Merge branch 'topic/hda' into for-linus
[linux-2.6] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <sound/core.h>
26 #include <sound/control.h>
27 #include <sound/info.h>
28 #include <sound/pcm.h>
29 #include <sound/pcm_params.h>
30 #include <sound/timer.h>
31
32 /*
33  * fill ring buffer with silence
34  * runtime->silence_start: starting pointer to silence area
35  * runtime->silence_filled: size filled with silence
36  * runtime->silence_threshold: threshold from application
37  * runtime->silence_size: maximal size from application
38  *
39  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
40  */
41 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
42 {
43         struct snd_pcm_runtime *runtime = substream->runtime;
44         snd_pcm_uframes_t frames, ofs, transfer;
45
46         if (runtime->silence_size < runtime->boundary) {
47                 snd_pcm_sframes_t noise_dist, n;
48                 if (runtime->silence_start != runtime->control->appl_ptr) {
49                         n = runtime->control->appl_ptr - runtime->silence_start;
50                         if (n < 0)
51                                 n += runtime->boundary;
52                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
53                                 runtime->silence_filled -= n;
54                         else
55                                 runtime->silence_filled = 0;
56                         runtime->silence_start = runtime->control->appl_ptr;
57                 }
58                 if (runtime->silence_filled >= runtime->buffer_size)
59                         return;
60                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
61                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
62                         return;
63                 frames = runtime->silence_threshold - noise_dist;
64                 if (frames > runtime->silence_size)
65                         frames = runtime->silence_size;
66         } else {
67                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
68                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
69                         runtime->silence_filled = avail > 0 ? avail : 0;
70                         runtime->silence_start = (runtime->status->hw_ptr +
71                                                   runtime->silence_filled) %
72                                                  runtime->boundary;
73                 } else {
74                         ofs = runtime->status->hw_ptr;
75                         frames = new_hw_ptr - ofs;
76                         if ((snd_pcm_sframes_t)frames < 0)
77                                 frames += runtime->boundary;
78                         runtime->silence_filled -= frames;
79                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
80                                 runtime->silence_filled = 0;
81                                 runtime->silence_start = new_hw_ptr;
82                         } else {
83                                 runtime->silence_start = ofs;
84                         }
85                 }
86                 frames = runtime->buffer_size - runtime->silence_filled;
87         }
88         if (snd_BUG_ON(frames > runtime->buffer_size))
89                 return;
90         if (frames == 0)
91                 return;
92         ofs = runtime->silence_start % runtime->buffer_size;
93         while (frames > 0) {
94                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
95                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
96                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
97                         if (substream->ops->silence) {
98                                 int err;
99                                 err = substream->ops->silence(substream, -1, ofs, transfer);
100                                 snd_BUG_ON(err < 0);
101                         } else {
102                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
103                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
104                         }
105                 } else {
106                         unsigned int c;
107                         unsigned int channels = runtime->channels;
108                         if (substream->ops->silence) {
109                                 for (c = 0; c < channels; ++c) {
110                                         int err;
111                                         err = substream->ops->silence(substream, c, ofs, transfer);
112                                         snd_BUG_ON(err < 0);
113                                 }
114                         } else {
115                                 size_t dma_csize = runtime->dma_bytes / channels;
116                                 for (c = 0; c < channels; ++c) {
117                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
118                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
119                                 }
120                         }
121                 }
122                 runtime->silence_filled += transfer;
123                 frames -= transfer;
124                 ofs = 0;
125         }
126 }
127
128 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
129 #define xrun_debug(substream)   ((substream)->pstr->xrun_debug)
130 #else
131 #define xrun_debug(substream)   0
132 #endif
133
134 #define dump_stack_on_xrun(substream) do {      \
135                 if (xrun_debug(substream) > 1)  \
136                         dump_stack();           \
137         } while (0)
138
139 static void xrun(struct snd_pcm_substream *substream)
140 {
141         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
142         if (xrun_debug(substream)) {
143                 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
144                            substream->pcm->card->number,
145                            substream->pcm->device,
146                            substream->stream ? 'c' : 'p');
147                 dump_stack_on_xrun(substream);
148         }
149 }
150
151 static snd_pcm_uframes_t
152 snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
153                           struct snd_pcm_runtime *runtime)
154 {
155         snd_pcm_uframes_t pos;
156
157         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
158                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
159         pos = substream->ops->pointer(substream);
160         if (pos == SNDRV_PCM_POS_XRUN)
161                 return pos; /* XRUN */
162         if (pos >= runtime->buffer_size) {
163                 if (printk_ratelimit()) {
164                         snd_printd(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, "
165                                    "buffer size = 0x%lx, period size = 0x%lx\n",
166                                    substream->stream, pos, runtime->buffer_size,
167                                    runtime->period_size);
168                 }
169                 pos = 0;
170         }
171         pos -= pos % runtime->min_align;
172         return pos;
173 }
174
175 static int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
176                                       struct snd_pcm_runtime *runtime)
177 {
178         snd_pcm_uframes_t avail;
179
180         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
181                 avail = snd_pcm_playback_avail(runtime);
182         else
183                 avail = snd_pcm_capture_avail(runtime);
184         if (avail > runtime->avail_max)
185                 runtime->avail_max = avail;
186         if (avail >= runtime->stop_threshold) {
187                 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
188                         snd_pcm_drain_done(substream);
189                 else
190                         xrun(substream);
191                 return -EPIPE;
192         }
193         if (avail >= runtime->control->avail_min)
194                 wake_up(&runtime->sleep);
195         return 0;
196 }
197
198 #define hw_ptr_error(substream, fmt, args...)                           \
199         do {                                                            \
200                 if (xrun_debug(substream)) {                            \
201                         if (printk_ratelimit()) {                       \
202                                 snd_printd("PCM: " fmt, ##args);        \
203                         }                                               \
204                         dump_stack_on_xrun(substream);                  \
205                 }                                                       \
206         } while (0)
207
208 static int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
209 {
210         struct snd_pcm_runtime *runtime = substream->runtime;
211         snd_pcm_uframes_t pos;
212         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_ptr_interrupt, hw_base;
213         snd_pcm_sframes_t hdelta, delta;
214         unsigned long jdelta;
215
216         old_hw_ptr = runtime->status->hw_ptr;
217         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
218         if (pos == SNDRV_PCM_POS_XRUN) {
219                 xrun(substream);
220                 return -EPIPE;
221         }
222         hw_base = runtime->hw_ptr_base;
223         new_hw_ptr = hw_base + pos;
