Merge branch 'linux-2.6'
[linux-2.6] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/onenand.h>
25 #include <linux/mtd/partitions.h>
26
27 #include <asm/io.h>
28
29 /**
30  * onenand_oob_64 - oob info for large (2KB) page
31  */
32 static struct nand_ecclayout onenand_oob_64 = {
33         .eccbytes       = 20,
34         .eccpos         = {
35                 8, 9, 10, 11, 12,
36                 24, 25, 26, 27, 28,
37                 40, 41, 42, 43, 44,
38                 56, 57, 58, 59, 60,
39                 },
40         .oobfree        = {
41                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
42                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
43         }
44 };
45
46 /**
47  * onenand_oob_32 - oob info for middle (1KB) page
48  */
49 static struct nand_ecclayout onenand_oob_32 = {
50         .eccbytes       = 10,
51         .eccpos         = {
52                 8, 9, 10, 11, 12,
53                 24, 25, 26, 27, 28,
54                 },
55         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
56 };
57
58 static const unsigned char ffchars[] = {
59         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
60         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
61         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
62         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
63         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
64         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
65         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
66         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
67 };
68
69 /**
70  * onenand_readw - [OneNAND Interface] Read OneNAND register
71  * @param addr          address to read
72  *
73  * Read OneNAND register
74  */
75 static unsigned short onenand_readw(void __iomem *addr)
76 {
77         return readw(addr);
78 }
79
80 /**
81  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
82  * @param value         value to write
83  * @param addr          address to write
84  *
85  * Write OneNAND register with value
86  */
87 static void onenand_writew(unsigned short value, void __iomem *addr)
88 {
89         writew(value, addr);
90 }
91
92 /**
93  * onenand_block_address - [DEFAULT] Get block address
94  * @param this          onenand chip data structure
95  * @param block         the block
96  * @return              translated block address if DDP, otherwise same
97  *
98  * Setup Start Address 1 Register (F100h)
99  */
100 static int onenand_block_address(struct onenand_chip *this, int block)
101 {
102         /* Device Flash Core select, NAND Flash Block Address */
103         if (block & this->density_mask)
104                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
105
106         return block;
107 }
108
109 /**
110  * onenand_bufferram_address - [DEFAULT] Get bufferram address
111  * @param this          onenand chip data structure
112  * @param block         the block
113  * @return              set DBS value if DDP, otherwise 0
114  *
115  * Setup Start Address 2 Register (F101h) for DDP
116  */
117 static int onenand_bufferram_address(struct onenand_chip *this, int block)
118 {
119         /* Device BufferRAM Select */
120         if (block & this->density_mask)
121                 return ONENAND_DDP_CHIP1;
122
123         return ONENAND_DDP_CHIP0;
124 }
125
126 /**
127  * onenand_page_address - [DEFAULT] Get page address
128  * @param page          the page address
129  * @param sector        the sector address
130  * @return              combined page and sector address
131  *
132  * Setup Start Address 8 Register (F107h)
133  */
134 static int onenand_page_address(int page, int sector)
135 {
136         /* Flash Page Address, Flash Sector Address */
137         int fpa, fsa;
138
139         fpa = page & ONENAND_FPA_MASK;
140         fsa = sector & ONENAND_FSA_MASK;
141
142         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
143 }
144
145 /**
146  * onenand_buffer_address - [DEFAULT] Get buffer address
147  * @param dataram1      DataRAM index
148  * @param sectors       the sector address
149  * @param count         the number of sectors
150  * @return              the start buffer value
151  *
152  * Setup Start Buffer Register (F200h)
153  */
154 static int onenand_buffer_address(int dataram1, int sectors, int count)
155 {
156         int bsa, bsc;
157
158         /* BufferRAM Sector Address */
159         bsa = sectors & ONENAND_BSA_MASK;
160
161         if (dataram1)
162                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
163         else
164                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
165
166         /* BufferRAM Sector Count */
167         bsc = count & ONENAND_BSC_MASK;
168
169         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
170 }
171
172 /**
173  * onenand_command - [DEFAULT] Send command to OneNAND device
174  * @param mtd           MTD device structure
175  * @param cmd           the command to be sent
176  * @param addr          offset to read from or write to
177  * @param len           number of bytes to read or write
178  *
179  * Send command to OneNAND device. This function is used for middle/large page
180  * devices (1KB/2KB Bytes per page)
181  */
182 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
183 {
184         struct onenand_chip *this = mtd->priv;
185         int value, readcmd = 0, block_cmd = 0;
186         int block, page;
187
188         /* Address translation */
189         switch (cmd) {
190         case ONENAND_CMD_UNLOCK:
191         case ONENAND_CMD_LOCK:
192         case ONENAND_CMD_LOCK_TIGHT:
193         case ONENAND_CMD_UNLOCK_ALL:
194                 block = -1;
195                 page = -1;
196                 break;
197
198         case ONENAND_CMD_ERASE:
199         case ONENAND_CMD_BUFFERRAM:
200         case ONENAND_CMD_OTP_ACCESS:
201                 block_cmd = 1;
202                 block = (int) (addr >> this->erase_shift);
203                 page = -1;
204                 break;
205
206         default:
207                 block = (int) (addr >> this->erase_shift);
208                 page = (int) (addr >> this->page_shift);
209                 page &= this->page_mask;
210                 break;
211         }
212
213         /* NOTE: The setting order of the registers is very important! */
214         if (cmd == ONENAND_CMD_BUFFERRAM) {
215                 /* Select DataRAM for DDP */
216                 value = onenand_bufferram_address(this, block);
217                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
218
219                 /* Switch to the next data buffer */
220                 ONENAND_SET_NEXT_BUFFERRAM(this);
221
222                 return 0;
223         }
224
225         if (block != -1) {
226                 /* Write 'DFS, FBA' of Flash */
227                 value = onenand_block_address(this, block);
228                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
229
230                 if (block_cmd) {
231                         /* Select DataRAM for DDP */
232                         value = onenand_bufferram_address(this, block);
233                         this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
234                 }
235         }
236
237         if (page != -1) {
238                 /* Now we use page size operation */
239                 int sectors = 4, count = 4;
240                 int dataram;
241
242                 switch (cmd) {
243                 case ONENAND_CMD_READ:
244                 case ONENAND_CMD_READOOB:
245                         dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
246                         readcmd = 1;
247                         break;
248
249                 default:
250                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
251                         break;
252                 }
253
254                 /* Write 'FPA, FSA' of Flash */
255                 value = onenand_page_address(page, sectors);
256                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
257
258                 /* Write 'BSA, BSC' of DataRAM */
259                 value = onenand_buffer_address(dataram, sectors, count);
260                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
261
262                 if (readcmd) {
263                         /* Select DataRAM for DDP */
264                         value = onenand_bufferram_address(this, block);
265                         this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
266                 }
267         }
268
269         /* Interrupt clear */
270         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
271
272         /* Write command */
273         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
274
275         return 0;
276 }
277
278 /**
279  * onenand_wait - [DEFAULT] wait until the command is done
280  * @param mtd           MTD device structure
281  * @param state         state to select the max. timeout value
282  *
283  * Wait for command done. This applies to all OneNAND command
284  * Read can take up to 30us, erase up to 2ms and program up to 350us
285  * according to general OneNAND specs
286  */
287 static int onenand_wait(struct mtd_info *mtd, int state)
288 {
289         struct onenand_chip * this = mtd->priv;
290         unsigned long timeout;
291         unsigned int flags = ONENAND_INT_MASTER;
292         unsigned int interrupt = 0;
293         unsigned int ctrl;
294
295         /* The 20 msec is enough */
296         timeout = jiffies + msecs_to_jiffies(20);
297         while (time_before(jiffies, timeout)) {
298                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
299
300                 if (interrupt & flags)
301                         break;
302
303                 if (state != FL_READING)
304                         cond_resched();
305         }
306         /* To get correct interrupt status in timeout case */
307         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
308
309         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
310
311         if (ctrl & ONENAND_CTRL_ERROR) {
312                 printk(KERN_ERR "onenand_wait: controller error = 0x%04x\n", ctrl);
313                 if (ctrl & ONENAND_CTRL_LOCK)
314                         printk(KERN_ERR "onenand_wait: it's locked error.\n");
315                 return ctrl;
316         }
317
318         if (interrupt & ONENAND_INT_READ) {
319                 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
320                 if (ecc) {
321                         printk(KERN_ERR "onenand_wait: ECC error = 0x%04x\n", ecc);
322                         if (ecc & ONENAND_ECC_2BIT_ALL) {
323                                 mtd->ecc_stats.failed++;
324                                 return ecc;
325                         } else if (ecc & ONENAND_ECC_1BIT_ALL)
326                                 mtd->ecc_stats.corrected++;
327                 }
328         } else if (state == FL_READING) {
329                 printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
330                 return -EIO;
331         }
332
333         return 0;
334 }
335
336 /*
337  * onenand_interrupt - [DEFAULT] onenand interrupt handler
338  * @param irq           onenand interrupt number
339  * @param dev_id        interrupt data
340  *
341  * complete the work
342  */
343 static irqreturn_t onenand_interrupt(int irq, void *data)
344 {
345         struct onenand_chip *this = (struct onenand_chip *) data;
346
347         /* To handle shared interrupt */
348         if (!this->complete.done)
349                 complete(&this->complete);
350
351         return IRQ_HANDLED;
352 }
353
354 /*
355  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
356  * @param mtd           MTD device structure
357  * @param state         state to select the max. timeout value
358  *
359  * Wait for command done.
