pid namespaces: move exit_task_namespaces()
[linux-2.6] / kernel / sched_rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 /*
7  * Update the current task's runtime statistics. Skip current tasks that
8  * are not in our scheduling class.
9  */
10 static void update_curr_rt(struct rq *rq)
11 {
12         struct task_struct *curr = rq->curr;
13         u64 delta_exec;
14
15         if (!task_has_rt_policy(curr))
16                 return;
17
18         delta_exec = rq->clock - curr->se.exec_start;
19         if (unlikely((s64)delta_exec < 0))
20                 delta_exec = 0;
21
22         schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
23
24         curr->se.sum_exec_runtime += delta_exec;
25         curr->se.exec_start = rq->clock;
26 }
27
28 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
29 {
30         struct rt_prio_array *array = &rq->rt.active;
31
32         list_add_tail(&p->run_list, array->queue + p->prio);
33         __set_bit(p->prio, array->bitmap);
34 }
35
36 /*
37  * Adding/removing a task to/from a priority array:
38  */
39 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
40 {
41         struct rt_prio_array *array = &rq->rt.active;
42
43         update_curr_rt(rq);
44
45         list_del(&p->run_list);
46         if (list_empty(array->queue + p->prio))
47                 __clear_bit(p->prio, array->bitmap);
48 }
49
50 /*
51  * Put task to the end of the run list without the overhead of dequeue
52  * followed by enqueue.
53  */
54 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
55 {
56         struct rt_prio_array *array = &rq->rt.active;
57
58         list_move_tail(&p->run_list, array->queue + p->prio);
59 }
60
61 static void
62 yield_task_rt(struct rq *rq)
63 {
64         requeue_task_rt(rq, rq->curr);
65 }
66
67 /*
68  * Preempt the current task with a newly woken task if needed:
69  */
70 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
71 {
72         if (p->prio < rq->curr->prio)
73                 resched_task(rq->curr);
74 }
75
76 static struct task_struct *pick_next_task_rt(struct rq *rq)
77 {
78         struct rt_prio_array *array = &rq->rt.active;
79         struct task_struct *next;
80         struct list_head *queue;
81         int idx;
82
83         idx = sched_find_first_bit(array->bitmap);
84         if (idx >= MAX_RT_PRIO)
85                 return NULL;
86
87         queue = array->queue + idx;
88         next = list_entry(queue->next, struct task_struct, run_list);
89
90         next->se.exec_start = rq->clock;
91
92         return next;
93 }
94
95 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
96 {
97         update_curr_rt(rq);
98         p->se.exec_start = 0;
99 }
100
101 /*
102  * Load-balancing iterator. Note: while the runqueue stays locked
103  * during the whole iteration, the current task might be
104  * dequeued so the iterator has to be dequeue-safe. Here we
105  * achieve that by always pre-iterating before returning
106  * the current task:
107  */
108 static struct task_struct *load_balance_start_rt(void *arg)
109 {
110         struct rq *rq = arg;
111         struct rt_prio_array *array = &rq->rt.active;
112         struct list_head *head, *curr;
113         struct task_struct *p;
114         int idx;
115
116         idx = sched_find_first_bit(array->bitmap);
117         if (idx >= MAX_RT_PRIO)
118                 return NULL;
119
120         head = array->queue + idx;
121         curr = head->prev;
122
123         p = list_entry(curr, struct task_struct, run_list);
124
125         curr = curr->prev;
126
127         rq->rt.rt_load_balance_idx = idx;
128         rq->rt.rt_load_balance_head = head;
129         rq->rt.rt_load_balance_curr = curr;
130
131         return p;
132 }
133
134 static struct task_struct *load_balance_next_rt(void *arg)
135 {
136         struct rq *rq = arg;
137         struct rt_prio_array *array = &rq->rt.active;
138         struct list_head *head, *curr;
139         struct task_struct *p;
140         int idx;
141
142         idx = rq->rt.rt_load_balance_idx;
143         head = rq->rt.rt_load_balance_head;
144         curr = rq->rt.rt_load_balance_curr;
145
146         /*
147          * If we arrived back to the head again then
148          * iterate to the next queue (if any):
149          */
150         if (unlikely(head == curr)) {
151                 int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
152
153                 if (next_idx >= MAX_RT_PRIO)
154                         return NULL;
155
156                 idx = next_idx;
157                 head = array->queue + idx;
158                 curr = head->prev;
159
160                 rq->rt.rt_load_balance_idx = idx;
161                 rq->rt.rt_load_balance_head = head;
162         }
163
164         p = list_entry(curr, struct task_struct, run_list);
165
166         curr = curr->prev;
167
168         rq->rt.rt_load_balance_curr = curr;
169
170         return p;
171 }
172
173 static unsigned long
174 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
175                         unsigned long max_nr_move, unsigned long max_load_move,
176                         struct sched_domain *sd, enum cpu_idle_type idle,
177                         int *all_pinned, int *this_best_prio)
178 {
179         int nr_moved;
180         struct rq_iterator rt_rq_iterator;
181         unsigned long load_moved;
182
183         rt_rq_iterator.start = load_balance_start_rt;
184         rt_rq_iterator.next = load_balance_next_rt;
185         /* pass 'busiest' rq argument into
186          * load_balance_[start|next]_rt iterators
187          */
188         rt_rq_iterator.arg = busiest;
189
190         nr_moved = balance_tasks(this_rq, this_cpu, busiest, max_nr_move,
191                         max_load_move, sd, idle, all_pinned, &load_moved,
192                         this_best_prio, &rt_rq_iterator);
193
194         return load_moved;
195 }
196
197 static void task_tick_rt(struct rq *rq, struct task_struct *p)
198 {
199         /*
200          * RR tasks need a special form of timeslice management.
201          * FIFO tasks have no timeslices.
202          */
203         if (p->policy != SCHED_RR)
204                 return;
205
206         if (--p->time_slice)
207                 return;
208
209         p->time_slice = DEF_TIMESLICE;
210
211         /*
212          * Requeue to the end of queue if we are not the only element
213          * on the queue:
214          */
215         if (p->run_list.prev != p->run_list.next) {
216                 requeue_task_rt(rq, p);
217                 set_tsk_need_resched(p);
218         }
219 }
220
221 static void set_curr_task_rt(struct rq *rq)
222 {
223         struct task_struct *p = rq->curr;
224
225         p->se.exec_start = rq->clock;
226 }
227
228 const struct sched_class rt_sched_class = {
229         .next                   = &fair_sched_class,
230         .enqueue_task           = enqueue_task_rt,
231         .dequeue_task           = dequeue_task_rt,
232         .yield_task             = yield_task_rt,
233
234         .check_preempt_curr     = check_preempt_curr_rt,
235
236         .pick_next_task         = pick_next_task_rt,
237         .put_prev_task          = put_prev_task_rt,
238
239         .load_balance           = load_balance_rt,
240
241         .set_curr_task          = set_curr_task_rt,
242         .task_tick              = task_tick_rt,
243 };