224         hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
225         delta = new_hw_ptr - hw_ptr_interrupt;
226         if (hw_ptr_interrupt >= runtime->boundary) {
227                 hw_ptr_interrupt -= runtime->boundary;
228                 if (hw_base < runtime->boundary / 2)
229                         /* hw_base was already lapped; recalc delta */
230                         delta = new_hw_ptr - hw_ptr_interrupt;
231         }
232         if (delta < 0) {
233                 delta += runtime->buffer_size;
234                 if (delta < 0) {
235                         hw_ptr_error(substream, 
236                                      "Unexpected hw_pointer value "
237                                      "(stream=%i, pos=%ld, intr_ptr=%ld)\n",
238                                      substream->stream, (long)pos,
239                                      (long)hw_ptr_interrupt);
240                         /* rebase to interrupt position */
241                         hw_base = new_hw_ptr = hw_ptr_interrupt;
242                         /* align hw_base to buffer_size */
243                         hw_base -= hw_base % runtime->buffer_size;
244                         delta = 0;
245                 } else {
246                         hw_base += runtime->buffer_size;
247                         if (hw_base >= runtime->boundary)
248                                 hw_base = 0;
249                         new_hw_ptr = hw_base + pos;
250                 }
251         }
252         hdelta = new_hw_ptr - old_hw_ptr;
253         jdelta = jiffies - runtime->hw_ptr_jiffies;
254         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
255                 delta = jdelta /
256                         (((runtime->period_size * HZ) / runtime->rate)
257                                                                 + HZ/100);
258                 hw_ptr_error(substream,
259                              "hw_ptr skipping! [Q] "
260                              "(pos=%ld, delta=%ld, period=%ld, "
261                              "jdelta=%lu/%lu/%lu)\n",
262                              (long)pos, (long)hdelta,
263                              (long)runtime->period_size, jdelta,
264                              ((hdelta * HZ) / runtime->rate), delta);
265                 hw_ptr_interrupt = runtime->hw_ptr_interrupt +
266                                    runtime->period_size * delta;
267                 if (hw_ptr_interrupt >= runtime->boundary)
268                         hw_ptr_interrupt -= runtime->boundary;
269                 /* rebase to interrupt position */
270                 hw_base = new_hw_ptr = hw_ptr_interrupt;
271                 /* align hw_base to buffer_size */
272                 hw_base -= hw_base % runtime->buffer_size;
273                 delta = 0;
274         }
275         if (delta > runtime->period_size + runtime->period_size / 2) {
276                 hw_ptr_error(substream,
277                              "Lost interrupts? "
278                              "(stream=%i, delta=%ld, intr_ptr=%ld)\n",
279                              substream->stream, (long)delta,
280                              (long)hw_ptr_interrupt);
281                 /* rebase hw_ptr_interrupt */
282                 hw_ptr_interrupt =
283                         new_hw_ptr - new_hw_ptr % runtime->period_size;
284         }
285         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
286             runtime->silence_size > 0)
287                 snd_pcm_playback_silence(substream, new_hw_ptr);
288
289         runtime->hw_ptr_base = hw_base;
290         runtime->status->hw_ptr = new_hw_ptr;
291         runtime->hw_ptr_jiffies = jiffies;
292         runtime->hw_ptr_interrupt = hw_ptr_interrupt;
293
294         return snd_pcm_update_hw_ptr_post(substream, runtime);
295 }
296
297 /* CAUTION: call it with irq disabled */
298 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
299 {
300         struct snd_pcm_runtime *runtime = substream->runtime;
301         snd_pcm_uframes_t pos;
302         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
303         snd_pcm_sframes_t delta;
304         unsigned long jdelta;
305
306         old_hw_ptr = runtime->status->hw_ptr;
307         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
308         if (pos == SNDRV_PCM_POS_XRUN) {
309                 xrun(substream);
310                 return -EPIPE;
311         }
312         hw_base = runtime->hw_ptr_base;
313         new_hw_ptr = hw_base + pos;
314
315         delta = new_hw_ptr - old_hw_ptr;
316         jdelta = jiffies - runtime->hw_ptr_jiffies;
317         if (delta < 0) {
318                 delta += runtime->buffer_size;
319                 if (delta < 0) {
320                         hw_ptr_error(substream, 
321                                      "Unexpected hw_pointer value [2] "
322                                      "(stream=%i, pos=%ld, old_ptr=%ld, jdelta=%li)\n",
323                                      substream->stream, (long)pos,
324                                      (long)old_hw_ptr, jdelta);
325                         return 0;
326                 }
327                 hw_base += runtime->buffer_size;
328                 if (hw_base >= runtime->boundary)
329                         hw_base = 0;
330                 new_hw_ptr = hw_base + pos;
331         }
332         if (((delta * HZ) / runtime->rate) > jdelta + HZ/100) {
333                 hw_ptr_error(substream,
334                              "hw_ptr skipping! "
335                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu)\n",
336                              (long)pos, (long)delta,
337                              (long)runtime->period_size, jdelta,
338                              ((delta * HZ) / runtime->rate));
339                 return 0;
340         }
341         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
342             runtime->silence_size > 0)
343                 snd_pcm_playback_silence(substream, new_hw_ptr);
344
345         runtime->hw_ptr_base = hw_base;
346         runtime->status->hw_ptr = new_hw_ptr;
347         runtime->hw_ptr_jiffies = jiffies;
348
349         return snd_pcm_update_hw_ptr_post(substream, runtime);
350 }
351
352 /**
353  * snd_pcm_set_ops - set the PCM operators
354  * @pcm: the pcm instance
355  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
356  * @ops: the operator table
357  *
358  * Sets the given PCM operators to the pcm instance.
359  */
360 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
361 {
362         struct snd_pcm_str *stream = &pcm->streams[direction];
363         struct snd_pcm_substream *substream;
364         
365         for (substream = stream->substream; substream != NULL; substream = substream->next)
366                 substream->ops = ops;
367 }
368
369 EXPORT_SYMBOL(snd_pcm_set_ops);
370
371 /**
372  * snd_pcm_sync - set the PCM sync id
373  * @substream: the pcm substream
374  *
375  * Sets the PCM sync identifier for the card.
376  */
377 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
378 {
379         struct snd_pcm_runtime *runtime = substream->runtime;
380         
381         runtime->sync.id32[0] = substream->pcm->card->number;
382         runtime->sync.id32[1] = -1;
383         runtime->sync.id32[2] = -1;
384         runtime->sync.id32[3] = -1;
385 }
386
387 EXPORT_SYMBOL(snd_pcm_set_sync);
388
389 /*
390  *  Standard ioctl routine
391  */
392
393 static inline unsigned int div32(unsigned int a, unsigned int b, 
394                                  unsigned int *r)
395 {
396         if (b == 0) {
397                 *r = 0;
398                 return UINT_MAX;
399         }
400         *r = a % b;
401         return a / b;
402 }
403
404 static inline unsigned int div_down(unsigned int a, unsigned int b)
405 {
406         if (b == 0)
407                 return UINT_MAX;
408         return a / b;
409 }
410
411 static inline unsigned int div_up(unsigned int a, unsigned int b)
412 {
413         unsigned int r;
414         unsigned int q;
415         if (b == 0)
416                 return UINT_MAX;
417         q = div32(a, b, &r);
418         if (r)
419                 ++q;
420         return q;
421 }
422
423 static inline unsigned int mul(unsigned int a, unsigned int b)
424 {
425         if (a == 0)
426                 return 0;
427         if (div_down(UINT_MAX, a) < b)
428                 return UINT_MAX;
429         return a * b;
430 }
431
432 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
433                                     unsigned int c, unsigned int *r)
434 {
435         u_int64_t n = (u_int64_t) a * b;
436         if (c == 0) {
437                 snd_BUG_ON(!n);
438                 *r = 0;
439                 return UINT_MAX;
440         }
441         div64_32(&n, c, r);
442         if (n >= UINT_MAX) {
443                 *r = 0;
444                 return UINT_MAX;
445         }
446         return n;
447 }
448
449 /**
450  * snd_interval_refine - refine the interval value of configurator
451  * @i: the interval value to refine
452  * @v: the interval value to refer to
453  *
454  * Refines the interval value with the reference value.
455  * The interval is changed to the range satisfying both intervals.
456  * The interval status (min, max, integer, etc.) are evaluated.
457  *
458  * Returns non-zero if the value is changed, zero if not changed.