360  */
361 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
362 {
363         struct onenand_chip *this = mtd->priv;
364
365         wait_for_completion(&this->complete);
366
367         return onenand_wait(mtd, state);
368 }
369
370 /*
371  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
372  * @param mtd           MTD device structure
373  * @param state         state to select the max. timeout value
374  *
375  * Try interrupt based wait (It is used one-time)
376  */
377 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
378 {
379         struct onenand_chip *this = mtd->priv;
380         unsigned long remain, timeout;
381
382         /* We use interrupt wait first */
383         this->wait = onenand_interrupt_wait;
384
385         timeout = msecs_to_jiffies(100);
386         remain = wait_for_completion_timeout(&this->complete, timeout);
387         if (!remain) {
388                 printk(KERN_INFO "OneNAND: There's no interrupt. "
389                                 "We use the normal wait\n");
390
391                 /* Release the irq */
392                 free_irq(this->irq, this);
393
394                 this->wait = onenand_wait;
395         }
396
397         return onenand_wait(mtd, state);
398 }
399
400 /*
401  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
402  * @param mtd           MTD device structure
403  *
404  * There's two method to wait onenand work
405  * 1. polling - read interrupt status register
406  * 2. interrupt - use the kernel interrupt method
407  */
408 static void onenand_setup_wait(struct mtd_info *mtd)
409 {
410         struct onenand_chip *this = mtd->priv;
411         int syscfg;
412
413         init_completion(&this->complete);
414
415         if (this->irq <= 0) {
416                 this->wait = onenand_wait;
417                 return;
418         }
419
420         if (request_irq(this->irq, &onenand_interrupt,
421                                 IRQF_SHARED, "onenand", this)) {
422                 /* If we can't get irq, use the normal wait */
423                 this->wait = onenand_wait;
424                 return;
425         }
426
427         /* Enable interrupt */
428         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
429         syscfg |= ONENAND_SYS_CFG1_IOBE;
430         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
431
432         this->wait = onenand_try_interrupt_wait;
433 }
434
435 /**
436  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
437  * @param mtd           MTD data structure
438  * @param area          BufferRAM area
439  * @return              offset given area
440  *
441  * Return BufferRAM offset given area
442  */
443 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
444 {
445         struct onenand_chip *this = mtd->priv;
446
447         if (ONENAND_CURRENT_BUFFERRAM(this)) {
448                 if (area == ONENAND_DATARAM)
449                         return mtd->writesize;
450                 if (area == ONENAND_SPARERAM)
451                         return mtd->oobsize;
452         }
453
454         return 0;
455 }
456
457 /**
458  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
459  * @param mtd           MTD data structure
460  * @param area          BufferRAM area
461  * @param buffer        the databuffer to put/get data
462  * @param offset        offset to read from or write to
463  * @param count         number of bytes to read/write
464  *
465  * Read the BufferRAM area
466  */
467 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
468                 unsigned char *buffer, int offset, size_t count)
469 {
470         struct onenand_chip *this = mtd->priv;
471         void __iomem *bufferram;
472
473         bufferram = this->base + area;
474
475         bufferram += onenand_bufferram_offset(mtd, area);
476
477         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
478                 unsigned short word;
479
480                 /* Align with word(16-bit) size */
481                 count--;
482
483                 /* Read word and save byte */
484                 word = this->read_word(bufferram + offset + count);
485                 buffer[count] = (word & 0xff);
486         }
487
488         memcpy(buffer, bufferram + offset, count);
489
490         return 0;
491 }
492
493 /**
494  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
495  * @param mtd           MTD data structure
496  * @param area          BufferRAM area
497  * @param buffer        the databuffer to put/get data
498  * @param offset        offset to read from or write to
499  * @param count         number of bytes to read/write
500  *
501  * Read the BufferRAM area with Sync. Burst Mode
502  */
503 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
504                 unsigned char *buffer, int offset, size_t count)
505 {
506         struct onenand_chip *this = mtd->priv;
507         void __iomem *bufferram;
508
509         bufferram = this->base + area;
510
511         bufferram += onenand_bufferram_offset(mtd, area);
512
513         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
514
515         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
516                 unsigned short word;
517
518                 /* Align with word(16-bit) size */
519                 count--;
520
521                 /* Read word and save byte */
522                 word = this->read_word(bufferram + offset + count);
523                 buffer[count] = (word & 0xff);
524         }
525
526         memcpy(buffer, bufferram + offset, count);
527
528         this->mmcontrol(mtd, 0);
529
530         return 0;
531 }
532
533 /**
534  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
535  * @param mtd           MTD data structure
536  * @param area          BufferRAM area
537  * @param buffer        the databuffer to put/get data
538  * @param offset        offset to read from or write to
539  * @param count         number of bytes to read/write
540  *
541  * Write the BufferRAM area
542  */
543 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
544                 const unsigned char *buffer, int offset, size_t count)
545 {
546         struct onenand_chip *this = mtd->priv;
547         void __iomem *bufferram;
548
549         bufferram = this->base + area;
550
551         bufferram += onenand_bufferram_offset(mtd, area);
552
553         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
554                 unsigned short word;
555                 int byte_offset;
556
557                 /* Align with word(16-bit) size */
558                 count--;
559
560                 /* Calculate byte access offset */
561                 byte_offset = offset + count;
562
563                 /* Read word and save byte */
564                 word = this->read_word(bufferram + byte_offset);
565                 word = (word & ~0xff) | buffer[count];
566                 this->write_word(word, bufferram + byte_offset);
567         }
568
569         memcpy(bufferram + offset, buffer, count);
570
571         return 0;
572 }
573
574 /**
575  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
576  * @param mtd           MTD data structure
577  * @param addr          address to check
578  * @return              1 if there are valid data, otherwise 0
579  *
580  * Check bufferram if there is data we required
581  */
582 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
583 {
584         struct onenand_chip *this = mtd->priv;
585         int blockpage, found = 0;
586         unsigned int i;
587
588         blockpage = (int) (addr >> this->page_shift);
589
590         /* Is there valid data? */
591         i = ONENAND_CURRENT_BUFFERRAM(this);
592         if (this->bufferram[i].blockpage == blockpage)
593                 found = 1;
594         else {
595                 /* Check another BufferRAM */
596                 i = ONENAND_NEXT_BUFFERRAM(this);
597                 if (this->bufferram[i].blockpage == blockpage) {
598                         ONENAND_SET_NEXT_BUFFERRAM(this);
599                         found = 1;
600                 }
601         }
602
603         if (found && ONENAND_IS_DDP(this)) {
604                 /* Select DataRAM for DDP */
605                 int block = (int) (addr >> this->erase_shift);
606                 int value = onenand_bufferram_address(this, block);
607                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
608         }
609
610         return found;
611 }
612
613 /**
614  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
615  * @param mtd           MTD data structure
616  * @param addr          address to update
617  * @param valid         valid flag
618  *
619  * Update BufferRAM information
620  */
621 static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
622                 int valid)
623 {
624         struct onenand_chip *this = mtd->priv;
625         int blockpage;
626         unsigned int i;
627
628         blockpage = (int) (addr >> this->page_shift);
629
630         /* Invalidate another BufferRAM */
631         i = ONENAND_NEXT_BUFFERRAM(this);
632         if (this->bufferram[i].blockpage == blockpage)
633                 this->bufferram[i].blockpage = -1;
634
635         /* Update BufferRAM */
636         i = ONENAND_CURRENT_BUFFERRAM(this);
637         if (valid)
638                 this->bufferram[i].blockpage = blockpage;
639         else
640                 this->bufferram[i].blockpage = -1;
641 }
642
643 /**
644  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
645  * @param mtd           MTD data structure
646  * @param addr          start address to invalidate
647  * @param len           length to invalidate
648  *
649  * Invalidate BufferRAM information
650  */
651 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
652                 unsigned int len)
653 {
654         struct onenand_chip *this = mtd->priv;
655         int i;
656         loff_t end_addr = addr + len;
657
658         /* Invalidate BufferRAM */
659         for (i = 0; i < MAX_BUFFERRAM; i++) {
