 };
92
93 struct context;
94
95 typedef int (*descriptor_callback_t)(struct context *ctx,
96                                      struct descriptor *d,
97                                      struct descriptor *last);
98 struct context {
99         struct fw_ohci *ohci;
100         u32 regs;
101
102         struct descriptor *buffer;
103         dma_addr_t buffer_bus;
104         size_t buffer_size;
105         struct descriptor *head_descriptor;
106         struct descriptor *tail_descriptor;
107         struct descriptor *tail_descriptor_last;
108         struct descriptor *prev_descriptor;
109
110         descriptor_callback_t callback;
111
112         struct tasklet_struct tasklet;
113 };
114
115 #define IT_HEADER_SY(v)          ((v) <<  0)
116 #define IT_HEADER_TCODE(v)       ((v) <<  4)
117 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
118 #define IT_HEADER_TAG(v)         ((v) << 14)
119 #define IT_HEADER_SPEED(v)       ((v) << 16)
120 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
121
122 struct iso_context {
123         struct fw_iso_context base;
124         struct context context;
125         void *header;
126         size_t header_length;
127 };
128
129 #define CONFIG_ROM_SIZE 1024
130
131 struct fw_ohci {
132         struct fw_card card;
133
134         u32 version;
135         __iomem char *registers;
136         dma_addr_t self_id_bus;
137         __le32 *self_id_cpu;
138         struct tasklet_struct bus_reset_tasklet;
139         int node_id;
140         int generation;
141         int request_generation;
142         u32 bus_seconds;
143
144         /*
145          * Spinlock for accessing fw_ohci data.  Never call out of
146          * this driver with this lock held.
147          */
148         spinlock_t lock;
149         u32 self_id_buffer[512];
150
151         /* Config rom buffers */
152         __be32 *config_rom;
153         dma_addr_t config_rom_bus;
154         __be32 *next_config_rom;
155         dma_addr_t next_config_rom_bus;
156         u32 next_header;
157
158         struct ar_context ar_request_ctx;
159         struct ar_context ar_response_ctx;
160         struct context at_request_ctx;
161         struct context at_response_ctx;
162
163         u32 it_context_mask;
164         struct iso_context *it_context_list;
165         u32 ir_context_mask;
166         struct iso_context *ir_context_list;
167 };
168
169 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
170 {
171         return container_of(card, struct fw_ohci, card);
172 }
173
174 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
175 #define IR_CONTEXT_BUFFER_FILL          0x80000000
176 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
177 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
178 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
179 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
180
181 #define CONTEXT_RUN     0x8000
182 #define CONTEXT_WAKE    0x1000
183 #define CONTEXT_DEAD    0x0800
184 #define CONTEXT_ACTIVE  0x0400
185
186 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
187 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
188 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
189
190 #define FW_OHCI_MAJOR                   240
191 #define OHCI1394_REGISTER_SIZE          0x800
192 #define OHCI_LOOP_COUNT                 500
193 #define OHCI1394_PCI_HCI_Control        0x40
194 #define SELF_ID_BUF_SIZE                0x800
195 #define OHCI_TCODE_PHY_PACKET           0x0e
196 #define OHCI_VERSION_1_1                0x010010
197 #define ISO_BUFFER_SIZE                 (64 * 1024)
198 #define AT_BUFFER_SIZE                  4096
199
200 static char ohci_driver_name[] = KBUILD_MODNAME;
201
202 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
203 {
204         writel(data, ohci->registers + offset);
205 }
206
207 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
208 {
209         return readl(ohci->registers + offset);
210 }
211
212 static inline void flush_writes(const struct fw_ohci *ohci)
213 {
214         /* Do a dummy read to flush writes. */
215         reg_read(ohci, OHCI1394_Version);
216 }
217
218 static int
219 ohci_update_phy_reg(struct fw_card *card, int addr,
220                     int clear_bits, int set_bits)
221 {
222         struct fw_ohci *ohci = fw_ohci(card);
223         u32 val, old;
224
225         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
226         msleep(2);
227         val = reg_read(ohci, OHCI1394_PhyControl);
228         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
229                 fw_error("failed to set phy reg bits.\n");
230                 return -EBUSY;
231         }
232
233         old = OHCI1394_PhyControl_ReadData(val);
234         old = (old & ~clear_bits) | set_bits;
235         reg_write(ohci, OHCI1394_PhyControl,
236                   OHCI1394_PhyControl_Write(addr, old));
237
238         return 0;
239 }
240
241 static int ar_context_add_page(struct ar_context *ctx)
242 {
243         struct device *dev = ctx->ohci->card.device;
244         struct ar_buffer *ab;
245         dma_addr_t ab_bus;
246         size_t offset;
247
248         ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
249         if (ab == NULL)
250                 return -ENOMEM;
251
252         ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
253         if (dma_mapping_error(ab_bus)) {
254                 free_page((unsigned long) ab);
255                 return -ENOMEM;
256         }
257
258         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
259         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
260                                                     DESCRIPTOR_STATUS |
261                                                     DESCRIPTOR_BRANCH_ALWAYS);
262         offset = offsetof(struct ar_buffer, data);
263         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
264         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
265         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
266         ab->descriptor.branch_address = 0;
267
268         dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
269
270         ctx->last_buffer->descriptor.branch_address = ab_bus | 1;
271         ctx->last_buffer->next = ab;
272         ctx->last_buffer = ab;
273
274         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
275         flush_writes(ctx->ohci);
276
277         return 0;
278 }
279
280 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
281 {
282         struct fw_ohci *ohci = ctx->ohci;
283         struct fw_packet p;
284         u32 status, length, tcode;
285
286         p.header[0] = le32_to_cpu(buffer[0]);
287         p.header[1] = le32_to_cpu(buffer[1]);
288         p.header[2] = le32_to_cpu(buffer[2]);
289
290         tcode = (p.header[0] >> 4) & 0x0f;
291         switch (tcode) {
292         case TCODE_WRITE_QUADLET_REQUEST:
293         case TCODE_READ_QUADLET_RESPONSE:
294                 p.header[3] = (__force __u32) buffer[3];
295                 p.header_length = 16;
296                 p.payload_length = 0;
297                 break;
298
299         case TCODE_READ_BLOCK_REQUEST :
300                 p.header[3] = le32_to_cpu(buffer[3]);
301                 p.header_length = 16;
302                 p.payload_length = 0;
303                 break;
304
305         case TCODE_WRITE_BLOCK_REQUEST:
306         case TCODE_READ_BLOCK_RESPONSE:
307         case TCODE_LOCK_REQUEST:
308         case TCODE_LOCK_RESPONSE:
309                 p.header[3] = le32_to_cpu(buffer[3]);
310                 p.header_length = 16;
311                 p.payload_length = p.header[3] >> 16;
312                 break;
313
314         case TCODE_WRITE_RESPONSE:
315         case TCODE_READ_QUADLET_REQUEST:
316         case OHCI_TCODE_PHY_PACKET:
317                 p.header_length = 12;
318                 p.payload_length = 0;
319                 break;
320         }
321
322         p.payload = (void *) buffer + p.header_length;
323
324         /* FIXME: What to do about evt_* errors? */
325         length = (p.header_length + p.payload_length + 3) / 4;
326         status = le32_to_cpu(buffer[length]);
327
328         p.ack        = ((status >> 16) & 0x1f) - 16;
329         p.speed      = (status >> 21) & 0x7;
330         p.timestamp  = status & 0xffff;
331         p.generation = ohci->request_generation;
332
333         /*
334          * The OHCI bus reset handler synthesizes a phy packet with
335          * the new generation number when a bus reset happens (see
336          * section 8.4.2.3).  This helps us determine when a request
337          * was received and make sure we send the response in the same
338          * generation.  We only need this for requests; for responses
339          * we use the unique tlabel for finding the matching
340          * request.