459  */
460 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
461 {
462         int changed = 0;
463         if (snd_BUG_ON(snd_interval_empty(i)))
464                 return -EINVAL;
465         if (i->min < v->min) {
466                 i->min = v->min;
467                 i->openmin = v->openmin;
468                 changed = 1;
469         } else if (i->min == v->min && !i->openmin && v->openmin) {
470                 i->openmin = 1;
471                 changed = 1;
472         }
473         if (i->max > v->max) {
474                 i->max = v->max;
475                 i->openmax = v->openmax;
476                 changed = 1;
477         } else if (i->max == v->max && !i->openmax && v->openmax) {
478                 i->openmax = 1;
479                 changed = 1;
480         }
481         if (!i->integer && v->integer) {
482                 i->integer = 1;
483                 changed = 1;
484         }
485         if (i->integer) {
486                 if (i->openmin) {
487                         i->min++;
488                         i->openmin = 0;
489                 }
490                 if (i->openmax) {
491                         i->max--;
492                         i->openmax = 0;
493                 }
494         } else if (!i->openmin && !i->openmax && i->min == i->max)
495                 i->integer = 1;
496         if (snd_interval_checkempty(i)) {
497                 snd_interval_none(i);
498                 return -EINVAL;
499         }
500         return changed;
501 }
502
503 EXPORT_SYMBOL(snd_interval_refine);
504
505 static int snd_interval_refine_first(struct snd_interval *i)
506 {
507         if (snd_BUG_ON(snd_interval_empty(i)))
508                 return -EINVAL;
509         if (snd_interval_single(i))
510                 return 0;
511         i->max = i->min;
512         i->openmax = i->openmin;
513         if (i->openmax)
514                 i->max++;
515         return 1;
516 }
517
518 static int snd_interval_refine_last(struct snd_interval *i)
519 {
520         if (snd_BUG_ON(snd_interval_empty(i)))
521                 return -EINVAL;
522         if (snd_interval_single(i))
523                 return 0;
524         i->min = i->max;
525         i->openmin = i->openmax;
526         if (i->openmin)
527                 i->min--;
528         return 1;
529 }
530
531 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
532 {
533         if (a->empty || b->empty) {
534                 snd_interval_none(c);
535                 return;
536         }
537         c->empty = 0;
538         c->min = mul(a->min, b->min);
539         c->openmin = (a->openmin || b->openmin);
540         c->max = mul(a->max,  b->max);
541         c->openmax = (a->openmax || b->openmax);
542         c->integer = (a->integer && b->integer);
543 }
544
545 /**
546  * snd_interval_div - refine the interval value with division
547  * @a: dividend
548  * @b: divisor
549  * @c: quotient
550  *
551  * c = a / b
552  *
553  * Returns non-zero if the value is changed, zero if not changed.
554  */
555 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
556 {
557         unsigned int r;
558         if (a->empty || b->empty) {
559                 snd_interval_none(c);
560                 return;
561         }
562         c->empty = 0;
563         c->min = div32(a->min, b->max, &r);
564         c->openmin = (r || a->openmin || b->openmax);
565         if (b->min > 0) {
566                 c->max = div32(a->max, b->min, &r);
567                 if (r) {
568                         c->max++;
569                         c->openmax = 1;
570                 } else
571                         c->openmax = (a->openmax || b->openmin);
572         } else {
573                 c->max = UINT_MAX;
574                 c->openmax = 0;
575         }
576         c->integer = 0;
577 }
578
579 /**
580  * snd_interval_muldivk - refine the interval value
581  * @a: dividend 1
582  * @b: dividend 2
583  * @k: divisor (as integer)
584  * @c: result
585   *
586  * c = a * b / k
587  *
588  * Returns non-zero if the value is changed, zero if not changed.
589  */
590 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
591                       unsigned int k, struct snd_interval *c)
592 {
593         unsigned int r;
594         if (a->empty || b->empty) {
595                 snd_interval_none(c);
596                 return;
597         }
598         c->empty = 0;
599         c->min = muldiv32(a->min, b->min, k, &r);
600         c->openmin = (r || a->openmin || b->openmin);
601         c->max = muldiv32(a->max, b->max, k, &r);
602         if (r) {
603                 c->max++;
604                 c->openmax = 1;
605         } else
606                 c->openmax = (a->openmax || b->openmax);
607         c->integer = 0;
608 }
609
610 /**
611  * snd_interval_mulkdiv - refine the interval value
612  * @a: dividend 1
613  * @k: dividend 2 (as integer)
614  * @b: divisor
615  * @c: result
616  *
617  * c = a * k / b
618  *
619  * Returns non-zero if the value is changed, zero if not changed.
620  */
621 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
622                       const struct snd_interval *b, struct snd_interval *c)
623 {
624         unsigned int r;
625         if (a->empty || b->empty) {
626                 snd_interval_none(c);
627                 return;
628         }
629         c->empty = 0;
630         c->min = muldiv32(a->min, k, b->max, &r);
631         c->openmin = (r || a->openmin || b->openmax);
632         if (b->min > 0) {
633                 c->max = muldiv32(a->max, k, b->min, &r);
634                 if (r) {
635                         c->max++;
636                         c->openmax = 1;
637                 } else
638                         c->openmax = (a->openmax || b->openmin);
639         } else {
640                 c->max = UINT_MAX;
641                 c->openmax = 0;
642         }
643         c->integer = 0;
644 }
645
646 /* ---- */
647
648
649 /**
650  * snd_interval_ratnum - refine the interval value
651  * @i: interval to refine
652  * @rats_count: number of ratnum_t 
653  * @rats: ratnum_t array
654  * @nump: pointer to store the resultant numerator
655  * @denp: pointer to store the resultant denominator
656  *
657  * Returns non-zero if the value is changed, zero if not changed.
658  */
659 int snd_interval_ratnum(struct snd_interval *i,
660                         unsigned int rats_count, struct snd_ratnum *rats,
661                         unsigned int *nump, unsigned int *denp)
662 {
663         unsigned int best_num, best_diff, best_den;
664         unsigned int k;
665         struct snd_interval t;
666         int err;
667
668         best_num = best_den = best_diff = 0;
669         for (k = 0; k < rats_count; ++k) {
670                 unsigned int num = rats[k].num;
671                 unsigned int den;
672                 unsigned int q = i->min;
673                 int diff;
674                 if (q == 0)
675                         q = 1;
676                 den = div_down(num, q);
677                 if (den < rats[k].den_min)
678                         continue;
679                 if (den > rats[k].den_max)
680                         den = rats[k].den_max;
681                 else {
682                         unsigned int r;
683                         r = (den - rats[k].den_min) % rats[k].den_step;
684                         if (r != 0)
685                                 den -= r;
686                 }
687                 diff = num - q * den;
688                 if (best_num == 0 ||
689                     diff * best_den < best_diff * den) {
690                         best_diff = diff;
691                         best_den = den;
692                         best_num = num;
693                 }
694         }
695         if (best_den == 0) {
696                 i->empty = 1;
697                 return -EINVAL;
698         }
699         t.min = div_down(best_num, best_den);
700         t.openmin = !!(best_num % best_den);
701         
702         best_num = best_den = best_diff = 0;
703         for (k = 0; k < rats_count; ++k) {
704                 unsigned int num = rats[k].num;
705                 unsigned int den;
706                 unsigned int q = i->max;
707                 int diff;
708                 if (q == 0) {
709                         i->empty = 1;
710                         return -EINVAL;
711                 }
712                 den = div_up(num, q);
713                 if (den > rats[k].den_max)
714                         continue;
715                 if (den < rats[k].den_min)
716                         den = rats[k].den_min;
717                 else {
718                         unsigned int r;
719                         r = (den - rats[k].den_min) % rats[k].den_step;
720                         if (r != 0)
721                                 den += rats[k].den_step - r;
722                 }
723                 diff = q * den - num;
724                 if (best_num == 0 ||
725                     diff * best_den < best_diff * den) {
726                         best_diff = diff;
727                         best_den = den;
728                         best_num = num;
729                 }
730         }
731         if (best_den == 0) {
732                 i->empty = 1;
733                 return -EINVAL;
734         }
735         t.max = div_up(best_num, best_den);
736         t.openmax = !!(best_num % best_den);
737         t.integer = 0;
738         err = snd_interval_refine(i, &t);
739         if (err < 0)
740                 return err;
741
742         if (snd_interval_single(i)) {
743                 if (nump)
744                         *nump = best_num;
745                 if (denp)
746                         *denp = best_den;
747         }
748         return err;
749 }
750
751 EXPORT_SYMBOL(snd_interval_ratnum);
752
753 /**
754  * snd_interval_ratden - refine the interval value
755  * @i: interval to refine
756  * @rats_count: number of struct ratden
757  * @rats: struct ratden array
758  * @nump: pointer to store the resultant numerator
759  * @denp: pointer to store the resultant denominator
760  *
761  * Returns non-zero if the value is changed, zero if not changed.