660                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
661                 if (buf_addr >= addr && buf_addr < end_addr)
662                         this->bufferram[i].blockpage = -1;
663         }
664 }
665
666 /**
667  * onenand_get_device - [GENERIC] Get chip for selected access
668  * @param mtd           MTD device structure
669  * @param new_state     the state which is requested
670  *
671  * Get the device and lock it for exclusive access
672  */
673 static int onenand_get_device(struct mtd_info *mtd, int new_state)
674 {
675         struct onenand_chip *this = mtd->priv;
676         DECLARE_WAITQUEUE(wait, current);
677
678         /*
679          * Grab the lock and see if the device is available
680          */
681         while (1) {
682                 spin_lock(&this->chip_lock);
683                 if (this->state == FL_READY) {
684                         this->state = new_state;
685                         spin_unlock(&this->chip_lock);
686                         break;
687                 }
688                 if (new_state == FL_PM_SUSPENDED) {
689                         spin_unlock(&this->chip_lock);
690                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
691                 }
692                 set_current_state(TASK_UNINTERRUPTIBLE);
693                 add_wait_queue(&this->wq, &wait);
694                 spin_unlock(&this->chip_lock);
695                 schedule();
696                 remove_wait_queue(&this->wq, &wait);
697         }
698
699         return 0;
700 }
701
702 /**
703  * onenand_release_device - [GENERIC] release chip
704  * @param mtd           MTD device structure
705  *
706  * Deselect, release chip lock and wake up anyone waiting on the device
707  */
708 static void onenand_release_device(struct mtd_info *mtd)
709 {
710         struct onenand_chip *this = mtd->priv;
711
712         /* Release the chip */
713         spin_lock(&this->chip_lock);
714         this->state = FL_READY;
715         wake_up(&this->wq);
716         spin_unlock(&this->chip_lock);
717 }
718
719 /**
720  * onenand_read - [MTD Interface] Read data from flash
721  * @param mtd           MTD device structure
722  * @param from          offset to read from
723  * @param len           number of bytes to read
724  * @param retlen        pointer to variable to store the number of read bytes
725  * @param buf           the databuffer to put data
726  *
727  * Read with ecc
728 */
729 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
730         size_t *retlen, u_char *buf)
731 {
732         struct onenand_chip *this = mtd->priv;
733         struct mtd_ecc_stats stats;
734         int read = 0, column;
735         int thislen;
736         int ret = 0, boundary = 0;
737
738         DEBUG(MTD_DEBUG_LEVEL3, "onenand_read: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
739
740         /* Do not allow reads past end of device */
741         if ((from + len) > mtd->size) {
742                 printk(KERN_ERR "onenand_read: Attempt read beyond end of device\n");
743                 *retlen = 0;
744                 return -EINVAL;
745         }
746
747         /* Grab the lock and see if the device is available */
748         onenand_get_device(mtd, FL_READING);
749
750         stats = mtd->ecc_stats;
751
752         /* Read-while-load method */
753
754         /* Do first load to bufferRAM */
755         if (read < len) {
756                 if (!onenand_check_bufferram(mtd, from)) {
757                         this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
758                         ret = this->wait(mtd, FL_READING);
759                         onenand_update_bufferram(mtd, from, !ret);
760                 }
761         }
762
763         thislen = min_t(int, mtd->writesize, len - read);
764         column = from & (mtd->writesize - 1);
765         if (column + thislen > mtd->writesize)
766                 thislen = mtd->writesize - column;
767
768         while (!ret) {
769                 /* If there is more to load then start next load */
770                 from += thislen;
771                 if (read + thislen < len) {
772                         this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
773                         /*
774                          * Chip boundary handling in DDP
775                          * Now we issued chip 1 read and pointed chip 1
776                          * bufferam so we have to point chip 0 bufferam.
777                          */
778                         if (ONENAND_IS_DDP(this) &&
779                             unlikely(from == (this->chipsize >> 1))) {
780                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
781                                 boundary = 1;
782                         } else
783                                 boundary = 0;
784                         ONENAND_SET_PREV_BUFFERRAM(this);
785                 }
786                 /* While load is going, read from last bufferRAM */
787                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
788                 /* See if we are done */
789                 read += thislen;
790                 if (read == len)
791                         break;
792                 /* Set up for next read from bufferRAM */
793                 if (unlikely(boundary))
794                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
795                 ONENAND_SET_NEXT_BUFFERRAM(this);
796                 buf += thislen;
797                 thislen = min_t(int, mtd->writesize, len - read);
798                 column = 0;
799                 cond_resched();
800                 /* Now wait for load */
801                 ret = this->wait(mtd, FL_READING);
802                 onenand_update_bufferram(mtd, from, !ret);
803         }
804
805         /* Deselect and wake up anyone waiting on the device */
806         onenand_release_device(mtd);
807
808         /*
809          * Return success, if no ECC failures, else -EBADMSG
810          * fs driver will take care of that, because
811          * retlen == desired len and result == -EBADMSG
812          */
813         *retlen = read;
814
815         if (mtd->ecc_stats.failed - stats.failed)
816                 return -EBADMSG;
817
818         if (ret)
819                 return ret;
820
821         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
822 }
823
824 /**
825  * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
826  * @param mtd           MTD device structure
827  * @param buf           destination address
828  * @param column        oob offset to read from
829  * @param thislen       oob length to read
830  */
831 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
832                                 int thislen)
833 {
834         struct onenand_chip *this = mtd->priv;
835         struct nand_oobfree *free;
836         int readcol = column;
837         int readend = column + thislen;
838         int lastgap = 0;
839         unsigned int i;
840         uint8_t *oob_buf = this->oob_buf;
841
842         free = this->ecclayout->oobfree;
843         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
844                 if (readcol >= lastgap)
845                         readcol += free->offset - lastgap;
846                 if (readend >= lastgap)
847                         readend += free->offset - lastgap;
848                 lastgap = free->offset + free->length;
849         }
850         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
851         free = this->ecclayout->oobfree;
852         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
853                 int free_end = free->offset + free->length;
854                 if (free->offset < readend && free_end > readcol) {
855                         int st = max_t(int,free->offset,readcol);
856                         int ed = min_t(int,free_end,readend);
857                         int n = ed - st;
858                         memcpy(buf, oob_buf + st, n);
859                         buf += n;
860                 } else if (column == 0)
861                         break;
862         }
863         return 0;
864 }
865
866 /**
867  * onenand_do_read_oob - [MTD Interface] OneNAND read out-of-band
868  * @param mtd           MTD device structure
869  * @param from          offset to read from
870  * @param len           number of bytes to read
871  * @param retlen        pointer to variable to store the number of read bytes
872  * @param buf           the databuffer to put data
873  * @param mode          operation mode
874  *
875  * OneNAND read out-of-band data from the spare area
876  */
877 static int onenand_do_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
878                         size_t *retlen, u_char *buf, mtd_oob_mode_t mode)
879 {
880         struct onenand_chip *this = mtd->priv;
881         int read = 0, thislen, column, oobsize;
882         int ret = 0;
883
884         DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
885
886         /* Initialize return length value */
887         *retlen = 0;
888
889         if (mode == MTD_OOB_AUTO)
890                 oobsize = this->ecclayout->oobavail;
891         else
892                 oobsize = mtd->oobsize;
893
894         column = from & (mtd->oobsize - 1);
895
896         if (unlikely(column >= oobsize)) {
897                 printk(KERN_ERR "onenand_read_oob: Attempted to start read outside oob\n");
898                 return -EINVAL;
899         }
900
901         /* Do not allow reads past end of device */
902         if (unlikely(from >= mtd->size ||
903                      column + len > ((mtd->size >> this->page_shift) -
904                                      (from >> this->page_shift)) * oobsize)) {
905                 printk(KERN_ERR "onenand_read_oob: Attempted to read beyond end of device\n");
906                 return -EINVAL;
907         }
908
909         /* Grab the lock and see if the device is available */
910         onenand_get_device(mtd, FL_READING);
911
912         while (read < len) {
