2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/i2c.h>
29 #include "intel_drv.h"
33 #include "drm_crtc_helper.h"
35 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
58 #define INTEL_P2_NUM 2
61 intel_range_t dot, vco, n, m, m1, m2, p, p1;
65 #define I8XX_DOT_MIN 25000
66 #define I8XX_DOT_MAX 350000
67 #define I8XX_VCO_MIN 930000
68 #define I8XX_VCO_MAX 1400000
72 #define I8XX_M_MAX 140
73 #define I8XX_M1_MIN 18
74 #define I8XX_M1_MAX 26
76 #define I8XX_M2_MAX 16
78 #define I8XX_P_MAX 128
80 #define I8XX_P1_MAX 33
81 #define I8XX_P1_LVDS_MIN 1
82 #define I8XX_P1_LVDS_MAX 6
83 #define I8XX_P2_SLOW 4
84 #define I8XX_P2_FAST 2
85 #define I8XX_P2_LVDS_SLOW 14
86 #define I8XX_P2_LVDS_FAST 14 /* No fast option */
87 #define I8XX_P2_SLOW_LIMIT 165000
89 #define I9XX_DOT_MIN 20000
90 #define I9XX_DOT_MAX 400000
91 #define I9XX_VCO_MIN 1400000
92 #define I9XX_VCO_MAX 2800000
96 #define I9XX_M_MAX 120
97 #define I9XX_M1_MIN 10
98 #define I9XX_M1_MAX 22
100 #define I9XX_M2_MAX 9
101 #define I9XX_P_SDVO_DAC_MIN 5
102 #define I9XX_P_SDVO_DAC_MAX 80
103 #define I9XX_P_LVDS_MIN 7
104 #define I9XX_P_LVDS_MAX 98
105 #define I9XX_P1_MIN 1
106 #define I9XX_P1_MAX 8
107 #define I9XX_P2_SDVO_DAC_SLOW 10
108 #define I9XX_P2_SDVO_DAC_FAST 5
109 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
110 #define I9XX_P2_LVDS_SLOW 14
111 #define I9XX_P2_LVDS_FAST 7
112 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
114 #define INTEL_LIMIT_I8XX_DVO_DAC 0
115 #define INTEL_LIMIT_I8XX_LVDS 1
116 #define INTEL_LIMIT_I9XX_SDVO_DAC 2
117 #define INTEL_LIMIT_I9XX_LVDS 3
119 static const intel_limit_t intel_limits[] = {
120 { /* INTEL_LIMIT_I8XX_DVO_DAC */
121 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
122 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
123 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
124 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
125 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
126 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
127 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
128 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
129 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
130 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
132 { /* INTEL_LIMIT_I8XX_LVDS */
133 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
134 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
135 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
136 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
137 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
138 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
139 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
140 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
141 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
142 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
144 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
145 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
146 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
147 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
148 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
149 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
150 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
151 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
152 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
153 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
154 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
156 { /* INTEL_LIMIT_I9XX_LVDS */
157 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
158 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
159 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
160 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
161 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
162 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
163 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
164 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
165 /* The single-channel range is 25-112Mhz, and dual-channel
166 * is 80-224Mhz. Prefer single channel as much as possible.
168 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
169 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
173 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
175 struct drm_device *dev = crtc->dev;
176 const intel_limit_t *limit;
179 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
180 limit = &intel_limits[INTEL_LIMIT_I9XX_LVDS];
182 limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
184 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
185 limit = &intel_limits[INTEL_LIMIT_I8XX_LVDS];
187 limit = &intel_limits[INTEL_LIMIT_I8XX_DVO_DAC];
192 static void intel_clock(int refclk, intel_clock_t *clock)
194 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
195 clock->p = clock->p1 * clock->p2;
196 clock->vco = refclk * clock->m / (clock->n + 2);
197 clock->dot = clock->vco / clock->p;
201 * Returns whether any output on the specified pipe is of the specified type
203 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
205 struct drm_device *dev = crtc->dev;
206 struct drm_mode_config *mode_config = &dev->mode_config;
207 struct drm_connector *l_entry;
209 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
210 if (l_entry->encoder &&
211 l_entry->encoder->crtc == crtc) {
212 struct intel_output *intel_output = to_intel_output(l_entry);
213 if (intel_output->type == type)
220 #define INTELPllInvalid(s) do { DRM_DEBUG(s); return false; } while (0)
222 * Returns whether the given set of divisors are valid for a given refclk with
223 * the given connectors.
