2 * linux/arch/parisc/mm/init.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
12 #include <linux/config.h>
14 #include <linux/module.h>
16 #include <linux/bootmem.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
20 #include <linux/initrd.h>
21 #include <linux/swap.h>
22 #include <linux/unistd.h>
23 #include <linux/nodemask.h> /* for node_online_map */
24 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
26 #include <asm/pgalloc.h>
28 #include <asm/pdc_chassis.h>
29 #include <asm/mmzone.h>
31 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
33 extern char _text; /* start of kernel code, defined by linker */
34 extern int data_start;
35 extern char _end; /* end of BSS, defined by linker */
36 extern char __init_begin, __init_end;
38 #ifdef CONFIG_DISCONTIGMEM
39 struct node_map_data node_data[MAX_NUMNODES];
40 bootmem_data_t bmem_data[MAX_NUMNODES];
41 unsigned char pfnnid_map[PFNNID_MAP_MAX];
44 static struct resource data_resource = {
45 .name = "Kernel data",
46 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
49 static struct resource code_resource = {
50 .name = "Kernel code",
51 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
54 static struct resource pdcdata_resource = {
55 .name = "PDC data (Page Zero)",
58 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
61 static struct resource sysram_resources[MAX_PHYSMEM_RANGES];
63 /* The following array is initialized from the firmware specific
64 * information retrieved in kernel/inventory.c.
67 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES];
71 #define MAX_MEM (~0UL)
73 #define MAX_MEM (3584U*1024U*1024U)
74 #endif /* !__LP64__ */
76 static unsigned long mem_limit = MAX_MEM;
78 static void __init mem_limit_func(void)
82 extern char saved_command_line[];
84 /* We need this before __setup() functions are called */
87 for (cp = saved_command_line; *cp; ) {
88 if (memcmp(cp, "mem=", 4) == 0) {
90 limit = memparse(cp, &end);
95 while (*cp != ' ' && *cp)
102 if (limit < mem_limit)
106 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
108 static void __init setup_bootmem(void)
110 unsigned long bootmap_size;
111 unsigned long mem_max;
112 unsigned long bootmap_pages;
113 unsigned long bootmap_start_pfn;
114 unsigned long bootmap_pfn;
115 #ifndef CONFIG_DISCONTIGMEM
116 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
119 int i, sysram_resource_count;
121 disable_sr_hashing(); /* Turn off space register hashing */
124 * Sort the ranges. Since the number of ranges is typically
125 * small, and performance is not an issue here, just do
126 * a simple insertion sort.
129 for (i = 1; i < npmem_ranges; i++) {
132 for (j = i; j > 0; j--) {
135 if (pmem_ranges[j-1].start_pfn <
136 pmem_ranges[j].start_pfn) {
140 tmp = pmem_ranges[j-1].start_pfn;
141 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
142 pmem_ranges[j].start_pfn = tmp;
143 tmp = pmem_ranges[j-1].pages;
144 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
145 pmem_ranges[j].pages = tmp;
149 #ifndef CONFIG_DISCONTIGMEM
151 * Throw out ranges that are too far apart (controlled by
155 for (i = 1; i < npmem_ranges; i++) {
156 if (pmem_ranges[i].start_pfn -
157 (pmem_ranges[i-1].start_pfn +
158 pmem_ranges[i-1].pages) > MAX_GAP) {
160 printk("Large gap in memory detected (%ld pages). "
161 "Consider turning on CONFIG_DISCONTIGMEM\n",
162 pmem_ranges[i].start_pfn -
163 (pmem_ranges[i-1].start_pfn +
164 pmem_ranges[i-1].pages));
170 if (npmem_ranges > 1) {
172 /* Print the memory ranges */
174 printk(KERN_INFO "Memory Ranges:\n");
176 for (i = 0; i < npmem_ranges; i++) {
180 size = (pmem_ranges[i].pages << PAGE_SHIFT);
181 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
182 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
183 i,start, start + (size - 1), size >> 20);
187 sysram_resource_count = npmem_ranges;
188 for (i = 0; i < sysram_resource_count; i++) {
189 struct resource *res = &sysram_resources[i];
190 res->name = "System RAM";
191 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
192 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
193 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
194 request_resource(&iomem_resource, res);
198 * For 32 bit kernels we limit the amount of memory we can
199 * support, in order to preserve enough kernel address space
200 * for other purposes. For 64 bit kernels we don't normally
201 * limit the memory, but this mechanism can be used to
202 * artificially limit the amount of memory (and it is written
203 * to work with multiple memory ranges).