341          */
342
343         if (p.ack + 16 == 0x09)
344                 ohci->request_generation = (buffer[2] >> 16) & 0xff;
345         else if (ctx == &ohci->ar_request_ctx)
346                 fw_core_handle_request(&ohci->card, &p);
347         else
348                 fw_core_handle_response(&ohci->card, &p);
349
350         return buffer + length + 1;
351 }
352
353 static void ar_context_tasklet(unsigned long data)
354 {
355         struct ar_context *ctx = (struct ar_context *)data;
356         struct fw_ohci *ohci = ctx->ohci;
357         struct ar_buffer *ab;
358         struct descriptor *d;
359         void *buffer, *end;
360
361         ab = ctx->current_buffer;
362         d = &ab->descriptor;
363
364         if (d->res_count == 0) {
365                 size_t size, rest, offset;
366
367                 /*
368                  * This descriptor is finished and we may have a
369                  * packet split across this and the next buffer. We
370                  * reuse the page for reassembling the split packet.
371                  */
372
373                 offset = offsetof(struct ar_buffer, data);
374                 dma_unmap_single(ohci->card.device,
375                                  ab->descriptor.data_address - offset,
376                                  PAGE_SIZE, DMA_BIDIRECTIONAL);
377
378                 buffer = ab;
379                 ab = ab->next;
380                 d = &ab->descriptor;
381                 size = buffer + PAGE_SIZE - ctx->pointer;
382                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
383                 memmove(buffer, ctx->pointer, size);
384                 memcpy(buffer + size, ab->data, rest);
385                 ctx->current_buffer = ab;
386                 ctx->pointer = (void *) ab->data + rest;
387                 end = buffer + size + rest;
388
389                 while (buffer < end)
390                         buffer = handle_ar_packet(ctx, buffer);
391
392                 free_page((unsigned long)buffer);
393                 ar_context_add_page(ctx);
394         } else {
395                 buffer = ctx->pointer;
396                 ctx->pointer = end =
397                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
398
399                 while (buffer < end)
400                         buffer = handle_ar_packet(ctx, buffer);
401         }
402 }
403
404 static int
405 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
406 {
407         struct ar_buffer ab;
408
409         ctx->regs        = regs;
410         ctx->ohci        = ohci;
411         ctx->last_buffer = &ab;
412         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
413
414         ar_context_add_page(ctx);
415         ar_context_add_page(ctx);
416         ctx->current_buffer = ab.next;
417         ctx->pointer = ctx->current_buffer->data;
418
419         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab.descriptor.branch_address);
420         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
421         flush_writes(ctx->ohci);
422
423         return 0;
424 }
425
426 static void context_tasklet(unsigned long data)
427 {
428         struct context *ctx = (struct context *) data;
429         struct fw_ohci *ohci = ctx->ohci;
430         struct descriptor *d, *last;
431         u32 address;
432         int z;
433
434         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
435                                 ctx->buffer_size, DMA_TO_DEVICE);
436
437         d    = ctx->tail_descriptor;
438         last = ctx->tail_descriptor_last;
439
440         while (last->branch_address != 0) {
441                 address = le32_to_cpu(last->branch_address);
442                 z = address & 0xf;
443                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
444                 last = (z == 2) ? d : d + z - 1;
445
446                 if (!ctx->callback(ctx, d, last))
447                         break;
448
449                 ctx->tail_descriptor      = d;
450                 ctx->tail_descriptor_last = last;
451         }
452 }
453
454 static int
455 context_init(struct context *ctx, struct fw_ohci *ohci,
456              size_t buffer_size, u32 regs,
457              descriptor_callback_t callback)
458 {
459         ctx->ohci = ohci;
460         ctx->regs = regs;
461         ctx->buffer_size = buffer_size;
462         ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
463         if (ctx->buffer == NULL)
464                 return -ENOMEM;
465
466         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
467         ctx->callback = callback;
468
469         ctx->buffer_bus =
470                 dma_map_single(ohci->card.device, ctx->buffer,
471                                buffer_size, DMA_TO_DEVICE);
472         if (dma_mapping_error(ctx->buffer_bus)) {
473                 kfree(ctx->buffer);
474                 return -ENOMEM;
475         }
476
477         ctx->head_descriptor      = ctx->buffer;
478         ctx->prev_descriptor      = ctx->buffer;
479         ctx->tail_descriptor      = ctx->buffer;
480         ctx->tail_descriptor_last = ctx->buffer;
481
482         /*
483          * We put a dummy descriptor in the buffer that has a NULL
484          * branch address and looks like it's been sent.  That way we
485          * have a descriptor to append DMA programs to.  Also, the
486          * ring buffer invariant is that it always has at least one
487          * element so that head == tail means buffer full.
488          */
489
490         memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
491         ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
492         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
493         ctx->head_descriptor++;
494
495         return 0;
496 }
497
498 static void
499 context_release(struct context *ctx)
500 {
501         struct fw_card *card = &ctx->ohci->card;
502
503         dma_unmap_single(card->device, ctx->buffer_bus,
504                          ctx->buffer_size, DMA_TO_DEVICE);
505         kfree(ctx->buffer);
506 }
507
508 static struct descriptor *
509 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
510 {
511         struct descriptor *d, *tail, *end;
512
513         d = ctx->head_descriptor;
514         tail = ctx->tail_descriptor;
515         end = ctx->buffer + ctx->buffer_size / sizeof(*d);
516
517         if (d + z <= tail) {
518                 goto has_space;
519         } else if (d > tail && d + z <= end) {
520                 goto has_space;
521         } else if (d > tail && ctx->buffer + z <= tail) {
522                 d = ctx->buffer;
523                 goto has_space;
524         }
525
526         return NULL;
527
528  has_space:
529         memset(d, 0, z * sizeof(*d));
530         *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
531
532         return d;
533 }
534
535 static void context_run(struct context *ctx, u32 extra)
536 {
537         struct fw_ohci *ohci = ctx->ohci;
538
539         reg_write(ohci, COMMAND_PTR(ctx->regs),
540                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
541         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
542         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
543         flush_writes(ohci);
544 }
545
546 static void context_append(struct context *ctx,
547                            struct descriptor *d, int z, int extra)
548 {
549         dma_addr_t d_bus;
550
551         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
552
553         ctx->head_descriptor = d + z + extra;
554         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
555         ctx->prev_descriptor = z == 2 ? d : d + z - 1;
556
557         dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
558                                    ctx->buffer_size, DMA_TO_DEVICE);
559
560         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
561         flush_writes(ctx->ohci);
562 }
563
564 static void context_stop(struct context *ctx)
565 {
566         u32 reg;
567         int i;
568
569         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
570         flush_writes(ctx->ohci);
571
572         for (i = 0; i < 10; i++) {
573                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
574                 if ((reg & CONTEXT_ACTIVE) == 0)
575                         break;
576
577                 fw_notify("context_stop: still active (0x%08x)\n", reg);
578                 msleep(1);
579         }
580 }
581
582 struct driver_data {
583         struct fw_packet *packet;
584 };
585
586 /*
587  * This function apppends a packet to the DMA queue for transmission.