226 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
228 const intel_limit_t *limit = intel_limit (crtc);
230 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
231 INTELPllInvalid ("p1 out of range\n");
232 if (clock->p < limit->p.min || limit->p.max < clock->p)
233 INTELPllInvalid ("p out of range\n");
234 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
235 INTELPllInvalid ("m2 out of range\n");
236 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
237 INTELPllInvalid ("m1 out of range\n");
238 if (clock->m1 <= clock->m2)
239 INTELPllInvalid ("m1 <= m2\n");
240 if (clock->m < limit->m.min || limit->m.max < clock->m)
241 INTELPllInvalid ("m out of range\n");
242 if (clock->n < limit->n.min || limit->n.max < clock->n)
243 INTELPllInvalid ("n out of range\n");
244 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
245 INTELPllInvalid ("vco out of range\n");
246 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
247 * connector, etc., rather than just a single range.
249 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
250 INTELPllInvalid ("dot out of range\n");
256 * Returns a set of divisors for the desired target clock with the given
257 * refclk, or FALSE. The returned values represent the clock equation:
258 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
260 static bool intel_find_best_PLL(struct drm_crtc *crtc, int target,
261 int refclk, intel_clock_t *best_clock)
263 struct drm_device *dev = crtc->dev;
264 struct drm_i915_private *dev_priv = dev->dev_private;
266 const intel_limit_t *limit = intel_limit(crtc);
269 if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
270 (I915_READ(LVDS) & LVDS_PORT_EN) != 0) {
272 * For LVDS, if the panel is on, just rely on its current
273 * settings for dual-channel. We haven't figured out how to
274 * reliably set up different single/dual channel state, if we
277 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
279 clock.p2 = limit->p2.p2_fast;
281 clock.p2 = limit->p2.p2_slow;
283 if (target < limit->p2.dot_limit)
284 clock.p2 = limit->p2.p2_slow;
286 clock.p2 = limit->p2.p2_fast;
289 memset (best_clock, 0, sizeof (*best_clock));
291 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
292 for (clock.m2 = limit->m2.min; clock.m2 < clock.m1 &&
293 clock.m2 <= limit->m2.max; clock.m2++) {
294 for (clock.n = limit->n.min; clock.n <= limit->n.max;
296 for (clock.p1 = limit->p1.min;
297 clock.p1 <= limit->p1.max; clock.p1++) {
300 intel_clock(refclk, &clock);
302 if (!intel_PLL_is_valid(crtc, &clock))
305 this_err = abs(clock.dot - target);
306 if (this_err < err) {
315 return (err != target);
319 intel_wait_for_vblank(struct drm_device *dev)
321 /* Wait for 20ms, i.e. one cycle at 50hz. */
326 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
327 struct drm_framebuffer *old_fb)
329 struct drm_device *dev = crtc->dev;
330 struct drm_i915_private *dev_priv = dev->dev_private;
331 struct drm_i915_master_private *master_priv;
332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
333 struct intel_framebuffer *intel_fb;
334 struct drm_i915_gem_object *obj_priv;
335 struct drm_gem_object *obj;
336 int pipe = intel_crtc->pipe;
337 unsigned long Start, Offset;
338 int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
339 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
340 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
341 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
342 u32 dspcntr, alignment;
347 DRM_DEBUG("No FB bound\n");
356 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
360 intel_fb = to_intel_framebuffer(crtc->fb);
362 obj_priv = obj->driver_private;
364 switch (obj_priv->tiling_mode) {
365 case I915_TILING_NONE:
366 alignment = 64 * 1024;
369 /* pin() will align the object as required by fence */
373 /* FIXME: Is this true? */
374 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
380 mutex_lock(&dev->struct_mutex);
381 ret = i915_gem_object_pin(intel_fb->obj, alignment);
383 mutex_unlock(&dev->struct_mutex);
387 ret = i915_gem_object_set_to_gtt_domain(intel_fb->obj, 1);
389 i915_gem_object_unpin(intel_fb->obj);
390 mutex_unlock(&dev->struct_mutex);
394 dspcntr = I915_READ(dspcntr_reg);
395 /* Mask out pixel format bits in case we change it */
396 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
397 switch (crtc->fb->bits_per_pixel) {
399 dspcntr |= DISPPLANE_8BPP;
402 if (crtc->fb->depth == 15)
403 dspcntr |= DISPPLANE_15_16BPP;
405 dspcntr |= DISPPLANE_16BPP;
409 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
412 DRM_ERROR("Unknown color depth\n");
413 i915_gem_object_unpin(intel_fb->obj);
414 mutex_unlock(&dev->struct_mutex);
417 I915_WRITE(dspcntr_reg, dspcntr);
419 Start = obj_priv->gtt_offset;
420 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
422 DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
423 I915_WRITE(dspstride, crtc->fb->pitch);
425 I915_WRITE(dspbase, Offset);
427 I915_WRITE(dspsurf, Start);
430 I915_WRITE(dspbase, Start + Offset);
434 intel_wait_for_vblank(dev);
437 intel_fb = to_intel_framebuffer(old_fb);
438 i915_gem_object_unpin(intel_fb->obj);
440 mutex_unlock(&dev->struct_mutex);
442 if (!dev->primary->master)
445 master_priv = dev->primary->master->driver_priv;
446 if (!master_priv->sarea_priv)
450 master_priv->sarea_priv->pipeB_x = x;
451 master_priv->sarea_priv->pipeB_y = y;
453 master_priv->sarea_priv->pipeA_x = x;
454 master_priv->sarea_priv->pipeA_y = y;
463 * Sets the power management mode of the pipe and plane.