206 mem_limit_func(); /* check for "mem=" argument */
210 for (i = 0; i < npmem_ranges; i++) {
213 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
214 if ((mem_max + rsize) > mem_limit) {
215 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
216 if (mem_max == mem_limit)
219 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
220 - (mem_max >> PAGE_SHIFT);
221 npmem_ranges = i + 1;
224 num_physpages += pmem_ranges[i].pages;
227 num_physpages += pmem_ranges[i].pages;
231 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
233 #ifndef CONFIG_DISCONTIGMEM
234 /* Merge the ranges, keeping track of the holes */
237 unsigned long end_pfn;
238 unsigned long hole_pages;
241 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
242 for (i = 1; i < npmem_ranges; i++) {
244 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
246 pmem_holes[npmem_holes].start_pfn = end_pfn;
247 pmem_holes[npmem_holes++].pages = hole_pages;
248 end_pfn += hole_pages;
250 end_pfn += pmem_ranges[i].pages;
253 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
259 for (i = 0; i < npmem_ranges; i++)
260 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
262 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
264 #ifdef CONFIG_DISCONTIGMEM
265 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
266 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
267 NODE_DATA(i)->bdata = &bmem_data[i];
269 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
271 for (i = 0; i < npmem_ranges; i++)
276 * Initialize and free the full range of memory in each range.
277 * Note that the only writing these routines do are to the bootmap,
278 * and we've made sure to locate the bootmap properly so that they
279 * won't be writing over anything important.
282 bootmap_pfn = bootmap_start_pfn;
284 for (i = 0; i < npmem_ranges; i++) {
285 unsigned long start_pfn;
286 unsigned long npages;
288 start_pfn = pmem_ranges[i].start_pfn;
289 npages = pmem_ranges[i].pages;
291 bootmap_size = init_bootmem_node(NODE_DATA(i),
294 (start_pfn + npages) );
295 free_bootmem_node(NODE_DATA(i),
296 (start_pfn << PAGE_SHIFT),
297 (npages << PAGE_SHIFT) );
298 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
299 if ((start_pfn + npages) > max_pfn)
300 max_pfn = start_pfn + npages;
303 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
304 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
308 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
310 #define PDC_CONSOLE_IO_IODC_SIZE 32768
312 reserve_bootmem_node(NODE_DATA(0), 0UL,
313 (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
314 reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text),
315 (unsigned long)(&_end - &_text));
316 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
317 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
319 #ifndef CONFIG_DISCONTIGMEM
321 /* reserve the holes */
323 for (i = 0; i < npmem_holes; i++) {
324 reserve_bootmem_node(NODE_DATA(0),
325 (pmem_holes[i].start_pfn << PAGE_SHIFT),
326 (pmem_holes[i].pages << PAGE_SHIFT));
330 #ifdef CONFIG_BLK_DEV_INITRD
332 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
333 if (__pa(initrd_start) < mem_max) {
334 unsigned long initrd_reserve;
336 if (__pa(initrd_end) > mem_max) {
337 initrd_reserve = mem_max - __pa(initrd_start);
339 initrd_reserve = initrd_end - initrd_start;
341 initrd_below_start_ok = 1;
342 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
344 reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
349 data_resource.start = virt_to_phys(&data_start);
350 data_resource.end = virt_to_phys(&_end)-1;
351 code_resource.start = virt_to_phys(&_text);
352 code_resource.end = virt_to_phys(&data_start)-1;
354 /* We don't know which region the kernel will be in, so try
357 for (i = 0; i < sysram_resource_count; i++) {
358 struct resource *res = &sysram_resources[i];
359 request_resource(res, &code_resource);
360 request_resource(res, &data_resource);
362 request_resource(&sysram_resources[0], &pdcdata_resource);
365 void free_initmem(void)
369 printk(KERN_INFO "NOT FREEING INITMEM (%dk)\n",
370 (&__init_end - &__init_begin) >> 10);
375 printk(KERN_INFO "Freeing unused kernel memory: ");
378 /* Attempt to catch anyone trying to execute code here
379 * by filling the page with BRK insns.
381 * If we disable interrupts for all CPUs, then IPI stops working.
382 * Kinda breaks the global cache flushing.