588  * Must always be called with the ochi->lock held to ensure proper
589  * generation handling and locking around packet queue manipulation.
590  */
591 static int
592 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
593 {
594         struct fw_ohci *ohci = ctx->ohci;
595         dma_addr_t d_bus, payload_bus;
596         struct driver_data *driver_data;
597         struct descriptor *d, *last;
598         __le32 *header;
599         int z, tcode;
600         u32 reg;
601
602         d = context_get_descriptors(ctx, 4, &d_bus);
603         if (d == NULL) {
604                 packet->ack = RCODE_SEND_ERROR;
605                 return -1;
606         }
607
608         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
609         d[0].res_count = cpu_to_le16(packet->timestamp);
610
611         /*
612          * The DMA format for asyncronous link packets is different
613          * from the IEEE1394 layout, so shift the fields around
614          * accordingly.  If header_length is 8, it's a PHY packet, to
615          * which we need to prepend an extra quadlet.
616          */
617
618         header = (__le32 *) &d[1];
619         if (packet->header_length > 8) {
620                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
621                                         (packet->speed << 16));
622                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
623                                         (packet->header[0] & 0xffff0000));
624                 header[2] = cpu_to_le32(packet->header[2]);
625
626                 tcode = (packet->header[0] >> 4) & 0x0f;
627                 if (TCODE_IS_BLOCK_PACKET(tcode))
628                         header[3] = cpu_to_le32(packet->header[3]);
629                 else
630                         header[3] = (__force __le32) packet->header[3];
631
632                 d[0].req_count = cpu_to_le16(packet->header_length);
633         } else {
634                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
635                                         (packet->speed << 16));
636                 header[1] = cpu_to_le32(packet->header[0]);
637                 header[2] = cpu_to_le32(packet->header[1]);
638                 d[0].req_count = cpu_to_le16(12);
639         }
640
641         driver_data = (struct driver_data *) &d[3];
642         driver_data->packet = packet;
643         packet->driver_data = driver_data;
644         
645         if (packet->payload_length > 0) {
646                 payload_bus =
647                         dma_map_single(ohci->card.device, packet->payload,
648                                        packet->payload_length, DMA_TO_DEVICE);
649                 if (dma_mapping_error(payload_bus)) {
650                         packet->ack = RCODE_SEND_ERROR;
651                         return -1;
652                 }
653
654                 d[2].req_count    = cpu_to_le16(packet->payload_length);
655                 d[2].data_address = cpu_to_le32(payload_bus);
656                 last = &d[2];
657                 z = 3;
658         } else {
659                 last = &d[0];
660                 z = 2;
661         }
662
663         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
664                                      DESCRIPTOR_IRQ_ALWAYS |
665                                      DESCRIPTOR_BRANCH_ALWAYS);
666
667         /* FIXME: Document how the locking works. */
668         if (ohci->generation != packet->generation) {
669                 packet->ack = RCODE_GENERATION;
670                 return -1;
671         }
672
673         context_append(ctx, d, z, 4 - z);
674
675         /* If the context isn't already running, start it up. */
676         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
677         if ((reg & CONTEXT_RUN) == 0)
678                 context_run(ctx, 0);
679
680         return 0;
681 }
682
683 static int handle_at_packet(struct context *context,
684                             struct descriptor *d,
685                             struct descriptor *last)
686 {
687         struct driver_data *driver_data;
688         struct fw_packet *packet;
689         struct fw_ohci *ohci = context->ohci;
690         dma_addr_t payload_bus;
691         int evt;
692
693         if (last->transfer_status == 0)
694                 /* This descriptor isn't done yet, stop iteration. */
695                 return 0;
696
697         driver_data = (struct driver_data *) &d[3];
698         packet = driver_data->packet;
699         if (packet == NULL)
700                 /* This packet was cancelled, just continue. */
701                 return 1;
702
703         payload_bus = le32_to_cpu(last->data_address);
704         if (payload_bus != 0)
705                 dma_unmap_single(ohci->card.device, payload_bus,
706                                  packet->payload_length, DMA_TO_DEVICE);
707
708         evt = le16_to_cpu(last->transfer_status) & 0x1f;
709         packet->timestamp = le16_to_cpu(last->res_count);
710
711         switch (evt) {
712         case OHCI1394_evt_timeout:
713                 /* Async response transmit timed out. */
714                 packet->ack = RCODE_CANCELLED;
715                 break;
716
717         case OHCI1394_evt_flushed:
718                 /*
719                  * The packet was flushed should give same error as
720                  * when we try to use a stale generation count.
721                  */
722                 packet->ack = RCODE_GENERATION;
723                 break;
724
725         case OHCI1394_evt_missing_ack:
726                 /*
727                  * Using a valid (current) generation count, but the
728                  * node is not on the bus or not sending acks.