913                 cond_resched();
914
915                 thislen = oobsize - column;
916                 thislen = min_t(int, thislen, len);
917
918                 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
919
920                 onenand_update_bufferram(mtd, from, 0);
921
922                 ret = this->wait(mtd, FL_READING);
923                 /* First copy data and check return value for ECC handling */
924
925                 if (mode == MTD_OOB_AUTO)
926                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
927                 else
928                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
929
930                 if (ret) {
931                         printk(KERN_ERR "onenand_read_oob: read failed = 0x%x\n", ret);
932                         break;
933                 }
934
935                 read += thislen;
936
937                 if (read == len)
938                         break;
939
940                 buf += thislen;
941
942                 /* Read more? */
943                 if (read < len) {
944                         /* Page size */
945                         from += mtd->writesize;
946                         column = 0;
947                 }
948         }
949
950         /* Deselect and wake up anyone waiting on the device */
951         onenand_release_device(mtd);
952
953         *retlen = read;
954         return ret;
955 }
956
957 /**
958  * onenand_read_oob - [MTD Interface] NAND write data and/or out-of-band
959  * @param mtd:          MTD device structure
960  * @param from:         offset to read from
961  * @param ops:          oob operation description structure
962  */
963 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
964                             struct mtd_oob_ops *ops)
965 {
966         switch (ops->mode) {
967         case MTD_OOB_PLACE:
968         case MTD_OOB_AUTO:
969                 break;
970         case MTD_OOB_RAW:
971                 /* Not implemented yet */
972         default:
973                 return -EINVAL;
974         }
975         return onenand_do_read_oob(mtd, from + ops->ooboffs, ops->ooblen,
976                                    &ops->oobretlen, ops->oobbuf, ops->mode);
977 }
978
979 /**
980  * onenand_bbt_wait - [DEFAULT] wait until the command is done
981  * @param mtd           MTD device structure
982  * @param state         state to select the max. timeout value
983  *
984  * Wait for command done.
985  */
986 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
987 {
988         struct onenand_chip *this = mtd->priv;
989         unsigned long timeout;
990         unsigned int interrupt;
991         unsigned int ctrl;
992
993         /* The 20 msec is enough */
994         timeout = jiffies + msecs_to_jiffies(20);
995         while (time_before(jiffies, timeout)) {
996                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
997                 if (interrupt & ONENAND_INT_MASTER)
998                         break;
999         }
1000         /* To get correct interrupt status in timeout case */
1001         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1002         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1003
1004         if (ctrl & ONENAND_CTRL_ERROR) {
1005                 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1006                 /* Initial bad block case */
1007                 if (ctrl & ONENAND_CTRL_LOAD)
1008                         return ONENAND_BBT_READ_ERROR;
1009                 return ONENAND_BBT_READ_FATAL_ERROR;
1010         }
1011
1012         if (interrupt & ONENAND_INT_READ) {
1013                 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
1014                 if (ecc & ONENAND_ECC_2BIT_ALL)
1015                         return ONENAND_BBT_READ_ERROR;
1016         } else {
1017                 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1018                         "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1019                 return ONENAND_BBT_READ_FATAL_ERROR;
1020         }
1021
1022         return 0;
1023 }
1024
1025 /**
1026  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1027  * @param mtd           MTD device structure
1028  * @param from          offset to read from
1029  * @param ops           oob operation description structure
1030  *
1031  * OneNAND read out-of-band data from the spare area for bbt scan
1032  */
1033 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
1034                             struct mtd_oob_ops *ops)
1035 {
1036         struct onenand_chip *this = mtd->priv;
1037         int read = 0, thislen, column;
1038         int ret = 0;
1039         size_t len = ops->ooblen;
1040         u_char *buf = ops->oobbuf;
1041
1042         DEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1043
1044         /* Initialize return value */
1045         ops->oobretlen = 0;
1046
1047         /* Do not allow reads past end of device */
1048         if (unlikely((from + len) > mtd->size)) {
1049                 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1050                 return ONENAND_BBT_READ_FATAL_ERROR;
1051         }
1052
1053         /* Grab the lock and see if the device is available */
1054         onenand_get_device(mtd, FL_READING);
1055
1056         column = from & (mtd->oobsize - 1);
1057
1058         while (read < len) {
1059                 cond_resched();
1060
1061                 thislen = mtd->oobsize - column;
1062                 thislen = min_t(int, thislen, len);
1063
1064                 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
1065
1066                 onenand_update_bufferram(mtd, from, 0);
1067
1068                 ret = onenand_bbt_wait(mtd, FL_READING);
1069                 if (ret)
1070                         break;
1071
1072                 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1073                 read += thislen;
1074                 if (read == len)
1075                         break;
1076
1077                 buf += thislen;
1078
1079                 /* Read more? */
1080                 if (read < len) {
1081                         /* Update Page size */
1082                         from += mtd->writesize;
1083                         column = 0;
1084                 }
1085         }
1086
1087         /* Deselect and wake up anyone waiting on the device */
1088         onenand_release_device(mtd);
1089
1090         ops->oobretlen = read;
1091         return ret;
1092 }
1093
1094 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1095 /**
1096  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1097  * @param mtd           MTD device structure
1098  * @param buf           the databuffer to verify
1099  * @param to            offset to read from
1100  *
1101  */
1102 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1103 {
1104         struct onenand_chip *this = mtd->priv;
1105         char oobbuf[64];
1106         int status, i;
1107
1108         this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
1109         onenand_update_bufferram(mtd, to, 0);
1110         status = this->wait(mtd, FL_READING);
1111         if (status)
1112                 return status;
1113
1114         this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1115         for (i = 0; i < mtd->oobsize; i++)
1116                 if (buf[i] != 0xFF && buf[i] != oobbuf[i])
1117                         return -EBADMSG;
1118
1119         return 0;
1120 }
1121
1122 /**
1123  * onenand_verify - [GENERIC] verify the chip contents after a write
1124  * @param mtd          MTD device structure
1125  * @param buf          the databuffer to verify
1126  * @param addr         offset to read from
1127  * @param len          number of bytes to read and compare
1128  *
1129  */
1130 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1131 {
1132         struct onenand_chip *this = mtd->priv;
1133         void __iomem *dataram;
1134         int ret = 0;
1135         int thislen, column;
1136
1137         while (len != 0) {
1138                 thislen = min_t(int, mtd->writesize, len);
1139                 column = addr & (mtd->writesize - 1);
1140                 if (column + thislen > mtd->writesize)
1141                         thislen = mtd->writesize - column;
1142
1143                 this->command(mtd, ONENAND_CMD_READ, addr, mtd->writesize);
1144
1145                 onenand_update_bufferram(mtd, addr, 0);
1146
1147                 ret = this->wait(mtd, FL_READING);
1148                 if (ret)
1149                         return ret;
1150
1151                 onenand_update_bufferram(mtd, addr, 1);
1152
1153                 dataram = this->base + ONENAND_DATARAM;
1154                 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1155
1156                 if (memcmp(buf, dataram + column, thislen))
1157                         return -EBADMSG;
1158
1159                 len -= thislen;
1160                 buf += thislen;
1161                 addr += thislen;
1162         }
1163
1164         return 0;
1165 }
1166 #else
1167 #define onenand_verify(...)             (0)
1168 #define onenand_verify_oob(...)         (0)
1169 #endif
1170
1171 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1172
1173 /**
1174  * onenand_write - [MTD Interface] write buffer to FLASH
1175  * @param mtd           MTD device structure
1176  * @param to            offset to write to
1177  * @param len           number of bytes to write
1178  * @param retlen        pointer to variable to store the number of written bytes
1179  * @param buf           the data to write
1180  *
1181  * Write with ECC
1182  */
1183 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1184         size_t *retlen, const u_char *buf)
1185 {
1186         struct onenand_chip *this = mtd->priv;
1187         int written = 0;
1188         int ret = 0;
1189         int column, subpage;
1190
1191         DEBUG(MTD_DEBUG_LEVEL3, "onenand_write: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1192
