2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev);
66 static void ata_set_mode(struct ata_port *ap);
67 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
68 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
69 static int fgb(u32 bitmap);
70 static int ata_choose_xfer_mode(const struct ata_port *ap,
72 unsigned int *xfer_shift_out);
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
77 int atapi_enabled = 0;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 module_param_named(fua, libata_fua, int, 0444);
83 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
85 MODULE_AUTHOR("Jeff Garzik");
86 MODULE_DESCRIPTION("Library module for ATA devices");
87 MODULE_LICENSE("GPL");
88 MODULE_VERSION(DRV_VERSION);
92 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
93 * @tf: Taskfile to convert
94 * @fis: Buffer into which data will output
95 * @pmp: Port multiplier port
97 * Converts a standard ATA taskfile to a Serial ATA
98 * FIS structure (Register - Host to Device).
101 * Inherited from caller.
104 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
106 fis[0] = 0x27; /* Register - Host to Device FIS */
107 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
108 bit 7 indicates Command FIS */
109 fis[2] = tf->command;
110 fis[3] = tf->feature;
117 fis[8] = tf->hob_lbal;
118 fis[9] = tf->hob_lbam;
119 fis[10] = tf->hob_lbah;
120 fis[11] = tf->hob_feature;
123 fis[13] = tf->hob_nsect;
134 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
135 * @fis: Buffer from which data will be input
136 * @tf: Taskfile to output
138 * Converts a serial ATA FIS structure to a standard ATA taskfile.
141 * Inherited from caller.
144 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
146 tf->command = fis[2]; /* status */
147 tf->feature = fis[3]; /* error */
154 tf->hob_lbal = fis[8];
155 tf->hob_lbam = fis[9];
156 tf->hob_lbah = fis[10];
159 tf->hob_nsect = fis[13];
162 static const u8 ata_rw_cmds[] = {
166 ATA_CMD_READ_MULTI_EXT,
167 ATA_CMD_WRITE_MULTI_EXT,
171 ATA_CMD_WRITE_MULTI_FUA_EXT,
175 ATA_CMD_PIO_READ_EXT,
176 ATA_CMD_PIO_WRITE_EXT,
189 ATA_CMD_WRITE_FUA_EXT
193 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
194 * @qc: command to examine and configure
196 * Examine the device configuration and tf->flags to calculate
197 * the proper read/write commands and protocol to use.
202 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
204 struct ata_taskfile *tf = &qc->tf;
205 struct ata_device *dev = qc->dev;
208 int index, fua, lba48, write;
210 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
211 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
212 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
214 if (dev->flags & ATA_DFLAG_PIO) {
215 tf->protocol = ATA_PROT_PIO;
216 index = dev->multi_count ? 0 : 8;
217 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
218 /* Unable to use DMA due to host limitation */
219 tf->protocol = ATA_PROT_PIO;
220 index = dev->multi_count ? 0 : 8;
222 tf->protocol = ATA_PROT_DMA;
226 cmd = ata_rw_cmds[index + fua + lba48 + write];
234 static const char * const xfer_mode_str[] = {
254 * ata_udma_string - convert UDMA bit offset to string
255 * @mask: mask of bits supported; only highest bit counts.
257 * Determine string which represents the highest speed
258 * (highest bit in @udma_mask).
264 * Constant C string representing highest speed listed in
265 * @udma_mask, or the constant C string "<n/a>".
268 static const char *ata_mode_string(unsigned int mask)
272 for (i = 7; i >= 0; i--)
275 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
278 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
285 return xfer_mode_str[i];
289 * ata_pio_devchk - PATA device presence detection
290 * @ap: ATA channel to examine
291 * @device: Device to examine (starting at zero)
293 * This technique was originally described in
294 * Hale Landis's ATADRVR (www.ata-atapi.com), and
295 * later found its way into the ATA/ATAPI spec.
297 * Write a pattern to the ATA shadow registers,
298 * and if a device is present, it will respond by
299 * correctly storing and echoing back the
300 * ATA shadow register contents.
306 static unsigned int ata_pio_devchk(struct ata_port *ap,
309 struct ata_ioports *ioaddr = &ap->ioaddr;
312 ap->ops->dev_select(ap, device);
314 outb(0x55, ioaddr->nsect_addr);
315 outb(0xaa, ioaddr->lbal_addr);
317 outb(0xaa, ioaddr->nsect_addr);
318 outb(0x55, ioaddr->lbal_addr);
320 outb(0x55, ioaddr->nsect_addr);
321 outb(0xaa, ioaddr->lbal_addr);
323 nsect = inb(ioaddr->nsect_addr);
324 lbal = inb(ioaddr->lbal_addr);
326 if ((nsect == 0x55) && (lbal == 0xaa))
327 return 1; /* we found a device */
329 return 0; /* nothing found */
333 * ata_mmio_devchk - PATA device presence detection
334 * @ap: ATA channel to examine
335 * @device: Device to examine (starting at zero)
337 * This technique was originally described in
338 * Hale Landis's ATADRVR (www.ata-atapi.com), and
339 * later found its way into the ATA/ATAPI spec.
341 * Write a pattern to the ATA shadow registers,
342 * and if a device is present, it will respond by
343 * correctly storing and echoing back the
344 * ATA shadow register contents.
350 static unsigned int ata_mmio_devchk(struct ata_port *ap,
353 struct ata_ioports *ioaddr = &ap->ioaddr;
356 ap->ops->dev_select(ap, device);
358 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
359 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
361 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
362 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
364 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
365 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
367 nsect = readb((void __iomem *) ioaddr->nsect_addr);
368 lbal = readb((void __iomem *) ioaddr->lbal_addr);
370 if ((nsect == 0x55) && (lbal == 0xaa))
371 return 1; /* we found a device */
373 return 0; /* nothing found */
377 * ata_devchk - PATA device presence detection
378 * @ap: ATA channel to examine
379 * @device: Device to examine (starting at zero)
381 * Dispatch ATA device presence detection, depending
382 * on whether we are using PIO or MMIO to talk to the
383 * ATA shadow registers.
389 static unsigned int ata_devchk(struct ata_port *ap,
392 if (ap->flags & ATA_FLAG_MMIO)
393 return ata_mmio_devchk(ap, device);
394 return ata_pio_devchk(ap, device);
398 * ata_dev_classify - determine device type based on ATA-spec signature
399 * @tf: ATA taskfile register set for device to be identified
401 * Determine from taskfile register contents whether a device is
402 * ATA or ATAPI, as per "Signature and persistence" section
403 * of ATA/PI spec (volume 1, sect 5.14).
409 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
410 * the event of failure.
413 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
415 /* Apple's open source Darwin code hints that some devices only
416 * put a proper signature into the LBA mid/high registers,
417 * So, we only check those. It's sufficient for uniqueness.
420 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
421 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
422 DPRINTK("found ATA device by sig\n");
426 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
427 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
428 DPRINTK("found ATAPI device by sig\n");
429 return ATA_DEV_ATAPI;
432 DPRINTK("unknown device\n");
433 return ATA_DEV_UNKNOWN;
437 * ata_dev_try_classify - Parse returned ATA device signature
438 * @ap: ATA channel to examine
439 * @device: Device to examine (starting at zero)
440 * @r_err: Value of error register on completion
442 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
443 * an ATA/ATAPI-defined set of values is placed in the ATA
444 * shadow registers, indicating the results of device detection
447 * Select the ATA device, and read the values from the ATA shadow
448 * registers. Then parse according to the Error register value,
449 * and the spec-defined values examined by ata_dev_classify().
455 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
459 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
461 struct ata_taskfile tf;
465 ap->ops->dev_select(ap, device);
467 memset(&tf, 0, sizeof(tf));
469 ap->ops->tf_read(ap, &tf);
474 /* see if device passed diags */
477 else if ((device == 0) && (err == 0x81))
482 /* determine if device is ATA or ATAPI */
483 class = ata_dev_classify(&tf);
485 if (class == ATA_DEV_UNKNOWN)
487 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
493 * ata_id_string - Convert IDENTIFY DEVICE page into string
494 * @id: IDENTIFY DEVICE results we will examine
495 * @s: string into which data is output
496 * @ofs: offset into identify device page
497 * @len: length of string to return. must be an even number.
499 * The strings in the IDENTIFY DEVICE page are broken up into
500 * 16-bit chunks. Run through the string, and output each
501 * 8-bit chunk linearly, regardless of platform.
507 void ata_id_string(const u16 *id, unsigned char *s,
508 unsigned int ofs, unsigned int len)
527 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
528 * @id: IDENTIFY DEVICE results we will examine
529 * @s: string into which data is output
530 * @ofs: offset into identify device page
531 * @len: length of string to return. must be an odd number.
533 * This function is identical to ata_id_string except that it
534 * trims trailing spaces and terminates the resulting string with
535 * null. @len must be actual maximum length (even number) + 1.
540 void ata_id_c_string(const u16 *id, unsigned char *s,
541 unsigned int ofs, unsigned int len)
547 ata_id_string(id, s, ofs, len - 1);
549 p = s + strnlen(s, len - 1);
550 while (p > s && p[-1] == ' ')
555 static u64 ata_id_n_sectors(const u16 *id)
557 if (ata_id_has_lba(id)) {
558 if (ata_id_has_lba48(id))
559 return ata_id_u64(id, 100);
561 return ata_id_u32(id, 60);
563 if (ata_id_current_chs_valid(id))
564 return ata_id_u32(id, 57);
566 return id[1] * id[3] * id[6];
571 * ata_noop_dev_select - Select device 0/1 on ATA bus
572 * @ap: ATA channel to manipulate
573 * @device: ATA device (numbered from zero) to select
575 * This function performs no actual function.
577 * May be used as the dev_select() entry in ata_port_operations.
582 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
588 * ata_std_dev_select - Select device 0/1 on ATA bus
589 * @ap: ATA channel to manipulate
590 * @device: ATA device (numbered from zero) to select
592 * Use the method defined in the ATA specification to
593 * make either device 0, or device 1, active on the
594 * ATA channel. Works with both PIO and MMIO.
596 * May be used as the dev_select() entry in ata_port_operations.
602 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
607 tmp = ATA_DEVICE_OBS;
609 tmp = ATA_DEVICE_OBS | ATA_DEV1;
611 if (ap->flags & ATA_FLAG_MMIO) {
612 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
614 outb(tmp, ap->ioaddr.device_addr);
616 ata_pause(ap); /* needed; also flushes, for mmio */
620 * ata_dev_select - Select device 0/1 on ATA bus
621 * @ap: ATA channel to manipulate
622 * @device: ATA device (numbered from zero) to select
623 * @wait: non-zero to wait for Status register BSY bit to clear
624 * @can_sleep: non-zero if context allows sleeping
626 * Use the method defined in the ATA specification to
627 * make either device 0, or device 1, active on the
630 * This is a high-level version of ata_std_dev_select(),
631 * which additionally provides the services of inserting
632 * the proper pauses and status polling, where needed.
638 void ata_dev_select(struct ata_port *ap, unsigned int device,
639 unsigned int wait, unsigned int can_sleep)
641 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
642 ap->id, device, wait);
647 ap->ops->dev_select(ap, device);
650 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
657 * ata_dump_id - IDENTIFY DEVICE info debugging output
658 * @id: IDENTIFY DEVICE page to dump
660 * Dump selected 16-bit words from the given IDENTIFY DEVICE
667 static inline void ata_dump_id(const u16 *id)
669 DPRINTK("49==0x%04x "
679 DPRINTK("80==0x%04x "
689 DPRINTK("88==0x%04x "
696 * Compute the PIO modes available for this device. This is not as
697 * trivial as it seems if we must consider early devices correctly.
699 * FIXME: pre IDE drive timing (do we care ?).
702 static unsigned int ata_pio_modes(const struct ata_device *adev)
706 /* Usual case. Word 53 indicates word 64 is valid */
707 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
708 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
714 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
715 number for the maximum. Turn it into a mask and return it */
716 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
718 /* But wait.. there's more. Design your standards by committee and
719 you too can get a free iordy field to process. However its the
720 speeds not the modes that are supported... Note drivers using the
721 timing API will get this right anyway */
725 * ata_port_queue_task - Queue port_task
726 * @ap: The ata_port to queue port_task for
728 * Schedule @fn(@data) for execution after @delay jiffies using
729 * port_task. There is one port_task per port and it's the
730 * user(low level driver)'s responsibility to make sure that only
731 * one task is active at any given time.
733 * libata core layer takes care of synchronization between
734 * port_task and EH. ata_port_queue_task() may be ignored for EH
738 * Inherited from caller.
740 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
745 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
748 PREPARE_WORK(&ap->port_task, fn, data);
751 rc = queue_work(ata_wq, &ap->port_task);
753 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
755 /* rc == 0 means that another user is using port task */
760 * ata_port_flush_task - Flush port_task
761 * @ap: The ata_port to flush port_task for
763 * After this function completes, port_task is guranteed not to
764 * be running or scheduled.
767 * Kernel thread context (may sleep)
769 void ata_port_flush_task(struct ata_port *ap)
775 spin_lock_irqsave(&ap->host_set->lock, flags);
776 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
777 spin_unlock_irqrestore(&ap->host_set->lock, flags);
779 DPRINTK("flush #1\n");
780 flush_workqueue(ata_wq);
783 * At this point, if a task is running, it's guaranteed to see
784 * the FLUSH flag; thus, it will never queue pio tasks again.