762  */
763 static int snd_interval_ratden(struct snd_interval *i,
764                                unsigned int rats_count, struct snd_ratden *rats,
765                                unsigned int *nump, unsigned int *denp)
766 {
767         unsigned int best_num, best_diff, best_den;
768         unsigned int k;
769         struct snd_interval t;
770         int err;
771
772         best_num = best_den = best_diff = 0;
773         for (k = 0; k < rats_count; ++k) {
774                 unsigned int num;
775                 unsigned int den = rats[k].den;
776                 unsigned int q = i->min;
777                 int diff;
778                 num = mul(q, den);
779                 if (num > rats[k].num_max)
780                         continue;
781                 if (num < rats[k].num_min)
782                         num = rats[k].num_max;
783                 else {
784                         unsigned int r;
785                         r = (num - rats[k].num_min) % rats[k].num_step;
786                         if (r != 0)
787                                 num += rats[k].num_step - r;
788                 }
789                 diff = num - q * den;
790                 if (best_num == 0 ||
791                     diff * best_den < best_diff * den) {
792                         best_diff = diff;
793                         best_den = den;
794                         best_num = num;
795                 }
796         }
797         if (best_den == 0) {
798                 i->empty = 1;
799                 return -EINVAL;
800         }
801         t.min = div_down(best_num, best_den);
802         t.openmin = !!(best_num % best_den);
803         
804         best_num = best_den = best_diff = 0;
805         for (k = 0; k < rats_count; ++k) {
806                 unsigned int num;
807                 unsigned int den = rats[k].den;
808                 unsigned int q = i->max;
809                 int diff;
810                 num = mul(q, den);
811                 if (num < rats[k].num_min)
812                         continue;
813                 if (num > rats[k].num_max)
814                         num = rats[k].num_max;
815                 else {
816                         unsigned int r;
817                         r = (num - rats[k].num_min) % rats[k].num_step;
818                         if (r != 0)
819                                 num -= r;
820                 }
821                 diff = q * den - num;
822                 if (best_num == 0 ||
823                     diff * best_den < best_diff * den) {
824                         best_diff = diff;
825                         best_den = den;
826                         best_num = num;
827                 }
828         }
829         if (best_den == 0) {
830                 i->empty = 1;
831                 return -EINVAL;
832         }
833         t.max = div_up(best_num, best_den);
834         t.openmax = !!(best_num % best_den);
835         t.integer = 0;
836         err = snd_interval_refine(i, &t);
837         if (err < 0)
838                 return err;
839
840         if (snd_interval_single(i)) {
841                 if (nump)
842                         *nump = best_num;
843                 if (denp)
844                         *denp = best_den;
845         }
846         return err;
847 }
848
849 /**
850  * snd_interval_list - refine the interval value from the list
851  * @i: the interval value to refine
852  * @count: the number of elements in the list
853  * @list: the value list
854  * @mask: the bit-mask to evaluate
855  *
856  * Refines the interval value from the list.
857  * When mask is non-zero, only the elements corresponding to bit 1 are
858  * evaluated.
859  *
860  * Returns non-zero if the value is changed, zero if not changed.
861  */
862 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
863 {
864         unsigned int k;
865         int changed = 0;
866
867         if (!count) {
868                 i->empty = 1;
869                 return -EINVAL;
870         }
871         for (k = 0; k < count; k++) {
872                 if (mask && !(mask & (1 << k)))
873                         continue;
874                 if (i->min == list[k] && !i->openmin)
875                         goto _l1;
876                 if (i->min < list[k]) {
877                         i->min = list[k];
878                         i->openmin = 0;
879                         changed = 1;
880                         goto _l1;
881                 }
882         }
883         i->empty = 1;
884         return -EINVAL;
885  _l1:
886         for (k = count; k-- > 0;) {
887                 if (mask && !(mask & (1 << k)))
888                         continue;
889                 if (i->max == list[k] && !i->openmax)
890                         goto _l2;
891                 if (i->max > list[k]) {
892                         i->max = list[k];
893                         i->openmax = 0;
894                         changed = 1;
895                         goto _l2;
896                 }
897         }
898         i->empty = 1;
899         return -EINVAL;
900  _l2:
901         if (snd_interval_checkempty(i)) {
902                 i->empty = 1;
903                 return -EINVAL;
904         }
905         return changed;
906 }
907
908 EXPORT_SYMBOL(snd_interval_list);
909
910 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
911 {
912         unsigned int n;
913         int changed = 0;
914         n = (i->min - min) % step;
915         if (n != 0 || i->openmin) {
916                 i->min += step - n;
917                 changed = 1;
918         }
919         n = (i->max - min) % step;
920         if (n != 0 || i->openmax) {
921                 i->max -= n;
922                 changed = 1;
923         }
924         if (snd_interval_checkempty(i)) {
925                 i->empty = 1;
926                 return -EINVAL;
927         }
928         return changed;
929 }
930
931 /* Info constraints helpers */
932
933 /**
934  * snd_pcm_hw_rule_add - add the hw-constraint rule
935  * @runtime: the pcm runtime instance
936  * @cond: condition bits
937  * @var: the variable to evaluate
938  * @func: the evaluation function
939  * @private: the private data pointer passed to function
940  * @dep: the dependent variables
941  *
942  * Returns zero if successful, or a negative error code on failure.
943  */
944 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
945                         int var,
946                         snd_pcm_hw_rule_func_t func, void *private,
947                         int dep, ...)
948 {
949         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
950         struct snd_pcm_hw_rule *c;
951         unsigned int k;
952         va_list args;
953         va_start(args, dep);
954         if (constrs->rules_num >= constrs->rules_all) {
955                 struct snd_pcm_hw_rule *new;
956                 unsigned int new_rules = constrs->rules_all + 16;
957                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
958                 if (!new)
959                         return -ENOMEM;
960                 if (constrs->rules) {
961                         memcpy(new, constrs->rules,
962                                constrs->rules_num * sizeof(*c));
963                         kfree(constrs->rules);
964                 }
965                 constrs->rules = new;
966                 constrs->rules_all = new_rules;
967         }
968         c = &constrs->rules[constrs->rules_num];
969         c->cond = cond;
970         c->func = func;
971         c->var = var;
972         c->private = private;
973         k = 0;
974         while (1) {
975                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
976                         return -EINVAL;
977                 c->deps[k++] = dep;
978                 if (dep < 0)
979                         break;
980                 dep = va_arg(args, int);
981         }
982         constrs->rules_num++;
983         va_end(args);
984         return 0;
985 }                                   
986
987 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
988
989 /**
990  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
991  * @runtime: PCM runtime instance
992  * @var: hw_params variable to apply the mask
993  * @mask: the bitmap mask
994  *
995  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
996  */
997 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
998                                u_int32_t mask)
999 {
1000         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1001         struct snd_mask *maskp = constrs_mask(constrs, var);
1002         *maskp->bits &= mask;
1003         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1004         if (*maskp->bits == 0)
1005                 return -EINVAL;
1006         return 0;
1007 }
1008
1009 /**
1010  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1011  * @runtime: PCM runtime instance
1012  * @var: hw_params variable to apply the mask
1013  * @mask: the 64bit bitmap mask
1014  *
1015  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1016  */
1017 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1018                                  u_int64_t mask)
1019 {
1020         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1021         struct snd_mask *maskp = constrs_mask(constrs, var);
1022         maskp->bits[0] &= (u_int32_t)mask;
1023         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1024         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1025         if (! maskp->bits[0] && ! maskp->bits[1])
1026                 return -EINVAL;
1027         return 0;
1028 }
1029
1030 /**
1031  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1032  * @runtime: PCM runtime instance
1033  * @var: hw_params variable to apply the integer constraint
1034  *
1035  * Apply the constraint of integer to an interval parameter.
