1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/selinux.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
71 extern struct list_head audit_filter_list[];
73 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75 #define AUDIT_NAMES 20
77 /* Indicates that audit should log the full pathname. */
78 #define AUDIT_NAME_FULL -1
80 /* number of audit rules */
83 /* determines whether we collect data for signals sent */
86 /* When fs/namei.c:getname() is called, we store the pointer in name and
87 * we don't let putname() free it (instead we free all of the saved
88 * pointers at syscall exit time).
90 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
93 int name_len; /* number of name's characters to log */
94 unsigned name_put; /* call __putname() for this name */
104 struct audit_aux_data {
105 struct audit_aux_data *next;
109 #define AUDIT_AUX_IPCPERM 0
111 /* Number of target pids per aux struct. */
112 #define AUDIT_AUX_PIDS 16
114 struct audit_aux_data_mq_open {
115 struct audit_aux_data d;
121 struct audit_aux_data_mq_sendrecv {
122 struct audit_aux_data d;
125 unsigned int msg_prio;
126 struct timespec abs_timeout;
129 struct audit_aux_data_mq_notify {
130 struct audit_aux_data d;
132 struct sigevent notification;
135 struct audit_aux_data_mq_getsetattr {
136 struct audit_aux_data d;
138 struct mq_attr mqstat;
141 struct audit_aux_data_ipcctl {
142 struct audit_aux_data d;
144 unsigned long qbytes;
151 struct audit_aux_data_execve {
152 struct audit_aux_data d;
155 struct mm_struct *mm;
158 struct audit_aux_data_socketcall {
159 struct audit_aux_data d;
161 unsigned long args[0];
164 struct audit_aux_data_sockaddr {
165 struct audit_aux_data d;
170 struct audit_aux_data_fd_pair {
171 struct audit_aux_data d;
175 struct audit_aux_data_pids {
176 struct audit_aux_data d;
177 pid_t target_pid[AUDIT_AUX_PIDS];
178 u32 target_sid[AUDIT_AUX_PIDS];
182 /* The per-task audit context. */
183 struct audit_context {
184 int dummy; /* must be the first element */
185 int in_syscall; /* 1 if task is in a syscall */
186 enum audit_state state;
187 unsigned int serial; /* serial number for record */
188 struct timespec ctime; /* time of syscall entry */
189 uid_t loginuid; /* login uid (identity) */
190 int major; /* syscall number */
191 unsigned long argv[4]; /* syscall arguments */
192 int return_valid; /* return code is valid */
193 long return_code;/* syscall return code */
194 int auditable; /* 1 if record should be written */
196 struct audit_names names[AUDIT_NAMES];
197 char * filterkey; /* key for rule that triggered record */
199 struct vfsmount * pwdmnt;
200 struct audit_context *previous; /* For nested syscalls */
201 struct audit_aux_data *aux;
202 struct audit_aux_data *aux_pids;
204 /* Save things to print about task_struct */
206 uid_t uid, euid, suid, fsuid;
207 gid_t gid, egid, sgid, fsgid;
208 unsigned long personality;
220 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
221 static inline int open_arg(int flags, int mask)
223 int n = ACC_MODE(flags);
224 if (flags & (O_TRUNC | O_CREAT))
225 n |= AUDIT_PERM_WRITE;
229 static int audit_match_perm(struct audit_context *ctx, int mask)
231 unsigned n = ctx->major;
232 switch (audit_classify_syscall(ctx->arch, n)) {
234 if ((mask & AUDIT_PERM_WRITE) &&
235 audit_match_class(AUDIT_CLASS_WRITE, n))
237 if ((mask & AUDIT_PERM_READ) &&
238 audit_match_class(AUDIT_CLASS_READ, n))
240 if ((mask & AUDIT_PERM_ATTR) &&
241 audit_match_class(AUDIT_CLASS_CHATTR, n))
244 case 1: /* 32bit on biarch */
245 if ((mask & AUDIT_PERM_WRITE) &&
246 audit_match_class(AUDIT_CLASS_WRITE_32, n))
248 if ((mask & AUDIT_PERM_READ) &&
249 audit_match_class(AUDIT_CLASS_READ_32, n))
251 if ((mask & AUDIT_PERM_ATTR) &&
252 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
256 return mask & ACC_MODE(ctx->argv[1]);
258 return mask & ACC_MODE(ctx->argv[2]);
259 case 4: /* socketcall */
260 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
262 return mask & AUDIT_PERM_EXEC;
268 /* Determine if any context name data matches a rule's watch data */
269 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
271 static int audit_filter_rules(struct task_struct *tsk,
272 struct audit_krule *rule,
273 struct audit_context *ctx,
274 struct audit_names *name,
275 enum audit_state *state)
277 int i, j, need_sid = 1;
280 for (i = 0; i < rule->field_count; i++) {
281 struct audit_field *f = &rule->fields[i];
286 result = audit_comparator(tsk->pid, f->op, f->val);
291 ctx->ppid = sys_getppid();
292 result = audit_comparator(ctx->ppid, f->op, f->val);
296 result = audit_comparator(tsk->uid, f->op, f->val);
299 result = audit_comparator(tsk->euid, f->op, f->val);
302 result = audit_comparator(tsk->suid, f->op, f->val);
305 result = audit_comparator(tsk->fsuid, f->op, f->val);
308 result = audit_comparator(tsk->gid, f->op, f->val);
311 result = audit_comparator(tsk->egid, f->op, f->val);
314 result = audit_comparator(tsk->sgid, f->op, f->val);
317 result = audit_comparator(tsk->fsgid, f->op, f->val);
320 result = audit_comparator(tsk->personality, f->op, f->val);
324 result = audit_comparator(ctx->arch, f->op, f->val);
328 if (ctx && ctx->return_valid)
329 result = audit_comparator(ctx->return_code, f->op, f->val);
332 if (ctx && ctx->return_valid) {
334 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