787 if (!cancel_delayed_work(&ap->port_task)) {
788 DPRINTK("flush #2\n");
789 flush_workqueue(ata_wq);
792 spin_lock_irqsave(&ap->host_set->lock, flags);
793 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
794 spin_unlock_irqrestore(&ap->host_set->lock, flags);
799 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
801 struct completion *waiting = qc->private_data;
803 qc->ap->ops->tf_read(qc->ap, &qc->tf);
808 * ata_exec_internal - execute libata internal command
809 * @ap: Port to which the command is sent
810 * @dev: Device to which the command is sent
811 * @tf: Taskfile registers for the command and the result
812 * @dma_dir: Data tranfer direction of the command
813 * @buf: Data buffer of the command
814 * @buflen: Length of data buffer
816 * Executes libata internal command with timeout. @tf contains
817 * command on entry and result on return. Timeout and error
818 * conditions are reported via return value. No recovery action
819 * is taken after a command times out. It's caller's duty to
820 * clean up after timeout.
823 * None. Should be called with kernel context, might sleep.
827 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
828 struct ata_taskfile *tf,
829 int dma_dir, void *buf, unsigned int buflen)
831 u8 command = tf->command;
832 struct ata_queued_cmd *qc;
833 DECLARE_COMPLETION(wait);
835 unsigned int err_mask;
837 spin_lock_irqsave(&ap->host_set->lock, flags);
839 qc = ata_qc_new_init(ap, dev);
843 qc->dma_dir = dma_dir;
844 if (dma_dir != DMA_NONE) {
845 ata_sg_init_one(qc, buf, buflen);
846 qc->nsect = buflen / ATA_SECT_SIZE;
849 qc->private_data = &wait;
850 qc->complete_fn = ata_qc_complete_internal;
852 qc->err_mask = ata_qc_issue(qc);
856 spin_unlock_irqrestore(&ap->host_set->lock, flags);
858 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
859 spin_lock_irqsave(&ap->host_set->lock, flags);
861 /* We're racing with irq here. If we lose, the
862 * following test prevents us from completing the qc
863 * again. If completion irq occurs after here but
864 * before the caller cleans up, it will result in a
865 * spurious interrupt. We can live with that.
867 if (qc->flags & ATA_QCFLAG_ACTIVE) {
868 qc->err_mask = AC_ERR_TIMEOUT;
870 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
874 spin_unlock_irqrestore(&ap->host_set->lock, flags);
878 err_mask = qc->err_mask;
886 * ata_pio_need_iordy - check if iordy needed
889 * Check if the current speed of the device requires IORDY. Used
890 * by various controllers for chip configuration.
893 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
896 int speed = adev->pio_mode - XFER_PIO_0;
903 /* If we have no drive specific rule, then PIO 2 is non IORDY */
905 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
906 pio = adev->id[ATA_ID_EIDE_PIO];
907 /* Is the speed faster than the drive allows non IORDY ? */
909 /* This is cycle times not frequency - watch the logic! */
910 if (pio > 240) /* PIO2 is 240nS per cycle */
919 * ata_dev_read_id - Read ID data from the specified device
920 * @ap: port on which target device resides
921 * @dev: target device
922 * @p_class: pointer to class of the target device (may be changed)
923 * @post_reset: is this read ID post-reset?
924 * @p_id: read IDENTIFY page (newly allocated)
926 * Read ID data from the specified device. ATA_CMD_ID_ATA is
927 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
928 * devices. This function also takes care of EDD signature
929 * misreporting (to be removed once EDD support is gone) and
930 * issues ATA_CMD_INIT_DEV_PARAMS for pre-ATA4 drives.
933 * Kernel thread context (may sleep)
936 * 0 on success, -errno otherwise.
938 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
939 unsigned int *p_class, int post_reset, u16 **p_id)
941 unsigned int class = *p_class;
942 unsigned int using_edd;
943 struct ata_taskfile tf;
944 unsigned int err_mask = 0;
949 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
951 if (ap->ops->probe_reset ||
952 ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
957 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
959 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
962 reason = "out of memory";
967 ata_tf_init(ap, &tf, dev->devno);
971 tf.command = ATA_CMD_ID_ATA;
974 tf.command = ATA_CMD_ID_ATAPI;
978 reason = "unsupported class";
982 tf.protocol = ATA_PROT_PIO;
984 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
985 id, sizeof(id[0]) * ATA_ID_WORDS);
989 reason = "I/O error";
991 if (err_mask & ~AC_ERR_DEV)
995 * arg! EDD works for all test cases, but seems to return
996 * the ATA signature for some ATAPI devices. Until the
997 * reason for this is found and fixed, we fix up the mess
998 * here. If IDENTIFY DEVICE returns command aborted
999 * (as ATAPI devices do), then we issue an
1000 * IDENTIFY PACKET DEVICE.
1002 * ATA software reset (SRST, the default) does not appear
1003 * to have this problem.
1005 if ((using_edd) && (class == ATA_DEV_ATA)) {
1006 u8 err = tf.feature;
1007 if (err & ATA_ABORTED) {
1008 class = ATA_DEV_ATAPI;
1015 swap_buf_le16(id, ATA_ID_WORDS);
1017 /* print device capabilities */
1018 printk(KERN_DEBUG "ata%u: dev %u cfg "
1019 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1021 id[49], id[82], id[83], id[84], id[85], id[86], id[87], id[88]);
1024 if ((class == ATA_DEV_ATA) != ata_id_is_ata(id)) {
1026 reason = "device reports illegal type";
1030 if (post_reset && class == ATA_DEV_ATA) {
1032 * The exact sequence expected by certain pre-ATA4 drives is:
1035 * INITIALIZE DEVICE PARAMETERS
1037 * Some drives were very specific about that exact sequence.
1039 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1040 err_mask = ata_dev_init_params(ap, dev);
1043 reason = "INIT_DEV_PARAMS failed";
1047 /* current CHS translation info (id[53-58]) might be
1048 * changed. reread the identify device info.
1060 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1061 ap->id, dev->devno, reason);
1066 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1067 struct ata_device *dev)
1069 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1073 * ata_dev_configure - Configure the specified ATA/ATAPI device
1074 * @ap: Port on which target device resides
1075 * @dev: Target device to configure
1076 * @print_info: Enable device info printout
1078 * Configure @dev according to @dev->id. Generic and low-level
1079 * driver specific fixups are also applied.
1082 * Kernel thread context (may sleep)
1085 * 0 on success, -errno otherwise
1087 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1090 unsigned long xfer_modes;
1093 if (!ata_dev_present(dev)) {
1094 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1095 ap->id, dev->devno);
1099 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1101 /* initialize to-be-configured parameters */
1103 dev->max_sectors = 0;
1111 * common ATA, ATAPI feature tests
1114 /* we require DMA support (bits 8 of word 49) */
1115 if (!ata_id_has_dma(dev->id)) {
1116 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1121 /* quick-n-dirty find max transfer mode; for printk only */
1122 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1124 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1126 xfer_modes = ata_pio_modes(dev);
1128 ata_dump_id(dev->id);
1130 /* ATA-specific feature tests */
1131 if (dev->class == ATA_DEV_ATA) {
1132 dev->n_sectors = ata_id_n_sectors(dev->id);
1134 if (ata_id_has_lba(dev->id)) {
1135 const char *lba_desc;
1138 dev->flags |= ATA_DFLAG_LBA;
1139 if (ata_id_has_lba48(dev->id)) {
1140 dev->flags |= ATA_DFLAG_LBA48;
1144 /* print device info to dmesg */
1146 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1147 "max %s, %Lu sectors: %s\n",
1149 ata_id_major_version(dev->id),
1150 ata_mode_string(xfer_modes),
1151 (unsigned long long)dev->n_sectors,
1156 /* Default translation */
1157 dev->cylinders = dev->id[1];
1158 dev->heads = dev->id[3];
1159 dev->sectors = dev->id[6];
1161 if (ata_id_current_chs_valid(dev->id)) {
1162 /* Current CHS translation is valid. */
1163 dev->cylinders = dev->id[54];
1164 dev->heads = dev->id[55];
1165 dev->sectors = dev->id[56];
1168 /* print device info to dmesg */
1170 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1171 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1173 ata_id_major_version(dev->id),
1174 ata_mode_string(xfer_modes),
1175 (unsigned long long)dev->n_sectors,
1176 dev->cylinders, dev->heads, dev->sectors);
1182 /* ATAPI-specific feature tests */
1183 else if (dev->class == ATA_DEV_ATAPI) {
1184 rc = atapi_cdb_len(dev->id);
1185 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1186 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1190 dev->cdb_len = (unsigned int) rc;
1192 /* print device info to dmesg */
1194 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1195 ap->id, dev->devno, ata_mode_string(xfer_modes));
1198 ap->host->max_cmd_len = 0;
1199 for (i = 0; i < ATA_MAX_DEVICES; i++)
1200 ap->host->max_cmd_len = max_t(unsigned int,
1201 ap->host->max_cmd_len,
1202 ap->device[i].cdb_len);
1204 /* limit bridge transfers to udma5, 200 sectors */
1205 if (ata_dev_knobble(ap, dev)) {
1207 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1208 ap->id, dev->devno);
1209 ap->udma_mask &= ATA_UDMA5;
1210 dev->max_sectors = ATA_MAX_SECTORS;
1213 if (ap->ops->dev_config)
1214 ap->ops->dev_config(ap, dev);
1216 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1220 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1221 ap->id, dev->devno);
1222 DPRINTK("EXIT, err\n");
1227 * ata_bus_probe - Reset and probe ATA bus
1230 * Master ATA bus probing function. Initiates a hardware-dependent
1231 * bus reset, then attempts to identify any devices found on
1235 * PCI/etc. bus probe sem.
1238 * Zero on success, non-zero on error.
1241 static int ata_bus_probe(struct ata_port *ap)
1243 unsigned int classes[ATA_MAX_DEVICES];
1244 unsigned int i, rc, found = 0;
1249 if (ap->ops->probe_reset) {
1250 rc = ap->ops->probe_reset(ap, classes);
1252 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1256 for (i = 0; i < ATA_MAX_DEVICES; i++)
1257 if (classes[i] == ATA_DEV_UNKNOWN)
1258 classes[i] = ATA_DEV_NONE;
1260 ap->ops->phy_reset(ap);
1262 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1263 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1264 classes[i] = ap->device[i].class;
1266 ap->device[i].class = ATA_DEV_UNKNOWN;
1271 /* read IDENTIFY page and configure devices */
1272 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1273 struct ata_device *dev = &ap->device[i];
1275 dev->class = classes[i];
1277 if (!ata_dev_present(dev))
1280 WARN_ON(dev->id != NULL);
1281 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1282 dev->class = ATA_DEV_NONE;
1286 if (ata_dev_configure(ap, dev, 1)) {
1287 dev->class++; /* disable device */
1295 goto err_out_disable;
1298 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1299 goto err_out_disable;
1304 ap->ops->port_disable(ap);
1309 * ata_port_probe - Mark port as enabled
1310 * @ap: Port for which we indicate enablement
1312 * Modify @ap data structure such that the system
1313 * thinks that the entire port is enabled.
1315 * LOCKING: host_set lock, or some other form of
1319 void ata_port_probe(struct ata_port *ap)
1321 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1325 * sata_print_link_status - Print SATA link status
1326 * @ap: SATA port to printk link status about
1328 * This function prints link speed and status of a SATA link.
1333 static void sata_print_link_status(struct ata_port *ap)
1338 if (!ap->ops->scr_read)
1341 sstatus = scr_read(ap, SCR_STATUS);
1343 if (sata_dev_present(ap)) {
1344 tmp = (sstatus >> 4) & 0xf;
1347 else if (tmp & (1 << 1))
1350 speed = "<unknown>";
1351 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1352 ap->id, speed, sstatus);
1354 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1360 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1361 * @ap: SATA port associated with target SATA PHY.
1363 * This function issues commands to standard SATA Sxxx
1364 * PHY registers, to wake up the phy (and device), and
1365 * clear any reset condition.
1368 * PCI/etc. bus probe sem.
1371 void __sata_phy_reset(struct ata_port *ap)
1374 unsigned long timeout = jiffies + (HZ * 5);
1376 if (ap->flags & ATA_FLAG_SATA_RESET) {
1377 /* issue phy wake/reset */
1378 scr_write_flush(ap, SCR_CONTROL, 0x301);
1379 /* Couldn't find anything in SATA I/II specs, but
1380 * AHCI-1.1 10.4.2 says at least 1 ms. */
1383 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1385 /* wait for phy to become ready, if necessary */
1388 sstatus = scr_read(ap, SCR_STATUS);
1389 if ((sstatus & 0xf) != 1)
1391 } while (time_before(jiffies, timeout));
1393 /* print link status */
1394 sata_print_link_status(ap);
1396 /* TODO: phy layer with polling, timeouts, etc. */
1397 if (sata_dev_present(ap))
1400 ata_port_disable(ap);
1402 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1405 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1406 ata_port_disable(ap);
1410 ap->cbl = ATA_CBL_SATA;
1414 * sata_phy_reset - Reset SATA bus.
1415 * @ap: SATA port associated with target SATA PHY.
1417 * This function resets the SATA bus, and then probes
1418 * the bus for devices.
1421 * PCI/etc. bus probe sem.
1424 void sata_phy_reset(struct ata_port *ap)
1426 __sata_phy_reset(ap);
1427 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1433 * ata_port_disable - Disable port.