1036  */
1037 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1038 {
1039         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1040         return snd_interval_setinteger(constrs_interval(constrs, var));
1041 }
1042
1043 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1044
1045 /**
1046  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1047  * @runtime: PCM runtime instance
1048  * @var: hw_params variable to apply the range
1049  * @min: the minimal value
1050  * @max: the maximal value
1051  * 
1052  * Apply the min/max range constraint to an interval parameter.
1053  */
1054 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1055                                  unsigned int min, unsigned int max)
1056 {
1057         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1058         struct snd_interval t;
1059         t.min = min;
1060         t.max = max;
1061         t.openmin = t.openmax = 0;
1062         t.integer = 0;
1063         return snd_interval_refine(constrs_interval(constrs, var), &t);
1064 }
1065
1066 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1067
1068 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1069                                 struct snd_pcm_hw_rule *rule)
1070 {
1071         struct snd_pcm_hw_constraint_list *list = rule->private;
1072         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1073 }               
1074
1075
1076 /**
1077  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1078  * @runtime: PCM runtime instance
1079  * @cond: condition bits
1080  * @var: hw_params variable to apply the list constraint
1081  * @l: list
1082  * 
1083  * Apply the list of constraints to an interval parameter.
1084  */
1085 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1086                                unsigned int cond,
1087                                snd_pcm_hw_param_t var,
1088                                struct snd_pcm_hw_constraint_list *l)
1089 {
1090         return snd_pcm_hw_rule_add(runtime, cond, var,
1091                                    snd_pcm_hw_rule_list, l,
1092                                    var, -1);
1093 }
1094
1095 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1096
1097 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1098                                    struct snd_pcm_hw_rule *rule)
1099 {
1100         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1101         unsigned int num = 0, den = 0;
1102         int err;
1103         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1104                                   r->nrats, r->rats, &num, &den);
1105         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1106                 params->rate_num = num;
1107                 params->rate_den = den;
1108         }
1109         return err;
1110 }
1111
1112 /**
1113  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1114  * @runtime: PCM runtime instance
1115  * @cond: condition bits
1116  * @var: hw_params variable to apply the ratnums constraint
1117  * @r: struct snd_ratnums constriants
1118  */
1119 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1120                                   unsigned int cond,
1121                                   snd_pcm_hw_param_t var,
1122                                   struct snd_pcm_hw_constraint_ratnums *r)
1123 {
1124         return snd_pcm_hw_rule_add(runtime, cond, var,
1125                                    snd_pcm_hw_rule_ratnums, r,
1126                                    var, -1);
1127 }
1128
1129 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1130
1131 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1132                                    struct snd_pcm_hw_rule *rule)
1133 {
1134         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1135         unsigned int num = 0, den = 0;
1136         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1137                                   r->nrats, r->rats, &num, &den);
1138         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1139                 params->rate_num = num;
1140                 params->rate_den = den;
1141         }
1142         return err;
1143 }
1144
1145 /**
1146  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1147  * @runtime: PCM runtime instance
1148  * @cond: condition bits
1149  * @var: hw_params variable to apply the ratdens constraint
1150  * @r: struct snd_ratdens constriants
1151  */
1152 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1153                                   unsigned int cond,
1154                                   snd_pcm_hw_param_t var,
1155                                   struct snd_pcm_hw_constraint_ratdens *r)
1156 {
1157         return snd_pcm_hw_rule_add(runtime, cond, var,
1158                                    snd_pcm_hw_rule_ratdens, r,
1159                                    var, -1);
1160 }
1161
1162 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1163
1164 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1165                                   struct snd_pcm_hw_rule *rule)
1166 {
1167         unsigned int l = (unsigned long) rule->private;
1168         int width = l & 0xffff;
1169         unsigned int msbits = l >> 16;
1170         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1171         if (snd_interval_single(i) && snd_interval_value(i) == width)
1172                 params->msbits = msbits;
1173         return 0;
1174 }
1175
1176 /**
1177  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1178  * @runtime: PCM runtime instance
1179  * @cond: condition bits
1180  * @width: sample bits width
1181  * @msbits: msbits width
1182  */
1183 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1184                                  unsigned int cond,
1185                                  unsigned int width,
1186                                  unsigned int msbits)
1187 {
1188         unsigned long l = (msbits << 16) | width;
1189         return snd_pcm_hw_rule_add(runtime, cond, -1,
1190                                     snd_pcm_hw_rule_msbits,
1191                                     (void*) l,
1192                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1193 }
1194
1195 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1196
1197 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1198                                 struct snd_pcm_hw_rule *rule)
1199 {
1200         unsigned long step = (unsigned long) rule->private;
1201         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1202 }
1203
1204 /**
1205  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1206  * @runtime: PCM runtime instance
1207  * @cond: condition bits
1208  * @var: hw_params variable to apply the step constraint
1209  * @step: step size
1210  */
1211 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1212                                unsigned int cond,
1213                                snd_pcm_hw_param_t var,
1214                                unsigned long step)
1215 {
1216         return snd_pcm_hw_rule_add(runtime, cond, var, 
1217                                    snd_pcm_hw_rule_step, (void *) step,
1218                                    var, -1);
1219 }
1220
1221 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1222
1223 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1224 {
1225         static unsigned int pow2_sizes[] = {
1226                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1227                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1228                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1229                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1230         };
1231         return snd_interval_list(hw_param_interval(params, rule->var),
1232                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1233 }               
1234
1235 /**
1236  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1237  * @runtime: PCM runtime instance
1238  * @cond: condition bits
1239  * @var: hw_params variable to apply the power-of-2 constraint
1240  */
1241 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1242                                unsigned int cond,
1243                                snd_pcm_hw_param_t var)
1244 {
1245         return snd_pcm_hw_rule_add(runtime, cond, var, 
1246                                    snd_pcm_hw_rule_pow2, NULL,
1247                                    var, -1);
1248 }
1249
1250 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1251
1252 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1253                                   snd_pcm_hw_param_t var)
1254 {
1255         if (hw_is_mask(var)) {
1256                 snd_mask_any(hw_param_mask(params, var));
1257                 params->cmask |= 1 << var;
1258                 params->rmask |= 1 << var;
1259                 return;
1260         }
1261         if (hw_is_interval(var)) {
1262                 snd_interval_any(hw_param_interval(params, var));
1263                 params->cmask |= 1 << var;
1264                 params->rmask |= 1 << var;
1265                 return;
1266         }
1267         snd_BUG();
1268 }
1269
1270 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1271 {
1272         unsigned int k;
1273         memset(params, 0, sizeof(*params));
1274         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1275                 _snd_pcm_hw_param_any(params, k);
1276         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1277                 _snd_pcm_hw_param_any(params, k);
1278         params->info = ~0U;
1279 }
1280
1281 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1282
1283 /**
1284  * snd_pcm_hw_param_value - return @params field @var value
1285  * @params: the hw_params instance
1286  * @var: parameter to retrieve
1287  * @dir: pointer to the direction (-1,0,1) or %NULL
1288  *
1289  * Return the value for field @var if it's fixed in configuration space
1290  * defined by @params. Return -%EINVAL otherwise.