1193         /* Initialize retlen, in case of early exit */
1194         *retlen = 0;
1195
1196         /* Do not allow writes past end of device */
1197         if (unlikely((to + len) > mtd->size)) {
1198                 printk(KERN_ERR "onenand_write: Attempt write to past end of device\n");
1199                 return -EINVAL;
1200         }
1201
1202         /* Reject writes, which are not page aligned */
1203         if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
1204                 printk(KERN_ERR "onenand_write: Attempt to write not page aligned data\n");
1205                 return -EINVAL;
1206         }
1207
1208         column = to & (mtd->writesize - 1);
1209
1210         /* Grab the lock and see if the device is available */
1211         onenand_get_device(mtd, FL_WRITING);
1212
1213         /* Loop until all data write */
1214         while (written < len) {
1215                 int thislen = min_t(int, mtd->writesize - column, len - written);
1216                 u_char *wbuf = (u_char *) buf;
1217
1218                 cond_resched();
1219
1220                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1221
1222                 /* Partial page write */
1223                 subpage = thislen < mtd->writesize;
1224                 if (subpage) {
1225                         memset(this->page_buf, 0xff, mtd->writesize);
1226                         memcpy(this->page_buf + column, buf, thislen);
1227                         wbuf = this->page_buf;
1228                 }
1229
1230                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1231                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1232
1233                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1234
1235                 ret = this->wait(mtd, FL_WRITING);
1236
1237                 /* In partial page write we don't update bufferram */
1238                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1239
1240                 if (ret) {
1241                         printk(KERN_ERR "onenand_write: write filaed %d\n", ret);
1242                         break;
1243                 }
1244
1245                 /* Only check verify write turn on */
1246                 ret = onenand_verify(mtd, (u_char *) wbuf, to, thislen);
1247                 if (ret) {
1248                         printk(KERN_ERR "onenand_write: verify failed %d\n", ret);
1249                         break;
1250                 }
1251
1252                 written += thislen;
1253
1254                 if (written == len)
1255                         break;
1256
1257                 column = 0;
1258                 to += thislen;
1259                 buf += thislen;
1260         }
1261
1262         /* Deselect and wake up anyone waiting on the device */
1263         onenand_release_device(mtd);
1264
1265         *retlen = written;
1266
1267         return ret;
1268 }
1269
1270 /**
1271  * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1272  * @param mtd           MTD device structure
1273  * @param oob_buf       oob buffer
1274  * @param buf           source address
1275  * @param column        oob offset to write to
1276  * @param thislen       oob length to write
1277  */
1278 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1279                                   const u_char *buf, int column, int thislen)
1280 {
1281         struct onenand_chip *this = mtd->priv;
1282         struct nand_oobfree *free;
1283         int writecol = column;
1284         int writeend = column + thislen;
1285         int lastgap = 0;
1286         unsigned int i;
1287
1288         free = this->ecclayout->oobfree;
1289         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1290                 if (writecol >= lastgap)
1291                         writecol += free->offset - lastgap;
1292                 if (writeend >= lastgap)
1293                         writeend += free->offset - lastgap;
1294                 lastgap = free->offset + free->length;
1295         }
1296         free = this->ecclayout->oobfree;
1297         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1298                 int free_end = free->offset + free->length;
1299                 if (free->offset < writeend && free_end > writecol) {
1300                         int st = max_t(int,free->offset,writecol);
1301                         int ed = min_t(int,free_end,writeend);
1302                         int n = ed - st;
1303                         memcpy(oob_buf + st, buf, n);
1304                         buf += n;
1305                 } else if (column == 0)
1306                         break;
1307         }
1308         return 0;
1309 }
1310
1311 /**
1312  * onenand_do_write_oob - [Internal] OneNAND write out-of-band
1313  * @param mtd           MTD device structure
1314  * @param to            offset to write to
1315  * @param len           number of bytes to write
1316  * @param retlen        pointer to variable to store the number of written bytes
1317  * @param buf           the data to write
1318  * @param mode          operation mode
1319  *
1320  * OneNAND write out-of-band
1321  */
1322 static int onenand_do_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
1323                                 size_t *retlen, const u_char *buf, mtd_oob_mode_t mode)
1324 {
1325         struct onenand_chip *this = mtd->priv;
1326         int column, ret = 0, oobsize;
1327         int written = 0;
1328         u_char *oobbuf;
1329
1330         DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1331
1332         /* Initialize retlen, in case of early exit */
1333         *retlen = 0;
1334
1335         if (mode == MTD_OOB_AUTO)
1336                 oobsize = this->ecclayout->oobavail;
1337         else
1338                 oobsize = mtd->oobsize;
1339
1340         column = to & (mtd->oobsize - 1);
1341
1342         if (unlikely(column >= oobsize)) {
1343                 printk(KERN_ERR "onenand_write_oob: Attempted to start write outside oob\n");
1344                 return -EINVAL;
1345         }
1346
1347         /* For compatibility with NAND: Do not allow write past end of page */
1348         if (unlikely(column + len > oobsize)) {
1349                 printk(KERN_ERR "onenand_write_oob: "
1350                       "Attempt to write past end of page\n");
1351                 return -EINVAL;
1352         }
1353
1354         /* Do not allow reads past end of device */
1355         if (unlikely(to >= mtd->size ||
1356                      column + len > ((mtd->size >> this->page_shift) -
1357                                      (to >> this->page_shift)) * oobsize)) {
1358                 printk(KERN_ERR "onenand_write_oob: Attempted to write past end of device\n");
1359                 return -EINVAL;
1360         }
1361
1362         /* Grab the lock and see if the device is available */
1363         onenand_get_device(mtd, FL_WRITING);
1364
1365         oobbuf = this->oob_buf;
1366
1367         /* Loop until all data write */
1368         while (written < len) {
1369                 int thislen = min_t(int, oobsize, len - written);
1370
1371                 cond_resched();
1372
1373                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1374
1375                 /* We send data to spare ram with oobsize
1376                  * to prevent byte access */
1377                 memset(oobbuf, 0xff, mtd->oobsize);
1378                 if (mode == MTD_OOB_AUTO)
1379                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1380                 else
1381                         memcpy(oobbuf + column, buf, thislen);
1382                 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1383
1384                 this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
1385
1386                 onenand_update_bufferram(mtd, to, 0);
1387
1388                 ret = this->wait(mtd, FL_WRITING);
1389                 if (ret) {
1390                         printk(KERN_ERR "onenand_write_oob: write failed %d\n", ret);
1391                         break;
1392                 }
1393
1394                 ret = onenand_verify_oob(mtd, oobbuf, to);
1395                 if (ret) {
1396                         printk(KERN_ERR "onenand_write_oob: verify failed %d\n", ret);
1397                         break;
1398                 }
1399
1400                 written += thislen;
1401                 if (written == len)
1402                         break;
1403
1404                 to += mtd->writesize;
1405                 buf += thislen;
1406                 column = 0;
1407         }
1408
1409         /* Deselect and wake up anyone waiting on the device */
1410         onenand_release_device(mtd);
1411
1412         *retlen = written;
1413
1414         return ret;
1415 }
1416
1417 /**
1418  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1419  * @param mtd:          MTD device structure
1420  * @param to:           offset to write
1421  * @param ops:          oob operation description structure
1422  */
1423 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1424                              struct mtd_oob_ops *ops)
1425 {
1426         switch (ops->mode) {
1427         case MTD_OOB_PLACE:
1428         case MTD_OOB_AUTO:
1429                 break;
1430         case MTD_OOB_RAW:
1431                 /* Not implemented yet */
1432         default:
1433                 return -EINVAL;
1434         }
1435         return onenand_do_write_oob(mtd, to + ops->ooboffs, ops->ooblen,
1436                                     &ops->oobretlen, ops->oobbuf, ops->mode);
1437 }
1438
1439 /**
1440  * onenand_block_checkbad - [GENERIC] Check if a block is marked bad
1441  * @param mtd           MTD device structure
1442  * @param ofs           offset from device start
1443  * @param getchip       0, if the chip is already selected
1444  * @param allowbbt      1, if its allowed to access the bbt area
1445  *
1446  * Check, if the block is bad. Either by reading the bad block table or
1447  * calling of the scan function.