1434 * @ap: Port to be disabled.
1436 * Modify @ap data structure such that the system
1437 * thinks that the entire port is disabled, and should
1438 * never attempt to probe or communicate with devices
1441 * LOCKING: host_set lock, or some other form of
1445 void ata_port_disable(struct ata_port *ap)
1447 ap->device[0].class = ATA_DEV_NONE;
1448 ap->device[1].class = ATA_DEV_NONE;
1449 ap->flags |= ATA_FLAG_PORT_DISABLED;
1453 * This mode timing computation functionality is ported over from
1454 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1457 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1458 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1459 * for PIO 5, which is a nonstandard extension and UDMA6, which
1460 * is currently supported only by Maxtor drives.
1463 static const struct ata_timing ata_timing[] = {
1465 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1466 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1467 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1468 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1470 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1471 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1472 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1474 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1476 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1477 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1478 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1480 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1481 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1482 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1484 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1485 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1486 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1488 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1489 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1490 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1492 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1497 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1498 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1500 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1502 q->setup = EZ(t->setup * 1000, T);
1503 q->act8b = EZ(t->act8b * 1000, T);
1504 q->rec8b = EZ(t->rec8b * 1000, T);
1505 q->cyc8b = EZ(t->cyc8b * 1000, T);
1506 q->active = EZ(t->active * 1000, T);
1507 q->recover = EZ(t->recover * 1000, T);
1508 q->cycle = EZ(t->cycle * 1000, T);
1509 q->udma = EZ(t->udma * 1000, UT);
1512 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1513 struct ata_timing *m, unsigned int what)
1515 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1516 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1517 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1518 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1519 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1520 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1521 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1522 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1525 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1527 const struct ata_timing *t;
1529 for (t = ata_timing; t->mode != speed; t++)
1530 if (t->mode == 0xFF)
1535 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1536 struct ata_timing *t, int T, int UT)
1538 const struct ata_timing *s;
1539 struct ata_timing p;
1545 if (!(s = ata_timing_find_mode(speed)))
1548 memcpy(t, s, sizeof(*s));
1551 * If the drive is an EIDE drive, it can tell us it needs extended
1552 * PIO/MW_DMA cycle timing.
1555 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1556 memset(&p, 0, sizeof(p));
1557 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1558 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1559 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1560 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1561 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1563 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1567 * Convert the timing to bus clock counts.
1570 ata_timing_quantize(t, t, T, UT);
1573 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1574 * S.M.A.R.T * and some other commands. We have to ensure that the
1575 * DMA cycle timing is slower/equal than the fastest PIO timing.
1578 if (speed > XFER_PIO_4) {
1579 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1580 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1584 * Lengthen active & recovery time so that cycle time is correct.
1587 if (t->act8b + t->rec8b < t->cyc8b) {
1588 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1589 t->rec8b = t->cyc8b - t->act8b;
1592 if (t->active + t->recover < t->cycle) {
1593 t->active += (t->cycle - (t->active + t->recover)) / 2;
1594 t->recover = t->cycle - t->active;
1600 static const struct {
1603 } xfer_mode_classes[] = {
1604 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1605 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1606 { ATA_SHIFT_PIO, XFER_PIO_0 },
1609 static u8 base_from_shift(unsigned int shift)
1613 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1614 if (xfer_mode_classes[i].shift == shift)
1615 return xfer_mode_classes[i].base;
1620 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1625 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1628 if (dev->xfer_shift == ATA_SHIFT_PIO)
1629 dev->flags |= ATA_DFLAG_PIO;
1631 ata_dev_set_xfermode(ap, dev);
1633 base = base_from_shift(dev->xfer_shift);
1634 ofs = dev->xfer_mode - base;
1635 idx = ofs + dev->xfer_shift;
1636 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1638 if (ata_dev_revalidate(ap, dev, 0)) {
1639 printk(KERN_ERR "ata%u: failed to revalidate after set "
1640 "xfermode, disabled\n", ap->id);
1641 ata_port_disable(ap);
1644 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1645 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1647 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1648 ap->id, dev->devno, xfer_mode_str[idx]);
1651 static int ata_host_set_pio(struct ata_port *ap)
1657 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1660 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1664 base = base_from_shift(ATA_SHIFT_PIO);
1665 xfer_mode = base + x;
1667 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1668 (int)base, (int)xfer_mode, mask, x);
1670 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1671 struct ata_device *dev = &ap->device[i];
1672 if (ata_dev_present(dev)) {
1673 dev->pio_mode = xfer_mode;
1674 dev->xfer_mode = xfer_mode;
1675 dev->xfer_shift = ATA_SHIFT_PIO;
1676 if (ap->ops->set_piomode)
1677 ap->ops->set_piomode(ap, dev);
1684 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1685 unsigned int xfer_shift)
1689 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1690 struct ata_device *dev = &ap->device[i];
1691 if (ata_dev_present(dev)) {
1692 dev->dma_mode = xfer_mode;
1693 dev->xfer_mode = xfer_mode;
1694 dev->xfer_shift = xfer_shift;
1695 if (ap->ops->set_dmamode)
1696 ap->ops->set_dmamode(ap, dev);
1702 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1703 * @ap: port on which timings will be programmed
1705 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1708 * PCI/etc. bus probe sem.
1710 static void ata_set_mode(struct ata_port *ap)
1712 unsigned int xfer_shift;
1716 /* step 1: always set host PIO timings */
1717 rc = ata_host_set_pio(ap);
1721 /* step 2: choose the best data xfer mode */
1722 xfer_mode = xfer_shift = 0;
1723 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1727 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1728 if (xfer_shift != ATA_SHIFT_PIO)
1729 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1731 /* step 4: update devices' xfer mode */
1732 ata_dev_set_mode(ap, &ap->device[0]);
1733 ata_dev_set_mode(ap, &ap->device[1]);
1735 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1738 if (ap->ops->post_set_mode)
1739 ap->ops->post_set_mode(ap);
1744 ata_port_disable(ap);
1748 * ata_tf_to_host - issue ATA taskfile to host controller
1749 * @ap: port to which command is being issued
1750 * @tf: ATA taskfile register set
1752 * Issues ATA taskfile register set to ATA host controller,
1753 * with proper synchronization with interrupt handler and
1757 * spin_lock_irqsave(host_set lock)
1760 static inline void ata_tf_to_host(struct ata_port *ap,
1761 const struct ata_taskfile *tf)
1763 ap->ops->tf_load(ap, tf);
1764 ap->ops->exec_command(ap, tf);
1768 * ata_busy_sleep - sleep until BSY clears, or timeout
1769 * @ap: port containing status register to be polled
1770 * @tmout_pat: impatience timeout
1771 * @tmout: overall timeout
1773 * Sleep until ATA Status register bit BSY clears,
1774 * or a timeout occurs.
1779 unsigned int ata_busy_sleep (struct ata_port *ap,
1780 unsigned long tmout_pat, unsigned long tmout)
1782 unsigned long timer_start, timeout;
1785 status = ata_busy_wait(ap, ATA_BUSY, 300);
1786 timer_start = jiffies;
1787 timeout = timer_start + tmout_pat;
1788 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1790 status = ata_busy_wait(ap, ATA_BUSY, 3);
1793 if (status & ATA_BUSY)
1794 printk(KERN_WARNING "ata%u is slow to respond, "
1795 "please be patient\n", ap->id);
1797 timeout = timer_start + tmout;
1798 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1800 status = ata_chk_status(ap);
1803 if (status & ATA_BUSY) {
1804 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1805 ap->id, tmout / HZ);
1812 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1814 struct ata_ioports *ioaddr = &ap->ioaddr;
1815 unsigned int dev0 = devmask & (1 << 0);
1816 unsigned int dev1 = devmask & (1 << 1);
1817 unsigned long timeout;
1819 /* if device 0 was found in ata_devchk, wait for its
1823 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1825 /* if device 1 was found in ata_devchk, wait for
1826 * register access, then wait for BSY to clear
1828 timeout = jiffies + ATA_TMOUT_BOOT;
1832 ap->ops->dev_select(ap, 1);
1833 if (ap->flags & ATA_FLAG_MMIO) {
1834 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1835 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1837 nsect = inb(ioaddr->nsect_addr);
1838 lbal = inb(ioaddr->lbal_addr);
1840 if ((nsect == 1) && (lbal == 1))
1842 if (time_after(jiffies, timeout)) {
1846 msleep(50); /* give drive a breather */
1849 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1851 /* is all this really necessary? */
1852 ap->ops->dev_select(ap, 0);
1854 ap->ops->dev_select(ap, 1);
1856 ap->ops->dev_select(ap, 0);
1860 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1861 * @ap: Port to reset and probe
1863 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1864 * probe the bus. Not often used these days.
1867 * PCI/etc. bus probe sem.
1868 * Obtains host_set lock.
1872 static unsigned int ata_bus_edd(struct ata_port *ap)
1874 struct ata_taskfile tf;
1875 unsigned long flags;
1877 /* set up execute-device-diag (bus reset) taskfile */
1878 /* also, take interrupts to a known state (disabled) */
1879 DPRINTK("execute-device-diag\n");
1880 ata_tf_init(ap, &tf, 0);
1882 tf.command = ATA_CMD_EDD;
1883 tf.protocol = ATA_PROT_NODATA;
1886 spin_lock_irqsave(&ap->host_set->lock, flags);
1887 ata_tf_to_host(ap, &tf);
1888 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1890 /* spec says at least 2ms. but who knows with those
1891 * crazy ATAPI devices...
1895 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1898 static unsigned int ata_bus_softreset(struct ata_port *ap,
1899 unsigned int devmask)
1901 struct ata_ioports *ioaddr = &ap->ioaddr;
1903 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1905 /* software reset. causes dev0 to be selected */
1906 if (ap->flags & ATA_FLAG_MMIO) {
1907 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1908 udelay(20); /* FIXME: flush */
1909 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1910 udelay(20); /* FIXME: flush */
1911 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1913 outb(ap->ctl, ioaddr->ctl_addr);
1915 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1917 outb(ap->ctl, ioaddr->ctl_addr);
1920 /* spec mandates ">= 2ms" before checking status.
1921 * We wait 150ms, because that was the magic delay used for
1922 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1923 * between when the ATA command register is written, and then
1924 * status is checked. Because waiting for "a while" before
1925 * checking status is fine, post SRST, we perform this magic
1926 * delay here as well.
1930 ata_bus_post_reset(ap, devmask);
1936 * ata_bus_reset - reset host port and associated ATA channel
1937 * @ap: port to reset
1939 * This is typically the first time we actually start issuing
1940 * commands to the ATA channel. We wait for BSY to clear, then
1941 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1942 * result. Determine what devices, if any, are on the channel
1943 * by looking at the device 0/1 error register. Look at the signature
1944 * stored in each device's taskfile registers, to determine if
1945 * the device is ATA or ATAPI.
1948 * PCI/etc. bus probe sem.
1949 * Obtains host_set lock.
1952 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1955 void ata_bus_reset(struct ata_port *ap)
1957 struct ata_ioports *ioaddr = &ap->ioaddr;
1958 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1960 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1962 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1964 /* determine if device 0/1 are present */
1965 if (ap->flags & ATA_FLAG_SATA_RESET)
1968 dev0 = ata_devchk(ap, 0);
1970 dev1 = ata_devchk(ap, 1);
1974 devmask |= (1 << 0);
1976 devmask |= (1 << 1);
1978 /* select device 0 again */
1979 ap->ops->dev_select(ap, 0);
1981 /* issue bus reset */
1982 if (ap->flags & ATA_FLAG_SRST)
1983 rc = ata_bus_softreset(ap, devmask);
1984 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1985 /* set up device control */
1986 if (ap->flags & ATA_FLAG_MMIO)
1987 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1989 outb(ap->ctl, ioaddr->ctl_addr);
1990 rc = ata_bus_edd(ap);
1997 * determine by signature whether we have ATA or ATAPI devices
1999 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2000 if ((slave_possible) && (err != 0x81))
2001 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2003 /* re-enable interrupts */
2004 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2007 /* is double-select really necessary? */
2008 if (ap->device[1].class != ATA_DEV_NONE)
2009 ap->ops->dev_select(ap, 1);
2010 if (ap->device[0].class != ATA_DEV_NONE)
2011 ap->ops->dev_select(ap, 0);
2013 /* if no devices were detected, disable this port */
2014 if ((ap->device[0].class == ATA_DEV_NONE) &&
2015 (ap->device[1].class == ATA_DEV_NONE))
2018 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2019 /* set up device control for ATA_FLAG_SATA_RESET */
2020 if (ap->flags & ATA_FLAG_MMIO)
2021 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2023 outb(ap->ctl, ioaddr->ctl_addr);
2030 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2031 ap->ops->port_disable(ap);
2036 static int sata_phy_resume(struct ata_port *ap)
2038 unsigned long timeout = jiffies + (HZ * 5);
2041 scr_write_flush(ap, SCR_CONTROL, 0x300);
2043 /* Wait for phy to become ready, if necessary. */
2046 sstatus = scr_read(ap, SCR_STATUS);
2047 if ((sstatus & 0xf) != 1)
2049 } while (time_before(jiffies, timeout));
2055 * ata_std_probeinit - initialize probing
2056 * @ap: port to be probed
2058 * @ap is about to be probed. Initialize it. This function is
2059 * to be used as standard callback for ata_drive_probe_reset().