1291  */
1292 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1293                            snd_pcm_hw_param_t var, int *dir)
1294 {
1295         if (hw_is_mask(var)) {
1296                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1297                 if (!snd_mask_single(mask))
1298                         return -EINVAL;
1299                 if (dir)
1300                         *dir = 0;
1301                 return snd_mask_value(mask);
1302         }
1303         if (hw_is_interval(var)) {
1304                 const struct snd_interval *i = hw_param_interval_c(params, var);
1305                 if (!snd_interval_single(i))
1306                         return -EINVAL;
1307                 if (dir)
1308                         *dir = i->openmin;
1309                 return snd_interval_value(i);
1310         }
1311         return -EINVAL;
1312 }
1313
1314 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1315
1316 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1317                                 snd_pcm_hw_param_t var)
1318 {
1319         if (hw_is_mask(var)) {
1320                 snd_mask_none(hw_param_mask(params, var));
1321                 params->cmask |= 1 << var;
1322                 params->rmask |= 1 << var;
1323         } else if (hw_is_interval(var)) {
1324                 snd_interval_none(hw_param_interval(params, var));
1325                 params->cmask |= 1 << var;
1326                 params->rmask |= 1 << var;
1327         } else {
1328                 snd_BUG();
1329         }
1330 }
1331
1332 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1333
1334 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1335                                    snd_pcm_hw_param_t var)
1336 {
1337         int changed;
1338         if (hw_is_mask(var))
1339                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1340         else if (hw_is_interval(var))
1341                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1342         else
1343                 return -EINVAL;
1344         if (changed) {
1345                 params->cmask |= 1 << var;
1346                 params->rmask |= 1 << var;
1347         }
1348         return changed;
1349 }
1350
1351
1352 /**
1353  * snd_pcm_hw_param_first - refine config space and return minimum value
1354  * @pcm: PCM instance
1355  * @params: the hw_params instance
1356  * @var: parameter to retrieve
1357  * @dir: pointer to the direction (-1,0,1) or %NULL
1358  *
1359  * Inside configuration space defined by @params remove from @var all
1360  * values > minimum. Reduce configuration space accordingly.
1361  * Return the minimum.
1362  */
1363 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1364                            struct snd_pcm_hw_params *params, 
1365                            snd_pcm_hw_param_t var, int *dir)
1366 {
1367         int changed = _snd_pcm_hw_param_first(params, var);
1368         if (changed < 0)
1369                 return changed;
1370         if (params->rmask) {
1371                 int err = snd_pcm_hw_refine(pcm, params);
1372                 if (snd_BUG_ON(err < 0))
1373                         return err;
1374         }
1375         return snd_pcm_hw_param_value(params, var, dir);
1376 }
1377
1378 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1379
1380 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1381                                   snd_pcm_hw_param_t var)
1382 {
1383         int changed;
1384         if (hw_is_mask(var))
1385                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1386         else if (hw_is_interval(var))
1387                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1388         else
1389                 return -EINVAL;
1390         if (changed) {
1391                 params->cmask |= 1 << var;
1392                 params->rmask |= 1 << var;
1393         }
1394         return changed;
1395 }
1396
1397
1398 /**
1399  * snd_pcm_hw_param_last - refine config space and return maximum value
1400  * @pcm: PCM instance
1401  * @params: the hw_params instance
1402  * @var: parameter to retrieve
1403  * @dir: pointer to the direction (-1,0,1) or %NULL
1404  *
1405  * Inside configuration space defined by @params remove from @var all
1406  * values < maximum. Reduce configuration space accordingly.
1407  * Return the maximum.
1408  */
1409 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1410                           struct snd_pcm_hw_params *params,
1411                           snd_pcm_hw_param_t var, int *dir)
1412 {
1413         int changed = _snd_pcm_hw_param_last(params, var);
1414         if (changed < 0)
1415                 return changed;
1416         if (params->rmask) {
1417                 int err = snd_pcm_hw_refine(pcm, params);
1418                 if (snd_BUG_ON(err < 0))
1419                         return err;
1420         }
1421         return snd_pcm_hw_param_value(params, var, dir);
1422 }
1423
1424 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1425
1426 /**
1427  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1428  * @pcm: PCM instance
1429  * @params: the hw_params instance
1430  *
1431  * Choose one configuration from configuration space defined by @params.
1432  * The configuration chosen is that obtained fixing in this order:
1433  * first access, first format, first subformat, min channels,
1434  * min rate, min period time, max buffer size, min tick time
1435  */
1436 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1437                              struct snd_pcm_hw_params *params)
1438 {
1439         static int vars[] = {
1440                 SNDRV_PCM_HW_PARAM_ACCESS,
1441                 SNDRV_PCM_HW_PARAM_FORMAT,
1442                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1443                 SNDRV_PCM_HW_PARAM_CHANNELS,
1444                 SNDRV_PCM_HW_PARAM_RATE,
1445                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1446                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1447                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1448                 -1
1449         };
1450         int err, *v;
1451
1452         for (v = vars; *v != -1; v++) {
1453                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1454                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1455                 else
1456                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1457                 if (snd_BUG_ON(err < 0))
1458                         return err;
1459         }
1460         return 0;
1461 }
1462
1463 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1464                                    void *arg)
1465 {
1466         struct snd_pcm_runtime *runtime = substream->runtime;
1467         unsigned long flags;
1468         snd_pcm_stream_lock_irqsave(substream, flags);
1469         if (snd_pcm_running(substream) &&
1470             snd_pcm_update_hw_ptr(substream) >= 0)
1471                 runtime->status->hw_ptr %= runtime->buffer_size;
1472         else
1473                 runtime->status->hw_ptr = 0;
1474         runtime->hw_ptr_jiffies = jiffies;
1475         snd_pcm_stream_unlock_irqrestore(substream, flags);
1476         return 0;
1477 }
1478
1479 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1480                                           void *arg)
1481 {
1482         struct snd_pcm_channel_info *info = arg;
1483         struct snd_pcm_runtime *runtime = substream->runtime;
1484         int width;
1485         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1486                 info->offset = -1;
1487                 return 0;
1488         }
1489         width = snd_pcm_format_physical_width(runtime->format);
1490         if (width < 0)
1491                 return width;
1492         info->offset = 0;
1493         switch (runtime->access) {
1494         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1495         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1496                 info->first = info->channel * width;
1497                 info->step = runtime->channels * width;
1498                 break;
1499         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1500         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1501         {
1502                 size_t size = runtime->dma_bytes / runtime->channels;
1503                 info->first = info->channel * size * 8;
1504                 info->step = width;
1505                 break;
1506         }
1507         default:
1508                 snd_BUG();
1509                 break;
1510         }
1511         return 0;
1512 }
1513
1514 /**
1515  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1516  * @substream: the pcm substream instance
1517  * @cmd: ioctl command
1518  * @arg: ioctl argument
1519  *
1520  * Processes the generic ioctl commands for PCM.
1521  * Can be passed as the ioctl callback for PCM ops.
1522  *
1523  * Returns zero if successful, or a negative error code on failure.
1524  */
1525 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1526                       unsigned int cmd, void *arg)
1527 {
1528         switch (cmd) {
1529         case SNDRV_PCM_IOCTL1_INFO:
1530                 return 0;
1531         case SNDRV_PCM_IOCTL1_RESET:
1532                 return snd_pcm_lib_ioctl_reset(substream, arg);
1533         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1534                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1535         }
1536         return -ENXIO;
1537 }
1538
1539 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1540
1541 /**
1542  * snd_pcm_period_elapsed - update the pcm status for the next period
1543  * @substream: the pcm substream instance
1544  *
1545  * This function is called from the interrupt handler when the
1546  * PCM has processed the period size.  It will update the current
1547  * pointer, wake up sleepers, etc.
1548  *
1549  * Even if more than one periods have elapsed since the last call, you
1550  * have to call this only once.
1551  */
1552 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1553 {
1554         struct snd_pcm_runtime *runtime;
1555         unsigned long flags;
1556
1557         if (PCM_RUNTIME_CHECK(substream))
1558                 return;
1559         runtime = substream->runtime;
1560
1561         if (runtime->transfer_ack_begin)
1562                 runtime->transfer_ack_begin(substream);
1563
1564         snd_pcm_stream_lock_irqsave(substream, flags);
1565         if (!snd_pcm_running(substream) ||
1566             snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1567                 goto _end;
1568
1569         if (substream->timer_running)
1570                 snd_timer_interrupt(substream->timer, 1);
1571  _end:
1572         snd_pcm_stream_unlock_irqrestore(substream, flags);
1573         if (runtime->transfer_ack_end)
1574                 runtime->transfer_ack_end(substream);
1575         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1576 }
1577
1578 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1579
1580 /*
1581  * Wait until avail_min data becomes available
1582  * Returns a negative error code if any error occurs during operation.