1448  */
1449 static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
1450 {
1451         struct onenand_chip *this = mtd->priv;
1452         struct bbm_info *bbm = this->bbm;
1453
1454         /* Return info from the table */
1455         return bbm->isbad_bbt(mtd, ofs, allowbbt);
1456 }
1457
1458 /**
1459  * onenand_erase - [MTD Interface] erase block(s)
1460  * @param mtd           MTD device structure
1461  * @param instr         erase instruction
1462  *
1463  * Erase one ore more blocks
1464  */
1465 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1466 {
1467         struct onenand_chip *this = mtd->priv;
1468         unsigned int block_size;
1469         loff_t addr;
1470         int len;
1471         int ret = 0;
1472
1473         DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
1474
1475         block_size = (1 << this->erase_shift);
1476
1477         /* Start address must align on block boundary */
1478         if (unlikely(instr->addr & (block_size - 1))) {
1479                 printk(KERN_ERR "onenand_erase: Unaligned address\n");
1480                 return -EINVAL;
1481         }
1482
1483         /* Length must align on block boundary */
1484         if (unlikely(instr->len & (block_size - 1))) {
1485                 printk(KERN_ERR "onenand_erase: Length not block aligned\n");
1486                 return -EINVAL;
1487         }
1488
1489         /* Do not allow erase past end of device */
1490         if (unlikely((instr->len + instr->addr) > mtd->size)) {
1491                 printk(KERN_ERR "onenand_erase: Erase past end of device\n");
1492                 return -EINVAL;
1493         }
1494
1495         instr->fail_addr = 0xffffffff;
1496
1497         /* Grab the lock and see if the device is available */
1498         onenand_get_device(mtd, FL_ERASING);
1499
1500         /* Loop throught the pages */
1501         len = instr->len;
1502         addr = instr->addr;
1503
1504         instr->state = MTD_ERASING;
1505
1506         while (len) {
1507                 cond_resched();
1508
1509                 /* Check if we have a bad block, we do not erase bad blocks */
1510                 if (onenand_block_checkbad(mtd, addr, 0, 0)) {
1511                         printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
1512                         instr->state = MTD_ERASE_FAILED;
1513                         goto erase_exit;
1514                 }
1515
1516                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1517
1518                 onenand_invalidate_bufferram(mtd, addr, block_size);
1519
1520                 ret = this->wait(mtd, FL_ERASING);
1521                 /* Check, if it is write protected */
1522                 if (ret) {
1523                         printk(KERN_ERR "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1524                         instr->state = MTD_ERASE_FAILED;
1525                         instr->fail_addr = addr;
1526                         goto erase_exit;
1527                 }
1528
1529                 len -= block_size;
1530                 addr += block_size;
1531         }
1532
1533         instr->state = MTD_ERASE_DONE;
1534
1535 erase_exit:
1536
1537         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1538         /* Do call back function */
1539         if (!ret)
1540                 mtd_erase_callback(instr);
1541
1542         /* Deselect and wake up anyone waiting on the device */
1543         onenand_release_device(mtd);
1544
1545         return ret;
1546 }
1547
1548 /**
1549  * onenand_sync - [MTD Interface] sync
1550  * @param mtd           MTD device structure
1551  *
1552  * Sync is actually a wait for chip ready function
1553  */
1554 static void onenand_sync(struct mtd_info *mtd)
1555 {
1556         DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1557
1558         /* Grab the lock and see if the device is available */
1559         onenand_get_device(mtd, FL_SYNCING);
1560
1561         /* Release it and go back */
1562         onenand_release_device(mtd);
1563 }
1564
1565 /**
1566  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1567  * @param mtd           MTD device structure
1568  * @param ofs           offset relative to mtd start
1569  *
1570  * Check whether the block is bad
1571  */
1572 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1573 {
1574         /* Check for invalid offset */
1575         if (ofs > mtd->size)
1576                 return -EINVAL;
1577
1578         return onenand_block_checkbad(mtd, ofs, 1, 0);
1579 }
1580
1581 /**
1582  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1583  * @param mtd           MTD device structure
1584  * @param ofs           offset from device start
1585  *
1586  * This is the default implementation, which can be overridden by
1587  * a hardware specific driver.
1588  */
1589 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1590 {
1591         struct onenand_chip *this = mtd->priv;
1592         struct bbm_info *bbm = this->bbm;
1593         u_char buf[2] = {0, 0};
1594         size_t retlen;
1595         int block;
1596
1597         /* Get block number */
1598         block = ((int) ofs) >> bbm->bbt_erase_shift;
1599         if (bbm->bbt)
1600                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1601
1602         /* We write two bytes, so we dont have to mess with 16 bit access */
1603         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1604         return onenand_do_write_oob(mtd, ofs , 2, &retlen, buf, MTD_OOB_PLACE);
1605 }
1606
1607 /**
1608  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1609  * @param mtd           MTD device structure
1610  * @param ofs           offset relative to mtd start
1611  *
1612  * Mark the block as bad
1613  */
1614 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1615 {
1616         struct onenand_chip *this = mtd->priv;
1617         int ret;
1618
1619         ret = onenand_block_isbad(mtd, ofs);
1620         if (ret) {
1621                 /* If it was bad already, return success and do nothing */
1622                 if (ret > 0)
1623                         return 0;
1624                 return ret;
1625         }
1626
1627         return this->block_markbad(mtd, ofs);
1628 }
1629
1630 /**
1631  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1632  * @param mtd           MTD device structure
1633  * @param ofs           offset relative to mtd start
1634  * @param len           number of bytes to lock or unlock
1635  * @param cmd           lock or unlock command
1636  *
1637  * Lock or unlock one or more blocks
1638  */
1639 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1640 {
1641         struct onenand_chip *this = mtd->priv;
1642         int start, end, block, value, status;
1643         int wp_status_mask;
1644
1645         start = ofs >> this->erase_shift;
1646         end = len >> this->erase_shift;
1647
1648         if (cmd == ONENAND_CMD_LOCK)
1649                 wp_status_mask = ONENAND_WP_LS;
1650         else
1651                 wp_status_mask = ONENAND_WP_US;
1652
1653         /* Continuous lock scheme */
1654         if (this->options & ONENAND_HAS_CONT_LOCK) {
1655                 /* Set start block address */
1656                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1657                 /* Set end block address */
1658                 this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1659                 /* Write lock command */
1660                 this->command(mtd, cmd, 0, 0);
1661
1662                 /* There's no return value */
1663                 this->wait(mtd, FL_LOCKING);
1664
1665                 /* Sanity check */
1666                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1667                     & ONENAND_CTRL_ONGO)
1668                         continue;
1669
1670                 /* Check lock status */
1671                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1672                 if (!(status & wp_status_mask))
1673                         printk(KERN_ERR "wp status = 0x%x\n", status);
1674
1675                 return 0;
1676         }
1677
1678         /* Block lock scheme */
1679         for (block = start; block < start + end; block++) {
1680                 /* Set block address */
1681                 value = onenand_block_address(this, block);
1682                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1683                 /* Select DataRAM for DDP */
1684                 value = onenand_bufferram_address(this, block);
1685                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1686                 /* Set start block address */
1687                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1688                 /* Write lock command */
1689                 this->command(mtd, cmd, 0, 0);
1690
1691                 /* There's no return value */
1692                 this->wait(mtd, FL_LOCKING);
1693
1694                 /* Sanity check */
1695                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1696                     & ONENAND_CTRL_ONGO)
1697                         continue;
1698
1699                 /* Check lock status */
1700                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1701                 if (!(status & wp_status_mask))
1702                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1703         }
1704
1705         return 0;
1706 }
1707
1708 /**
1709  * onenand_lock - [MTD Interface] Lock block(s)
1710  * @param mtd           MTD device structure
1711  * @param ofs           offset relative to mtd start
1712  * @param len           number of bytes to unlock
1713  *
1714  * Lock one or more blocks
1715  */
1716 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1717 {