2061 * NOTE!!! Do not use this function as probeinit if a low level
2062 * driver implements only hardreset. Just pass NULL as probeinit
2063 * in that case. Using this function is probably okay but doing
2064 * so makes reset sequence different from the original
2065 * ->phy_reset implementation and Jeff nervous. :-P
2067 extern void ata_std_probeinit(struct ata_port *ap)
2069 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
2070 sata_phy_resume(ap);
2071 if (sata_dev_present(ap))
2072 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2077 * ata_std_softreset - reset host port via ATA SRST
2078 * @ap: port to reset
2079 * @verbose: fail verbosely
2080 * @classes: resulting classes of attached devices
2082 * Reset host port using ATA SRST. This function is to be used
2083 * as standard callback for ata_drive_*_reset() functions.
2086 * Kernel thread context (may sleep)
2089 * 0 on success, -errno otherwise.
2091 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2093 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2094 unsigned int devmask = 0, err_mask;
2099 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2100 classes[0] = ATA_DEV_NONE;
2104 /* determine if device 0/1 are present */
2105 if (ata_devchk(ap, 0))
2106 devmask |= (1 << 0);
2107 if (slave_possible && ata_devchk(ap, 1))
2108 devmask |= (1 << 1);
2110 /* select device 0 again */
2111 ap->ops->dev_select(ap, 0);
2113 /* issue bus reset */
2114 DPRINTK("about to softreset, devmask=%x\n", devmask);
2115 err_mask = ata_bus_softreset(ap, devmask);
2118 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2121 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2126 /* determine by signature whether we have ATA or ATAPI devices */
2127 classes[0] = ata_dev_try_classify(ap, 0, &err);
2128 if (slave_possible && err != 0x81)
2129 classes[1] = ata_dev_try_classify(ap, 1, &err);
2132 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2137 * sata_std_hardreset - reset host port via SATA phy reset
2138 * @ap: port to reset
2139 * @verbose: fail verbosely
2140 * @class: resulting class of attached device
2142 * SATA phy-reset host port using DET bits of SControl register.
2143 * This function is to be used as standard callback for
2144 * ata_drive_*_reset().
2147 * Kernel thread context (may sleep)
2150 * 0 on success, -errno otherwise.
2152 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2156 /* Issue phy wake/reset */
2157 scr_write_flush(ap, SCR_CONTROL, 0x301);
2160 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2161 * 10.4.2 says at least 1 ms.
2165 /* Bring phy back */
2166 sata_phy_resume(ap);
2168 /* TODO: phy layer with polling, timeouts, etc. */
2169 if (!sata_dev_present(ap)) {
2170 *class = ATA_DEV_NONE;
2171 DPRINTK("EXIT, link offline\n");
2175 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2177 printk(KERN_ERR "ata%u: COMRESET failed "
2178 "(device not ready)\n", ap->id);
2180 DPRINTK("EXIT, device not ready\n");
2184 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2186 *class = ata_dev_try_classify(ap, 0, NULL);
2188 DPRINTK("EXIT, class=%u\n", *class);
2193 * ata_std_postreset - standard postreset callback
2194 * @ap: the target ata_port
2195 * @classes: classes of attached devices
2197 * This function is invoked after a successful reset. Note that
2198 * the device might have been reset more than once using
2199 * different reset methods before postreset is invoked.
2201 * This function is to be used as standard callback for
2202 * ata_drive_*_reset().
2205 * Kernel thread context (may sleep)
2207 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2211 /* set cable type if it isn't already set */
2212 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2213 ap->cbl = ATA_CBL_SATA;
2215 /* print link status */
2216 if (ap->cbl == ATA_CBL_SATA)
2217 sata_print_link_status(ap);
2219 /* re-enable interrupts */
2220 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2223 /* is double-select really necessary? */
2224 if (classes[0] != ATA_DEV_NONE)
2225 ap->ops->dev_select(ap, 1);
2226 if (classes[1] != ATA_DEV_NONE)
2227 ap->ops->dev_select(ap, 0);
2229 /* bail out if no device is present */
2230 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2231 DPRINTK("EXIT, no device\n");
2235 /* set up device control */
2236 if (ap->ioaddr.ctl_addr) {
2237 if (ap->flags & ATA_FLAG_MMIO)
2238 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2240 outb(ap->ctl, ap->ioaddr.ctl_addr);
2247 * ata_std_probe_reset - standard probe reset method
2248 * @ap: prot to perform probe-reset
2249 * @classes: resulting classes of attached devices
2251 * The stock off-the-shelf ->probe_reset method.
2254 * Kernel thread context (may sleep)
2257 * 0 on success, -errno otherwise.
2259 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2261 ata_reset_fn_t hardreset;
2264 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2265 hardreset = sata_std_hardreset;
2267 return ata_drive_probe_reset(ap, ata_std_probeinit,
2268 ata_std_softreset, hardreset,
2269 ata_std_postreset, classes);
2272 static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2273 ata_postreset_fn_t postreset,
2274 unsigned int *classes)
2278 for (i = 0; i < ATA_MAX_DEVICES; i++)
2279 classes[i] = ATA_DEV_UNKNOWN;
2281 rc = reset(ap, 0, classes);
2285 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2286 * is complete and convert all ATA_DEV_UNKNOWN to
2289 for (i = 0; i < ATA_MAX_DEVICES; i++)
2290 if (classes[i] != ATA_DEV_UNKNOWN)
2293 if (i < ATA_MAX_DEVICES)
2294 for (i = 0; i < ATA_MAX_DEVICES; i++)
2295 if (classes[i] == ATA_DEV_UNKNOWN)
2296 classes[i] = ATA_DEV_NONE;
2299 postreset(ap, classes);
2301 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2305 * ata_drive_probe_reset - Perform probe reset with given methods
2306 * @ap: port to reset
2307 * @probeinit: probeinit method (can be NULL)
2308 * @softreset: softreset method (can be NULL)
2309 * @hardreset: hardreset method (can be NULL)
2310 * @postreset: postreset method (can be NULL)
2311 * @classes: resulting classes of attached devices
2313 * Reset the specified port and classify attached devices using
2314 * given methods. This function prefers softreset but tries all
2315 * possible reset sequences to reset and classify devices. This
2316 * function is intended to be used for constructing ->probe_reset
2317 * callback by low level drivers.
2319 * Reset methods should follow the following rules.
2321 * - Return 0 on sucess, -errno on failure.
2322 * - If classification is supported, fill classes[] with
2323 * recognized class codes.
2324 * - If classification is not supported, leave classes[] alone.
2325 * - If verbose is non-zero, print error message on failure;
2326 * otherwise, shut up.
2329 * Kernel thread context (may sleep)
2332 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2333 * if classification fails, and any error code from reset
2336 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2337 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2338 ata_postreset_fn_t postreset, unsigned int *classes)
2346 rc = do_probe_reset(ap, softreset, postreset, classes);
2354 rc = do_probe_reset(ap, hardreset, postreset, classes);
2355 if (rc == 0 || rc != -ENODEV)
2359 rc = do_probe_reset(ap, softreset, postreset, classes);
2365 * ata_dev_same_device - Determine whether new ID matches configured device
2366 * @ap: port on which the device to compare against resides
2367 * @dev: device to compare against
2368 * @new_class: class of the new device
2369 * @new_id: IDENTIFY page of the new device
2371 * Compare @new_class and @new_id against @dev and determine
2372 * whether @dev is the device indicated by @new_class and
2379 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2381 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2382 unsigned int new_class, const u16 *new_id)
2384 const u16 *old_id = dev->id;
2385 unsigned char model[2][41], serial[2][21];
2388 if (dev->class != new_class) {
2390 "ata%u: dev %u class mismatch %d != %d\n",
2391 ap->id, dev->devno, dev->class, new_class);
2395 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2396 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2397 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2398 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2399 new_n_sectors = ata_id_n_sectors(new_id);
2401 if (strcmp(model[0], model[1])) {
2403 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2404 ap->id, dev->devno, model[0], model[1]);
2408 if (strcmp(serial[0], serial[1])) {
2410 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2411 ap->id, dev->devno, serial[0], serial[1]);
2415 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2417 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2418 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2419 (unsigned long long)new_n_sectors);
2427 * ata_dev_revalidate - Revalidate ATA device
2428 * @ap: port on which the device to revalidate resides
2429 * @dev: device to revalidate
2430 * @post_reset: is this revalidation after reset?
2432 * Re-read IDENTIFY page and make sure @dev is still attached to
2436 * Kernel thread context (may sleep)
2439 * 0 on success, negative errno otherwise
2441 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2448 if (!ata_dev_present(dev))
2454 /* allocate & read ID data */
2455 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2459 /* is the device still there? */
2460 if (!ata_dev_same_device(ap, dev, class, id)) {
2468 /* configure device according to the new ID */
2469 return ata_dev_configure(ap, dev, 0);
2472 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2473 ap->id, dev->devno, rc);
2478 static void ata_pr_blacklisted(const struct ata_port *ap,
2479 const struct ata_device *dev)
2481 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2482 ap->id, dev->devno);
2485 static const char * const ata_dma_blacklist [] = {
2504 "Toshiba CD-ROM XM-6202B",
2505 "TOSHIBA CD-ROM XM-1702BC",
2507 "E-IDE CD-ROM CR-840",
2510 "SAMSUNG CD-ROM SC-148C",
2511 "SAMSUNG CD-ROM SC",
2513 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2517 static int ata_dma_blacklisted(const struct ata_device *dev)
2519 unsigned char model_num[41];
2522 ata_id_c_string(dev->id, model_num, ATA_ID_PROD_OFS, sizeof(model_num));
2524 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2525 if (!strcmp(ata_dma_blacklist[i], model_num))
2531 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2533 const struct ata_device *master, *slave;
2536 master = &ap->device[0];
2537 slave = &ap->device[1];
2539 WARN_ON(!ata_dev_present(master) && !ata_dev_present(slave));
2541 if (shift == ATA_SHIFT_UDMA) {
2542 mask = ap->udma_mask;
2543 if (ata_dev_present(master)) {
2544 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2545 if (ata_dma_blacklisted(master)) {
2547 ata_pr_blacklisted(ap, master);
2550 if (ata_dev_present(slave)) {
2551 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2552 if (ata_dma_blacklisted(slave)) {
2554 ata_pr_blacklisted(ap, slave);
2558 else if (shift == ATA_SHIFT_MWDMA) {
2559 mask = ap->mwdma_mask;
2560 if (ata_dev_present(master)) {
2561 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2562 if (ata_dma_blacklisted(master)) {
2564 ata_pr_blacklisted(ap, master);
2567 if (ata_dev_present(slave)) {
2568 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2569 if (ata_dma_blacklisted(slave)) {
2571 ata_pr_blacklisted(ap, slave);
2575 else if (shift == ATA_SHIFT_PIO) {
2576 mask = ap->pio_mask;
2577 if (ata_dev_present(master)) {
2578 /* spec doesn't return explicit support for
2579 * PIO0-2, so we fake it
2581 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2586 if (ata_dev_present(slave)) {
2587 /* spec doesn't return explicit support for
2588 * PIO0-2, so we fake it
2590 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2597 mask = 0xffffffff; /* shut up compiler warning */
2604 /* find greatest bit */
2605 static int fgb(u32 bitmap)
2610 for (i = 0; i < 32; i++)
2611 if (bitmap & (1 << i))
2618 * ata_choose_xfer_mode - attempt to find best transfer mode
2619 * @ap: Port for which an xfer mode will be selected
2620 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2621 * @xfer_shift_out: (output) bit shift that selects this mode
2623 * Based on host and device capabilities, determine the
2624 * maximum transfer mode that is amenable to all.
2627 * PCI/etc. bus probe sem.
2630 * Zero on success, negative on error.
2633 static int ata_choose_xfer_mode(const struct ata_port *ap,
2635 unsigned int *xfer_shift_out)
2637 unsigned int mask, shift;
2640 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2641 shift = xfer_mode_classes[i].shift;
2642 mask = ata_get_mode_mask(ap, shift);
2646 *xfer_mode_out = xfer_mode_classes[i].base + x;
2647 *xfer_shift_out = shift;
2656 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2657 * @ap: Port associated with device @dev
2658 * @dev: Device to which command will be sent
2660 * Issue SET FEATURES - XFER MODE command to device @dev
2664 * PCI/etc. bus probe sem.
2667 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2669 struct ata_taskfile tf;
2671 /* set up set-features taskfile */
2672 DPRINTK("set features - xfer mode\n");
2674 ata_tf_init(ap, &tf, dev->devno);
2675 tf.command = ATA_CMD_SET_FEATURES;
2676 tf.feature = SETFEATURES_XFER;
2677 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2678 tf.protocol = ATA_PROT_NODATA;
2679 tf.nsect = dev->xfer_mode;
2681 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2682 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2684 ata_port_disable(ap);
2691 * ata_dev_init_params - Issue INIT DEV PARAMS command
2692 * @ap: Port associated with device @dev
2693 * @dev: Device to which command will be sent
2696 * Kernel thread context (may sleep)
2699 * 0 on success, AC_ERR_* mask otherwise.
