2 * linux/arch/arm/mm/init.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/config.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/ptrace.h>
14 #include <linux/swap.h>
15 #include <linux/init.h>
16 #include <linux/bootmem.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/initrd.h>
21 #include <asm/mach-types.h>
22 #include <asm/setup.h>
25 #include <asm/mach/arch.h>
26 #include <asm/mach/map.h>
28 #define TABLE_SIZE (2 * PTRS_PER_PTE * sizeof(pte_t))
30 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
32 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
33 extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end;
34 extern unsigned long phys_initrd_start;
35 extern unsigned long phys_initrd_size;
38 * The sole use of this is to pass memory configuration
39 * data from paging_init to mem_init.
41 static struct meminfo meminfo __initdata = { 0, };
44 * empty_zero_page is a special page that is used for
45 * zero-initialized data and COW.
47 struct page *empty_zero_page;
51 int free = 0, total = 0, reserved = 0;
52 int shared = 0, cached = 0, slab = 0, node;
54 printk("Mem-info:\n");
56 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
58 for_each_online_node(node) {
59 struct page *page, *end;
61 page = NODE_MEM_MAP(node);
62 end = page + NODE_DATA(node)->node_spanned_pages;
66 if (PageReserved(page))
68 else if (PageSwapCache(page))
70 else if (PageSlab(page))
72 else if (!page_count(page))
75 shared += page_count(page) - 1;
80 printk("%d pages of RAM\n", total);
81 printk("%d free pages\n", free);
82 printk("%d reserved pages\n", reserved);
83 printk("%d slab pages\n", slab);
84 printk("%d pages shared\n", shared);
85 printk("%d pages swap cached\n", cached);
88 static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt)
90 return pmd_offset(pgd, virt);
93 static inline pmd_t *pmd_off_k(unsigned long virt)
95 return pmd_off(pgd_offset_k(virt), virt);
98 #define for_each_nodebank(iter,mi,no) \
99 for (iter = 0; iter < mi->nr_banks; iter++) \
100 if (mi->bank[iter].node == no)
103 * FIXME: We really want to avoid allocating the bootmap bitmap
104 * over the top of the initrd. Hopefully, this is located towards
105 * the start of a bank, so if we allocate the bootmap bitmap at
106 * the end, we won't clash.
108 static unsigned int __init
109 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
111 unsigned int start_pfn, bank, bootmap_pfn;
113 start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
116 for_each_nodebank(bank, mi, node) {
117 unsigned int start, end;
119 start = mi->bank[bank].start >> PAGE_SHIFT;
120 end = (mi->bank[bank].size +
121 mi->bank[bank].start) >> PAGE_SHIFT;
126 if (start < start_pfn)
132 if (end - start >= bootmap_pages) {
138 if (bootmap_pfn == 0)
144 static int __init check_initrd(struct meminfo *mi)
146 int initrd_node = -2;
147 #ifdef CONFIG_BLK_DEV_INITRD
148 unsigned long end = phys_initrd_start + phys_initrd_size;
151 * Make sure that the initrd is within a valid area of
154 if (phys_initrd_size) {
159 for (i = 0; i < mi->nr_banks; i++) {
160 unsigned long bank_end;
162 bank_end = mi->bank[i].start + mi->bank[i].size;
164 if (mi->bank[i].start <= phys_initrd_start &&
166 initrd_node = mi->bank[i].node;
170 if (initrd_node == -1) {
171 printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
172 "physical memory - disabling initrd\n",
173 phys_initrd_start, end);
174 phys_initrd_start = phys_initrd_size = 0;
182 * Reserve the various regions of node 0
184 static __init void reserve_node_zero(pg_data_t *pgdat)
186 unsigned long res_size = 0;
189 * Register the kernel text and data with bootmem.
190 * Note that this can only be in node 0.
192 #ifdef CONFIG_XIP_KERNEL
193 reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start);
195 reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
199 * Reserve the page tables. These are already in use,
200 * and can only be in node 0.
202 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
203 PTRS_PER_PGD * sizeof(pgd_t));
206 * Hmm... This should go elsewhere, but we really really need to
207 * stop things allocating the low memory; ideally we need a better
208 * implementation of GFP_DMA which does not assume that DMA-able
209 * memory starts at zero.
211 if (machine_is_integrator() || machine_is_cintegrator())
212 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
215 * These should likewise go elsewhere. They pre-reserve the
216 * screen memory region at the start of main system memory.
218 if (machine_is_edb7211())
219 res_size = 0x00020000;
220 if (machine_is_p720t())
221 res_size = 0x00014000;
225 * Because of the SA1111 DMA bug, we want to preserve our
226 * precious DMA-able memory...
228 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
231 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size);
234 void __init build_mem_type_table(void);
235 void __init create_mapping(struct map_desc *md);
237 static unsigned long __init
238 bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
240 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
241 unsigned long start_pfn, end_pfn, boot_pfn;
242 unsigned int boot_pages;
250 * Calculate the pfn range, and map the memory banks for this node.