1583  * The available space is stored on availp.  When err = 0 and avail = 0
1584  * on the capture stream, it indicates the stream is in DRAINING state.
1585  */
1586 static int wait_for_avail_min(struct snd_pcm_substream *substream,
1587                               snd_pcm_uframes_t *availp)
1588 {
1589         struct snd_pcm_runtime *runtime = substream->runtime;
1590         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1591         wait_queue_t wait;
1592         int err = 0;
1593         snd_pcm_uframes_t avail = 0;
1594         long tout;
1595
1596         init_waitqueue_entry(&wait, current);
1597         add_wait_queue(&runtime->sleep, &wait);
1598         for (;;) {
1599                 if (signal_pending(current)) {
1600                         err = -ERESTARTSYS;
1601                         break;
1602                 }
1603                 set_current_state(TASK_INTERRUPTIBLE);
1604                 snd_pcm_stream_unlock_irq(substream);
1605                 tout = schedule_timeout(msecs_to_jiffies(10000));
1606                 snd_pcm_stream_lock_irq(substream);
1607                 switch (runtime->status->state) {
1608                 case SNDRV_PCM_STATE_SUSPENDED:
1609                         err = -ESTRPIPE;
1610                         goto _endloop;
1611                 case SNDRV_PCM_STATE_XRUN:
1612                         err = -EPIPE;
1613                         goto _endloop;
1614                 case SNDRV_PCM_STATE_DRAINING:
1615                         if (is_playback)
1616                                 err = -EPIPE;
1617                         else 
1618                                 avail = 0; /* indicate draining */
1619                         goto _endloop;
1620                 case SNDRV_PCM_STATE_OPEN:
1621                 case SNDRV_PCM_STATE_SETUP:
1622                 case SNDRV_PCM_STATE_DISCONNECTED:
1623                         err = -EBADFD;
1624                         goto _endloop;
1625                 }
1626                 if (!tout) {
1627                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1628                                    is_playback ? "playback" : "capture");
1629                         err = -EIO;
1630                         break;
1631                 }
1632                 if (is_playback)
1633                         avail = snd_pcm_playback_avail(runtime);
1634                 else
1635                         avail = snd_pcm_capture_avail(runtime);
1636                 if (avail >= runtime->control->avail_min)
1637                         break;
1638         }
1639  _endloop:
1640         remove_wait_queue(&runtime->sleep, &wait);
1641         *availp = avail;
1642         return err;
1643 }
1644         
1645 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1646                                       unsigned int hwoff,
1647                                       unsigned long data, unsigned int off,
1648                                       snd_pcm_uframes_t frames)
1649 {
1650         struct snd_pcm_runtime *runtime = substream->runtime;
1651         int err;
1652         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1653         if (substream->ops->copy) {
1654                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1655                         return err;
1656         } else {
1657                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1658                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1659                         return -EFAULT;
1660         }
1661         return 0;
1662 }
1663  
1664 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1665                           unsigned long data, unsigned int off,
1666                           snd_pcm_uframes_t size);
1667
1668 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1669                                             unsigned long data,
1670                                             snd_pcm_uframes_t size,
1671                                             int nonblock,
1672                                             transfer_f transfer)
1673 {
1674         struct snd_pcm_runtime *runtime = substream->runtime;
1675         snd_pcm_uframes_t xfer = 0;
1676         snd_pcm_uframes_t offset = 0;
1677         int err = 0;
1678
1679         if (size == 0)
1680                 return 0;
1681
1682         snd_pcm_stream_lock_irq(substream);
1683         switch (runtime->status->state) {
1684         case SNDRV_PCM_STATE_PREPARED:
1685         case SNDRV_PCM_STATE_RUNNING:
1686         case SNDRV_PCM_STATE_PAUSED:
1687                 break;
1688         case SNDRV_PCM_STATE_XRUN:
1689                 err = -EPIPE;
1690                 goto _end_unlock;
1691         case SNDRV_PCM_STATE_SUSPENDED:
1692                 err = -ESTRPIPE;
1693                 goto _end_unlock;
1694         default:
1695                 err = -EBADFD;
1696                 goto _end_unlock;
1697         }
1698
1699         while (size > 0) {
1700                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1701                 snd_pcm_uframes_t avail;
1702                 snd_pcm_uframes_t cont;
1703                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1704                         snd_pcm_update_hw_ptr(substream);
1705                 avail = snd_pcm_playback_avail(runtime);
1706                 if (!avail) {
1707                         if (nonblock) {
1708                                 err = -EAGAIN;
1709                                 goto _end_unlock;
1710                         }
1711                         err = wait_for_avail_min(substream, &avail);
1712                         if (err < 0)
1713                                 goto _end_unlock;
1714                 }
1715                 frames = size > avail ? avail : size;
1716                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1717                 if (frames > cont)
1718                         frames = cont;
1719                 if (snd_BUG_ON(!frames)) {
1720                         snd_pcm_stream_unlock_irq(substream);
1721                         return -EINVAL;
1722                 }
1723                 appl_ptr = runtime->control->appl_ptr;
1724                 appl_ofs = appl_ptr % runtime->buffer_size;
1725                 snd_pcm_stream_unlock_irq(substream);
1726                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1727                         goto _end;
1728                 snd_pcm_stream_lock_irq(substream);
1729                 switch (runtime->status->state) {
1730                 case SNDRV_PCM_STATE_XRUN:
1731                         err = -EPIPE;
1732                         goto _end_unlock;
1733                 case SNDRV_PCM_STATE_SUSPENDED:
1734                         err = -ESTRPIPE;
1735                         goto _end_unlock;
1736                 default:
1737                         break;
1738                 }
1739                 appl_ptr += frames;
1740                 if (appl_ptr >= runtime->boundary)
1741                         appl_ptr -= runtime->boundary;
1742                 runtime->control->appl_ptr = appl_ptr;
1743                 if (substream->ops->ack)
1744                         substream->ops->ack(substream);
1745
1746                 offset += frames;
1747                 size -= frames;
1748                 xfer += frames;
1749                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1750                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1751                         err = snd_pcm_start(substream);
1752                         if (err < 0)
1753                                 goto _end_unlock;
1754                 }
1755         }
1756  _end_unlock:
1757         snd_pcm_stream_unlock_irq(substream);
1758  _end:
1759         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1760 }
1761
1762 /* sanity-check for read/write methods */
1763 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1764 {
1765         struct snd_pcm_runtime *runtime;
1766         if (PCM_RUNTIME_CHECK(substream))
1767                 return -ENXIO;
1768         runtime = substream->runtime;
1769         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1770                 return -EINVAL;
1771         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1772                 return -EBADFD;
1773         return 0;
1774 }
1775
1776 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1777 {
1778         struct snd_pcm_runtime *runtime;
1779         int nonblock;
1780         int err;
1781
1782         err = pcm_sanity_check(substream);
1783         if (err < 0)
1784                 return err;
1785         runtime = substream->runtime;
1786         nonblock = !!(substream->f_flags & O_NONBLOCK);
1787
1788         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1789             runtime->channels > 1)
1790                 return -EINVAL;
1791         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1792                                   snd_pcm_lib_write_transfer);
1793 }
1794
1795 EXPORT_SYMBOL(snd_pcm_lib_write);
1796
1797 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1798                                        unsigned int hwoff,
1799                                        unsigned long data, unsigned int off,
1800                                        snd_pcm_uframes_t frames)
1801 {
1802         struct snd_pcm_runtime *runtime = substream->runtime;
1803         int err;
1804         void __user **bufs = (void __user **)data;
1805         int channels = runtime->channels;
1806         int c;
1807         if (substream->ops->copy) {
1808                 if (snd_BUG_ON(!substream->ops->silence))
1809                         return -EINVAL;
1810                 for (c = 0; c < channels; ++c, ++bufs) {
1811                         if (*bufs == NULL) {
1812                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1813                                         return err;
1814                         } else {