2702 static unsigned int ata_dev_init_params(struct ata_port *ap,
2703 struct ata_device *dev)
2705 struct ata_taskfile tf;
2706 unsigned int err_mask;
2707 u16 sectors = dev->id[6];
2708 u16 heads = dev->id[3];
2710 /* Number of sectors per track 1-255. Number of heads 1-16 */
2711 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2714 /* set up init dev params taskfile */
2715 DPRINTK("init dev params \n");
2717 ata_tf_init(ap, &tf, dev->devno);
2718 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2719 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2720 tf.protocol = ATA_PROT_NODATA;
2722 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2724 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2726 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2731 * ata_sg_clean - Unmap DMA memory associated with command
2732 * @qc: Command containing DMA memory to be released
2734 * Unmap all mapped DMA memory associated with this command.
2737 * spin_lock_irqsave(host_set lock)
2740 static void ata_sg_clean(struct ata_queued_cmd *qc)
2742 struct ata_port *ap = qc->ap;
2743 struct scatterlist *sg = qc->__sg;
2744 int dir = qc->dma_dir;
2745 void *pad_buf = NULL;
2747 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2748 WARN_ON(sg == NULL);
2750 if (qc->flags & ATA_QCFLAG_SINGLE)
2751 WARN_ON(qc->n_elem > 1);
2753 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2755 /* if we padded the buffer out to 32-bit bound, and data
2756 * xfer direction is from-device, we must copy from the
2757 * pad buffer back into the supplied buffer
2759 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2760 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2762 if (qc->flags & ATA_QCFLAG_SG) {
2764 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2765 /* restore last sg */
2766 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2768 struct scatterlist *psg = &qc->pad_sgent;
2769 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2770 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2771 kunmap_atomic(addr, KM_IRQ0);
2775 dma_unmap_single(ap->host_set->dev,
2776 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2779 sg->length += qc->pad_len;
2781 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2782 pad_buf, qc->pad_len);
2785 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2790 * ata_fill_sg - Fill PCI IDE PRD table
2791 * @qc: Metadata associated with taskfile to be transferred
2793 * Fill PCI IDE PRD (scatter-gather) table with segments
2794 * associated with the current disk command.
2797 * spin_lock_irqsave(host_set lock)
2800 static void ata_fill_sg(struct ata_queued_cmd *qc)
2802 struct ata_port *ap = qc->ap;
2803 struct scatterlist *sg;
2806 WARN_ON(qc->__sg == NULL);
2807 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
2810 ata_for_each_sg(sg, qc) {
2814 /* determine if physical DMA addr spans 64K boundary.
2815 * Note h/w doesn't support 64-bit, so we unconditionally
2816 * truncate dma_addr_t to u32.
2818 addr = (u32) sg_dma_address(sg);
2819 sg_len = sg_dma_len(sg);
2822 offset = addr & 0xffff;
2824 if ((offset + sg_len) > 0x10000)
2825 len = 0x10000 - offset;
2827 ap->prd[idx].addr = cpu_to_le32(addr);
2828 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2829 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2838 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2841 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2842 * @qc: Metadata associated with taskfile to check
2844 * Allow low-level driver to filter ATA PACKET commands, returning
2845 * a status indicating whether or not it is OK to use DMA for the
2846 * supplied PACKET command.
2849 * spin_lock_irqsave(host_set lock)
2851 * RETURNS: 0 when ATAPI DMA can be used
2854 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2856 struct ata_port *ap = qc->ap;
2857 int rc = 0; /* Assume ATAPI DMA is OK by default */
2859 if (ap->ops->check_atapi_dma)
2860 rc = ap->ops->check_atapi_dma(qc);
2865 * ata_qc_prep - Prepare taskfile for submission
2866 * @qc: Metadata associated with taskfile to be prepared
2868 * Prepare ATA taskfile for submission.
2871 * spin_lock_irqsave(host_set lock)
2873 void ata_qc_prep(struct ata_queued_cmd *qc)
2875 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2882 * ata_sg_init_one - Associate command with memory buffer
2883 * @qc: Command to be associated
2884 * @buf: Memory buffer
2885 * @buflen: Length of memory buffer, in bytes.
2887 * Initialize the data-related elements of queued_cmd @qc
2888 * to point to a single memory buffer, @buf of byte length @buflen.
2891 * spin_lock_irqsave(host_set lock)
2894 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2896 struct scatterlist *sg;
2898 qc->flags |= ATA_QCFLAG_SINGLE;
2900 memset(&qc->sgent, 0, sizeof(qc->sgent));
2901 qc->__sg = &qc->sgent;
2903 qc->orig_n_elem = 1;
2907 sg_init_one(sg, buf, buflen);
2911 * ata_sg_init - Associate command with scatter-gather table.
2912 * @qc: Command to be associated
2913 * @sg: Scatter-gather table.
2914 * @n_elem: Number of elements in s/g table.
2916 * Initialize the data-related elements of queued_cmd @qc
2917 * to point to a scatter-gather table @sg, containing @n_elem
2921 * spin_lock_irqsave(host_set lock)
2924 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2925 unsigned int n_elem)
2927 qc->flags |= ATA_QCFLAG_SG;
2929 qc->n_elem = n_elem;
2930 qc->orig_n_elem = n_elem;
2934 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2935 * @qc: Command with memory buffer to be mapped.
2937 * DMA-map the memory buffer associated with queued_cmd @qc.
2940 * spin_lock_irqsave(host_set lock)
2943 * Zero on success, negative on error.
2946 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2948 struct ata_port *ap = qc->ap;
2949 int dir = qc->dma_dir;
2950 struct scatterlist *sg = qc->__sg;
2951 dma_addr_t dma_address;
2954 /* we must lengthen transfers to end on a 32-bit boundary */
2955 qc->pad_len = sg->length & 3;
2957 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2958 struct scatterlist *psg = &qc->pad_sgent;
2960 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
2962 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2964 if (qc->tf.flags & ATA_TFLAG_WRITE)
2965 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2968 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2969 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2971 sg->length -= qc->pad_len;
2972 if (sg->length == 0)
2975 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2976 sg->length, qc->pad_len);
2984 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2986 if (dma_mapping_error(dma_address)) {
2988 sg->length += qc->pad_len;
2992 sg_dma_address(sg) = dma_address;
2993 sg_dma_len(sg) = sg->length;
2996 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2997 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3003 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3004 * @qc: Command with scatter-gather table to be mapped.
3006 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3009 * spin_lock_irqsave(host_set lock)
3012 * Zero on success, negative on error.
3016 static int ata_sg_setup(struct ata_queued_cmd *qc)
3018 struct ata_port *ap = qc->ap;
3019 struct scatterlist *sg = qc->__sg;
3020 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3021 int n_elem, pre_n_elem, dir, trim_sg = 0;
3023 VPRINTK("ENTER, ata%u\n", ap->id);
3024 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3026 /* we must lengthen transfers to end on a 32-bit boundary */
3027 qc->pad_len = lsg->length & 3;
3029 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3030 struct scatterlist *psg = &qc->pad_sgent;
3031 unsigned int offset;
3033 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3035 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3038 * psg->page/offset are used to copy to-be-written
3039 * data in this function or read data in ata_sg_clean.
3041 offset = lsg->offset + lsg->length - qc->pad_len;
3042 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3043 psg->offset = offset_in_page(offset);
3045 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3046 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3047 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3048 kunmap_atomic(addr, KM_IRQ0);
3051 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3052 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3054 lsg->length -= qc->pad_len;
3055 if (lsg->length == 0)
3058 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3059 qc->n_elem - 1, lsg->length, qc->pad_len);
3062 pre_n_elem = qc->n_elem;
3063 if (trim_sg && pre_n_elem)
3072 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
3074 /* restore last sg */
3075 lsg->length += qc->pad_len;
3079 DPRINTK("%d sg elements mapped\n", n_elem);
3082 qc->n_elem = n_elem;
3088 * ata_poll_qc_complete - turn irq back on and finish qc
3089 * @qc: Command to complete
3090 * @err_mask: ATA status register content
3093 * None. (grabs host lock)
3096 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3098 struct ata_port *ap = qc->ap;
3099 unsigned long flags;
3101 spin_lock_irqsave(&ap->host_set->lock, flags);
3102 ap->flags &= ~ATA_FLAG_NOINTR;
3104 ata_qc_complete(qc);
3105 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3109 * ata_pio_poll - poll using PIO, depending on current state
3110 * @ap: the target ata_port
3113 * None. (executing in kernel thread context)
3116 * timeout value to use
3119 static unsigned long ata_pio_poll(struct ata_port *ap)
3121 struct ata_queued_cmd *qc;
3123 unsigned int poll_state = HSM_ST_UNKNOWN;
3124 unsigned int reg_state = HSM_ST_UNKNOWN;
3126 qc = ata_qc_from_tag(ap, ap->active_tag);
3127 WARN_ON(qc == NULL);
3129 switch (ap->hsm_task_state) {
3132 poll_state = HSM_ST_POLL;
3136 case HSM_ST_LAST_POLL:
3137 poll_state = HSM_ST_LAST_POLL;
3138 reg_state = HSM_ST_LAST;
3145 status = ata_chk_status(ap);
3146 if (status & ATA_BUSY) {
3147 if (time_after(jiffies, ap->pio_task_timeout)) {
3148 qc->err_mask |= AC_ERR_TIMEOUT;
3149 ap->hsm_task_state = HSM_ST_TMOUT;
3152 ap->hsm_task_state = poll_state;
3153 return ATA_SHORT_PAUSE;
3156 ap->hsm_task_state = reg_state;
3161 * ata_pio_complete - check if drive is busy or idle
3162 * @ap: the target ata_port
3165 * None. (executing in kernel thread context)
3168 * Non-zero if qc completed, zero otherwise.
3171 static int ata_pio_complete (struct ata_port *ap)
3173 struct ata_queued_cmd *qc;
3177 * This is purely heuristic. This is a fast path. Sometimes when
3178 * we enter, BSY will be cleared in a chk-status or two. If not,
3179 * the drive is probably seeking or something. Snooze for a couple
3180 * msecs, then chk-status again. If still busy, fall back to
3181 * HSM_ST_POLL state.
3183 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3184 if (drv_stat & ATA_BUSY) {
3186 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3187 if (drv_stat & ATA_BUSY) {
3188 ap->hsm_task_state = HSM_ST_LAST_POLL;
3189 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3194 qc = ata_qc_from_tag(ap, ap->active_tag);
3195 WARN_ON(qc == NULL);
3197 drv_stat = ata_wait_idle(ap);
3198 if (!ata_ok(drv_stat)) {
3199 qc->err_mask |= __ac_err_mask(drv_stat);
3200 ap->hsm_task_state = HSM_ST_ERR;
3204 ap->hsm_task_state = HSM_ST_IDLE;
3206 WARN_ON(qc->err_mask);
3207 ata_poll_qc_complete(qc);
3209 /* another command may start at this point */
3216 * swap_buf_le16 - swap halves of 16-bit words in place
3217 * @buf: Buffer to swap
3218 * @buf_words: Number of 16-bit words in buffer.
3220 * Swap halves of 16-bit words if needed to convert from
3221 * little-endian byte order to native cpu byte order, or
3225 * Inherited from caller.
3227 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3232 for (i = 0; i < buf_words; i++)
3233 buf[i] = le16_to_cpu(buf[i]);
3234 #endif /* __BIG_ENDIAN */
3238 * ata_mmio_data_xfer - Transfer data by MMIO
3239 * @ap: port to read/write
3241 * @buflen: buffer length
3242 * @write_data: read/write
3244 * Transfer data from/to the device data register by MMIO.
3247 * Inherited from caller.
3250 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3251 unsigned int buflen, int write_data)
3254 unsigned int words = buflen >> 1;
3255 u16 *buf16 = (u16 *) buf;
3256 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3258 /* Transfer multiple of 2 bytes */
3260 for (i = 0; i < words; i++)
3261 writew(le16_to_cpu(buf16[i]), mmio);
3263 for (i = 0; i < words; i++)
3264 buf16[i] = cpu_to_le16(readw(mmio));
3267 /* Transfer trailing 1 byte, if any. */
3268 if (unlikely(buflen & 0x01)) {
3269 u16 align_buf[1] = { 0 };
3270 unsigned char *trailing_buf = buf + buflen - 1;
3273 memcpy(align_buf, trailing_buf, 1);
3274 writew(le16_to_cpu(align_buf[0]), mmio);
3276 align_buf[0] = cpu_to_le16(readw(mmio));
3277 memcpy(trailing_buf, align_buf, 1);
3283 * ata_pio_data_xfer - Transfer data by PIO
3284 * @ap: port to read/write
3286 * @buflen: buffer length
3287 * @write_data: read/write
3289 * Transfer data from/to the device data register by PIO.
3292 * Inherited from caller.
3295 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3296 unsigned int buflen, int write_data)
3298 unsigned int words = buflen >> 1;
3300 /* Transfer multiple of 2 bytes */
3302 outsw(ap->ioaddr.data_addr, buf, words);
3304 insw(ap->ioaddr.data_addr, buf, words);
3306 /* Transfer trailing 1 byte, if any. */
3307 if (unlikely(buflen & 0x01)) {
3308 u16 align_buf[1] = { 0 };
3309 unsigned char *trailing_buf = buf + buflen - 1;
3312 memcpy(align_buf, trailing_buf, 1);
3313 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3315 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3316 memcpy(trailing_buf, align_buf, 1);
3322 * ata_data_xfer - Transfer data from/to the data register.
3323 * @ap: port to read/write
3325 * @buflen: buffer length
3326 * @do_write: read/write
3328 * Transfer data from/to the device data register.