336 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
341 result = audit_comparator(MAJOR(name->dev),
344 for (j = 0; j < ctx->name_count; j++) {
345 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
354 result = audit_comparator(MINOR(name->dev),
357 for (j = 0; j < ctx->name_count; j++) {
358 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
367 result = (name->ino == f->val);
369 for (j = 0; j < ctx->name_count; j++) {
370 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
378 if (name && rule->watch->ino != (unsigned long)-1)
379 result = (name->dev == rule->watch->dev &&
380 name->ino == rule->watch->ino);
385 result = audit_comparator(ctx->loginuid, f->op, f->val);
387 case AUDIT_SUBJ_USER:
388 case AUDIT_SUBJ_ROLE:
389 case AUDIT_SUBJ_TYPE:
392 /* NOTE: this may return negative values indicating
393 a temporary error. We simply treat this as a
394 match for now to avoid losing information that
395 may be wanted. An error message will also be
399 selinux_get_task_sid(tsk, &sid);
402 result = selinux_audit_rule_match(sid, f->type,
411 case AUDIT_OBJ_LEV_LOW:
412 case AUDIT_OBJ_LEV_HIGH:
413 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
416 /* Find files that match */
418 result = selinux_audit_rule_match(
419 name->osid, f->type, f->op,
422 for (j = 0; j < ctx->name_count; j++) {
423 if (selinux_audit_rule_match(
432 /* Find ipc objects that match */
434 struct audit_aux_data *aux;
435 for (aux = ctx->aux; aux;
437 if (aux->type == AUDIT_IPC) {
438 struct audit_aux_data_ipcctl *axi = (void *)aux;
439 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
453 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
455 case AUDIT_FILTERKEY:
456 /* ignore this field for filtering */
460 result = audit_match_perm(ctx, f->val);
468 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
469 switch (rule->action) {
470 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
471 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
476 /* At process creation time, we can determine if system-call auditing is
477 * completely disabled for this task. Since we only have the task
478 * structure at this point, we can only check uid and gid.
480 static enum audit_state audit_filter_task(struct task_struct *tsk)
482 struct audit_entry *e;
483 enum audit_state state;
486 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
487 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
493 return AUDIT_BUILD_CONTEXT;
496 /* At syscall entry and exit time, this filter is called if the
497 * audit_state is not low enough that auditing cannot take place, but is
498 * also not high enough that we already know we have to write an audit
499 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
501 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
502 struct audit_context *ctx,
503 struct list_head *list)
505 struct audit_entry *e;
506 enum audit_state state;
508 if (audit_pid && tsk->tgid == audit_pid)
509 return AUDIT_DISABLED;
512 if (!list_empty(list)) {
513 int word = AUDIT_WORD(ctx->major);
514 int bit = AUDIT_BIT(ctx->major);
516 list_for_each_entry_rcu(e, list, list) {
517 if ((e->rule.mask[word] & bit) == bit &&
518 audit_filter_rules(tsk, &e->rule, ctx, NULL,
526 return AUDIT_BUILD_CONTEXT;
529 /* At syscall exit time, this filter is called if any audit_names[] have been
530 * collected during syscall processing. We only check rules in sublists at hash
531 * buckets applicable to the inode numbers in audit_names[].
532 * Regarding audit_state, same rules apply as for audit_filter_syscall().
534 enum audit_state audit_filter_inodes(struct task_struct *tsk,
535 struct audit_context *ctx)
538 struct audit_entry *e;
539 enum audit_state state;
541 if (audit_pid && tsk->tgid == audit_pid)
542 return AUDIT_DISABLED;
545 for (i = 0; i < ctx->name_count; i++) {
546 int word = AUDIT_WORD(ctx->major);
547 int bit = AUDIT_BIT(ctx->major);
548 struct audit_names *n = &ctx->names[i];
549 int h = audit_hash_ino((u32)n->ino);
550 struct list_head *list = &audit_inode_hash[h];
552 if (list_empty(list))
555 list_for_each_entry_rcu(e, list, list) {
556 if ((e->rule.mask[word] & bit) == bit &&
557 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
564 return AUDIT_BUILD_CONTEXT;
567 void audit_set_auditable(struct audit_context *ctx)
572 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
576 struct audit_context *context = tsk->audit_context;
578 if (likely(!context))
580 context->return_valid = return_valid;
581 context->return_code = return_code;
583 if (context->in_syscall && !context->dummy && !context->auditable) {
584 enum audit_state state;
586 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
587 if (state == AUDIT_RECORD_CONTEXT) {
588 context->auditable = 1;
592 state = audit_filter_inodes(tsk, context);
593 if (state == AUDIT_RECORD_CONTEXT)
594 context->auditable = 1;
600 tsk->audit_context = NULL;
604 static inline void audit_free_names(struct audit_context *context)
609 if (context->auditable
610 ||context->put_count + context->ino_count != context->name_count) {
611 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
612 " name_count=%d put_count=%d"
613 " ino_count=%d [NOT freeing]\n",
615 context->serial, context->major, context->in_syscall,
616 context->name_count, context->put_count,