1815                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1816                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1817                                         return err;
1818                         }
1819                 }
1820         } else {
1821                 /* default transfer behaviour */
1822                 size_t dma_csize = runtime->dma_bytes / channels;
1823                 for (c = 0; c < channels; ++c, ++bufs) {
1824                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1825                         if (*bufs == NULL) {
1826                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1827                         } else {
1828                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1829                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1830                                         return -EFAULT;
1831                         }
1832                 }
1833         }
1834         return 0;
1835 }
1836  
1837 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1838                                      void __user **bufs,
1839                                      snd_pcm_uframes_t frames)
1840 {
1841         struct snd_pcm_runtime *runtime;
1842         int nonblock;
1843         int err;
1844
1845         err = pcm_sanity_check(substream);
1846         if (err < 0)
1847                 return err;
1848         runtime = substream->runtime;
1849         nonblock = !!(substream->f_flags & O_NONBLOCK);
1850
1851         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1852                 return -EINVAL;
1853         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1854                                   nonblock, snd_pcm_lib_writev_transfer);
1855 }
1856
1857 EXPORT_SYMBOL(snd_pcm_lib_writev);
1858
1859 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
1860                                      unsigned int hwoff,
1861                                      unsigned long data, unsigned int off,
1862                                      snd_pcm_uframes_t frames)
1863 {
1864         struct snd_pcm_runtime *runtime = substream->runtime;
1865         int err;
1866         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1867         if (substream->ops->copy) {
1868                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1869                         return err;
1870         } else {
1871                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1872                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1873                         return -EFAULT;
1874         }
1875         return 0;
1876 }
1877
1878 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1879                                            unsigned long data,
1880                                            snd_pcm_uframes_t size,
1881                                            int nonblock,
1882                                            transfer_f transfer)
1883 {
1884         struct snd_pcm_runtime *runtime = substream->runtime;
1885         snd_pcm_uframes_t xfer = 0;
1886         snd_pcm_uframes_t offset = 0;
1887         int err = 0;
1888
1889         if (size == 0)
1890                 return 0;
1891
1892         snd_pcm_stream_lock_irq(substream);
1893         switch (runtime->status->state) {
1894         case SNDRV_PCM_STATE_PREPARED:
1895                 if (size >= runtime->start_threshold) {
1896                         err = snd_pcm_start(substream);
1897                         if (err < 0)
1898                                 goto _end_unlock;
1899                 }
1900                 break;
1901         case SNDRV_PCM_STATE_DRAINING:
1902         case SNDRV_PCM_STATE_RUNNING:
1903         case SNDRV_PCM_STATE_PAUSED:
1904                 break;
1905         case SNDRV_PCM_STATE_XRUN:
1906                 err = -EPIPE;
1907                 goto _end_unlock;
1908         case SNDRV_PCM_STATE_SUSPENDED:
1909                 err = -ESTRPIPE;
1910                 goto _end_unlock;
1911         default:
1912                 err = -EBADFD;
1913                 goto _end_unlock;
1914         }
1915
1916         while (size > 0) {
1917                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1918                 snd_pcm_uframes_t avail;
1919                 snd_pcm_uframes_t cont;
1920                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1921                         snd_pcm_update_hw_ptr(substream);
1922                 avail = snd_pcm_capture_avail(runtime);
1923                 if (!avail) {
1924                         if (runtime->status->state ==
1925                             SNDRV_PCM_STATE_DRAINING) {
1926                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
1927                                 goto _end_unlock;
1928                         }
1929                         if (nonblock) {
1930                                 err = -EAGAIN;
1931                                 goto _end_unlock;
1932                         }
1933                         err = wait_for_avail_min(substream, &avail);
1934                         if (err < 0)
1935                                 goto _end_unlock;
1936                         if (!avail)
1937                                 continue; /* draining */
1938                 }
1939                 frames = size > avail ? avail : size;
1940                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1941                 if (frames > cont)
1942                         frames = cont;
1943                 if (snd_BUG_ON(!frames)) {
1944                         snd_pcm_stream_unlock_irq(substream);
1945                         return -EINVAL;
1946                 }
1947                 appl_ptr = runtime->control->appl_ptr;
1948                 appl_ofs = appl_ptr % runtime->buffer_size;
1949                 snd_pcm_stream_unlock_irq(substream);
1950                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1951                         goto _end;
1952                 snd_pcm_stream_lock_irq(substream);
1953                 switch (runtime->status->state) {
1954                 case SNDRV_PCM_STATE_XRUN:
1955                         err = -EPIPE;
1956                         goto _end_unlock;
1957                 case SNDRV_PCM_STATE_SUSPENDED:
1958                         err = -ESTRPIPE;
1959                         goto _end_unlock;
1960                 default:
1961                         break;
1962                 }
1963                 appl_ptr += frames;
1964                 if (appl_ptr >= runtime->boundary)
1965                         appl_ptr -= runtime->boundary;
1966                 runtime->control->appl_ptr = appl_ptr;
1967                 if (substream->ops->ack)
1968                         substream->ops->ack(substream);
1969
1970                 offset += frames;
1971                 size -= frames;
1972                 xfer += frames;
1973         }
1974  _end_unlock:
1975         snd_pcm_stream_unlock_irq(substream);
1976  _end:
1977         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1978 }
1979
1980 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
1981 {
1982         struct snd_pcm_runtime *runtime;
1983         int nonblock;
1984         int err;
1985         
1986         err = pcm_sanity_check(substream);
1987         if (err < 0)
1988                 return err;
1989         runtime = substream->runtime;
1990         nonblock = !!(substream->f_flags & O_NONBLOCK);
1991         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
1992                 return -EINVAL;
1993         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
1994 }
1995
1996 EXPORT_SYMBOL(snd_pcm_lib_read);
1997
1998 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
1999                                       unsigned int hwoff,
2000                                       unsigned long data, unsigned int off,
2001                                       snd_pcm_uframes_t frames)
2002 {
2003         struct snd_pcm_runtime *runtime = substream->runtime;
2004         int err;
2005         void __user **bufs = (void __user **)data;
2006         int channels = runtime->channels;
2007         int c;
2008         if (substream->ops->copy) {
2009                 for (c = 0; c < channels; ++c, ++bufs) {
2010                         char __user *buf;
2011                         if (*bufs == NULL)
2012                                 continue;
2013                         buf = *bufs + samples_to_bytes(runtime, off);
2014                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2015                                 return err;
2016                 }
2017         } else {
2018                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2019                 for (c = 0; c < channels; ++c, ++bufs) {
2020                         char *hwbuf;
2021                         char __user *buf;
2022                         if (*bufs == NULL)
2023                                 continue;
2024
2025                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2026                         buf = *bufs + samples_to_bytes(runtime, off);
2027                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2028                                 return -EFAULT;
2029                 }
2030         }
2031         return 0;
2032 }
2033  
2034 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2035                                     void __user **bufs,
2036                                     snd_pcm_uframes_t frames)
2037 {
2038         struct snd_pcm_runtime *runtime;
2039         int nonblock;
2040         int err;
2041
2042         err = pcm_sanity_check(substream);
2043         if (err < 0)
2044                 return err;
2045         runtime = substream->runtime;
2046         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2047                 return -EBADFD;
2048
2049         nonblock = !!(substream->f_flags & O_NONBLOCK);
2050         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2051                 return -EINVAL;
2052         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2053 }
2054
2055 EXPORT_SYMBOL(snd_pcm_lib_readv);