729                  */
730                 packet->ack = RCODE_NO_ACK;
731                 break;
732
733         case ACK_COMPLETE + 0x10:
734         case ACK_PENDING + 0x10:
735         case ACK_BUSY_X + 0x10:
736         case ACK_BUSY_A + 0x10:
737         case ACK_BUSY_B + 0x10:
738         case ACK_DATA_ERROR + 0x10:
739         case ACK_TYPE_ERROR + 0x10:
740                 packet->ack = evt - 0x10;
741                 break;
742
743         default:
744                 packet->ack = RCODE_SEND_ERROR;
745                 break;
746         }
747
748         packet->callback(packet, &ohci->card, packet->ack);
749
750         return 1;
751 }
752
753 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
754 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
755 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
756 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
757 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
758
759 static void
760 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
761 {
762         struct fw_packet response;
763         int tcode, length, i;
764
765         tcode = HEADER_GET_TCODE(packet->header[0]);
766         if (TCODE_IS_BLOCK_PACKET(tcode))
767                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
768         else
769                 length = 4;
770
771         i = csr - CSR_CONFIG_ROM;
772         if (i + length > CONFIG_ROM_SIZE) {
773                 fw_fill_response(&response, packet->header,
774                                  RCODE_ADDRESS_ERROR, NULL, 0);
775         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
776                 fw_fill_response(&response, packet->header,
777                                  RCODE_TYPE_ERROR, NULL, 0);
778         } else {
779                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
780                                  (void *) ohci->config_rom + i, length);
781         }
782
783         fw_core_handle_response(&ohci->card, &response);
784 }
785
786 static void
787 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
788 {
789         struct fw_packet response;
790         int tcode, length, ext_tcode, sel;
791         __be32 *payload, lock_old;
792         u32 lock_arg, lock_data;
793
794         tcode = HEADER_GET_TCODE(packet->header[0]);
795         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
796         payload = packet->payload;
797         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
798
799         if (tcode == TCODE_LOCK_REQUEST &&
800             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
801                 lock_arg = be32_to_cpu(payload[0]);
802                 lock_data = be32_to_cpu(payload[1]);
803         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
804                 lock_arg = 0;
805                 lock_data = 0;
806         } else {
807                 fw_fill_response(&response, packet->header,
808                                  RCODE_TYPE_ERROR, NULL, 0);
809                 goto out;
810         }
811
812         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
813         reg_write(ohci, OHCI1394_CSRData, lock_data);
814         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
815         reg_write(ohci, OHCI1394_CSRControl, sel);
816
817         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
818                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
819         else
820                 fw_notify("swap not done yet\n");
821
822         fw_fill_response(&response, packet->header,
823                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
824  out:
825         fw_core_handle_response(&ohci->card, &response);
826 }
827
828 static void
829 handle_local_request(struct context *ctx, struct fw_packet *packet)
830 {
831         u64 offset;
832         u32 csr;
833
834         if (ctx == &ctx->ohci->at_request_ctx) {
835                 packet->ack = ACK_PENDING;
836                 packet->callback(packet, &ctx->ohci->card, packet->ack);
837         }
838
839         offset =
840                 ((unsigned long long)
841                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
842                 packet->header[2];
843         csr = offset - CSR_REGISTER_BASE;
844
845         /* Handle config rom reads. */
846         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
847                 handle_local_rom(ctx->ohci, packet, csr);
848         else switch (csr) {
849         case CSR_BUS_MANAGER_ID:
850         case CSR_BANDWIDTH_AVAILABLE:
851         case CSR_CHANNELS_AVAILABLE_HI:
852         case CSR_CHANNELS_AVAILABLE_LO:
853                 handle_local_lock(ctx->ohci, packet, csr);
854                 break;
855         default:
856                 if (ctx == &ctx->ohci->at_request_ctx)
857                         fw_core_handle_request(&ctx->ohci->card, packet);
858                 else
859                         fw_core_handle_response(&ctx->ohci->card, packet);
860                 break;
861         }
862
863         if (ctx == &ctx->ohci->at_response_ctx) {
864                 packet->ack = ACK_COMPLETE;
865                 packet->callback(packet, &ctx->ohci->card, packet->ack);
866         }
867 }
868
869 static void
870 at_context_transmit(struct context *ctx, struct fw_packet *packet)
871 {
872         unsigned long flags;
873         int retval;
874
875         spin_lock_irqsave(&ctx->ohci->lock, flags);
876
877         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
878             ctx->ohci->generation == packet->generation) {
879                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
880                 handle_local_request(ctx, packet);
881                 return;
882         }
883
884         retval = at_context_queue_packet(ctx, packet);
885         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
886
887         if (retval < 0)
888                 packet->callback(packet, &ctx->ohci->card, packet->ack);
889         
890 }
891
892 static void bus_reset_tasklet(unsigned long data)
893 {
894         struct fw_ohci *ohci = (struct fw_ohci *)data;
895         int self_id_count, i, j, reg;
896         int generation, new_generation;
897         unsigned long flags;
898
899         reg = reg_read(ohci, OHCI1394_NodeID);
900         if (!(reg & OHCI1394_NodeID_idValid)) {
901                 fw_error("node ID not valid, new bus reset in progress\n");
902                 return;
903         }
904         ohci->node_id = reg & 0xffff;
905
906         /*
907          * The count in the SelfIDCount register is the number of
908          * bytes in the self ID receive buffer.  Since we also receive
909          * the inverted quadlets and a header quadlet, we shift one
910          * bit extra to get the actual number of self IDs.
911          */
912
913         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
914         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
915
916         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
917                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
918                         fw_error("inconsistent self IDs\n");
919                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
920         }
921
922         /*
923          * Check the consistency of the self IDs we just read.  The
924          * problem we face is that a new bus reset can start while we
925          * read out the self IDs from the DMA buffer. If this happens,
926          * the DMA buffer will be overwritten with new self IDs and we
927          * will read out inconsistent data.  The OHCI specification
928          * (section 11.2) recommends a technique similar to
929          * linux/seqlock.h, where we remember the generation of the
930          * self IDs in the buffer before reading them out and compare
931          * it to the current generation after reading them out.  If
932          * the two generations match we know we have a consistent set
933          * of self IDs.
934          */
935
936         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
937         if (new_generation != generation) {
938                 fw_notify("recursive bus reset detected, "
939                           "discarding self ids\n");
940                 return;
941         }
942
943         /* FIXME: Document how the locking works. */
944         spin_lock_irqsave(&ohci->lock, flags);
945
946         ohci->generation = generation;
947         context_stop(&ohci->at_request_ctx);
948         context_stop(&ohci->at_response_ctx);
949         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
950
951         /*
952          * This next bit is unrelated to the AT context stuff but we
953          * have to do it under the spinlock also.  If a new config rom
954          * was set up before this reset, the old one is now no longer
955          * in use and we can free it. Update the config rom pointers
956          * to point to the current config rom and clear the
957          * next_config_rom pointer so a new udpate can take place.
958          */
959
960         if (ohci->next_config_rom != NULL) {
961                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
962                                   ohci->config_rom, ohci->config_rom_bus);
963                 ohci->config_rom      = ohci->next_config_rom;
964                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
965                 ohci->next_config_rom = NULL;
966
967                 /*
968                  * Restore config_rom image and manually update
969                  * config_rom registers.  Writing the header quadlet
970                  * will indicate that the config rom is ready, so we
971                  * do that last.
972                  */
973                 reg_write(ohci, OHCI1394_BusOptions,
974                           be32_to_cpu(ohci->config_rom[2]));
975                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
976                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
977         }
978
979         spin_unlock_irqrestore(&ohci->lock, flags);
980
981         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
982                                  self_id_count, ohci->self_id_buffer);
983 }
984
985 static irqreturn_t irq_handler(int irq, void *data)
986 {
987         struct fw_ohci *ohci = data;
988         u32 event, iso_event, cycle_time;
989         int i;
990
991         event = reg_read(ohci, OHCI1394_IntEventClear);
992
993         if (!event)
994                 return IRQ_NONE;
995
996         reg_write(ohci, OHCI1394_IntEventClear, event);
997
998         if (event & OHCI1394_selfIDComplete)
999                 tasklet_schedule(&ohci->bus_reset_tasklet);
1000
1001         if (event & OHCI1394_RQPkt)
1002                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1003
1004         if (event & OHCI1394_RSPkt)
1005                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1006
1007         if (event & OHCI1394_reqTxComplete)
1008                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1009
1010         if (event & OHCI1394_respTxComplete)
1011                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1012
1013         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1014         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1015
1016         while (iso_event) {
1017                 i = ffs(iso_event) - 1;
1018                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1019                 iso_event &= ~(1 << i);
1020         }
1021
1022         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1023         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1024
1025         while (iso_event) {
1026                 i = ffs(iso_event) - 1;
1027                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1028                 iso_event &= ~(1 << i);
1029         }
1030
1031         if (event & OHCI1394_cycle64Seconds) {
1032                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1033                 if ((cycle_time & 0x80000000) == 0)
1034                         ohci->bus_seconds++;
1035         }
1036
1037         return IRQ_HANDLED;
1038 }
1039
1040 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1041 {
1042         struct fw_ohci *ohci = fw_ohci(card);
1043         struct pci_dev *dev = to_pci_dev(card->device);
1044
1045         /*
1046          * When the link is not yet enabled, the atomic config rom
1047          * update mechanism described below in ohci_set_config_rom()
1048          * is not active.  We have to update ConfigRomHeader and
1049          * BusOptions manually, and the write to ConfigROMmap takes
1050          * effect immediately.  We tie this to the enabling of the
1051          * link, so we have a valid config rom before enabling - the
1052          * OHCI requires that ConfigROMhdr and BusOptions have valid
1053          * values before enabling.