618 for (i = 0; i < context->name_count; i++) {
619 printk(KERN_ERR "names[%d] = %p = %s\n", i,
620 context->names[i].name,
621 context->names[i].name ?: "(null)");
628 context->put_count = 0;
629 context->ino_count = 0;
632 for (i = 0; i < context->name_count; i++) {
633 if (context->names[i].name && context->names[i].name_put)
634 __putname(context->names[i].name);
636 context->name_count = 0;
640 mntput(context->pwdmnt);
642 context->pwdmnt = NULL;
645 static inline void audit_free_aux(struct audit_context *context)
647 struct audit_aux_data *aux;
649 while ((aux = context->aux)) {
650 context->aux = aux->next;
653 while ((aux = context->aux_pids)) {
654 context->aux_pids = aux->next;
659 static inline void audit_zero_context(struct audit_context *context,
660 enum audit_state state)
662 uid_t loginuid = context->loginuid;
664 memset(context, 0, sizeof(*context));
665 context->state = state;
666 context->loginuid = loginuid;
669 static inline struct audit_context *audit_alloc_context(enum audit_state state)
671 struct audit_context *context;
673 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
675 audit_zero_context(context, state);
680 * audit_alloc - allocate an audit context block for a task
683 * Filter on the task information and allocate a per-task audit context
684 * if necessary. Doing so turns on system call auditing for the
685 * specified task. This is called from copy_process, so no lock is
688 int audit_alloc(struct task_struct *tsk)
690 struct audit_context *context;
691 enum audit_state state;
693 if (likely(!audit_enabled))
694 return 0; /* Return if not auditing. */
696 state = audit_filter_task(tsk);
697 if (likely(state == AUDIT_DISABLED))
700 if (!(context = audit_alloc_context(state))) {
701 audit_log_lost("out of memory in audit_alloc");
705 /* Preserve login uid */
706 context->loginuid = -1;
707 if (current->audit_context)
708 context->loginuid = current->audit_context->loginuid;
710 tsk->audit_context = context;
711 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
715 static inline void audit_free_context(struct audit_context *context)
717 struct audit_context *previous;
721 previous = context->previous;
722 if (previous || (count && count < 10)) {
724 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
725 " freeing multiple contexts (%d)\n",
726 context->serial, context->major,
727 context->name_count, count);
729 audit_free_names(context);
730 audit_free_aux(context);
731 kfree(context->filterkey);
736 printk(KERN_ERR "audit: freed %d contexts\n", count);
739 void audit_log_task_context(struct audit_buffer *ab)
746 selinux_get_task_sid(current, &sid);
750 error = selinux_sid_to_string(sid, &ctx, &len);
752 if (error != -EINVAL)
757 audit_log_format(ab, " subj=%s", ctx);
762 audit_panic("error in audit_log_task_context");
766 EXPORT_SYMBOL(audit_log_task_context);
768 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
770 char name[sizeof(tsk->comm)];
771 struct mm_struct *mm = tsk->mm;
772 struct vm_area_struct *vma;
776 get_task_comm(name, tsk);
777 audit_log_format(ab, " comm=");
778 audit_log_untrustedstring(ab, name);
781 down_read(&mm->mmap_sem);
784 if ((vma->vm_flags & VM_EXECUTABLE) &&
786 audit_log_d_path(ab, "exe=",
787 vma->vm_file->f_path.dentry,
788 vma->vm_file->f_path.mnt);
793 up_read(&mm->mmap_sem);
795 audit_log_task_context(ab);
798 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
801 struct audit_buffer *ab;
806 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
810 if (selinux_sid_to_string(sid, &s, &len)) {
811 audit_log_format(ab, "opid=%d obj=(none)", pid);
814 audit_log_format(ab, "opid=%d obj=%s", pid, s);
821 static void audit_log_execve_info(struct audit_buffer *ab,
822 struct audit_aux_data_execve *axi)
826 const char __user *p;
829 if (axi->mm != current->mm)
830 return; /* execve failed, no additional info */
832 p = (const char __user *)axi->mm->arg_start;
834 for (i = 0; i < axi->argc; i++, p += len) {
835 len = strnlen_user(p, MAX_ARG_STRLEN);
837 * We just created this mm, if we can't find the strings
838 * we just copied into it something is _very_ wrong. Similar
839 * for strings that are too long, we should not have created
842 if (!len || len > MAX_ARG_STRLEN) {
844 send_sig(SIGKILL, current, 0);
847 buf = kmalloc(len, GFP_KERNEL);
849 audit_panic("out of memory for argv string\n");
853 ret = copy_from_user(buf, p, len);
855 * There is no reason for this copy to be short. We just
856 * copied them here, and the mm hasn't been exposed to user-
861 send_sig(SIGKILL, current, 0);
864 audit_log_format(ab, "a%d=", i);
865 audit_log_untrustedstring(ab, buf);
866 audit_log_format(ab, "\n");
872 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
874 int i, call_panic = 0;
875 struct audit_buffer *ab;
876 struct audit_aux_data *aux;
880 context->pid = tsk->pid;
882 context->ppid = sys_getppid();
883 context->uid = tsk->uid;
884 context->gid = tsk->gid;
885 context->euid = tsk->euid;
886 context->suid = tsk->suid;
887 context->fsuid = tsk->fsuid;
888 context->egid = tsk->egid;
889 context->sgid = tsk->sgid;
890 context->fsgid = tsk->fsgid;
891 context->personality = tsk->personality;
893 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
895 return; /* audit_panic has been called */
896 audit_log_format(ab, "arch=%x syscall=%d",
897 context->arch, context->major);