465 * This code should probably grow support for turning the cursor off and back
466 * on appropriately at the same time as we're turning the pipe off/on.
468 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
470 struct drm_device *dev = crtc->dev;
471 struct drm_i915_master_private *master_priv;
472 struct drm_i915_private *dev_priv = dev->dev_private;
473 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
474 int pipe = intel_crtc->pipe;
475 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
476 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
477 int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
478 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
482 /* XXX: When our outputs are all unaware of DPMS modes other than off
483 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
486 case DRM_MODE_DPMS_ON:
487 case DRM_MODE_DPMS_STANDBY:
488 case DRM_MODE_DPMS_SUSPEND:
489 /* Enable the DPLL */
490 temp = I915_READ(dpll_reg);
491 if ((temp & DPLL_VCO_ENABLE) == 0) {
492 I915_WRITE(dpll_reg, temp);
494 /* Wait for the clocks to stabilize. */
496 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
498 /* Wait for the clocks to stabilize. */
500 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
502 /* Wait for the clocks to stabilize. */
506 /* Enable the pipe */
507 temp = I915_READ(pipeconf_reg);
508 if ((temp & PIPEACONF_ENABLE) == 0)
509 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
511 /* Enable the plane */
512 temp = I915_READ(dspcntr_reg);
513 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
514 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
515 /* Flush the plane changes */
516 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
519 intel_crtc_load_lut(crtc);
521 /* Give the overlay scaler a chance to enable if it's on this pipe */
522 //intel_crtc_dpms_video(crtc, true); TODO
524 case DRM_MODE_DPMS_OFF:
525 /* Give the overlay scaler a chance to disable if it's on this pipe */
526 //intel_crtc_dpms_video(crtc, FALSE); TODO
528 /* Disable the VGA plane that we never use */
529 I915_WRITE(VGACNTRL, VGA_DISP_DISABLE);
531 /* Disable display plane */
532 temp = I915_READ(dspcntr_reg);
533 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
534 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
535 /* Flush the plane changes */
536 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
537 I915_READ(dspbase_reg);
541 /* Wait for vblank for the disable to take effect */
542 intel_wait_for_vblank(dev);
545 /* Next, disable display pipes */
546 temp = I915_READ(pipeconf_reg);
547 if ((temp & PIPEACONF_ENABLE) != 0) {
548 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
549 I915_READ(pipeconf_reg);
552 /* Wait for vblank for the disable to take effect. */
553 intel_wait_for_vblank(dev);
555 temp = I915_READ(dpll_reg);
556 if ((temp & DPLL_VCO_ENABLE) != 0) {
557 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
561 /* Wait for the clocks to turn off. */
566 if (!dev->primary->master)
569 master_priv = dev->primary->master->driver_priv;
570 if (!master_priv->sarea_priv)
573 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
577 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
578 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
581 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
582 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
585 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
589 intel_crtc->dpms_mode = mode;
592 static void intel_crtc_prepare (struct drm_crtc *crtc)
594 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
595 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
598 static void intel_crtc_commit (struct drm_crtc *crtc)
600 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
601 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
604 void intel_encoder_prepare (struct drm_encoder *encoder)
606 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
607 /* lvds has its own version of prepare see intel_lvds_prepare */
608 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
611 void intel_encoder_commit (struct drm_encoder *encoder)
613 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
614 /* lvds has its own version of commit see intel_lvds_commit */
615 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
618 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
619 struct drm_display_mode *mode,
620 struct drm_display_mode *adjusted_mode)
626 /** Returns the core display clock speed for i830 - i945 */
627 static int intel_get_core_clock_speed(struct drm_device *dev)
630 /* Core clock values taken from the published datasheets.
631 * The 830 may go up to 166 Mhz, which we should check.
635 else if (IS_I915G(dev))
637 else if (IS_I945GM(dev) || IS_845G(dev))
639 else if (IS_I915GM(dev)) {
642 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
644 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
647 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
648 case GC_DISPLAY_CLOCK_333_MHZ:
651 case GC_DISPLAY_CLOCK_190_200_MHZ:
655 } else if (IS_I865G(dev))
657 else if (IS_I855(dev)) {
659 /* Assume that the hardware is in the high speed state. This
660 * should be the default.