1718         return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
1719 }
1720
1721 /**
1722  * onenand_unlock - [MTD Interface] Unlock block(s)
1723  * @param mtd           MTD device structure
1724  * @param ofs           offset relative to mtd start
1725  * @param len           number of bytes to unlock
1726  *
1727  * Unlock one or more blocks
1728  */
1729 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1730 {
1731         return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
1732 }
1733
1734 /**
1735  * onenand_check_lock_status - [OneNAND Interface] Check lock status
1736  * @param this          onenand chip data structure
1737  *
1738  * Check lock status
1739  */
1740 static void onenand_check_lock_status(struct onenand_chip *this)
1741 {
1742         unsigned int value, block, status;
1743         unsigned int end;
1744
1745         end = this->chipsize >> this->erase_shift;
1746         for (block = 0; block < end; block++) {
1747                 /* Set block address */
1748                 value = onenand_block_address(this, block);
1749                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1750                 /* Select DataRAM for DDP */
1751                 value = onenand_bufferram_address(this, block);
1752                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1753                 /* Set start block address */
1754                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1755
1756                 /* Check lock status */
1757                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1758                 if (!(status & ONENAND_WP_US))
1759                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1760         }
1761 }
1762
1763 /**
1764  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
1765  * @param mtd           MTD device structure
1766  *
1767  * Unlock all blocks
1768  */
1769 static int onenand_unlock_all(struct mtd_info *mtd)
1770 {
1771         struct onenand_chip *this = mtd->priv;
1772
1773         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
1774                 /* Set start block address */
1775                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1776                 /* Write unlock command */
1777                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
1778
1779                 /* There's no return value */
1780                 this->wait(mtd, FL_LOCKING);
1781
1782                 /* Sanity check */
1783                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1784                     & ONENAND_CTRL_ONGO)
1785                         continue;
1786
1787                 /* Workaround for all block unlock in DDP */
1788                 if (ONENAND_IS_DDP(this)) {
1789                         /* 1st block on another chip */
1790                         loff_t ofs = this->chipsize >> 1;
1791                         size_t len = mtd->erasesize;
1792
1793                         onenand_unlock(mtd, ofs, len);
1794                 }
1795
1796                 onenand_check_lock_status(this);
1797
1798                 return 0;
1799         }
1800
1801         onenand_unlock(mtd, 0x0, this->chipsize);
1802
1803         return 0;
1804 }
1805
1806 #ifdef CONFIG_MTD_ONENAND_OTP
1807
1808 /* Interal OTP operation */
1809 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
1810                 size_t *retlen, u_char *buf);
1811
1812 /**
1813  * do_otp_read - [DEFAULT] Read OTP block area
1814  * @param mtd           MTD device structure
1815  * @param from          The offset to read
1816  * @param len           number of bytes to read
1817  * @param retlen        pointer to variable to store the number of readbytes
1818  * @param buf           the databuffer to put/get data
1819  *
1820  * Read OTP block area.
1821  */
1822 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
1823                 size_t *retlen, u_char *buf)
1824 {
1825         struct onenand_chip *this = mtd->priv;
1826         int ret;
1827
1828         /* Enter OTP access mode */
1829         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1830         this->wait(mtd, FL_OTPING);
1831
1832         ret = mtd->read(mtd, from, len, retlen, buf);
1833
1834         /* Exit OTP access mode */
1835         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1836         this->wait(mtd, FL_RESETING);
1837
1838         return ret;
1839 }
1840
1841 /**
1842  * do_otp_write - [DEFAULT] Write OTP block area
1843  * @param mtd           MTD device structure
1844  * @param from          The offset to write
1845  * @param len           number of bytes to write
1846  * @param retlen        pointer to variable to store the number of write bytes
1847  * @param buf           the databuffer to put/get data
1848  *
1849  * Write OTP block area.
1850  */
1851 static int do_otp_write(struct mtd_info *mtd, loff_t from, size_t len,
1852                 size_t *retlen, u_char *buf)
1853 {
1854         struct onenand_chip *this = mtd->priv;
1855         unsigned char *pbuf = buf;
1856         int ret;
1857
1858         /* Force buffer page aligned */
1859         if (len < mtd->writesize) {
1860                 memcpy(this->page_buf, buf, len);
1861                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
1862                 pbuf = this->page_buf;
1863                 len = mtd->writesize;
1864         }
1865
1866         /* Enter OTP access mode */
1867         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1868         this->wait(mtd, FL_OTPING);
1869
1870         ret = mtd->write(mtd, from, len, retlen, pbuf);
1871
1872         /* Exit OTP access mode */
1873         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1874         this->wait(mtd, FL_RESETING);
1875
1876         return ret;
1877 }
1878
1879 /**
1880  * do_otp_lock - [DEFAULT] Lock OTP block area
1881  * @param mtd           MTD device structure
1882  * @param from          The offset to lock
1883  * @param len           number of bytes to lock
1884  * @param retlen        pointer to variable to store the number of lock bytes
1885  * @param buf           the databuffer to put/get data
1886  *
1887  * Lock OTP block area.
1888  */
1889 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
1890                 size_t *retlen, u_char *buf)
1891 {
1892         struct onenand_chip *this = mtd->priv;
1893         int ret;
1894
1895         /* Enter OTP access mode */
1896         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1897         this->wait(mtd, FL_OTPING);
1898
1899         ret = onenand_do_write_oob(mtd, from, len, retlen, buf, MTD_OOB_PLACE);
1900
1901         /* Exit OTP access mode */
1902         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1903         this->wait(mtd, FL_RESETING);
1904
1905         return ret;
1906 }
1907
1908 /**
1909  * onenand_otp_walk - [DEFAULT] Handle OTP operation
1910  * @param mtd           MTD device structure
1911  * @param from          The offset to read/write
1912  * @param len           number of bytes to read/write
1913  * @param retlen        pointer to variable to store the number of read bytes
1914  * @param buf           the databuffer to put/get data
1915  * @param action        do given action
1916  * @param mode          specify user and factory
1917  *
1918  * Handle OTP operation.
1919  */
1920 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1921                         size_t *retlen, u_char *buf,
1922                         otp_op_t action, int mode)
1923 {
1924         struct onenand_chip *this = mtd->priv;
1925         int otp_pages;
1926         int density;
1927         int ret = 0;
1928
1929         *retlen = 0;
1930
1931         density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1932         if (density < ONENAND_DEVICE_DENSITY_512Mb)
1933                 otp_pages = 20;
1934         else
1935                 otp_pages = 10;
1936
1937         if (mode == MTD_OTP_FACTORY) {
1938                 from += mtd->writesize * otp_pages;
1939                 otp_pages = 64 - otp_pages;
1940         }
1941
1942         /* Check User/Factory boundary */
1943         if (((mtd->writesize * otp_pages) - (from + len)) < 0)
1944                 return 0;
1945
1946         while (len > 0 && otp_pages > 0) {
1947                 if (!action) {  /* OTP Info functions */
1948                         struct otp_info *otpinfo;
1949
1950                         len -= sizeof(struct otp_info);
1951                         if (len <= 0)
1952                                 return -ENOSPC;
1953
1954                         otpinfo = (struct otp_info *) buf;
1955                         otpinfo->start = from;
1956                         otpinfo->length = mtd->writesize;
1957                         otpinfo->locked = 0;
1958
1959                         from += mtd->writesize;
1960                         buf += sizeof(struct otp_info);
1961                         *retlen += sizeof(struct otp_info);
1962                 } else {
1963                         size_t tmp_retlen;
1964                         int size = len;
1965
1966                         ret = action(mtd, from, len, &tmp_retlen, buf);
1967
1968                         buf += size;
1969                         len -= size;
1970                         *retlen += size;
1971
1972                         if (ret < 0)
1973                                 return ret;
1974                 }
1975                 otp_pages--;
1976         }
1977
1978         return 0;
1979 }
1980
1981 /**
1982  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
1983  * @param mtd           MTD device structure
1984  * @param buf           the databuffer to put/get data
1985  * @param len           number of bytes to read
1986  *
1987  * Read factory OTP info.