898 if (context->personality != PER_LINUX)
899 audit_log_format(ab, " per=%lx", context->personality);
900 if (context->return_valid)
901 audit_log_format(ab, " success=%s exit=%ld",
902 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
903 context->return_code);
905 mutex_lock(&tty_mutex);
906 read_lock(&tasklist_lock);
907 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
908 tty = tsk->signal->tty->name;
911 read_unlock(&tasklist_lock);
913 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
914 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
915 " euid=%u suid=%u fsuid=%u"
916 " egid=%u sgid=%u fsgid=%u tty=%s",
927 context->euid, context->suid, context->fsuid,
928 context->egid, context->sgid, context->fsgid, tty);
930 mutex_unlock(&tty_mutex);
932 audit_log_task_info(ab, tsk);
933 if (context->filterkey) {
934 audit_log_format(ab, " key=");
935 audit_log_untrustedstring(ab, context->filterkey);
937 audit_log_format(ab, " key=(null)");
940 for (aux = context->aux; aux; aux = aux->next) {
942 ab = audit_log_start(context, GFP_KERNEL, aux->type);
944 continue; /* audit_panic has been called */
947 case AUDIT_MQ_OPEN: {
948 struct audit_aux_data_mq_open *axi = (void *)aux;
950 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
951 "mq_msgsize=%ld mq_curmsgs=%ld",
952 axi->oflag, axi->mode, axi->attr.mq_flags,
953 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
954 axi->attr.mq_curmsgs);
957 case AUDIT_MQ_SENDRECV: {
958 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
960 "mqdes=%d msg_len=%zd msg_prio=%u "
961 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
962 axi->mqdes, axi->msg_len, axi->msg_prio,
963 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
966 case AUDIT_MQ_NOTIFY: {
967 struct audit_aux_data_mq_notify *axi = (void *)aux;
969 "mqdes=%d sigev_signo=%d",
971 axi->notification.sigev_signo);
974 case AUDIT_MQ_GETSETATTR: {
975 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
977 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
980 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
981 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
985 struct audit_aux_data_ipcctl *axi = (void *)aux;
987 "ouid=%u ogid=%u mode=%#o",
988 axi->uid, axi->gid, axi->mode);
989 if (axi->osid != 0) {
992 if (selinux_sid_to_string(
993 axi->osid, &ctx, &len)) {
994 audit_log_format(ab, " osid=%u",
998 audit_log_format(ab, " obj=%s", ctx);
1003 case AUDIT_IPC_SET_PERM: {
1004 struct audit_aux_data_ipcctl *axi = (void *)aux;
1005 audit_log_format(ab,
1006 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1007 axi->qbytes, axi->uid, axi->gid, axi->mode);
1010 case AUDIT_EXECVE: {
1011 struct audit_aux_data_execve *axi = (void *)aux;
1012 audit_log_execve_info(ab, axi);
1015 case AUDIT_SOCKETCALL: {
1017 struct audit_aux_data_socketcall *axs = (void *)aux;
1018 audit_log_format(ab, "nargs=%d", axs->nargs);
1019 for (i=0; i<axs->nargs; i++)
1020 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1023 case AUDIT_SOCKADDR: {
1024 struct audit_aux_data_sockaddr *axs = (void *)aux;
1026 audit_log_format(ab, "saddr=");
1027 audit_log_hex(ab, axs->a, axs->len);
1030 case AUDIT_FD_PAIR: {
1031 struct audit_aux_data_fd_pair *axs = (void *)aux;
1032 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1039 for (aux = context->aux_pids; aux; aux = aux->next) {
1040 struct audit_aux_data_pids *axs = (void *)aux;
1043 for (i = 0; i < axs->pid_count; i++)
1044 if (audit_log_pid_context(context, axs->target_pid[i],
1045 axs->target_sid[i]))
1049 if (context->target_pid &&
1050 audit_log_pid_context(context, context->target_pid,
1051 context->target_sid))
1054 if (context->pwd && context->pwdmnt) {
1055 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1057 audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
1061 for (i = 0; i < context->name_count; i++) {
1062 struct audit_names *n = &context->names[i];
1064 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1066 continue; /* audit_panic has been called */
1068 audit_log_format(ab, "item=%d", i);
1071 switch(n->name_len) {
1072 case AUDIT_NAME_FULL:
1073 /* log the full path */
1074 audit_log_format(ab, " name=");
1075 audit_log_untrustedstring(ab, n->name);
1078 /* name was specified as a relative path and the
1079 * directory component is the cwd */
1080 audit_log_d_path(ab, " name=", context->pwd,
1084 /* log the name's directory component */
1085 audit_log_format(ab, " name=");
1086 audit_log_n_untrustedstring(ab, n->name_len,
1090 audit_log_format(ab, " name=(null)");
1092 if (n->ino != (unsigned long)-1) {
1093 audit_log_format(ab, " inode=%lu"
1094 " dev=%02x:%02x mode=%#o"
1095 " ouid=%u ogid=%u rdev=%02x:%02x",
1108 if (selinux_sid_to_string(
1109 n->osid, &ctx, &len)) {
1110 audit_log_format(ab, " osid=%u", n->osid);
1113 audit_log_format(ab, " obj=%s", ctx);
1120 audit_panic("error converting sid to string");
1124 * audit_free - free a per-task audit context
1125 * @tsk: task whose audit context block to free
1127 * Called from copy_process and do_exit
1129 void audit_free(struct task_struct *tsk)
1131 struct audit_context *context;
1133 context = audit_get_context(tsk, 0, 0);
1134 if (likely(!context))
1137 /* Check for system calls that do not go through the exit
1138 * function (e.g., exit_group), then free context block.