252 for_each_nodebank(i, mi, node) {
253 unsigned long start, end;
256 start = mi->bank[i].start >> PAGE_SHIFT;
257 end = (mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT;
259 if (start_pfn > start)
264 map.pfn = __phys_to_pfn(mi->bank[i].start);
265 map.virtual = __phys_to_virt(mi->bank[i].start);
266 map.length = mi->bank[i].size;
267 map.type = MT_MEMORY;
269 create_mapping(&map);
273 * If there is no memory in this node, ignore it.
279 * Allocate the bootmem bitmap page.
281 boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
282 boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
285 * Initialise the bootmem allocator for this node, handing the
286 * memory banks over to bootmem.
288 node_set_online(node);
289 pgdat = NODE_DATA(node);
290 init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
292 for_each_nodebank(i, mi, node)
293 free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
296 * Reserve the bootmem bitmap for this node.
298 reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
299 boot_pages << PAGE_SHIFT);
301 #ifdef CONFIG_BLK_DEV_INITRD
303 * If the initrd is in this node, reserve its memory.
305 if (node == initrd_node) {
306 reserve_bootmem_node(pgdat, phys_initrd_start,
308 initrd_start = __phys_to_virt(phys_initrd_start);
309 initrd_end = initrd_start + phys_initrd_size;
314 * Finally, reserve any node zero regions.
317 reserve_node_zero(pgdat);
320 * initialise the zones within this node.
322 memset(zone_size, 0, sizeof(zone_size));
323 memset(zhole_size, 0, sizeof(zhole_size));
326 * The size of this node has already been determined. If we need
327 * to do anything fancy with the allocation of this memory to the
328 * zones, now is the time to do it.
330 zone_size[0] = end_pfn - start_pfn;
333 * For each bank in this node, calculate the size of the holes.
334 * holes = node_size - sum(bank_sizes_in_node)
336 zhole_size[0] = zone_size[0];
337 for_each_nodebank(i, mi, node)
338 zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
341 * Adjust the sizes according to any special requirements for
344 arch_adjust_zones(node, zone_size, zhole_size);
346 free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
351 static void __init bootmem_init(struct meminfo *mi)
353 unsigned long addr, memend_pfn = 0;
354 int node, initrd_node, i;
357 * Invalidate the node number for empty or invalid memory banks
359 for (i = 0; i < mi->nr_banks; i++)
360 if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
361 mi->bank[i].node = -1;
363 memcpy(&meminfo, mi, sizeof(meminfo));
366 * Clear out all the mappings below the kernel image.
368 for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
369 pmd_clear(pmd_off_k(addr));
370 #ifdef CONFIG_XIP_KERNEL
371 /* The XIP kernel is mapped in the module area -- skip over it */
372 addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
374 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
375 pmd_clear(pmd_off_k(addr));
378 * Clear out all the kernel space mappings, except for the first
379 * memory bank, up to the end of the vmalloc region.
381 for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
382 addr < VMALLOC_END; addr += PGDIR_SIZE)
383 pmd_clear(pmd_off_k(addr));
386 * Locate which node contains the ramdisk image, if any.
388 initrd_node = check_initrd(mi);
391 * Run through each node initialising the bootmem allocator.
393 for_each_node(node) {
394 unsigned long end_pfn;
396 end_pfn = bootmem_init_node(node, initrd_node, mi);
399 * Remember the highest memory PFN.
401 if (end_pfn > memend_pfn)
402 memend_pfn = end_pfn;
405 high_memory = __va(memend_pfn << PAGE_SHIFT);
408 * This doesn't seem to be used by the Linux memory manager any
409 * more, but is used by ll_rw_block. If we can get rid of it, we
410 * also get rid of some of the stuff above as well.
412 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
413 * the system, not the maximum PFN.
415 max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
419 * Set up device the mappings. Since we clear out the page tables for all
420 * mappings above VMALLOC_END, we will remove any debug device mappings.
421 * This means you have to be careful how you debug this function, or any
422 * called function. This means you can't use any function or debugging
423 * method which may touch any device, otherwise the kernel _will_ crash.
425 static void __init devicemaps_init(struct machine_desc *mdesc)
432 * Allocate the vector page early.
434 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
437 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
438 pmd_clear(pmd_off_k(addr));
441 * Map the kernel if it is XIP.
442 * It is always first in the modulearea.
444 #ifdef CONFIG_XIP_KERNEL
445 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & PGDIR_MASK);
446 map.virtual = MODULE_START;
447 map.length = ((unsigned long)&_etext - map.virtual + ~PGDIR_MASK) & PGDIR_MASK;
449 create_mapping(&map);
453 * Map the cache flushing regions.
456 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
457 map.virtual = FLUSH_BASE;
458 map.length = PGDIR_SIZE;
459 map.type = MT_CACHECLEAN;
460 create_mapping(&map);
462 #ifdef FLUSH_BASE_MINICACHE
463 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + PGDIR_SIZE);
464 map.virtual = FLUSH_BASE_MINICACHE;
465 map.length = PGDIR_SIZE;
466 map.type = MT_MINICLEAN;
467 create_mapping(&map);
471 * Create a mapping for the machine vectors at the high-vectors
472 * location (0xffff0000). If we aren't using high-vectors, also
473 * create a mapping at the low-vectors virtual address.