1054          *
1055          * However, when the ConfigROMmap is written, some controllers
1056          * always read back quadlets 0 and 2 from the config rom to
1057          * the ConfigRomHeader and BusOptions registers on bus reset.
1058          * They shouldn't do that in this initial case where the link
1059          * isn't enabled.  This means we have to use the same
1060          * workaround here, setting the bus header to 0 and then write
1061          * the right values in the bus reset tasklet.
1062          */
1063
1064         ohci->next_config_rom =
1065                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1066                                    &ohci->next_config_rom_bus, GFP_KERNEL);
1067         if (ohci->next_config_rom == NULL)
1068                 return -ENOMEM;
1069
1070         memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1071         fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1072
1073         ohci->next_header = config_rom[0];
1074         ohci->next_config_rom[0] = 0;
1075         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1076         reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
1077         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1078
1079         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1080
1081         if (request_irq(dev->irq, irq_handler,
1082                         IRQF_SHARED, ohci_driver_name, ohci)) {
1083                 fw_error("Failed to allocate shared interrupt %d.\n",
1084                          dev->irq);
1085                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1086                                   ohci->config_rom, ohci->config_rom_bus);
1087                 return -EIO;
1088         }
1089
1090         reg_write(ohci, OHCI1394_HCControlSet,
1091                   OHCI1394_HCControl_linkEnable |
1092                   OHCI1394_HCControl_BIBimageValid);
1093         flush_writes(ohci);
1094
1095         /*
1096          * We are ready to go, initiate bus reset to finish the
1097          * initialization.
1098          */
1099
1100         fw_core_initiate_bus_reset(&ohci->card, 1);
1101
1102         return 0;
1103 }
1104
1105 static int
1106 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1107 {
1108         struct fw_ohci *ohci;
1109         unsigned long flags;
1110         int retval = 0;
1111         __be32 *next_config_rom;
1112         dma_addr_t next_config_rom_bus;
1113
1114         ohci = fw_ohci(card);
1115
1116         /*
1117          * When the OHCI controller is enabled, the config rom update
1118          * mechanism is a bit tricky, but easy enough to use.  See
1119          * section 5.5.6 in the OHCI specification.
1120          *
1121          * The OHCI controller caches the new config rom address in a
1122          * shadow register (ConfigROMmapNext) and needs a bus reset
1123          * for the changes to take place.  When the bus reset is
1124          * detected, the controller loads the new values for the
1125          * ConfigRomHeader and BusOptions registers from the specified
1126          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1127          * shadow register. All automatically and atomically.
1128          *
1129          * Now, there's a twist to this story.  The automatic load of
1130          * ConfigRomHeader and BusOptions doesn't honor the
1131          * noByteSwapData bit, so with a be32 config rom, the
1132          * controller will load be32 values in to these registers
1133          * during the atomic update, even on litte endian
1134          * architectures.  The workaround we use is to put a 0 in the
1135          * header quadlet; 0 is endian agnostic and means that the
1136          * config rom isn't ready yet.  In the bus reset tasklet we
1137          * then set up the real values for the two registers.
1138          *
1139          * We use ohci->lock to avoid racing with the code that sets
1140          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1141          */
1142
1143         next_config_rom =
1144                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1145                                    &next_config_rom_bus, GFP_KERNEL);
1146         if (next_config_rom == NULL)
1147                 return -ENOMEM;
1148
1149         spin_lock_irqsave(&ohci->lock, flags);
1150
1151         if (ohci->next_config_rom == NULL) {
1152                 ohci->next_config_rom = next_config_rom;
1153                 ohci->next_config_rom_bus = next_config_rom_bus;
1154
1155                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1156                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1157                                   length * 4);
1158
1159                 ohci->next_header = config_rom[0];
1160                 ohci->next_config_rom[0] = 0;
1161
1162                 reg_write(ohci, OHCI1394_ConfigROMmap,
1163                           ohci->next_config_rom_bus);
1164         } else {
1165                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1166                                   next_config_rom, next_config_rom_bus);
1167                 retval = -EBUSY;
1168         }
1169
1170         spin_unlock_irqrestore(&ohci->lock, flags);
1171
1172         /*
1173          * Now initiate a bus reset to have the changes take
1174          * effect. We clean up the old config rom memory and DMA
1175          * mappings in the bus reset tasklet, since the OHCI
1176          * controller could need to access it before the bus reset
1177          * takes effect.
1178          */
1179         if (retval == 0)
1180                 fw_core_initiate_bus_reset(&ohci->card, 1);
1181
1182         return retval;
1183 }
1184
1185 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1186 {
1187         struct fw_ohci *ohci = fw_ohci(card);
1188
1189         at_context_transmit(&ohci->at_request_ctx, packet);
1190 }
1191
1192 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1193 {
1194         struct fw_ohci *ohci = fw_ohci(card);
1195
1196         at_context_transmit(&ohci->at_response_ctx, packet);
1197 }
1198
1199 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1200 {
1201         struct fw_ohci *ohci = fw_ohci(card);
1202         struct context *ctx = &ohci->at_request_ctx;
1203         struct driver_data *driver_data = packet->driver_data;
1204         int retval = -ENOENT;
1205
1206         tasklet_disable(&ctx->tasklet);
1207
1208         if (packet->ack != 0)
1209                 goto out;
1210
1211         driver_data->packet = NULL;
1212         packet->ack = RCODE_CANCELLED;
1213         packet->callback(packet, &ohci->card, packet->ack);
1214         retval = 0;
1215
1216  out:
1217         tasklet_enable(&ctx->tasklet);
1218
1219         return retval;
1220 }
1221
1222 static int
1223 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1224 {
1225         struct fw_ohci *ohci = fw_ohci(card);
1226         unsigned long flags;
1227         int n, retval = 0;
1228
1229         /*
1230          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1231          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1232          */
1233
1234         spin_lock_irqsave(&ohci->lock, flags);
1235
1236         if (ohci->generation != generation) {
1237                 retval = -ESTALE;
1238                 goto out;
1239         }
1240
1241         /*
1242          * Note, if the node ID contains a non-local bus ID, physical DMA is
1243          * enabled for _all_ nodes on remote buses.