662 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
663 case GC_CLOCK_133_200:
664 case GC_CLOCK_100_200:
666 case GC_CLOCK_166_250:
668 case GC_CLOCK_100_133:
671 } else /* 852, 830 */
674 return 0; /* Silence gcc warning */
679 * Return the pipe currently connected to the panel fitter,
680 * or -1 if the panel fitter is not present or not in use
682 static int intel_panel_fitter_pipe (struct drm_device *dev)
684 struct drm_i915_private *dev_priv = dev->dev_private;
687 /* i830 doesn't have a panel fitter */
691 pfit_control = I915_READ(PFIT_CONTROL);
693 /* See if the panel fitter is in use */
694 if ((pfit_control & PFIT_ENABLE) == 0)
697 /* 965 can place panel fitter on either pipe */
699 return (pfit_control >> 29) & 0x3;
701 /* older chips can only use pipe 1 */
705 static int intel_crtc_mode_set(struct drm_crtc *crtc,
706 struct drm_display_mode *mode,
707 struct drm_display_mode *adjusted_mode,
709 struct drm_framebuffer *old_fb)
711 struct drm_device *dev = crtc->dev;
712 struct drm_i915_private *dev_priv = dev->dev_private;
713 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
714 int pipe = intel_crtc->pipe;
715 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
716 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
717 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
718 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
719 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
720 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
721 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
722 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
723 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
724 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
725 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
726 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
727 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
728 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
729 int refclk, num_outputs = 0;
731 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
732 bool ok, is_sdvo = false, is_dvo = false;
733 bool is_crt = false, is_lvds = false, is_tv = false;
734 struct drm_mode_config *mode_config = &dev->mode_config;
735 struct drm_connector *connector;
738 drm_vblank_pre_modeset(dev, pipe);
740 list_for_each_entry(connector, &mode_config->connector_list, head) {
741 struct intel_output *intel_output = to_intel_output(connector);
743 if (!connector->encoder || connector->encoder->crtc != crtc)
746 switch (intel_output->type) {
747 case INTEL_OUTPUT_LVDS:
750 case INTEL_OUTPUT_SDVO:
751 case INTEL_OUTPUT_HDMI:
753 if (intel_output->needs_tv_clock)
756 case INTEL_OUTPUT_DVO:
759 case INTEL_OUTPUT_TVOUT:
762 case INTEL_OUTPUT_ANALOG:
770 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
771 refclk = dev_priv->lvds_ssc_freq * 1000;
772 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
773 } else if (IS_I9XX(dev)) {
779 ok = intel_find_best_PLL(crtc, adjusted_mode->clock, refclk, &clock);
781 DRM_ERROR("Couldn't find PLL settings for mode!\n");
785 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
787 dpll = DPLL_VGA_MODE_DIS;
790 dpll |= DPLLB_MODE_LVDS;
792 dpll |= DPLLB_MODE_DAC_SERIAL;
794 dpll |= DPLL_DVO_HIGH_SPEED;
795 if (IS_I945G(dev) || IS_I945GM(dev)) {
796 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
797 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
801 /* compute bitmask from p1 value */
802 dpll |= (1 << (clock.p1 - 1)) << 16;
805 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
808 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
811 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
814 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
818 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
821 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
824 dpll |= PLL_P1_DIVIDE_BY_TWO;
826 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
828 dpll |= PLL_P2_DIVIDE_BY_4;
832 if (is_sdvo && is_tv)
833 dpll |= PLL_REF_INPUT_TVCLKINBC;
835 /* XXX: just matching BIOS for now */
836 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
838 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
839 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
841 dpll |= PLL_REF_INPUT_DREFCLK;
844 pipeconf = I915_READ(pipeconf_reg);
846 /* Set up the display plane register */
847 dspcntr = DISPPLANE_GAMMA_ENABLE;
850 dspcntr |= DISPPLANE_SEL_PIPE_A;
852 dspcntr |= DISPPLANE_SEL_PIPE_B;
854 if (pipe == 0 && !IS_I965G(dev)) {
855 /* Enable pixel doubling when the dot clock is > 90% of the (display)
858 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
861 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
862 pipeconf |= PIPEACONF_DOUBLE_WIDE;
864 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
867 dspcntr |= DISPLAY_PLANE_ENABLE;
868 pipeconf |= PIPEACONF_ENABLE;
869 dpll |= DPLL_VCO_ENABLE;
872 /* Disable the panel fitter if it was on our pipe */
873 if (intel_panel_fitter_pipe(dev) == pipe)
874 I915_WRITE(PFIT_CONTROL, 0);
876 DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
877 drm_mode_debug_printmodeline(mode);
880 if (dpll & DPLL_VCO_ENABLE) {
881 I915_WRITE(fp_reg, fp);
882 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
887 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
888 * This is an exception to the general rule that mode_set doesn't turn
892 u32 lvds = I915_READ(LVDS);
894 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
895 /* Set the B0-B3 data pairs corresponding to whether we're going to
896 * set the DPLLs for dual-channel mode or not.