475 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
476 map.virtual = 0xffff0000;
477 map.length = PAGE_SIZE;
478 map.type = MT_HIGH_VECTORS;
479 create_mapping(&map);
481 if (!vectors_high()) {
483 map.type = MT_LOW_VECTORS;
484 create_mapping(&map);
488 * Ask the machine support to map in the statically mapped devices.
494 * Finally flush the caches and tlb to ensure that we're in a
495 * consistent state wrt the writebuffer. This also ensures that
496 * any write-allocated cache lines in the vector page are written
497 * back. After this point, we can start to touch devices again.
499 local_flush_tlb_all();
504 * paging_init() sets up the page tables, initialises the zone memory
505 * maps, and sets up the zero page, bad page and bad page tables.
507 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
511 build_mem_type_table();
513 devicemaps_init(mdesc);
515 top_pmd = pmd_off_k(0xffff0000);
518 * allocate the zero page. Note that we count on this going ok.
520 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
521 memzero(zero_page, PAGE_SIZE);
522 empty_zero_page = virt_to_page(zero_page);
523 flush_dcache_page(empty_zero_page);
526 static inline void free_area(unsigned long addr, unsigned long end, char *s)
528 unsigned int size = (end - addr) >> 10;
530 for (; addr < end; addr += PAGE_SIZE) {
531 struct page *page = virt_to_page(addr);
532 ClearPageReserved(page);
533 init_page_count(page);
539 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
543 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
545 struct page *start_pg, *end_pg;
546 unsigned long pg, pgend;
549 * Convert start_pfn/end_pfn to a struct page pointer.
551 start_pg = pfn_to_page(start_pfn);
552 end_pg = pfn_to_page(end_pfn);
555 * Convert to physical addresses, and
556 * round start upwards and end downwards.
558 pg = PAGE_ALIGN(__pa(start_pg));
559 pgend = __pa(end_pg) & PAGE_MASK;
562 * If there are free pages between these,
563 * free the section of the memmap array.
566 free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
570 * The mem_map array can get very big. Free the unused area of the memory map.
572 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
574 unsigned long bank_start, prev_bank_end = 0;
578 * [FIXME] This relies on each bank being in address order. This
579 * may not be the case, especially if the user has provided the
580 * information on the command line.
582 for_each_nodebank(i, mi, node) {
583 bank_start = mi->bank[i].start >> PAGE_SHIFT;
584 if (bank_start < prev_bank_end) {
585 printk(KERN_ERR "MEM: unordered memory banks. "
586 "Not freeing memmap.\n");
591 * If we had a previous bank, and there is a space
592 * between the current bank and the previous, free it.
594 if (prev_bank_end && prev_bank_end != bank_start)
595 free_memmap(node, prev_bank_end, bank_start);
597 prev_bank_end = (mi->bank[i].start +
598 mi->bank[i].size) >> PAGE_SHIFT;
603 * mem_init() marks the free areas in the mem_map and tells us how much
604 * memory is free. This is done after various parts of the system have
605 * claimed their memory after the kernel image.
607 void __init mem_init(void)
609 unsigned int codepages, datapages, initpages;
612 codepages = &_etext - &_text;
613 datapages = &_end - &__data_start;
614 initpages = &__init_end - &__init_begin;
616 #ifndef CONFIG_DISCONTIGMEM
617 max_mapnr = virt_to_page(high_memory) - mem_map;
620 /* this will put all unused low memory onto the freelists */
621 for_each_online_node(node) {
622 pg_data_t *pgdat = NODE_DATA(node);
624 free_unused_memmap_node(node, &meminfo);
626 if (pgdat->node_spanned_pages != 0)
627 totalram_pages += free_all_bootmem_node(pgdat);
631 /* now that our DMA memory is actually so designated, we can free it */
632 free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
636 * Since our memory may not be contiguous, calculate the
637 * real number of pages we have in this system
639 printk(KERN_INFO "Memory:");
642 for (i = 0; i < meminfo.nr_banks; i++) {
643 num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
644 printk(" %ldMB", meminfo.bank[i].size >> 20);
647 printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
648 printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
649 "%dK data, %dK init)\n",
650 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
651 codepages >> 10, datapages >> 10, initpages >> 10);
653 if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
654 extern int sysctl_overcommit_memory;
656 * On a machine this small we won't get
657 * anywhere without overcommit, so turn
660 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
664 void free_initmem(void)
666 if (!machine_is_integrator() && !machine_is_cintegrator()) {
667 free_area((unsigned long)(&__init_begin),
668 (unsigned long)(&__init_end),
673 #ifdef CONFIG_BLK_DEV_INITRD
675 static int keep_initrd;
677 void free_initrd_mem(unsigned long start, unsigned long end)
680 free_area(start, end, "initrd");
683 static int __init keepinitrd_setup(char *__unused)
689 __setup("keepinitrd", keepinitrd_setup);