1244          */
1245
1246         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1247         if (n < 32)
1248                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1249         else
1250                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1251
1252         flush_writes(ohci);
1253  out:
1254         spin_unlock_irqrestore(&ohci->lock, flags);
1255         return retval;
1256 }
1257
1258 static u64
1259 ohci_get_bus_time(struct fw_card *card)
1260 {
1261         struct fw_ohci *ohci = fw_ohci(card);
1262         u32 cycle_time;
1263         u64 bus_time;
1264
1265         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1266         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1267
1268         return bus_time;
1269 }
1270
1271 static int handle_ir_dualbuffer_packet(struct context *context,
1272                                        struct descriptor *d,
1273                                        struct descriptor *last)
1274 {
1275         struct iso_context *ctx =
1276                 container_of(context, struct iso_context, context);
1277         struct db_descriptor *db = (struct db_descriptor *) d;
1278         __le32 *ir_header;
1279         size_t header_length;
1280         void *p, *end;
1281         int i;
1282
1283         if (db->first_res_count > 0 && db->second_res_count > 0)
1284                 /* This descriptor isn't done yet, stop iteration. */
1285                 return 0;
1286
1287         header_length = le16_to_cpu(db->first_req_count) -
1288                 le16_to_cpu(db->first_res_count);
1289
1290         i = ctx->header_length;
1291         p = db + 1;
1292         end = p + header_length;
1293         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1294                 /*
1295                  * The iso header is byteswapped to little endian by
1296                  * the controller, but the remaining header quadlets
1297                  * are big endian.  We want to present all the headers
1298                  * as big endian, so we have to swap the first
1299                  * quadlet.
1300                  */
1301                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1302                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1303                 i += ctx->base.header_size;
1304                 p += ctx->base.header_size + 4;
1305         }
1306
1307         ctx->header_length = i;
1308
1309         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1310                 ir_header = (__le32 *) (db + 1);
1311                 ctx->base.callback(&ctx->base,
1312                                    le32_to_cpu(ir_header[0]) & 0xffff,
1313                                    ctx->header_length, ctx->header,
1314                                    ctx->base.callback_data);
1315                 ctx->header_length = 0;
1316         }
1317
1318         return 1;
1319 }
1320
1321 static int handle_it_packet(struct context *context,
1322                             struct descriptor *d,
1323                             struct descriptor *last)
1324 {
1325         struct iso_context *ctx =
1326                 container_of(context, struct iso_context, context);
1327
1328         if (last->transfer_status == 0)
1329                 /* This descriptor isn't done yet, stop iteration. */
1330                 return 0;
1331
1332         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1333                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1334                                    0, NULL, ctx->base.callback_data);
1335
1336         return 1;
1337 }
1338
1339 static struct fw_iso_context *
1340 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1341 {
1342         struct fw_ohci *ohci = fw_ohci(card);
1343         struct iso_context *ctx, *list;
1344         descriptor_callback_t callback;
1345         u32 *mask, regs;
1346         unsigned long flags;
1347         int index, retval = -ENOMEM;
1348
1349         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1350                 mask = &ohci->it_context_mask;
1351                 list = ohci->it_context_list;
1352                 callback = handle_it_packet;
1353         } else {
1354                 mask = &ohci->ir_context_mask;
1355                 list = ohci->ir_context_list;
1356                 callback = handle_ir_dualbuffer_packet;
1357         }
1358
1359         /* FIXME: We need a fallback for pre 1.1 OHCI. */
1360         if (callback == handle_ir_dualbuffer_packet &&
1361             ohci->version < OHCI_VERSION_1_1)
1362                 return ERR_PTR(-EINVAL);
1363
1364         spin_lock_irqsave(&ohci->lock, flags);
1365         index = ffs(*mask) - 1;
1366         if (index >= 0)
1367                 *mask &= ~(1 << index);
1368         spin_unlock_irqrestore(&ohci->lock, flags);
1369
1370         if (index < 0)
1371                 return ERR_PTR(-EBUSY);
1372
1373         if (type == FW_ISO_CONTEXT_TRANSMIT)
1374                 regs = OHCI1394_IsoXmitContextBase(index);
1375         else
1376                 regs = OHCI1394_IsoRcvContextBase(index);
1377
1378         ctx = &list[index];
1379         memset(ctx, 0, sizeof(*ctx));
1380         ctx->header_length = 0;
1381         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1382         if (ctx->header == NULL)
1383                 goto out;
1384
1385         retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1386                               regs, callback);
1387         if (retval < 0)
1388                 goto out_with_header;
1389
1390         return &ctx->base;
1391
1392  out_with_header:
1393         free_page((unsigned long)ctx->header);
1394  out:
1395         spin_lock_irqsave(&ohci->lock, flags);
1396         *mask |= 1 << index;
1397         spin_unlock_irqrestore(&ohci->lock, flags);
1398
1399         return ERR_PTR(retval);
1400 }
1401
1402 static int ohci_start_iso(struct fw_iso_context *base,
1403                           s32 cycle, u32 sync, u32 tags)
1404 {
1405         struct iso_context *ctx = container_of(base, struct iso_context, base);
1406         struct fw_ohci *ohci = ctx->context.ohci;
1407         u32 control, match;
1408         int index;
1409
1410         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1411                 index = ctx - ohci->it_context_list;
1412                 match = 0;
1413                 if (cycle >= 0)
1414                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1415                                 (cycle & 0x7fff) << 16;
1416
1417                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1418                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1419                 context_run(&ctx->context, match);
1420         } else {
1421                 index = ctx - ohci->ir_context_list;
1422                 control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
1423                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1424                 if (cycle >= 0) {
1425                         match |= (cycle & 0x07fff) << 12;
1426                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1427                 }
1428
1429                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1430                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1431                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1432                 context_run(&ctx->context, control);
1433         }
1434
1435         return 0;
1436 }
1437
1438 static int ohci_stop_iso(struct fw_iso_context *base)
1439 {
1440         struct fw_ohci *ohci = fw_ohci(base->card);
1441         struct iso_context *ctx = container_of(base, struct iso_context, base);
1442         int index;
1443
1444         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1445                 index = ctx - ohci->it_context_list;
1446                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1447         } else {
1448                 index = ctx - ohci->ir_context_list;
1449                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1450         }
1451         flush_writes(ohci);
1452         context_stop(&ctx->context);
1453
1454         return 0;
1455 }
1456
1457 static void ohci_free_iso_context(struct fw_iso_context *base)
1458 {
1459         struct fw_ohci *ohci = fw_ohci(base->card);
1460         struct iso_context *ctx = container_of(base, struct iso_context, base);
1461         unsigned long flags;
1462         int index;
1463
1464         ohci_stop_iso(base);
1465         context_release(&ctx->context);
1466         free_page((unsigned long)ctx->header);
1467
1468         spin_lock_irqsave(&ohci->lock, flags);
1469
1470         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1471                 index = ctx - ohci->it_context_list;
1472                 ohci->it_context_mask |= 1 << index;
1473         } else {
1474                 index = ctx - ohci->ir_context_list;
1475                 ohci->ir_context_mask |= 1 << index;
1476         }
1477
1478         spin_unlock_irqrestore(&ohci->lock, flags);
1479 }
1480
1481 static int
1482 ohci_queue_iso_transmit(struct fw_iso_context *base,
1483                         struct fw_iso_packet *packet,
1484                         struct fw_iso_buffer *buffer,
1485                         unsigned long payload)
1486 {
1487         struct iso_context *ctx = container_of(base, struct iso_context, base);
1488         struct descriptor *d, *last, *pd;
1489         struct fw_iso_packet *p;
1490         __le32 *header;
1491         dma_addr_t d_bus, page_bus;
1492         u32 z, header_z, payload_z, irq;
1493         u32 payload_index, payload_end_index, next_page_index;
1494         int page, end_page, i, length, offset;
1495
1496         /*
1497          * FIXME: Cycle lost behavior should be configurable: lose
1498          * packet, retransmit or terminate..