1139 * We use GFP_ATOMIC here because we might be doing this
1140 * in the context of the idle thread */
1141 /* that can happen only if we are called from do_exit() */
1142 if (context->in_syscall && context->auditable)
1143 audit_log_exit(context, tsk);
1145 audit_free_context(context);
1149 * audit_syscall_entry - fill in an audit record at syscall entry
1150 * @tsk: task being audited
1151 * @arch: architecture type
1152 * @major: major syscall type (function)
1153 * @a1: additional syscall register 1
1154 * @a2: additional syscall register 2
1155 * @a3: additional syscall register 3
1156 * @a4: additional syscall register 4
1158 * Fill in audit context at syscall entry. This only happens if the
1159 * audit context was created when the task was created and the state or
1160 * filters demand the audit context be built. If the state from the
1161 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1162 * then the record will be written at syscall exit time (otherwise, it
1163 * will only be written if another part of the kernel requests that it
1166 void audit_syscall_entry(int arch, int major,
1167 unsigned long a1, unsigned long a2,
1168 unsigned long a3, unsigned long a4)
1170 struct task_struct *tsk = current;
1171 struct audit_context *context = tsk->audit_context;
1172 enum audit_state state;
1177 * This happens only on certain architectures that make system
1178 * calls in kernel_thread via the entry.S interface, instead of
1179 * with direct calls. (If you are porting to a new
1180 * architecture, hitting this condition can indicate that you
1181 * got the _exit/_leave calls backward in entry.S.)
1185 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1187 * This also happens with vm86 emulation in a non-nested manner
1188 * (entries without exits), so this case must be caught.
1190 if (context->in_syscall) {
1191 struct audit_context *newctx;
1195 "audit(:%d) pid=%d in syscall=%d;"
1196 " entering syscall=%d\n",
1197 context->serial, tsk->pid, context->major, major);
1199 newctx = audit_alloc_context(context->state);
1201 newctx->previous = context;
1203 tsk->audit_context = newctx;
1205 /* If we can't alloc a new context, the best we
1206 * can do is to leak memory (any pending putname
1207 * will be lost). The only other alternative is
1208 * to abandon auditing. */
1209 audit_zero_context(context, context->state);
1212 BUG_ON(context->in_syscall || context->name_count);
1217 context->arch = arch;
1218 context->major = major;
1219 context->argv[0] = a1;
1220 context->argv[1] = a2;
1221 context->argv[2] = a3;
1222 context->argv[3] = a4;
1224 state = context->state;
1225 context->dummy = !audit_n_rules;
1226 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1227 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1228 if (likely(state == AUDIT_DISABLED))
1231 context->serial = 0;
1232 context->ctime = CURRENT_TIME;
1233 context->in_syscall = 1;
1234 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1239 * audit_syscall_exit - deallocate audit context after a system call
1240 * @tsk: task being audited
1241 * @valid: success/failure flag
1242 * @return_code: syscall return value
1244 * Tear down after system call. If the audit context has been marked as
1245 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1246 * filtering, or because some other part of the kernel write an audit
1247 * message), then write out the syscall information. In call cases,
1248 * free the names stored from getname().
1250 void audit_syscall_exit(int valid, long return_code)
1252 struct task_struct *tsk = current;
1253 struct audit_context *context;
1255 context = audit_get_context(tsk, valid, return_code);
1257 if (likely(!context))
1260 if (context->in_syscall && context->auditable)
1261 audit_log_exit(context, tsk);
1263 context->in_syscall = 0;
1264 context->auditable = 0;
1266 if (context->previous) {
1267 struct audit_context *new_context = context->previous;
1268 context->previous = NULL;
1269 audit_free_context(context);
1270 tsk->audit_context = new_context;
1272 audit_free_names(context);
1273 audit_free_aux(context);
1274 context->aux = NULL;
1275 context->aux_pids = NULL;
1276 context->target_pid = 0;
1277 context->target_sid = 0;
1278 kfree(context->filterkey);
1279 context->filterkey = NULL;
1280 tsk->audit_context = context;
1285 * audit_getname - add a name to the list
1286 * @name: name to add
1288 * Add a name to the list of audit names for this context.
1289 * Called from fs/namei.c:getname().
1291 void __audit_getname(const char *name)
1293 struct audit_context *context = current->audit_context;
1295 if (IS_ERR(name) || !name)
1298 if (!context->in_syscall) {
1299 #if AUDIT_DEBUG == 2
1300 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1301 __FILE__, __LINE__, context->serial, name);
1306 BUG_ON(context->name_count >= AUDIT_NAMES);
1307 context->names[context->name_count].name = name;
1308 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1309 context->names[context->name_count].name_put = 1;
1310 context->names[context->name_count].ino = (unsigned long)-1;
1311 context->names[context->name_count].osid = 0;
1312 ++context->name_count;
1313 if (!context->pwd) {
1314 read_lock(¤t->fs->lock);
1315 context->pwd = dget(current->fs->pwd);
1316 context->pwdmnt = mntget(current->fs->pwdmnt);
1317 read_unlock(¤t->fs->lock);
1322 /* audit_putname - intercept a putname request
1323 * @name: name to intercept and delay for putname
1325 * If we have stored the name from getname in the audit context,
1326 * then we delay the putname until syscall exit.
1327 * Called from include/linux/fs.h:putname().