386 memset(&__init_begin, 0x00,
387 (unsigned long)&__init_end - (unsigned long)&__init_begin);
390 asm volatile("sync" : : );
391 flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end);
392 asm volatile("sync" : : );
397 addr = (unsigned long)(&__init_begin);
398 for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
399 ClearPageReserved(virt_to_page(addr));
400 set_page_count(virt_to_page(addr), 1);
406 /* set up a new led state on systems shipped LED State panel */
407 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
409 printk("%luk freed\n", (unsigned long)(&__init_end - &__init_begin) >> 10);
414 * Just an arbitrary offset to serve as a "hole" between mapping areas
415 * (between top of physical memory and a potential pcxl dma mapping
416 * area, and below the vmalloc mapping area).
418 * The current 32K value just means that there will be a 32K "hole"
419 * between mapping areas. That means that any out-of-bounds memory
420 * accesses will hopefully be caught. The vmalloc() routines leaves
421 * a hole of 4kB between each vmalloced area for the same reason.
424 /* Leave room for gateway page expansion */
425 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
426 #error KERNEL_MAP_START is in gateway reserved region
428 #define MAP_START (KERNEL_MAP_START)
430 #define VM_MAP_OFFSET (32*1024)
431 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
432 & ~(VM_MAP_OFFSET-1)))
435 EXPORT_SYMBOL(vmalloc_start);
438 unsigned long pcxl_dma_start;
441 void __init mem_init(void)
443 high_memory = __va((max_pfn << PAGE_SHIFT));
445 #ifndef CONFIG_DISCONTIGMEM
446 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
447 totalram_pages += free_all_bootmem();
452 for (i = 0; i < npmem_ranges; i++)
453 totalram_pages += free_all_bootmem_node(NODE_DATA(i));
457 printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
460 if (hppa_dma_ops == &pcxl_dma_ops) {
461 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
462 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
465 vmalloc_start = SET_MAP_OFFSET(MAP_START);
468 vmalloc_start = SET_MAP_OFFSET(MAP_START);
473 int do_check_pgt_cache(int low, int high)
478 unsigned long *empty_zero_page;
482 int i,free = 0,total = 0,reserved = 0;
483 int shared = 0, cached = 0;
485 printk(KERN_INFO "Mem-info:\n");
487 printk(KERN_INFO "Free swap: %6ldkB\n",
488 nr_swap_pages<<(PAGE_SHIFT-10));
489 #ifndef CONFIG_DISCONTIGMEM
493 if (PageReserved(mem_map+i))
495 else if (PageSwapCache(mem_map+i))
497 else if (!page_count(&mem_map[i]))
500 shared += page_count(&mem_map[i]) - 1;
503 for (i = 0; i < npmem_ranges; i++) {
506 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
510 pgdat_resize_lock(NODE_DATA(i), &flags);
511 p = nid_page_nr(i, j) - node_start_pfn(i);
516 else if (PageSwapCache(p))
518 else if (!page_count(p))
521 shared += page_count(p) - 1;
522 pgdat_resize_unlock(NODE_DATA(i), &flags);
526 printk(KERN_INFO "%d pages of RAM\n", total);
527 printk(KERN_INFO "%d reserved pages\n", reserved);
528 printk(KERN_INFO "%d pages shared\n", shared);
529 printk(KERN_INFO "%d pages swap cached\n", cached);
532 #ifdef CONFIG_DISCONTIGMEM
537 for (i = 0; i < npmem_ranges; i++) {
538 for (j = 0; j < MAX_NR_ZONES; j++) {
539 zl = NODE_DATA(i)->node_zonelists + j;
541 printk("Zone list for zone %d on node %d: ", j, i);
542 for (k = 0; zl->zones[k] != NULL; k++)
543 printk("[%d/%s] ", zl->zones[k]->zone_pgdat->node_id, zl->zones[k]->name);
552 static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
557 unsigned long end_paddr;
558 unsigned long start_pmd;
559 unsigned long start_pte;
562 unsigned long address;
563 unsigned long ro_start;
564 unsigned long ro_end;
565 unsigned long fv_addr;
566 unsigned long gw_addr;
567 extern const unsigned long fault_vector_20;
568 extern void * const linux_gateway_page;
570 ro_start = __pa((unsigned long)&_text);
571 ro_end = __pa((unsigned long)&data_start);
572 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
573 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
575 end_paddr = start_paddr + size;
577 pg_dir = pgd_offset_k(start_vaddr);
579 #if PTRS_PER_PMD == 1
582 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
584 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
586 address = start_paddr;
587 while (address < end_paddr) {
588 #if PTRS_PER_PMD == 1
589 pmd = (pmd_t *)__pa(pg_dir);
591 pmd = (pmd_t *)pgd_address(*pg_dir);
594 * pmd is physical at this point
598 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
599 pmd = (pmd_t *) __pa(pmd);
602 pgd_populate(NULL, pg_dir, __va(pmd));
606 /* now change pmd to kernel virtual addresses */
608 pmd = (pmd_t *)__va(pmd) + start_pmd;
609 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
612 * pg_table is physical at this point
615 pg_table = (pte_t *)pmd_address(*pmd);
618 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
619 pg_table = (pte_t *) __pa(pg_table);
622 pmd_populate_kernel(NULL, pmd, __va(pg_table));
624 /* now change pg_table to kernel virtual addresses */
626 pg_table = (pte_t *) __va(pg_table) + start_pte;
627 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
631 * Map the fault vector writable so we can
632 * write the HPMC checksum.