3331 * Inherited from caller.
3334 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3335 unsigned int buflen, int do_write)
3337 /* Make the crap hardware pay the costs not the good stuff */
3338 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3339 unsigned long flags;
3340 local_irq_save(flags);
3341 if (ap->flags & ATA_FLAG_MMIO)
3342 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3344 ata_pio_data_xfer(ap, buf, buflen, do_write);
3345 local_irq_restore(flags);
3347 if (ap->flags & ATA_FLAG_MMIO)
3348 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3350 ata_pio_data_xfer(ap, buf, buflen, do_write);
3355 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3356 * @qc: Command on going
3358 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3361 * Inherited from caller.
3364 static void ata_pio_sector(struct ata_queued_cmd *qc)
3366 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3367 struct scatterlist *sg = qc->__sg;
3368 struct ata_port *ap = qc->ap;
3370 unsigned int offset;
3373 if (qc->cursect == (qc->nsect - 1))
3374 ap->hsm_task_state = HSM_ST_LAST;
3376 page = sg[qc->cursg].page;
3377 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3379 /* get the current page and offset */
3380 page = nth_page(page, (offset >> PAGE_SHIFT));
3381 offset %= PAGE_SIZE;
3383 buf = kmap(page) + offset;
3388 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3393 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3395 /* do the actual data transfer */
3396 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3397 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3403 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3404 * @qc: Command on going
3405 * @bytes: number of bytes
3407 * Transfer Transfer data from/to the ATAPI device.
3410 * Inherited from caller.
3414 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3416 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3417 struct scatterlist *sg = qc->__sg;
3418 struct ata_port *ap = qc->ap;
3421 unsigned int offset, count;
3423 if (qc->curbytes + bytes >= qc->nbytes)
3424 ap->hsm_task_state = HSM_ST_LAST;
3427 if (unlikely(qc->cursg >= qc->n_elem)) {
3429 * The end of qc->sg is reached and the device expects
3430 * more data to transfer. In order not to overrun qc->sg
3431 * and fulfill length specified in the byte count register,
3432 * - for read case, discard trailing data from the device
3433 * - for write case, padding zero data to the device
3435 u16 pad_buf[1] = { 0 };
3436 unsigned int words = bytes >> 1;
3439 if (words) /* warning if bytes > 1 */
3440 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3443 for (i = 0; i < words; i++)
3444 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3446 ap->hsm_task_state = HSM_ST_LAST;
3450 sg = &qc->__sg[qc->cursg];
3453 offset = sg->offset + qc->cursg_ofs;
3455 /* get the current page and offset */
3456 page = nth_page(page, (offset >> PAGE_SHIFT));
3457 offset %= PAGE_SIZE;
3459 /* don't overrun current sg */
3460 count = min(sg->length - qc->cursg_ofs, bytes);
3462 /* don't cross page boundaries */
3463 count = min(count, (unsigned int)PAGE_SIZE - offset);
3465 buf = kmap(page) + offset;
3468 qc->curbytes += count;
3469 qc->cursg_ofs += count;
3471 if (qc->cursg_ofs == sg->length) {
3476 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3478 /* do the actual data transfer */
3479 ata_data_xfer(ap, buf, count, do_write);
3488 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3489 * @qc: Command on going
3491 * Transfer Transfer data from/to the ATAPI device.
3494 * Inherited from caller.
3497 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3499 struct ata_port *ap = qc->ap;
3500 struct ata_device *dev = qc->dev;
3501 unsigned int ireason, bc_lo, bc_hi, bytes;
3502 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3504 ap->ops->tf_read(ap, &qc->tf);
3505 ireason = qc->tf.nsect;
3506 bc_lo = qc->tf.lbam;
3507 bc_hi = qc->tf.lbah;
3508 bytes = (bc_hi << 8) | bc_lo;
3510 /* shall be cleared to zero, indicating xfer of data */
3511 if (ireason & (1 << 0))
3514 /* make sure transfer direction matches expected */
3515 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3516 if (do_write != i_write)
3519 __atapi_pio_bytes(qc, bytes);
3524 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3525 ap->id, dev->devno);
3526 qc->err_mask |= AC_ERR_HSM;
3527 ap->hsm_task_state = HSM_ST_ERR;
3531 * ata_pio_block - start PIO on a block
3532 * @ap: the target ata_port
3535 * None. (executing in kernel thread context)
3538 static void ata_pio_block(struct ata_port *ap)
3540 struct ata_queued_cmd *qc;
3544 * This is purely heuristic. This is a fast path.
3545 * Sometimes when we enter, BSY will be cleared in
3546 * a chk-status or two. If not, the drive is probably seeking
3547 * or something. Snooze for a couple msecs, then
3548 * chk-status again. If still busy, fall back to
3549 * HSM_ST_POLL state.
3551 status = ata_busy_wait(ap, ATA_BUSY, 5);
3552 if (status & ATA_BUSY) {
3554 status = ata_busy_wait(ap, ATA_BUSY, 10);
3555 if (status & ATA_BUSY) {
3556 ap->hsm_task_state = HSM_ST_POLL;
3557 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3562 qc = ata_qc_from_tag(ap, ap->active_tag);
3563 WARN_ON(qc == NULL);
3566 if (status & (ATA_ERR | ATA_DF)) {
3567 qc->err_mask |= AC_ERR_DEV;
3568 ap->hsm_task_state = HSM_ST_ERR;
3572 /* transfer data if any */
3573 if (is_atapi_taskfile(&qc->tf)) {
3574 /* DRQ=0 means no more data to transfer */
3575 if ((status & ATA_DRQ) == 0) {
3576 ap->hsm_task_state = HSM_ST_LAST;
3580 atapi_pio_bytes(qc);
3582 /* handle BSY=0, DRQ=0 as error */
3583 if ((status & ATA_DRQ) == 0) {
3584 qc->err_mask |= AC_ERR_HSM;
3585 ap->hsm_task_state = HSM_ST_ERR;
3593 static void ata_pio_error(struct ata_port *ap)
3595 struct ata_queued_cmd *qc;
3597 qc = ata_qc_from_tag(ap, ap->active_tag);
3598 WARN_ON(qc == NULL);
3600 if (qc->tf.command != ATA_CMD_PACKET)
3601 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3603 /* make sure qc->err_mask is available to
3604 * know what's wrong and recover
3606 WARN_ON(qc->err_mask == 0);
3608 ap->hsm_task_state = HSM_ST_IDLE;
3610 ata_poll_qc_complete(qc);
3613 static void ata_pio_task(void *_data)
3615 struct ata_port *ap = _data;
3616 unsigned long timeout;
3623 switch (ap->hsm_task_state) {
3632 qc_completed = ata_pio_complete(ap);
3636 case HSM_ST_LAST_POLL:
3637 timeout = ata_pio_poll(ap);
3647 ata_port_queue_task(ap, ata_pio_task, ap, timeout);
3648 else if (!qc_completed)
3653 * atapi_packet_task - Write CDB bytes to hardware
3654 * @_data: Port to which ATAPI device is attached.
3656 * When device has indicated its readiness to accept
3657 * a CDB, this function is called. Send the CDB.
3658 * If DMA is to be performed, exit immediately.
3659 * Otherwise, we are in polling mode, so poll
3660 * status under operation succeeds or fails.
3663 * Kernel thread context (may sleep)
3666 static void atapi_packet_task(void *_data)
3668 struct ata_port *ap = _data;
3669 struct ata_queued_cmd *qc;
3672 qc = ata_qc_from_tag(ap, ap->active_tag);
3673 WARN_ON(qc == NULL);
3674 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3676 /* sleep-wait for BSY to clear */
3677 DPRINTK("busy wait\n");
3678 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3679 qc->err_mask |= AC_ERR_TIMEOUT;
3683 /* make sure DRQ is set */
3684 status = ata_chk_status(ap);
3685 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3686 qc->err_mask |= AC_ERR_HSM;
3691 DPRINTK("send cdb\n");
3692 WARN_ON(qc->dev->cdb_len < 12);
3694 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3695 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3696 unsigned long flags;
3698 /* Once we're done issuing command and kicking bmdma,
3699 * irq handler takes over. To not lose irq, we need
3700 * to clear NOINTR flag before sending cdb, but
3701 * interrupt handler shouldn't be invoked before we're
3702 * finished. Hence, the following locking.
3704 spin_lock_irqsave(&ap->host_set->lock, flags);
3705 ap->flags &= ~ATA_FLAG_NOINTR;
3706 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3707 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3708 ap->ops->bmdma_start(qc); /* initiate bmdma */
3709 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3711 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3713 /* PIO commands are handled by polling */
3714 ap->hsm_task_state = HSM_ST;
3715 ata_port_queue_task(ap, ata_pio_task, ap, 0);
3721 ata_poll_qc_complete(qc);
3725 * ata_qc_timeout - Handle timeout of queued command
3726 * @qc: Command that timed out
3728 * Some part of the kernel (currently, only the SCSI layer)
3729 * has noticed that the active command on port @ap has not
3730 * completed after a specified length of time. Handle this
3731 * condition by disabling DMA (if necessary) and completing
3732 * transactions, with error if necessary.
3734 * This also handles the case of the "lost interrupt", where
3735 * for some reason (possibly hardware bug, possibly driver bug)
3736 * an interrupt was not delivered to the driver, even though the
3737 * transaction completed successfully.
3740 * Inherited from SCSI layer (none, can sleep)
3743 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3745 struct ata_port *ap = qc->ap;
3746 struct ata_host_set *host_set = ap->host_set;
3747 u8 host_stat = 0, drv_stat;
3748 unsigned long flags;
3752 ap->hsm_task_state = HSM_ST_IDLE;
3754 spin_lock_irqsave(&host_set->lock, flags);
3756 switch (qc->tf.protocol) {
3759 case ATA_PROT_ATAPI_DMA:
3760 host_stat = ap->ops->bmdma_status(ap);
3762 /* before we do anything else, clear DMA-Start bit */
3763 ap->ops->bmdma_stop(qc);
3769 drv_stat = ata_chk_status(ap);
3771 /* ack bmdma irq events */
3772 ap->ops->irq_clear(ap);
3774 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3775 ap->id, qc->tf.command, drv_stat, host_stat);
3777 /* complete taskfile transaction */
3778 qc->err_mask |= ac_err_mask(drv_stat);
3782 spin_unlock_irqrestore(&host_set->lock, flags);
3784 ata_eh_qc_complete(qc);
3790 * ata_eng_timeout - Handle timeout of queued command
3791 * @ap: Port on which timed-out command is active
3793 * Some part of the kernel (currently, only the SCSI layer)
3794 * has noticed that the active command on port @ap has not
3795 * completed after a specified length of time. Handle this
3796 * condition by disabling DMA (if necessary) and completing
3797 * transactions, with error if necessary.
3799 * This also handles the case of the "lost interrupt", where
3800 * for some reason (possibly hardware bug, possibly driver bug)
3801 * an interrupt was not delivered to the driver, even though the
3802 * transaction completed successfully.
3805 * Inherited from SCSI layer (none, can sleep)
3808 void ata_eng_timeout(struct ata_port *ap)
3812 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
3818 * ata_qc_new - Request an available ATA command, for queueing
3819 * @ap: Port associated with device @dev
3820 * @dev: Device from whom we request an available command structure
3826 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3828 struct ata_queued_cmd *qc = NULL;
3831 for (i = 0; i < ATA_MAX_QUEUE; i++)
3832 if (!test_and_set_bit(i, &ap->qactive)) {
3833 qc = ata_qc_from_tag(ap, i);
3844 * ata_qc_new_init - Request an available ATA command, and initialize it
3845 * @ap: Port associated with device @dev
3846 * @dev: Device from whom we request an available command structure
3852 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3853 struct ata_device *dev)
3855 struct ata_queued_cmd *qc;
3857 qc = ata_qc_new(ap);
3870 * ata_qc_free - free unused ata_queued_cmd
3871 * @qc: Command to complete
3873 * Designed to free unused ata_queued_cmd object
3874 * in case something prevents using it.
3877 * spin_lock_irqsave(host_set lock)
3879 void ata_qc_free(struct ata_queued_cmd *qc)
3881 struct ata_port *ap = qc->ap;
3884 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3888 if (likely(ata_tag_valid(tag))) {
3889 if (tag == ap->active_tag)
3890 ap->active_tag = ATA_TAG_POISON;
3891 qc->tag = ATA_TAG_POISON;
3892 clear_bit(tag, &ap->qactive);
3896 void __ata_qc_complete(struct ata_queued_cmd *qc)
3898 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3899 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3901 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3904 /* atapi: mark qc as inactive to prevent the interrupt handler
3905 * from completing the command twice later, before the error handler
3906 * is called. (when rc != 0 and atapi request sense is needed)
3908 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3910 /* call completion callback */
3911 qc->complete_fn(qc);
3914 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3916 struct ata_port *ap = qc->ap;
3918 switch (qc->tf.protocol) {
3920 case ATA_PROT_ATAPI_DMA:
3923 case ATA_PROT_ATAPI:
3925 case ATA_PROT_PIO_MULT:
3926 if (ap->flags & ATA_FLAG_PIO_DMA)
3939 * ata_qc_issue - issue taskfile to device
3940 * @qc: command to issue to device
3942 * Prepare an ATA command to submission to device.
3943 * This includes mapping the data into a DMA-able
3944 * area, filling in the S/G table, and finally
3945 * writing the taskfile to hardware, starting the command.