899 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
901 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
903 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
904 * appropriately here, but we need to look more thoroughly into how
905 * panels behave in the two modes.
908 I915_WRITE(LVDS, lvds);
912 I915_WRITE(fp_reg, fp);
913 I915_WRITE(dpll_reg, dpll);
915 /* Wait for the clocks to stabilize. */
919 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
920 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
921 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
923 /* write it again -- the BIOS does, after all */
924 I915_WRITE(dpll_reg, dpll);
927 /* Wait for the clocks to stabilize. */
930 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
931 ((adjusted_mode->crtc_htotal - 1) << 16));
932 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
933 ((adjusted_mode->crtc_hblank_end - 1) << 16));
934 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
935 ((adjusted_mode->crtc_hsync_end - 1) << 16));
936 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
937 ((adjusted_mode->crtc_vtotal - 1) << 16));
938 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
939 ((adjusted_mode->crtc_vblank_end - 1) << 16));
940 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
941 ((adjusted_mode->crtc_vsync_end - 1) << 16));
942 /* pipesrc and dspsize control the size that is scaled from, which should
943 * always be the user's requested size.
945 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
946 I915_WRITE(dsppos_reg, 0);
947 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
948 I915_WRITE(pipeconf_reg, pipeconf);
949 I915_READ(pipeconf_reg);
951 intel_wait_for_vblank(dev);
953 I915_WRITE(dspcntr_reg, dspcntr);
955 /* Flush the plane changes */
956 ret = intel_pipe_set_base(crtc, x, y, old_fb);
960 drm_vblank_post_modeset(dev, pipe);
965 /** Loads the palette/gamma unit for the CRTC with the prepared values */
966 void intel_crtc_load_lut(struct drm_crtc *crtc)
968 struct drm_device *dev = crtc->dev;
969 struct drm_i915_private *dev_priv = dev->dev_private;
970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
971 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
974 /* The clocks have to be on to load the palette. */
978 for (i = 0; i < 256; i++) {
979 I915_WRITE(palreg + 4 * i,
980 (intel_crtc->lut_r[i] << 16) |
981 (intel_crtc->lut_g[i] << 8) |
982 intel_crtc->lut_b[i]);
986 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
987 struct drm_file *file_priv,
989 uint32_t width, uint32_t height)
991 struct drm_device *dev = crtc->dev;
992 struct drm_i915_private *dev_priv = dev->dev_private;
993 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
994 struct drm_gem_object *bo;
995 struct drm_i915_gem_object *obj_priv;
996 int pipe = intel_crtc->pipe;
997 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
998 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
1005 /* if we want to turn off the cursor ignore width and height */
1007 DRM_DEBUG("cursor off\n");
1008 temp = CURSOR_MODE_DISABLE;
1014 /* Currently we only support 64x64 cursors */
1015 if (width != 64 || height != 64) {
1016 DRM_ERROR("we currently only support 64x64 cursors\n");
1020 bo = drm_gem_object_lookup(dev, file_priv, handle);
1024 obj_priv = bo->driver_private;
1026 if (bo->size < width * height * 4) {
1027 DRM_ERROR("buffer is to small\n");
1032 /* we only need to pin inside GTT if cursor is non-phy */
1033 mutex_lock(&dev->struct_mutex);
1034 if (!dev_priv->cursor_needs_physical) {
1035 ret = i915_gem_object_pin(bo, PAGE_SIZE);
1037 DRM_ERROR("failed to pin cursor bo\n");
1040 addr = obj_priv->gtt_offset;
1042 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
1044 DRM_ERROR("failed to attach phys object\n");
1047 addr = obj_priv->phys_obj->handle->busaddr;
1051 /* set the pipe for the cursor */
1052 temp |= (pipe << 28);
1053 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1056 I915_WRITE(control, temp);
1057 I915_WRITE(base, addr);
1059 if (intel_crtc->cursor_bo) {
1060 if (dev_priv->cursor_needs_physical) {
1061 if (intel_crtc->cursor_bo != bo)
1062 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
1064 i915_gem_object_unpin(intel_crtc->cursor_bo);
1065 drm_gem_object_unreference(intel_crtc->cursor_bo);
1067 mutex_unlock(&dev->struct_mutex);
1069 intel_crtc->cursor_addr = addr;
1070 intel_crtc->cursor_bo = bo;
1074 mutex_lock(&dev->struct_mutex);
1076 drm_gem_object_unreference(bo);
1077 mutex_unlock(&dev->struct_mutex);
1081 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1083 struct drm_device *dev = crtc->dev;
1084 struct drm_i915_private *dev_priv = dev->dev_private;
1085 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1086 int pipe = intel_crtc->pipe;
1091 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1095 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1099 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1100 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1102 adder = intel_crtc->cursor_addr;
1103 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1104 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
1109 /** Sets the color ramps on behalf of RandR */
1110 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1111 u16 blue, int regno)
1113 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1115 intel_crtc->lut_r[regno] = red >> 8;
1116 intel_crtc->lut_g[regno] = green >> 8;
1117 intel_crtc->lut_b[regno] = blue >> 8;
1120 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1121 u16 *blue, uint32_t size)
1123 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1129 for (i = 0; i < 256; i++) {
1130 intel_crtc->lut_r[i] = red[i] >> 8;
1131 intel_crtc->lut_g[i] = green[i] >> 8;
1132 intel_crtc->lut_b[i] = blue[i] >> 8;
1135 intel_crtc_load_lut(crtc);
1139 * Get a pipe with a simple mode set on it for doing load-based monitor
1142 * It will be up to the load-detect code to adjust the pipe as appropriate for
1143 * its requirements. The pipe will be connected to no other outputs.