634 if (address >= ro_start && address < ro_end
635 && address != fv_addr
636 && address != gw_addr)
637 pte = __mk_pte(address, PAGE_KERNEL_RO);
639 pte = __mk_pte(address, pgprot);
641 if (address >= end_paddr)
644 set_pte(pg_table, pte);
646 address += PAGE_SIZE;
650 if (address >= end_paddr)
658 * pagetable_init() sets up the page tables
660 * Note that gateway_init() places the Linux gateway page at page 0.
661 * Since gateway pages cannot be dereferenced this has the desirable
662 * side effect of trapping those pesky NULL-reference errors in the
665 static void __init pagetable_init(void)
669 /* Map each physical memory range to its kernel vaddr */
671 for (range = 0; range < npmem_ranges; range++) {
672 unsigned long start_paddr;
673 unsigned long end_paddr;
676 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
677 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
678 size = pmem_ranges[range].pages << PAGE_SHIFT;
680 map_pages((unsigned long)__va(start_paddr), start_paddr,
684 #ifdef CONFIG_BLK_DEV_INITRD
685 if (initrd_end && initrd_end > mem_limit) {
686 printk("initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
687 map_pages(initrd_start, __pa(initrd_start),
688 initrd_end - initrd_start, PAGE_KERNEL);
692 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
693 memset(empty_zero_page, 0, PAGE_SIZE);
696 static void __init gateway_init(void)
698 unsigned long linux_gateway_page_addr;
699 /* FIXME: This is 'const' in order to trick the compiler
700 into not treating it as DP-relative data. */
701 extern void * const linux_gateway_page;
703 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
706 * Setup Linux Gateway page.
708 * The Linux gateway page will reside in kernel space (on virtual
709 * page 0), so it doesn't need to be aliased into user space.
712 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
713 PAGE_SIZE, PAGE_GATEWAY);
718 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
723 unsigned long start_pmd;
724 unsigned long start_pte;
725 unsigned long address;
726 unsigned long hpux_gw_page_addr;
727 /* FIXME: This is 'const' in order to trick the compiler
728 into not treating it as DP-relative data. */
729 extern void * const hpux_gateway_page;
731 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
734 * Setup HP-UX Gateway page.
736 * The HP-UX gateway page resides in the user address space,
737 * so it needs to be aliased into each process.
740 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
742 #if PTRS_PER_PMD == 1
745 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
747 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
749 address = __pa(&hpux_gateway_page);
750 #if PTRS_PER_PMD == 1
751 pmd = (pmd_t *)__pa(pg_dir);
753 pmd = (pmd_t *) pgd_address(*pg_dir);
756 * pmd is physical at this point
760 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
761 pmd = (pmd_t *) __pa(pmd);
764 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
766 /* now change pmd to kernel virtual addresses */
768 pmd = (pmd_t *)__va(pmd) + start_pmd;
771 * pg_table is physical at this point
774 pg_table = (pte_t *) pmd_address(*pmd);
776 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
778 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
780 /* now change pg_table to kernel virtual addresses */
782 pg_table = (pte_t *) __va(pg_table) + start_pte;
783 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
785 EXPORT_SYMBOL(map_hpux_gateway_page);
788 extern void flush_tlb_all_local(void);
790 void __init paging_init(void)
797 flush_cache_all_local(); /* start with known state */
798 flush_tlb_all_local();
800 for (i = 0; i < npmem_ranges; i++) {
801 unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0 };
803 /* We have an IOMMU, so all memory can go into a single
805 zones_size[ZONE_DMA] = pmem_ranges[i].pages;
807 #ifdef CONFIG_DISCONTIGMEM
808 /* Need to initialize the pfnnid_map before we can initialize
812 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
813 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
820 free_area_init_node(i, NODE_DATA(i), zones_size,
821 pmem_ranges[i].start_pfn, NULL);
828 * Currently, all PA20 chips have 18 bit protection id's, which is the
829 * limiting factor (space ids are 32 bits).