1499          */
1500
1501         p = packet;
1502         payload_index = payload;
1503
1504         if (p->skip)
1505                 z = 1;
1506         else
1507                 z = 2;
1508         if (p->header_length > 0)
1509                 z++;
1510
1511         /* Determine the first page the payload isn't contained in. */
1512         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1513         if (p->payload_length > 0)
1514                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1515         else
1516                 payload_z = 0;
1517
1518         z += payload_z;
1519
1520         /* Get header size in number of descriptors. */
1521         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1522
1523         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1524         if (d == NULL)
1525                 return -ENOMEM;
1526
1527         if (!p->skip) {
1528                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1529                 d[0].req_count = cpu_to_le16(8);
1530
1531                 header = (__le32 *) &d[1];
1532                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1533                                         IT_HEADER_TAG(p->tag) |
1534                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1535                                         IT_HEADER_CHANNEL(ctx->base.channel) |
1536                                         IT_HEADER_SPEED(ctx->base.speed));
1537                 header[1] =
1538                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1539                                                           p->payload_length));
1540         }
1541
1542         if (p->header_length > 0) {
1543                 d[2].req_count    = cpu_to_le16(p->header_length);
1544                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1545                 memcpy(&d[z], p->header, p->header_length);
1546         }
1547
1548         pd = d + z - payload_z;
1549         payload_end_index = payload_index + p->payload_length;
1550         for (i = 0; i < payload_z; i++) {
1551                 page               = payload_index >> PAGE_SHIFT;
1552                 offset             = payload_index & ~PAGE_MASK;
1553                 next_page_index    = (page + 1) << PAGE_SHIFT;
1554                 length             =
1555                         min(next_page_index, payload_end_index) - payload_index;
1556                 pd[i].req_count    = cpu_to_le16(length);
1557
1558                 page_bus = page_private(buffer->pages[page]);
1559                 pd[i].data_address = cpu_to_le32(page_bus + offset);
1560
1561                 payload_index += length;
1562         }
1563
1564         if (p->interrupt)
1565                 irq = DESCRIPTOR_IRQ_ALWAYS;
1566         else
1567                 irq = DESCRIPTOR_NO_IRQ;
1568
1569         last = z == 2 ? d : d + z - 1;
1570         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1571                                      DESCRIPTOR_STATUS |
1572                                      DESCRIPTOR_BRANCH_ALWAYS |
1573                                      irq);
1574
1575         context_append(&ctx->context, d, z, header_z);
1576
1577         return 0;
1578 }
1579
1580 static int
1581 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1582                                   struct fw_iso_packet *packet,
1583                                   struct fw_iso_buffer *buffer,
1584                                   unsigned long payload)
1585 {
1586         struct iso_context *ctx = container_of(base, struct iso_context, base);
1587         struct db_descriptor *db = NULL;
1588         struct descriptor *d;
1589         struct fw_iso_packet *p;
1590         dma_addr_t d_bus, page_bus;
1591         u32 z, header_z, length, rest;
1592         int page, offset, packet_count, header_size;
1593
1594         /*
1595          * FIXME: Cycle lost behavior should be configurable: lose
1596          * packet, retransmit or terminate..
1597          */
1598
1599         if (packet->skip) {
1600                 d = context_get_descriptors(&ctx->context, 2, &d_bus);
1601                 if (d == NULL)
1602                         return -ENOMEM;
1603
1604                 db = (struct db_descriptor *) d;
1605                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1606                                           DESCRIPTOR_BRANCH_ALWAYS |
1607                                           DESCRIPTOR_WAIT);
1608                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1609                 context_append(&ctx->context, d, 2, 0);
1610         }
1611
1612         p = packet;
1613         z = 2;
1614
1615         /*
1616          * The OHCI controller puts the status word in the header
1617          * buffer too, so we need 4 extra bytes per packet.
1618          */
1619         packet_count = p->header_length / ctx->base.header_size;
1620         header_size = packet_count * (ctx->base.header_size + 4);
1621
1622         /* Get header size in number of descriptors. */
1623         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1624         page     = payload >> PAGE_SHIFT;
1625         offset   = payload & ~PAGE_MASK;
1626         rest     = p->payload_length;
1627
1628         /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1629         /* FIXME: make packet-per-buffer/dual-buffer a context option */
1630         while (rest > 0) {
1631                 d = context_get_descriptors(&ctx->context,
1632                                             z + header_z, &d_bus);
1633                 if (d == NULL)
1634                         return -ENOMEM;
1635
1636                 db = (struct db_descriptor *) d;
1637                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1638                                           DESCRIPTOR_BRANCH_ALWAYS);
1639                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1640                 db->first_req_count = cpu_to_le16(header_size);
1641                 db->first_res_count = db->first_req_count;
1642                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1643
1644                 if (offset + rest < PAGE_SIZE)
1645                         length = rest;
1646                 else
1647                         length = PAGE_SIZE - offset;
1648
1649                 db->second_req_count = cpu_to_le16(length);
1650                 db->second_res_count = db->second_req_count;
1651                 page_bus = page_private(buffer->pages[page]);
1652                 db->second_buffer = cpu_to_le32(page_bus + offset);
1653
1654                 if (p->interrupt && length == rest)
1655                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1656
1657                 context_append(&ctx->context, d, z, header_z);
1658                 offset = (offset + length) & ~PAGE_MASK;
1659                 rest -= length;
1660                 page++;
1661         }
1662
1663         return 0;
1664 }
1665
1666 static int
1667 ohci_queue_iso(struct fw_iso_context *base,
1668                struct fw_iso_packet *packet,
1669                struct fw_iso_buffer *buffer,
1670                unsigned long payload)
1671 {
1672         struct iso_context *ctx = container_of(base, struct iso_context, base);
1673
1674         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1675                 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1676         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1677                 return ohci_queue_iso_receive_dualbuffer(base, packet,
1678                                                          buffer, payload);
1679         else
1680                 /* FIXME: Implement fallback for OHCI 1.0 controllers. */
1681                 return -EINVAL;
1682 }
1683
1684 static const struct fw_card_driver ohci_driver = {
1685         .name                   = ohci_driver_name,
1686         .enable                 = ohci_enable,
1687         .update_phy_reg         = ohci_update_phy_reg,
1688         .set_config_rom         = ohci_set_config_rom,
1689         .send_request           = ohci_send_request,
1690         .send_response          = ohci_send_response,
1691         .cancel_packet          = ohci_cancel_packet,
1692         .enable_phys_dma        = ohci_enable_phys_dma,
1693         .get_bus_time           = ohci_get_bus_time,
1694
1695         .allocate_iso_context   = ohci_allocate_iso_context,
1696         .free_iso_context       = ohci_free_iso_context,
1697         .queue_iso              = ohci_queue_iso,
1698         .start_iso              = ohci_start_iso,
1699         .stop_iso               = ohci_stop_iso,
1700 };
1701
1702 static int software_reset(struct fw_ohci *ohci)
1703 {
1704         int i;
1705
1706         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1707
1708         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1709                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1710                      OHCI1394_HCControl_softReset) == 0)