1145 * Currently this code will only succeed if there is a pipe with no outputs
1146 * configured for it. In the future, it could choose to temporarily disable
1147 * some outputs to free up a pipe for its use.
1149 * \return crtc, or NULL if no pipes are available.
1152 /* VESA 640x480x72Hz mode to set on the pipe */
1153 static struct drm_display_mode load_detect_mode = {
1154 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
1155 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1158 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
1159 struct drm_display_mode *mode,
1162 struct intel_crtc *intel_crtc;
1163 struct drm_crtc *possible_crtc;
1164 struct drm_crtc *supported_crtc =NULL;
1165 struct drm_encoder *encoder = &intel_output->enc;
1166 struct drm_crtc *crtc = NULL;
1167 struct drm_device *dev = encoder->dev;
1168 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1169 struct drm_crtc_helper_funcs *crtc_funcs;
1173 * Algorithm gets a little messy:
1174 * - if the connector already has an assigned crtc, use it (but make
1175 * sure it's on first)
1176 * - try to find the first unused crtc that can drive this connector,
1177 * and use that if we find one
1178 * - if there are no unused crtcs available, try to use the first
1179 * one we found that supports the connector
1182 /* See if we already have a CRTC for this connector */
1183 if (encoder->crtc) {
1184 crtc = encoder->crtc;
1185 /* Make sure the crtc and connector are running */
1186 intel_crtc = to_intel_crtc(crtc);
1187 *dpms_mode = intel_crtc->dpms_mode;
1188 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
1189 crtc_funcs = crtc->helper_private;
1190 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1191 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1196 /* Find an unused one (if possible) */
1197 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
1199 if (!(encoder->possible_crtcs & (1 << i)))
1201 if (!possible_crtc->enabled) {
1202 crtc = possible_crtc;
1205 if (!supported_crtc)
1206 supported_crtc = possible_crtc;
1210 * If we didn't find an unused CRTC, don't use any.
1216 encoder->crtc = crtc;
1217 intel_output->load_detect_temp = true;
1219 intel_crtc = to_intel_crtc(crtc);
1220 *dpms_mode = intel_crtc->dpms_mode;
1222 if (!crtc->enabled) {
1224 mode = &load_detect_mode;
1225 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
1227 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
1228 crtc_funcs = crtc->helper_private;
1229 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1232 /* Add this connector to the crtc */
1233 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
1234 encoder_funcs->commit(encoder);
1236 /* let the connector get through one full cycle before testing */
1237 intel_wait_for_vblank(dev);
1242 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
1244 struct drm_encoder *encoder = &intel_output->enc;
1245 struct drm_device *dev = encoder->dev;
1246 struct drm_crtc *crtc = encoder->crtc;
1247 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1248 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1250 if (intel_output->load_detect_temp) {
1251 encoder->crtc = NULL;
1252 intel_output->load_detect_temp = false;
1253 crtc->enabled = drm_helper_crtc_in_use(crtc);
1254 drm_helper_disable_unused_functions(dev);
1257 /* Switch crtc and output back off if necessary */
1258 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
1259 if (encoder->crtc == crtc)
1260 encoder_funcs->dpms(encoder, dpms_mode);
1261 crtc_funcs->dpms(crtc, dpms_mode);
1265 /* Returns the clock of the currently programmed mode of the given pipe. */
1266 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
1268 struct drm_i915_private *dev_priv = dev->dev_private;
1269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1270 int pipe = intel_crtc->pipe;
1271 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
1273 intel_clock_t clock;
1275 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1276 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
1278 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
1280 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1281 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1282 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1284 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
1285 DPLL_FPA01_P1_POST_DIV_SHIFT);
1287 switch (dpll & DPLL_MODE_MASK) {
1288 case DPLLB_MODE_DAC_SERIAL:
1289 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
1292 case DPLLB_MODE_LVDS:
1293 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
1297 DRM_DEBUG("Unknown DPLL mode %08x in programmed "
1298 "mode\n", (int)(dpll & DPLL_MODE_MASK));
1302 /* XXX: Handle the 100Mhz refclk */
1303 intel_clock(96000, &clock);
1305 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
1308 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1309 DPLL_FPA01_P1_POST_DIV_SHIFT);
1312 if ((dpll & PLL_REF_INPUT_MASK) ==
1313 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1314 /* XXX: might not be 66MHz */
1315 intel_clock(66000, &clock);
1317 intel_clock(48000, &clock);
1319 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1322 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1323 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1325 if (dpll & PLL_P2_DIVIDE_BY_4)
1330 intel_clock(48000, &clock);
1334 /* XXX: It would be nice to validate the clocks, but we can't reuse
1335 * i830PllIsValid() because it relies on the xf86_config connector
1336 * configuration being accurate, which it isn't necessarily.