832 #define NR_SPACE_IDS 262144
837 * Currently we have a one-to-one relationship between space id's and
838 * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
839 * support 15 bit protection id's, so that is the limiting factor.
840 * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
841 * probably not worth the effort for a special case here.
844 #define NR_SPACE_IDS 32768
846 #endif /* !CONFIG_PA20 */
848 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
849 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
851 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
852 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
853 static unsigned long space_id_index;
854 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
855 static unsigned long dirty_space_ids = 0;
857 static DEFINE_SPINLOCK(sid_lock);
859 unsigned long alloc_sid(void)
863 spin_lock(&sid_lock);
865 if (free_space_ids == 0) {
866 if (dirty_space_ids != 0) {
867 spin_unlock(&sid_lock);
868 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
869 spin_lock(&sid_lock);
871 if (free_space_ids == 0)
877 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
878 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
879 space_id_index = index;
881 spin_unlock(&sid_lock);
883 return index << SPACEID_SHIFT;
886 void free_sid(unsigned long spaceid)
888 unsigned long index = spaceid >> SPACEID_SHIFT;
889 unsigned long *dirty_space_offset;
891 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
892 index &= (BITS_PER_LONG - 1);
894 spin_lock(&sid_lock);
896 if (*dirty_space_offset & (1L << index))
897 BUG(); /* attempt to free space id twice */
899 *dirty_space_offset |= (1L << index);
902 spin_unlock(&sid_lock);
907 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
911 /* NOTE: sid_lock must be held upon entry */
913 *ndirtyptr = dirty_space_ids;
914 if (dirty_space_ids != 0) {
915 for (i = 0; i < SID_ARRAY_SIZE; i++) {
916 dirty_array[i] = dirty_space_id[i];
917 dirty_space_id[i] = 0;
925 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
929 /* NOTE: sid_lock must be held upon entry */
932 for (i = 0; i < SID_ARRAY_SIZE; i++) {
933 space_id[i] ^= dirty_array[i];
936 free_space_ids += ndirty;
941 #else /* CONFIG_SMP */
943 static void recycle_sids(void)
947 /* NOTE: sid_lock must be held upon entry */
949 if (dirty_space_ids != 0) {
950 for (i = 0; i < SID_ARRAY_SIZE; i++) {
951 space_id[i] ^= dirty_space_id[i];
952 dirty_space_id[i] = 0;
955 free_space_ids += dirty_space_ids;
963 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
964 * purged, we can safely reuse the space ids that were released but
965 * not flushed from the tlb.
970 static unsigned long recycle_ndirty;
971 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
972 static unsigned int recycle_inuse = 0;
974 void flush_tlb_all(void)
979 spin_lock(&sid_lock);
980 if (dirty_space_ids > RECYCLE_THRESHOLD) {
982 BUG(); /* FIXME: Use a semaphore/wait queue here */
984 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
988 spin_unlock(&sid_lock);
989 on_each_cpu((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
991 spin_lock(&sid_lock);
992 recycle_sids(recycle_ndirty,recycle_dirty_array);
994 spin_unlock(&sid_lock);
998 void flush_tlb_all(void)
1000 spin_lock(&sid_lock);
1001 flush_tlb_all_local();
1003 spin_unlock(&sid_lock);
1007 #ifdef CONFIG_BLK_DEV_INITRD
1008 void free_initrd_mem(unsigned long start, unsigned long end)
1012 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1013 for (; start < end; start += PAGE_SIZE) {
1014 ClearPageReserved(virt_to_page(start));
1015 set_page_count(virt_to_page(start), 1);