1329 void audit_putname(const char *name)
1331 struct audit_context *context = current->audit_context;
1334 if (!context->in_syscall) {
1335 #if AUDIT_DEBUG == 2
1336 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1337 __FILE__, __LINE__, context->serial, name);
1338 if (context->name_count) {
1340 for (i = 0; i < context->name_count; i++)
1341 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1342 context->names[i].name,
1343 context->names[i].name ?: "(null)");
1350 ++context->put_count;
1351 if (context->put_count > context->name_count) {
1352 printk(KERN_ERR "%s:%d(:%d): major=%d"
1353 " in_syscall=%d putname(%p) name_count=%d"
1356 context->serial, context->major,
1357 context->in_syscall, name, context->name_count,
1358 context->put_count);
1365 static int audit_inc_name_count(struct audit_context *context,
1366 const struct inode *inode)
1368 if (context->name_count >= AUDIT_NAMES) {
1370 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1371 "dev=%02x:%02x, inode=%lu",
1372 MAJOR(inode->i_sb->s_dev),
1373 MINOR(inode->i_sb->s_dev),
1377 printk(KERN_DEBUG "name_count maxed, losing inode data");
1380 context->name_count++;
1382 context->ino_count++;
1387 /* Copy inode data into an audit_names. */
1388 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1390 name->ino = inode->i_ino;
1391 name->dev = inode->i_sb->s_dev;
1392 name->mode = inode->i_mode;
1393 name->uid = inode->i_uid;
1394 name->gid = inode->i_gid;
1395 name->rdev = inode->i_rdev;
1396 selinux_get_inode_sid(inode, &name->osid);
1400 * audit_inode - store the inode and device from a lookup
1401 * @name: name being audited
1402 * @inode: inode being audited
1404 * Called from fs/namei.c:path_lookup().
1406 void __audit_inode(const char *name, const struct inode *inode)
1409 struct audit_context *context = current->audit_context;
1411 if (!context->in_syscall)
1413 if (context->name_count
1414 && context->names[context->name_count-1].name
1415 && context->names[context->name_count-1].name == name)
1416 idx = context->name_count - 1;
1417 else if (context->name_count > 1
1418 && context->names[context->name_count-2].name
1419 && context->names[context->name_count-2].name == name)
1420 idx = context->name_count - 2;
1422 /* FIXME: how much do we care about inodes that have no
1423 * associated name? */
1424 if (audit_inc_name_count(context, inode))
1426 idx = context->name_count - 1;
1427 context->names[idx].name = NULL;
1429 audit_copy_inode(&context->names[idx], inode);
1433 * audit_inode_child - collect inode info for created/removed objects
1434 * @dname: inode's dentry name
1435 * @inode: inode being audited
1436 * @parent: inode of dentry parent
1438 * For syscalls that create or remove filesystem objects, audit_inode
1439 * can only collect information for the filesystem object's parent.
1440 * This call updates the audit context with the child's information.
1441 * Syscalls that create a new filesystem object must be hooked after
1442 * the object is created. Syscalls that remove a filesystem object
1443 * must be hooked prior, in order to capture the target inode during
1444 * unsuccessful attempts.
1446 void __audit_inode_child(const char *dname, const struct inode *inode,
1447 const struct inode *parent)
1450 struct audit_context *context = current->audit_context;
1451 const char *found_parent = NULL, *found_child = NULL;
1454 if (!context->in_syscall)
1457 /* determine matching parent */
1461 /* parent is more likely, look for it first */
1462 for (idx = 0; idx < context->name_count; idx++) {
1463 struct audit_names *n = &context->names[idx];
1468 if (n->ino == parent->i_ino &&
1469 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1470 n->name_len = dirlen; /* update parent data in place */
1471 found_parent = n->name;
1476 /* no matching parent, look for matching child */
1477 for (idx = 0; idx < context->name_count; idx++) {
1478 struct audit_names *n = &context->names[idx];
1483 /* strcmp() is the more likely scenario */
1484 if (!strcmp(dname, n->name) ||
1485 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1487 audit_copy_inode(n, inode);
1489 n->ino = (unsigned long)-1;
1490 found_child = n->name;
1496 if (!found_parent) {
1497 if (audit_inc_name_count(context, parent))
1499 idx = context->name_count - 1;
1500 context->names[idx].name = NULL;
1501 audit_copy_inode(&context->names[idx], parent);
1505 if (audit_inc_name_count(context, inode))
1507 idx = context->name_count - 1;
1509 /* Re-use the name belonging to the slot for a matching parent
1510 * directory. All names for this context are relinquished in
1511 * audit_free_names() */
1513 context->names[idx].name = found_parent;
1514 context->names[idx].name_len = AUDIT_NAME_FULL;
1515 /* don't call __putname() */
1516 context->names[idx].name_put = 0;
1518 context->names[idx].name = NULL;
1522 audit_copy_inode(&context->names[idx], inode);
1524 context->names[idx].ino = (unsigned long)-1;
1527 EXPORT_SYMBOL_GPL(__audit_inode_child);
1530 * auditsc_get_stamp - get local copies of audit_context values
1531 * @ctx: audit_context for the task
1532 * @t: timespec to store time recorded in the audit_context
1533 * @serial: serial value that is recorded in the audit_context
1535 * Also sets the context as auditable.