1342 /** Returns the currently programmed mode of the given pipe. */
1343 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
1344 struct drm_crtc *crtc)
1346 struct drm_i915_private *dev_priv = dev->dev_private;
1347 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1348 int pipe = intel_crtc->pipe;
1349 struct drm_display_mode *mode;
1350 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
1351 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
1352 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
1353 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
1355 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1359 mode->clock = intel_crtc_clock_get(dev, crtc);
1360 mode->hdisplay = (htot & 0xffff) + 1;
1361 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1362 mode->hsync_start = (hsync & 0xffff) + 1;
1363 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1364 mode->vdisplay = (vtot & 0xffff) + 1;
1365 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1366 mode->vsync_start = (vsync & 0xffff) + 1;
1367 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1369 drm_mode_set_name(mode);
1370 drm_mode_set_crtcinfo(mode, 0);
1375 static void intel_crtc_destroy(struct drm_crtc *crtc)
1377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1379 drm_crtc_cleanup(crtc);
1383 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
1384 .dpms = intel_crtc_dpms,
1385 .mode_fixup = intel_crtc_mode_fixup,
1386 .mode_set = intel_crtc_mode_set,
1387 .mode_set_base = intel_pipe_set_base,
1388 .prepare = intel_crtc_prepare,
1389 .commit = intel_crtc_commit,
1392 static const struct drm_crtc_funcs intel_crtc_funcs = {
1393 .cursor_set = intel_crtc_cursor_set,
1394 .cursor_move = intel_crtc_cursor_move,
1395 .gamma_set = intel_crtc_gamma_set,
1396 .set_config = drm_crtc_helper_set_config,
1397 .destroy = intel_crtc_destroy,
1401 static void intel_crtc_init(struct drm_device *dev, int pipe)
1403 struct intel_crtc *intel_crtc;
1406 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
1407 if (intel_crtc == NULL)
1410 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
1412 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
1413 intel_crtc->pipe = pipe;
1414 for (i = 0; i < 256; i++) {
1415 intel_crtc->lut_r[i] = i;
1416 intel_crtc->lut_g[i] = i;
1417 intel_crtc->lut_b[i] = i;
1420 intel_crtc->cursor_addr = 0;
1421 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
1422 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
1424 intel_crtc->mode_set.crtc = &intel_crtc->base;
1425 intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
1426 intel_crtc->mode_set.num_connectors = 0;
1428 if (i915_fbpercrtc) {
1435 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1437 struct drm_crtc *crtc = NULL;
1439 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1440 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1441 if (intel_crtc->pipe == pipe)
1447 static int intel_connector_clones(struct drm_device *dev, int type_mask)
1450 struct drm_connector *connector;
1453 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1454 struct intel_output *intel_output = to_intel_output(connector);
1455 if (type_mask & (1 << intel_output->type))
1456 index_mask |= (1 << entry);
1463 static void intel_setup_outputs(struct drm_device *dev)
1465 struct drm_i915_private *dev_priv = dev->dev_private;
1466 struct drm_connector *connector;
1468 intel_crt_init(dev);
1470 /* Set up integrated LVDS */
1471 if (IS_MOBILE(dev) && !IS_I830(dev))
1472 intel_lvds_init(dev);
1477 if (I915_READ(SDVOB) & SDVO_DETECTED) {
1478 found = intel_sdvo_init(dev, SDVOB);
1479 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
1480 intel_hdmi_init(dev, SDVOB);
1482 if (!IS_G4X(dev) || (I915_READ(SDVOB) & SDVO_DETECTED)) {
1483 found = intel_sdvo_init(dev, SDVOC);
1484 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
1485 intel_hdmi_init(dev, SDVOC);
1488 intel_dvo_init(dev);
1490 if (IS_I9XX(dev) && IS_MOBILE(dev))
1493 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1494 struct intel_output *intel_output = to_intel_output(connector);