1711                         return 0;
1712                 msleep(1);
1713         }
1714
1715         return -EBUSY;
1716 }
1717
1718 static int __devinit
1719 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1720 {
1721         struct fw_ohci *ohci;
1722         u32 bus_options, max_receive, link_speed;
1723         u64 guid;
1724         int err;
1725         size_t size;
1726
1727         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1728         if (ohci == NULL) {
1729                 fw_error("Could not malloc fw_ohci data.\n");
1730                 return -ENOMEM;
1731         }
1732
1733         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1734
1735         err = pci_enable_device(dev);
1736         if (err) {
1737                 fw_error("Failed to enable OHCI hardware.\n");
1738                 goto fail_put_card;
1739         }
1740
1741         pci_set_master(dev);
1742         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1743         pci_set_drvdata(dev, ohci);
1744
1745         spin_lock_init(&ohci->lock);
1746
1747         tasklet_init(&ohci->bus_reset_tasklet,
1748                      bus_reset_tasklet, (unsigned long)ohci);
1749
1750         err = pci_request_region(dev, 0, ohci_driver_name);
1751         if (err) {
1752                 fw_error("MMIO resource unavailable\n");
1753                 goto fail_disable;
1754         }
1755
1756         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1757         if (ohci->registers == NULL) {
1758                 fw_error("Failed to remap registers\n");
1759                 err = -ENXIO;
1760                 goto fail_iomem;
1761         }
1762
1763         if (software_reset(ohci)) {
1764                 fw_error("Failed to reset ohci card.\n");
1765                 err = -EBUSY;
1766                 goto fail_registers;
1767         }
1768
1769         /*
1770          * Now enable LPS, which we need in order to start accessing
1771          * most of the registers.  In fact, on some cards (ALI M5251),
1772          * accessing registers in the SClk domain without LPS enabled
1773          * will lock up the machine.  Wait 50msec to make sure we have
1774          * full link enabled.
1775          */
1776         reg_write(ohci, OHCI1394_HCControlSet,
1777                   OHCI1394_HCControl_LPS |
1778                   OHCI1394_HCControl_postedWriteEnable);
1779         flush_writes(ohci);
1780         msleep(50);
1781
1782         reg_write(ohci, OHCI1394_HCControlClear,
1783                   OHCI1394_HCControl_noByteSwapData);
1784
1785         reg_write(ohci, OHCI1394_LinkControlSet,
1786                   OHCI1394_LinkControl_rcvSelfID |
1787                   OHCI1394_LinkControl_cycleTimerEnable |
1788                   OHCI1394_LinkControl_cycleMaster);
1789
1790         ar_context_init(&ohci->ar_request_ctx, ohci,
1791                         OHCI1394_AsReqRcvContextControlSet);
1792
1793         ar_context_init(&ohci->ar_response_ctx, ohci,
1794                         OHCI1394_AsRspRcvContextControlSet);
1795
1796         context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
1797                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
1798
1799         context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
1800                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
1801
1802         reg_write(ohci, OHCI1394_ATRetries,
1803                   OHCI1394_MAX_AT_REQ_RETRIES |
1804                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1805                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1806
1807         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1808         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1809         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1810         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1811         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1812
1813         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1814         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1815         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1816         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1817         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1818
1819         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1820                 fw_error("Out of memory for it/ir contexts.\n");
1821                 err = -ENOMEM;
1822                 goto fail_registers;
1823         }
1824
1825         /* self-id dma buffer allocation */
1826         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1827                                                SELF_ID_BUF_SIZE,
1828                                                &ohci->self_id_bus,
1829                                                GFP_KERNEL);
1830         if (ohci->self_id_cpu == NULL) {
1831                 fw_error("Out of memory for self ID buffer.\n");
1832                 err = -ENOMEM;
1833                 goto fail_registers;
1834         }
1835
1836         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1837         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1838         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1839         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1840         reg_write(ohci, OHCI1394_IntMaskSet,
1841                   OHCI1394_selfIDComplete |
1842                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1843                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1844                   OHCI1394_isochRx | OHCI1394_isochTx |
1845                   OHCI1394_masterIntEnable |
1846                   OHCI1394_cycle64Seconds);
1847
1848         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1849         max_receive = (bus_options >> 12) & 0xf;
1850         link_speed = bus_options & 0x7;
1851         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1852                 reg_read(ohci, OHCI1394_GUIDLo);
1853
1854         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1855         if (err < 0)
1856                 goto fail_self_id;
1857
1858         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1859         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1860                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1861
1862         return 0;
1863
1864  fail_self_id:
1865         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1866                           ohci->self_id_cpu, ohci->self_id_bus);
1867  fail_registers:
1868         kfree(ohci->it_context_list);
1869         kfree(ohci->ir_context_list);
1870         pci_iounmap(dev, ohci->registers);
1871  fail_iomem:
1872         pci_release_region(dev, 0);
1873  fail_disable:
1874         pci_disable_device(dev);
1875  fail_put_card:
1876         fw_card_put(&ohci->card);
1877
1878         return err;
1879 }
1880
1881 static void pci_remove(struct pci_dev *dev)
1882 {
1883         struct fw_ohci *ohci;
1884
1885         ohci = pci_get_drvdata(dev);
1886         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1887         flush_writes(ohci);
1888         fw_core_remove_card(&ohci->card);
1889
1890         /*
1891          * FIXME: Fail all pending packets here, now that the upper
1892          * layers can't queue any more.
1893          */
1894
1895         software_reset(ohci);
1896         free_irq(dev->irq, ohci);
1897         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1898                           ohci->self_id_cpu, ohci->self_id_bus);
1899         kfree(ohci->it_context_list);
1900         kfree(ohci->ir_context_list);
1901         pci_iounmap(dev, ohci->registers);
1902         pci_release_region(dev, 0);
1903         pci_disable_device(dev);
1904         fw_card_put(&ohci->card);
1905
1906         fw_notify("Removed fw-ohci device.\n");
1907 }
1908
1909 static struct pci_device_id pci_table[] = {
1910         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1911         { }
1912 };
1913
1914 MODULE_DEVICE_TABLE(pci, pci_table);
1915
1916 static struct pci_driver fw_ohci_pci_driver = {
1917         .name           = ohci_driver_name,
1918         .id_table       = pci_table,
1919         .probe          = pci_probe,
1920         .remove         = pci_remove,
1921 };
1922
1923 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1924 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1925 MODULE_LICENSE("GPL");
1926
1927 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1928 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
1929 MODULE_ALIAS("ohci1394");
1930 #endif
1931
1932 static int __init fw_ohci_init(void)
1933 {
1934         return pci_register_driver(&fw_ohci_pci_driver);
1935 }
1936
1937 static void __exit fw_ohci_cleanup(void)
1938 {
1939         pci_unregister_driver(&fw_ohci_pci_driver);
1940 }
1941
1942 module_init(fw_ohci_init);
1943 module_exit(fw_ohci_cleanup);