3948 * spin_lock_irqsave(host_set lock)
3951 * Zero on success, AC_ERR_* mask on failure
3954 unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
3956 struct ata_port *ap = qc->ap;
3958 if (ata_should_dma_map(qc)) {
3959 if (qc->flags & ATA_QCFLAG_SG) {
3960 if (ata_sg_setup(qc))
3962 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3963 if (ata_sg_setup_one(qc))
3967 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3970 ap->ops->qc_prep(qc);
3972 qc->ap->active_tag = qc->tag;
3973 qc->flags |= ATA_QCFLAG_ACTIVE;
3975 return ap->ops->qc_issue(qc);
3978 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3979 return AC_ERR_SYSTEM;
3984 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3985 * @qc: command to issue to device
3987 * Using various libata functions and hooks, this function
3988 * starts an ATA command. ATA commands are grouped into
3989 * classes called "protocols", and issuing each type of protocol
3990 * is slightly different.
3992 * May be used as the qc_issue() entry in ata_port_operations.
3995 * spin_lock_irqsave(host_set lock)
3998 * Zero on success, AC_ERR_* mask on failure
4001 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4003 struct ata_port *ap = qc->ap;
4005 ata_dev_select(ap, qc->dev->devno, 1, 0);
4007 switch (qc->tf.protocol) {
4008 case ATA_PROT_NODATA:
4009 ata_tf_to_host(ap, &qc->tf);
4013 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4014 ap->ops->bmdma_setup(qc); /* set up bmdma */
4015 ap->ops->bmdma_start(qc); /* initiate bmdma */
4018 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4019 ata_qc_set_polling(qc);
4020 ata_tf_to_host(ap, &qc->tf);
4021 ap->hsm_task_state = HSM_ST;
4022 ata_port_queue_task(ap, ata_pio_task, ap, 0);
4025 case ATA_PROT_ATAPI:
4026 ata_qc_set_polling(qc);
4027 ata_tf_to_host(ap, &qc->tf);
4028 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4031 case ATA_PROT_ATAPI_NODATA:
4032 ap->flags |= ATA_FLAG_NOINTR;
4033 ata_tf_to_host(ap, &qc->tf);
4034 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4037 case ATA_PROT_ATAPI_DMA:
4038 ap->flags |= ATA_FLAG_NOINTR;
4039 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4040 ap->ops->bmdma_setup(qc); /* set up bmdma */
4041 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4046 return AC_ERR_SYSTEM;
4053 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
4054 * @qc: Info associated with this ATA transaction.
4057 * spin_lock_irqsave(host_set lock)
4060 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
4062 struct ata_port *ap = qc->ap;
4063 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
4065 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4067 /* load PRD table addr. */
4068 mb(); /* make sure PRD table writes are visible to controller */
4069 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
4071 /* specify data direction, triple-check start bit is clear */
4072 dmactl = readb(mmio + ATA_DMA_CMD);
4073 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
4075 dmactl |= ATA_DMA_WR;
4076 writeb(dmactl, mmio + ATA_DMA_CMD);
4078 /* issue r/w command */
4079 ap->ops->exec_command(ap, &qc->tf);
4083 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
4084 * @qc: Info associated with this ATA transaction.
4087 * spin_lock_irqsave(host_set lock)
4090 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
4092 struct ata_port *ap = qc->ap;
4093 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4096 /* start host DMA transaction */
4097 dmactl = readb(mmio + ATA_DMA_CMD);
4098 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
4100 /* Strictly, one may wish to issue a readb() here, to
4101 * flush the mmio write. However, control also passes
4102 * to the hardware at this point, and it will interrupt
4103 * us when we are to resume control. So, in effect,
4104 * we don't care when the mmio write flushes.
4105 * Further, a read of the DMA status register _immediately_
4106 * following the write may not be what certain flaky hardware
4107 * is expected, so I think it is best to not add a readb()
4108 * without first all the MMIO ATA cards/mobos.
4109 * Or maybe I'm just being paranoid.
4114 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
4115 * @qc: Info associated with this ATA transaction.
4118 * spin_lock_irqsave(host_set lock)
4121 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
4123 struct ata_port *ap = qc->ap;
4124 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
4127 /* load PRD table addr. */
4128 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
4130 /* specify data direction, triple-check start bit is clear */
4131 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4132 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
4134 dmactl |= ATA_DMA_WR;
4135 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4137 /* issue r/w command */
4138 ap->ops->exec_command(ap, &qc->tf);
4142 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
4143 * @qc: Info associated with this ATA transaction.
4146 * spin_lock_irqsave(host_set lock)
4149 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
4151 struct ata_port *ap = qc->ap;
4154 /* start host DMA transaction */
4155 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4156 outb(dmactl | ATA_DMA_START,
4157 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4162 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
4163 * @qc: Info associated with this ATA transaction.
4165 * Writes the ATA_DMA_START flag to the DMA command register.
4167 * May be used as the bmdma_start() entry in ata_port_operations.
4170 * spin_lock_irqsave(host_set lock)
4172 void ata_bmdma_start(struct ata_queued_cmd *qc)
4174 if (qc->ap->flags & ATA_FLAG_MMIO)
4175 ata_bmdma_start_mmio(qc);
4177 ata_bmdma_start_pio(qc);
4182 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
4183 * @qc: Info associated with this ATA transaction.
4185 * Writes address of PRD table to device's PRD Table Address
4186 * register, sets the DMA control register, and calls
4187 * ops->exec_command() to start the transfer.
4189 * May be used as the bmdma_setup() entry in ata_port_operations.
4192 * spin_lock_irqsave(host_set lock)
4194 void ata_bmdma_setup(struct ata_queued_cmd *qc)
4196 if (qc->ap->flags & ATA_FLAG_MMIO)
4197 ata_bmdma_setup_mmio(qc);
4199 ata_bmdma_setup_pio(qc);
4204 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
4205 * @ap: Port associated with this ATA transaction.
4207 * Clear interrupt and error flags in DMA status register.
4209 * May be used as the irq_clear() entry in ata_port_operations.
4212 * spin_lock_irqsave(host_set lock)
4215 void ata_bmdma_irq_clear(struct ata_port *ap)
4217 if (ap->flags & ATA_FLAG_MMIO) {
4218 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
4219 writeb(readb(mmio), mmio);
4221 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
4222 outb(inb(addr), addr);
4229 * ata_bmdma_status - Read PCI IDE BMDMA status
4230 * @ap: Port associated with this ATA transaction.
4232 * Read and return BMDMA status register.
4234 * May be used as the bmdma_status() entry in ata_port_operations.
4237 * spin_lock_irqsave(host_set lock)
4240 u8 ata_bmdma_status(struct ata_port *ap)
4243 if (ap->flags & ATA_FLAG_MMIO) {
4244 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4245 host_stat = readb(mmio + ATA_DMA_STATUS);
4247 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
4253 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
4254 * @qc: Command we are ending DMA for
4256 * Clears the ATA_DMA_START flag in the dma control register
4258 * May be used as the bmdma_stop() entry in ata_port_operations.
4261 * spin_lock_irqsave(host_set lock)
4264 void ata_bmdma_stop(struct ata_queued_cmd *qc)
4266 struct ata_port *ap = qc->ap;
4267 if (ap->flags & ATA_FLAG_MMIO) {
4268 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4270 /* clear start/stop bit */
4271 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4272 mmio + ATA_DMA_CMD);
4274 /* clear start/stop bit */
4275 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4276 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4279 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4280 ata_altstatus(ap); /* dummy read */
4284 * ata_host_intr - Handle host interrupt for given (port, task)
4285 * @ap: Port on which interrupt arrived (possibly...)
4286 * @qc: Taskfile currently active in engine
4288 * Handle host interrupt for given queued command. Currently,
4289 * only DMA interrupts are handled. All other commands are
4290 * handled via polling with interrupts disabled (nIEN bit).
4293 * spin_lock_irqsave(host_set lock)
4296 * One if interrupt was handled, zero if not (shared irq).
4299 inline unsigned int ata_host_intr (struct ata_port *ap,
4300 struct ata_queued_cmd *qc)
4302 u8 status, host_stat;
4304 switch (qc->tf.protocol) {
4307 case ATA_PROT_ATAPI_DMA:
4308 case ATA_PROT_ATAPI:
4309 /* check status of DMA engine */
4310 host_stat = ap->ops->bmdma_status(ap);
4311 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4313 /* if it's not our irq... */
4314 if (!(host_stat & ATA_DMA_INTR))
4317 /* before we do anything else, clear DMA-Start bit */
4318 ap->ops->bmdma_stop(qc);
4322 case ATA_PROT_ATAPI_NODATA:
4323 case ATA_PROT_NODATA:
4324 /* check altstatus */
4325 status = ata_altstatus(ap);
4326 if (status & ATA_BUSY)
4329 /* check main status, clearing INTRQ */
4330 status = ata_chk_status(ap);
4331 if (unlikely(status & ATA_BUSY))
4333 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4334 ap->id, qc->tf.protocol, status);
4336 /* ack bmdma irq events */
4337 ap->ops->irq_clear(ap);
4339 /* complete taskfile transaction */
4340 qc->err_mask |= ac_err_mask(status);
4341 ata_qc_complete(qc);
4348 return 1; /* irq handled */
4351 ap->stats.idle_irq++;
4354 if ((ap->stats.idle_irq % 1000) == 0) {
4356 ata_irq_ack(ap, 0); /* debug trap */
4357 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4360 return 0; /* irq not handled */
4364 * ata_interrupt - Default ATA host interrupt handler
4365 * @irq: irq line (unused)
4366 * @dev_instance: pointer to our ata_host_set information structure
4369 * Default interrupt handler for PCI IDE devices. Calls
4370 * ata_host_intr() for each port that is not disabled.
4373 * Obtains host_set lock during operation.
4376 * IRQ_NONE or IRQ_HANDLED.
4379 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4381 struct ata_host_set *host_set = dev_instance;
4383 unsigned int handled = 0;
4384 unsigned long flags;
4386 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4387 spin_lock_irqsave(&host_set->lock, flags);
4389 for (i = 0; i < host_set->n_ports; i++) {
4390 struct ata_port *ap;
4392 ap = host_set->ports[i];
4394 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4395 struct ata_queued_cmd *qc;
4397 qc = ata_qc_from_tag(ap, ap->active_tag);
4398 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4399 (qc->flags & ATA_QCFLAG_ACTIVE))
4400 handled |= ata_host_intr(ap, qc);
4404 spin_unlock_irqrestore(&host_set->lock, flags);
4406 return IRQ_RETVAL(handled);
4411 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4412 * without filling any other registers
4414 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4417 struct ata_taskfile tf;
4420 ata_tf_init(ap, &tf, dev->devno);
4423 tf.flags |= ATA_TFLAG_DEVICE;
4424 tf.protocol = ATA_PROT_NODATA;
4426 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4428 printk(KERN_ERR "%s: ata command failed: %d\n",
4434 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4438 if (!ata_try_flush_cache(dev))
4441 if (ata_id_has_flush_ext(dev->id))
4442 cmd = ATA_CMD_FLUSH_EXT;
4444 cmd = ATA_CMD_FLUSH;
4446 return ata_do_simple_cmd(ap, dev, cmd);
4449 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4451 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4454 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4456 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4460 * ata_device_resume - wakeup a previously suspended devices
4461 * @ap: port the device is connected to
4462 * @dev: the device to resume
4464 * Kick the drive back into action, by sending it an idle immediate
4465 * command and making sure its transfer mode matches between drive
4469 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4471 if (ap->flags & ATA_FLAG_SUSPENDED) {
4472 ap->flags &= ~ATA_FLAG_SUSPENDED;
4475 if (!ata_dev_present(dev))
4477 if (dev->class == ATA_DEV_ATA)
4478 ata_start_drive(ap, dev);
4484 * ata_device_suspend - prepare a device for suspend
4485 * @ap: port the device is connected to
4486 * @dev: the device to suspend
4488 * Flush the cache on the drive, if appropriate, then issue a
4489 * standbynow command.
4491 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4493 if (!ata_dev_present(dev))
4495 if (dev->class == ATA_DEV_ATA)
4496 ata_flush_cache(ap, dev);
4498 ata_standby_drive(ap, dev);
4499 ap->flags |= ATA_FLAG_SUSPENDED;
4504 * ata_port_start - Set port up for dma.
4505 * @ap: Port to initialize
4507 * Called just after data structures for each port are
4508 * initialized. Allocates space for PRD table.
4510 * May be used as the port_start() entry in ata_port_operations.
4513 * Inherited from caller.
4516 int ata_port_start (struct ata_port *ap)
4518 struct device *dev = ap->host_set->dev;
4521 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4525 rc = ata_pad_alloc(ap, dev);
4527 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4531 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4538 * ata_port_stop - Undo ata_port_start()
4539 * @ap: Port to shut down
4541 * Frees the PRD table.
4543 * May be used as the port_stop() entry in ata_port_operations.
4546 * Inherited from caller.
4549 void ata_port_stop (struct ata_port *ap)
4551 struct device *dev = ap->host_set->dev;
4553 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4554 ata_pad_free(ap, dev);
4557 void ata_host_stop (struct ata_host_set *host_set)
4559 if (host_set->mmio_base)
4560 iounmap(host_set->mmio_base);
4565 * ata_host_remove - Unregister SCSI host structure with upper layers
4566 * @ap: Port to unregister
4567 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4570 * Inherited from caller.