1537 void auditsc_get_stamp(struct audit_context *ctx,
1538 struct timespec *t, unsigned int *serial)
1541 ctx->serial = audit_serial();
1542 t->tv_sec = ctx->ctime.tv_sec;
1543 t->tv_nsec = ctx->ctime.tv_nsec;
1544 *serial = ctx->serial;
1549 * audit_set_loginuid - set a task's audit_context loginuid
1550 * @task: task whose audit context is being modified
1551 * @loginuid: loginuid value
1555 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1557 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1559 struct audit_context *context = task->audit_context;
1562 /* Only log if audit is enabled */
1563 if (context->in_syscall) {
1564 struct audit_buffer *ab;
1566 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1568 audit_log_format(ab, "login pid=%d uid=%u "
1569 "old auid=%u new auid=%u",
1570 task->pid, task->uid,
1571 context->loginuid, loginuid);
1575 context->loginuid = loginuid;
1581 * audit_get_loginuid - get the loginuid for an audit_context
1582 * @ctx: the audit_context
1584 * Returns the context's loginuid or -1 if @ctx is NULL.
1586 uid_t audit_get_loginuid(struct audit_context *ctx)
1588 return ctx ? ctx->loginuid : -1;
1591 EXPORT_SYMBOL(audit_get_loginuid);
1594 * __audit_mq_open - record audit data for a POSIX MQ open
1597 * @u_attr: queue attributes
1599 * Returns 0 for success or NULL context or < 0 on error.
1601 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1603 struct audit_aux_data_mq_open *ax;
1604 struct audit_context *context = current->audit_context;
1609 if (likely(!context))
1612 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1616 if (u_attr != NULL) {
1617 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1622 memset(&ax->attr, 0, sizeof(ax->attr));
1627 ax->d.type = AUDIT_MQ_OPEN;
1628 ax->d.next = context->aux;
1629 context->aux = (void *)ax;
1634 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1635 * @mqdes: MQ descriptor
1636 * @msg_len: Message length
1637 * @msg_prio: Message priority
1638 * @u_abs_timeout: Message timeout in absolute time
1640 * Returns 0 for success or NULL context or < 0 on error.
1642 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1643 const struct timespec __user *u_abs_timeout)
1645 struct audit_aux_data_mq_sendrecv *ax;
1646 struct audit_context *context = current->audit_context;
1651 if (likely(!context))
1654 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1658 if (u_abs_timeout != NULL) {
1659 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1664 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1667 ax->msg_len = msg_len;
1668 ax->msg_prio = msg_prio;
1670 ax->d.type = AUDIT_MQ_SENDRECV;
1671 ax->d.next = context->aux;
1672 context->aux = (void *)ax;
1677 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1678 * @mqdes: MQ descriptor
1679 * @msg_len: Message length
1680 * @u_msg_prio: Message priority
1681 * @u_abs_timeout: Message timeout in absolute time
1683 * Returns 0 for success or NULL context or < 0 on error.
1685 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1686 unsigned int __user *u_msg_prio,
1687 const struct timespec __user *u_abs_timeout)
1689 struct audit_aux_data_mq_sendrecv *ax;
1690 struct audit_context *context = current->audit_context;
1695 if (likely(!context))
1698 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1702 if (u_msg_prio != NULL) {
1703 if (get_user(ax->msg_prio, u_msg_prio)) {
1710 if (u_abs_timeout != NULL) {
1711 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1716 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1719 ax->msg_len = msg_len;
1721 ax->d.type = AUDIT_MQ_SENDRECV;
1722 ax->d.next = context->aux;
1723 context->aux = (void *)ax;
1728 * __audit_mq_notify - record audit data for a POSIX MQ notify
1729 * @mqdes: MQ descriptor
1730 * @u_notification: Notification event
1732 * Returns 0 for success or NULL context or < 0 on error.
1735 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1737 struct audit_aux_data_mq_notify *ax;
1738 struct audit_context *context = current->audit_context;
1743 if (likely(!context))
1746 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1750 if (u_notification != NULL) {
1751 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1756 memset(&ax->notification, 0, sizeof(ax->notification));
1760 ax->d.type = AUDIT_MQ_NOTIFY;
1761 ax->d.next = context->aux;
1762 context->aux = (void *)ax;
1767 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1768 * @mqdes: MQ descriptor
1771 * Returns 0 for success or NULL context or < 0 on error.
1773 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
1775 struct audit_aux_data_mq_getsetattr *ax;
1776 struct audit_context *context = current->audit_context;
1781 if (likely(!context))
1784 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1789 ax->mqstat = *mqstat;
1791 ax->d.type = AUDIT_MQ_GETSETATTR;
1792 ax->d.next = context->aux;
1793 context->aux = (void *)ax;
1798 * audit_ipc_obj - record audit data for ipc object
1799 * @ipcp: ipc permissions
1801 * Returns 0 for success or NULL context or < 0 on error.
1803 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
1805 struct audit_aux_data_ipcctl *ax;
1806 struct audit_context *context = current->audit_context;
1808 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1812 ax->uid = ipcp->uid;
1813 ax->gid = ipcp->gid;
1814 ax->mode = ipcp->mode;
1815 selinux_get_ipc_sid(ipcp, &ax->osid);
1817 ax->d.type = AUDIT_IPC;
1818 ax->d.next = context->aux;
1819 context->aux = (void *)ax;
1824 * audit_ipc_set_perm - record audit data for new ipc permissions
1825 * @qbytes: msgq bytes
1826 * @uid: msgq user id
1827 * @gid: msgq group id
1828 * @mode: msgq mode (permissions)
1830 * Returns 0 for success or NULL context or < 0 on error.