1495 struct drm_encoder *encoder = &intel_output->enc;
1496 int crtc_mask = 0, clone_mask = 0;
1499 switch(intel_output->type) {
1500 case INTEL_OUTPUT_HDMI:
1501 crtc_mask = ((1 << 0)|
1503 clone_mask = ((1 << INTEL_OUTPUT_HDMI));
1505 case INTEL_OUTPUT_DVO:
1506 case INTEL_OUTPUT_SDVO:
1507 crtc_mask = ((1 << 0)|
1509 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
1510 (1 << INTEL_OUTPUT_DVO) |
1511 (1 << INTEL_OUTPUT_SDVO));
1513 case INTEL_OUTPUT_ANALOG:
1514 crtc_mask = ((1 << 0)|
1516 clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
1517 (1 << INTEL_OUTPUT_DVO) |
1518 (1 << INTEL_OUTPUT_SDVO));
1520 case INTEL_OUTPUT_LVDS:
1521 crtc_mask = (1 << 1);
1522 clone_mask = (1 << INTEL_OUTPUT_LVDS);
1524 case INTEL_OUTPUT_TVOUT:
1525 crtc_mask = ((1 << 0) |
1527 clone_mask = (1 << INTEL_OUTPUT_TVOUT);
1530 encoder->possible_crtcs = crtc_mask;
1531 encoder->possible_clones = intel_connector_clones(dev, clone_mask);
1535 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
1537 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1538 struct drm_device *dev = fb->dev;
1541 intelfb_remove(dev, fb);
1543 drm_framebuffer_cleanup(fb);
1544 mutex_lock(&dev->struct_mutex);
1545 drm_gem_object_unreference(intel_fb->obj);
1546 mutex_unlock(&dev->struct_mutex);
1551 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
1552 struct drm_file *file_priv,
1553 unsigned int *handle)
1555 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1556 struct drm_gem_object *object = intel_fb->obj;
1558 return drm_gem_handle_create(file_priv, object, handle);
1561 static const struct drm_framebuffer_funcs intel_fb_funcs = {
1562 .destroy = intel_user_framebuffer_destroy,
1563 .create_handle = intel_user_framebuffer_create_handle,
1566 int intel_framebuffer_create(struct drm_device *dev,
1567 struct drm_mode_fb_cmd *mode_cmd,
1568 struct drm_framebuffer **fb,
1569 struct drm_gem_object *obj)
1571 struct intel_framebuffer *intel_fb;
1574 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1578 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
1580 DRM_ERROR("framebuffer init failed %d\n", ret);
1584 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
1586 intel_fb->obj = obj;
1588 *fb = &intel_fb->base;
1594 static struct drm_framebuffer *
1595 intel_user_framebuffer_create(struct drm_device *dev,
1596 struct drm_file *filp,
1597 struct drm_mode_fb_cmd *mode_cmd)
1599 struct drm_gem_object *obj;
1600 struct drm_framebuffer *fb;
1603 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
1607 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
1609 mutex_lock(&dev->struct_mutex);
1610 drm_gem_object_unreference(obj);
1611 mutex_unlock(&dev->struct_mutex);
1618 static const struct drm_mode_config_funcs intel_mode_funcs = {
1619 .fb_create = intel_user_framebuffer_create,
1620 .fb_changed = intelfb_probe,
1623 void intel_modeset_init(struct drm_device *dev)
1628 drm_mode_config_init(dev);
1630 dev->mode_config.min_width = 0;
1631 dev->mode_config.min_height = 0;
1633 dev->mode_config.funcs = (void *)&intel_mode_funcs;
1635 if (IS_I965G(dev)) {
1636 dev->mode_config.max_width = 8192;
1637 dev->mode_config.max_height = 8192;
1639 dev->mode_config.max_width = 2048;
1640 dev->mode_config.max_height = 2048;
1643 /* set memory base */
1645 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
1647 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
1649 if (IS_MOBILE(dev) || IS_I9XX(dev))
1653 DRM_DEBUG("%d display pipe%s available.\n",
1654 num_pipe, num_pipe > 1 ? "s" : "");
1656 for (i = 0; i < num_pipe; i++) {
1657 intel_crtc_init(dev, i);
1660 intel_setup_outputs(dev);
1663 void intel_modeset_cleanup(struct drm_device *dev)
1665 drm_mode_config_cleanup(dev);
1669 /* current intel driver doesn't take advantage of encoders
1670 always give back the encoder for the connector
1672 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
1674 struct intel_output *intel_output = to_intel_output(connector);
1676 return &intel_output->enc;