4573 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4575 struct Scsi_Host *sh = ap->host;
4580 scsi_remove_host(sh);
4582 ap->ops->port_stop(ap);
4586 * ata_host_init - Initialize an ata_port structure
4587 * @ap: Structure to initialize
4588 * @host: associated SCSI mid-layer structure
4589 * @host_set: Collection of hosts to which @ap belongs
4590 * @ent: Probe information provided by low-level driver
4591 * @port_no: Port number associated with this ata_port
4593 * Initialize a new ata_port structure, and its associated
4597 * Inherited from caller.
4600 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4601 struct ata_host_set *host_set,
4602 const struct ata_probe_ent *ent, unsigned int port_no)
4608 host->max_channel = 1;
4609 host->unique_id = ata_unique_id++;
4610 host->max_cmd_len = 12;
4612 ap->flags = ATA_FLAG_PORT_DISABLED;
4613 ap->id = host->unique_id;
4615 ap->ctl = ATA_DEVCTL_OBS;
4616 ap->host_set = host_set;
4617 ap->port_no = port_no;
4619 ent->legacy_mode ? ent->hard_port_no : port_no;
4620 ap->pio_mask = ent->pio_mask;
4621 ap->mwdma_mask = ent->mwdma_mask;
4622 ap->udma_mask = ent->udma_mask;
4623 ap->flags |= ent->host_flags;
4624 ap->ops = ent->port_ops;
4625 ap->cbl = ATA_CBL_NONE;
4626 ap->active_tag = ATA_TAG_POISON;
4627 ap->last_ctl = 0xFF;
4629 INIT_WORK(&ap->port_task, NULL, NULL);
4630 INIT_LIST_HEAD(&ap->eh_done_q);
4632 for (i = 0; i < ATA_MAX_DEVICES; i++)
4633 ap->device[i].devno = i;
4636 ap->stats.unhandled_irq = 1;
4637 ap->stats.idle_irq = 1;
4640 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4644 * ata_host_add - Attach low-level ATA driver to system
4645 * @ent: Information provided by low-level driver
4646 * @host_set: Collections of ports to which we add
4647 * @port_no: Port number associated with this host
4649 * Attach low-level ATA driver to system.
4652 * PCI/etc. bus probe sem.
4655 * New ata_port on success, for NULL on error.
4658 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4659 struct ata_host_set *host_set,
4660 unsigned int port_no)
4662 struct Scsi_Host *host;
4663 struct ata_port *ap;
4667 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4671 ap = (struct ata_port *) &host->hostdata[0];
4673 ata_host_init(ap, host, host_set, ent, port_no);
4675 rc = ap->ops->port_start(ap);
4682 scsi_host_put(host);
4687 * ata_device_add - Register hardware device with ATA and SCSI layers
4688 * @ent: Probe information describing hardware device to be registered
4690 * This function processes the information provided in the probe
4691 * information struct @ent, allocates the necessary ATA and SCSI
4692 * host information structures, initializes them, and registers
4693 * everything with requisite kernel subsystems.
4695 * This function requests irqs, probes the ATA bus, and probes
4699 * PCI/etc. bus probe sem.
4702 * Number of ports registered. Zero on error (no ports registered).
4705 int ata_device_add(const struct ata_probe_ent *ent)
4707 unsigned int count = 0, i;
4708 struct device *dev = ent->dev;
4709 struct ata_host_set *host_set;
4712 /* alloc a container for our list of ATA ports (buses) */
4713 host_set = kzalloc(sizeof(struct ata_host_set) +
4714 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4717 spin_lock_init(&host_set->lock);
4719 host_set->dev = dev;
4720 host_set->n_ports = ent->n_ports;
4721 host_set->irq = ent->irq;
4722 host_set->mmio_base = ent->mmio_base;
4723 host_set->private_data = ent->private_data;
4724 host_set->ops = ent->port_ops;
4726 /* register each port bound to this device */
4727 for (i = 0; i < ent->n_ports; i++) {
4728 struct ata_port *ap;
4729 unsigned long xfer_mode_mask;
4731 ap = ata_host_add(ent, host_set, i);
4735 host_set->ports[i] = ap;
4736 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4737 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4738 (ap->pio_mask << ATA_SHIFT_PIO);
4740 /* print per-port info to dmesg */
4741 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4742 "bmdma 0x%lX irq %lu\n",
4744 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4745 ata_mode_string(xfer_mode_mask),
4746 ap->ioaddr.cmd_addr,
4747 ap->ioaddr.ctl_addr,
4748 ap->ioaddr.bmdma_addr,
4752 host_set->ops->irq_clear(ap);
4759 /* obtain irq, that is shared between channels */
4760 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4761 DRV_NAME, host_set))
4764 /* perform each probe synchronously */
4765 DPRINTK("probe begin\n");
4766 for (i = 0; i < count; i++) {
4767 struct ata_port *ap;
4770 ap = host_set->ports[i];
4772 DPRINTK("ata%u: bus probe begin\n", ap->id);
4773 rc = ata_bus_probe(ap);
4774 DPRINTK("ata%u: bus probe end\n", ap->id);
4777 /* FIXME: do something useful here?
4778 * Current libata behavior will
4779 * tear down everything when
4780 * the module is removed
4781 * or the h/w is unplugged.
4785 rc = scsi_add_host(ap->host, dev);
4787 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4789 /* FIXME: do something useful here */
4790 /* FIXME: handle unconditional calls to
4791 * scsi_scan_host and ata_host_remove, below,
4797 /* probes are done, now scan each port's disk(s) */
4798 DPRINTK("host probe begin\n");
4799 for (i = 0; i < count; i++) {
4800 struct ata_port *ap = host_set->ports[i];
4802 ata_scsi_scan_host(ap);
4805 dev_set_drvdata(dev, host_set);
4807 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4808 return ent->n_ports; /* success */
4811 for (i = 0; i < count; i++) {
4812 ata_host_remove(host_set->ports[i], 1);
4813 scsi_host_put(host_set->ports[i]->host);
4817 VPRINTK("EXIT, returning 0\n");
4822 * ata_host_set_remove - PCI layer callback for device removal
4823 * @host_set: ATA host set that was removed
4825 * Unregister all objects associated with this host set. Free those
4829 * Inherited from calling layer (may sleep).
4832 void ata_host_set_remove(struct ata_host_set *host_set)
4834 struct ata_port *ap;
4837 for (i = 0; i < host_set->n_ports; i++) {
4838 ap = host_set->ports[i];
4839 scsi_remove_host(ap->host);
4842 free_irq(host_set->irq, host_set);
4844 for (i = 0; i < host_set->n_ports; i++) {
4845 ap = host_set->ports[i];
4847 ata_scsi_release(ap->host);
4849 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4850 struct ata_ioports *ioaddr = &ap->ioaddr;
4852 if (ioaddr->cmd_addr == 0x1f0)
4853 release_region(0x1f0, 8);
4854 else if (ioaddr->cmd_addr == 0x170)
4855 release_region(0x170, 8);
4858 scsi_host_put(ap->host);
4861 if (host_set->ops->host_stop)
4862 host_set->ops->host_stop(host_set);
4868 * ata_scsi_release - SCSI layer callback hook for host unload
4869 * @host: libata host to be unloaded
4871 * Performs all duties necessary to shut down a libata port...
4872 * Kill port kthread, disable port, and release resources.
4875 * Inherited from SCSI layer.
4881 int ata_scsi_release(struct Scsi_Host *host)
4883 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4888 ap->ops->port_disable(ap);
4889 ata_host_remove(ap, 0);
4890 for (i = 0; i < ATA_MAX_DEVICES; i++)
4891 kfree(ap->device[i].id);
4898 * ata_std_ports - initialize ioaddr with standard port offsets.
4899 * @ioaddr: IO address structure to be initialized
4901 * Utility function which initializes data_addr, error_addr,
4902 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4903 * device_addr, status_addr, and command_addr to standard offsets
4904 * relative to cmd_addr.
4906 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4909 void ata_std_ports(struct ata_ioports *ioaddr)
4911 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4912 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4913 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4914 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4915 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4916 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4917 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4918 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4919 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4920 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4926 void ata_pci_host_stop (struct ata_host_set *host_set)
4928 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4930 pci_iounmap(pdev, host_set->mmio_base);
4934 * ata_pci_remove_one - PCI layer callback for device removal
4935 * @pdev: PCI device that was removed
4937 * PCI layer indicates to libata via this hook that
4938 * hot-unplug or module unload event has occurred.
4939 * Handle this by unregistering all objects associated
4940 * with this PCI device. Free those objects. Then finally
4941 * release PCI resources and disable device.
4944 * Inherited from PCI layer (may sleep).
4947 void ata_pci_remove_one (struct pci_dev *pdev)
4949 struct device *dev = pci_dev_to_dev(pdev);
4950 struct ata_host_set *host_set = dev_get_drvdata(dev);
4952 ata_host_set_remove(host_set);
4953 pci_release_regions(pdev);
4954 pci_disable_device(pdev);
4955 dev_set_drvdata(dev, NULL);
4958 /* move to PCI subsystem */
4959 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4961 unsigned long tmp = 0;
4963 switch (bits->width) {
4966 pci_read_config_byte(pdev, bits->reg, &tmp8);
4972 pci_read_config_word(pdev, bits->reg, &tmp16);
4978 pci_read_config_dword(pdev, bits->reg, &tmp32);
4989 return (tmp == bits->val) ? 1 : 0;
4992 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4994 pci_save_state(pdev);
4995 pci_disable_device(pdev);
4996 pci_set_power_state(pdev, PCI_D3hot);
5000 int ata_pci_device_resume(struct pci_dev *pdev)
5002 pci_set_power_state(pdev, PCI_D0);
5003 pci_restore_state(pdev);
5004 pci_enable_device(pdev);
5005 pci_set_master(pdev);
5008 #endif /* CONFIG_PCI */
5011 static int __init ata_init(void)
5013 ata_wq = create_workqueue("ata");
5017 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5021 static void __exit ata_exit(void)
5023 destroy_workqueue(ata_wq);
5026 module_init(ata_init);
5027 module_exit(ata_exit);
5029 static unsigned long ratelimit_time;
5030 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5032 int ata_ratelimit(void)
5035 unsigned long flags;
5037 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5039 if (time_after(jiffies, ratelimit_time)) {
5041 ratelimit_time = jiffies + (HZ/5);
5045 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5051 * libata is essentially a library of internal helper functions for
5052 * low-level ATA host controller drivers. As such, the API/ABI is
5053 * likely to change as new drivers are added and updated.
5054 * Do not depend on ABI/API stability.
5057 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5058 EXPORT_SYMBOL_GPL(ata_std_ports);
5059 EXPORT_SYMBOL_GPL(ata_device_add);
5060 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5061 EXPORT_SYMBOL_GPL(ata_sg_init);
5062 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5063 EXPORT_SYMBOL_GPL(__ata_qc_complete);
5064 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5065 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5066 EXPORT_SYMBOL_GPL(ata_tf_load);
5067 EXPORT_SYMBOL_GPL(ata_tf_read);
5068 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5069 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5070 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5071 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5072 EXPORT_SYMBOL_GPL(ata_check_status);
5073 EXPORT_SYMBOL_GPL(ata_altstatus);
5074 EXPORT_SYMBOL_GPL(ata_exec_command);
5075 EXPORT_SYMBOL_GPL(ata_port_start);
5076 EXPORT_SYMBOL_GPL(ata_port_stop);
5077 EXPORT_SYMBOL_GPL(ata_host_stop);
5078 EXPORT_SYMBOL_GPL(ata_interrupt);
5079 EXPORT_SYMBOL_GPL(ata_qc_prep);
5080 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5081 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5082 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5083 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5084 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5085 EXPORT_SYMBOL_GPL(ata_port_probe);
5086 EXPORT_SYMBOL_GPL(sata_phy_reset);
5087 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5088 EXPORT_SYMBOL_GPL(ata_bus_reset);
5089 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5090 EXPORT_SYMBOL_GPL(ata_std_softreset);
5091 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5092 EXPORT_SYMBOL_GPL(ata_std_postreset);
5093 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5094 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5095 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5096 EXPORT_SYMBOL_GPL(ata_port_disable);
5097 EXPORT_SYMBOL_GPL(ata_ratelimit);
5098 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5099 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5100 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5101 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5102 EXPORT_SYMBOL_GPL(ata_scsi_timed_out);
5103 EXPORT_SYMBOL_GPL(ata_scsi_error);
5104 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5105 EXPORT_SYMBOL_GPL(ata_scsi_release);
5106 EXPORT_SYMBOL_GPL(ata_host_intr);
5107 EXPORT_SYMBOL_GPL(ata_dev_classify);
5108 EXPORT_SYMBOL_GPL(ata_id_string);
5109 EXPORT_SYMBOL_GPL(ata_id_c_string);
5110 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5111 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5112 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5114 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5115 EXPORT_SYMBOL_GPL(ata_timing_compute);
5116 EXPORT_SYMBOL_GPL(ata_timing_merge);
5119 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5120 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5121 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5122 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5123 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5124 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5125 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5126 #endif /* CONFIG_PCI */
5128 EXPORT_SYMBOL_GPL(ata_device_suspend);
5129 EXPORT_SYMBOL_GPL(ata_device_resume);
5130 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5131 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);