1832 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1834 struct audit_aux_data_ipcctl *ax;
1835 struct audit_context *context = current->audit_context;
1837 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1841 ax->qbytes = qbytes;
1846 ax->d.type = AUDIT_IPC_SET_PERM;
1847 ax->d.next = context->aux;
1848 context->aux = (void *)ax;
1852 int audit_argv_kb = 32;
1854 int audit_bprm(struct linux_binprm *bprm)
1856 struct audit_aux_data_execve *ax;
1857 struct audit_context *context = current->audit_context;
1859 if (likely(!audit_enabled || !context || context->dummy))
1863 * Even though the stack code doesn't limit the arg+env size any more,
1864 * the audit code requires that _all_ arguments be logged in a single
1865 * netlink skb. Hence cap it :-(
1867 if (bprm->argv_len > (audit_argv_kb << 10))
1870 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
1874 ax->argc = bprm->argc;
1875 ax->envc = bprm->envc;
1877 ax->d.type = AUDIT_EXECVE;
1878 ax->d.next = context->aux;
1879 context->aux = (void *)ax;
1885 * audit_socketcall - record audit data for sys_socketcall
1886 * @nargs: number of args
1889 * Returns 0 for success or NULL context or < 0 on error.
1891 int audit_socketcall(int nargs, unsigned long *args)
1893 struct audit_aux_data_socketcall *ax;
1894 struct audit_context *context = current->audit_context;
1896 if (likely(!context || context->dummy))
1899 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
1904 memcpy(ax->args, args, nargs * sizeof(unsigned long));
1906 ax->d.type = AUDIT_SOCKETCALL;
1907 ax->d.next = context->aux;
1908 context->aux = (void *)ax;
1913 * __audit_fd_pair - record audit data for pipe and socketpair
1914 * @fd1: the first file descriptor
1915 * @fd2: the second file descriptor
1917 * Returns 0 for success or NULL context or < 0 on error.
1919 int __audit_fd_pair(int fd1, int fd2)
1921 struct audit_context *context = current->audit_context;
1922 struct audit_aux_data_fd_pair *ax;
1924 if (likely(!context)) {
1928 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
1936 ax->d.type = AUDIT_FD_PAIR;
1937 ax->d.next = context->aux;
1938 context->aux = (void *)ax;
1943 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
1944 * @len: data length in user space
1945 * @a: data address in kernel space
1947 * Returns 0 for success or NULL context or < 0 on error.
1949 int audit_sockaddr(int len, void *a)
1951 struct audit_aux_data_sockaddr *ax;
1952 struct audit_context *context = current->audit_context;
1954 if (likely(!context || context->dummy))
1957 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
1962 memcpy(ax->a, a, len);
1964 ax->d.type = AUDIT_SOCKADDR;
1965 ax->d.next = context->aux;
1966 context->aux = (void *)ax;
1970 void __audit_ptrace(struct task_struct *t)
1972 struct audit_context *context = current->audit_context;
1974 context->target_pid = t->pid;
1975 selinux_get_task_sid(t, &context->target_sid);
1979 * audit_signal_info - record signal info for shutting down audit subsystem
1980 * @sig: signal value
1981 * @t: task being signaled
1983 * If the audit subsystem is being terminated, record the task (pid)
1984 * and uid that is doing that.
1986 int __audit_signal_info(int sig, struct task_struct *t)
1988 struct audit_aux_data_pids *axp;
1989 struct task_struct *tsk = current;
1990 struct audit_context *ctx = tsk->audit_context;
1991 extern pid_t audit_sig_pid;
1992 extern uid_t audit_sig_uid;
1993 extern u32 audit_sig_sid;
1995 if (audit_pid && t->tgid == audit_pid) {
1996 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
1997 audit_sig_pid = tsk->pid;
1999 audit_sig_uid = ctx->loginuid;
2001 audit_sig_uid = tsk->uid;
2002 selinux_get_task_sid(tsk, &audit_sig_sid);
2004 if (!audit_signals || audit_dummy_context())
2008 /* optimize the common case by putting first signal recipient directly
2009 * in audit_context */
2010 if (!ctx->target_pid) {
2011 ctx->target_pid = t->tgid;
2012 selinux_get_task_sid(t, &ctx->target_sid);
2016 axp = (void *)ctx->aux_pids;
2017 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2018 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2022 axp->d.type = AUDIT_OBJ_PID;
2023 axp->d.next = ctx->aux_pids;
2024 ctx->aux_pids = (void *)axp;
2026 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2028 axp->target_pid[axp->pid_count] = t->tgid;
2029 selinux_get_task_sid(t, &axp->target_sid[axp->pid_count]);
2036 * audit_core_dumps - record information about processes that end abnormally
2037 * @signr: signal value
2039 * If a process ends with a core dump, something fishy is going on and we
2040 * should record the event for investigation.
2042 void audit_core_dumps(long signr)
2044 struct audit_buffer *ab;
2050 if (signr == SIGQUIT) /* don't care for those */
2053 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2054 audit_log_format(ab, "auid=%u uid=%u gid=%u",
2055 audit_get_loginuid(current->audit_context),
2056 current->uid, current->gid);
2057 selinux_get_task_sid(current, &sid);
2062 if (selinux_sid_to_string(sid, &ctx, &len))
2063 audit_log_format(ab, " ssid=%u", sid);
2065 audit_log_format(ab, " subj=%s", ctx);
2068 audit_log_format(ab, " pid=%d comm=", current->pid);
2069 audit_log_untrustedstring(ab, current->comm);
2070 audit_log_format(ab, " sig=%ld", signr);