1988  */
1989 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
1990                         struct otp_info *buf, size_t len)
1991 {
1992         size_t retlen;
1993         int ret;
1994
1995         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
1996
1997         return ret ? : retlen;
1998 }
1999
2000 /**
2001  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
2002  * @param mtd           MTD device structure
2003  * @param from          The offset to read
2004  * @param len           number of bytes to read
2005  * @param retlen        pointer to variable to store the number of read bytes
2006  * @param buf           the databuffer to put/get data
2007  *
2008  * Read factory OTP area.
2009  */
2010 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
2011                         size_t len, size_t *retlen, u_char *buf)
2012 {
2013         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
2014 }
2015
2016 /**
2017  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
2018  * @param mtd           MTD device structure
2019  * @param buf           the databuffer to put/get data
2020  * @param len           number of bytes to read
2021  *
2022  * Read user OTP info.
2023  */
2024 static int onenand_get_user_prot_info(struct mtd_info *mtd,
2025                         struct otp_info *buf, size_t len)
2026 {
2027         size_t retlen;
2028         int ret;
2029
2030         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
2031
2032         return ret ? : retlen;
2033 }
2034
2035 /**
2036  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
2037  * @param mtd           MTD device structure
2038  * @param from          The offset to read
2039  * @param len           number of bytes to read
2040  * @param retlen        pointer to variable to store the number of read bytes
2041  * @param buf           the databuffer to put/get data
2042  *
2043  * Read user OTP area.
2044  */
2045 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
2046                         size_t len, size_t *retlen, u_char *buf)
2047 {
2048         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
2049 }
2050
2051 /**
2052  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
2053  * @param mtd           MTD device structure
2054  * @param from          The offset to write
2055  * @param len           number of bytes to write
2056  * @param retlen        pointer to variable to store the number of write bytes
2057  * @param buf           the databuffer to put/get data
2058  *
2059  * Write user OTP area.
2060  */
2061 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
2062                         size_t len, size_t *retlen, u_char *buf)
2063 {
2064         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
2065 }
2066
2067 /**
2068  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
2069  * @param mtd           MTD device structure
2070  * @param from          The offset to lock
2071  * @param len           number of bytes to unlock
2072  *
2073  * Write lock mark on spare area in page 0 in OTP block
2074  */
2075 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
2076                         size_t len)
2077 {
2078         unsigned char oob_buf[64];
2079         size_t retlen;
2080         int ret;
2081
2082         memset(oob_buf, 0xff, mtd->oobsize);
2083         /*
2084          * Note: OTP lock operation
2085          *       OTP block : 0xXXFC
2086          *       1st block : 0xXXF3 (If chip support)
2087          *       Both      : 0xXXF0 (If chip support)
2088          */
2089         oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
2090
2091         /*
2092          * Write lock mark to 8th word of sector0 of page0 of the spare0.
2093          * We write 16 bytes spare area instead of 2 bytes.
2094          */
2095         from = 0;
2096         len = 16;
2097
2098         ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
2099
2100         return ret ? : retlen;
2101 }
2102 #endif  /* CONFIG_MTD_ONENAND_OTP */
2103
2104 /**
2105  * onenand_check_features - Check and set OneNAND features
2106  * @param mtd           MTD data structure
2107  *
2108  * Check and set OneNAND features
2109  * - lock scheme
2110  */
2111 static void onenand_check_features(struct mtd_info *mtd)
2112 {
2113         struct onenand_chip *this = mtd->priv;
2114         unsigned int density, process;
2115
2116         /* Lock scheme depends on density and process */
2117         density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
2118         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2119
2120         /* Lock scheme */
2121         if (density >= ONENAND_DEVICE_DENSITY_1Gb) {
2122                 /* A-Die has all block unlock */
2123                 if (process) {
2124                         printk(KERN_DEBUG "Chip support all block unlock\n");
2125                         this->options |= ONENAND_HAS_UNLOCK_ALL;
2126                 }
2127         } else {
2128                 /* Some OneNAND has continues lock scheme */
2129                 if (!process) {
2130                         printk(KERN_DEBUG "Lock scheme is Continues Lock\n");
2131                         this->options |= ONENAND_HAS_CONT_LOCK;
2132                 }
2133         }
2134 }
2135
2136 /**
2137  * onenand_print_device_info - Print device & version ID
2138  * @param device        device ID
2139  * @param version       version ID
2140  *
2141  * Print device & version ID
2142  */
2143 static void onenand_print_device_info(int device, int version)
2144 {
2145         int vcc, demuxed, ddp, density;
2146
2147         vcc = device & ONENAND_DEVICE_VCC_MASK;
2148         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2149         ddp = device & ONENAND_DEVICE_IS_DDP;
2150         density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
2151         printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
2152                 demuxed ? "" : "Muxed ",
2153                 ddp ? "(DDP)" : "",
2154                 (16 << density),
2155                 vcc ? "2.65/3.3" : "1.8",
2156                 device);
2157         printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version);
2158 }
2159
2160 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2161         {ONENAND_MFR_SAMSUNG, "Samsung"},
2162 };
2163
2164 /**
2165  * onenand_check_maf - Check manufacturer ID
2166  * @param manuf         manufacturer ID
2167  *
2168  * Check manufacturer ID
2169  */
2170 static int onenand_check_maf(int manuf)
2171 {
2172         int size = ARRAY_SIZE(onenand_manuf_ids);
2173         char *name;
2174         int i;
2175
2176         for (i = 0; i < size; i++)
2177                 if (manuf == onenand_manuf_ids[i].id)
2178                         break;
2179
2180         if (i < size)
2181                 name = onenand_manuf_ids[i].name;
2182         else
2183                 name = "Unknown";
2184
2185         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2186
2187         return (i == size);
2188 }
2189
2190 /**
2191  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2192  * @param mtd           MTD device structure
2193  *
2194  * OneNAND detection method:
2195  *   Compare the values from command with ones from register
2196  */
2197 static int onenand_probe(struct mtd_info *mtd)
2198 {
2199         struct onenand_chip *this = mtd->priv;
2200         int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
2201         int density;
2202         int syscfg;
2203
2204         /* Save system configuration 1 */
2205         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2206         /* Clear Sync. Burst Read mode to read BootRAM */
2207         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
2208
2209         /* Send the command for reading device ID from BootRAM */
2210         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2211
2212         /* Read manufacturer and device IDs from BootRAM */
2213         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2214         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2215
2216         /* Reset OneNAND to read default register values */
2217         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2218         /* Wait reset */
2219         this->wait(mtd, FL_RESETING);
2220
2221         /* Restore system configuration 1 */
2222         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2223
2224         /* Check manufacturer ID */
2225         if (onenand_check_maf(bram_maf_id))
2226                 return -ENXIO;
2227
2228         /* Read manufacturer and device IDs from Register */
2229         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2230         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2231         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2232
2233         /* Check OneNAND device */
2234         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2235                 return -ENXIO;
2236
2237         /* Flash device information */
2238         onenand_print_device_info(dev_id, ver_id);
2239         this->device_id = dev_id;
2240         this->version_id = ver_id;
2241
2242         density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
2243         this->chipsize = (16 << density) << 20;
2244         /* Set density mask. it is used for DDP */
2245         if (ONENAND_IS_DDP(this))
2246                 this->density_mask = (1 << (density + 6));
2247         else
2248                 this->density_mask = 0;
2249
2250         /* OneNAND page size & block size */
2251         /* The data buffer size is equal to page size */
2252         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2253         mtd->oobsize = mtd->writesize >> 5;
2254         /* Pages per a block are always 64 in OneNAND */
2255         mtd->erasesize = mtd->writesize << 6;
2256
2257         this->erase_shift = ffs(mtd->erasesize) - 1;
2258         this->page_shift = ffs(mtd->writesize) - 1;
2259         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
2260
2261         /* REVIST: Multichip handling */
2262
2263         mtd->size = this->chipsize;
2264
2265         /* Check OneNAND features */
2266         onenand_check_features(mtd);
2267
2268         return 0;
2269 }
2270
2271 /**
2272  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
2273  * @param mtd           MTD device structure
2274  */
2275 static int onenand_suspend(struct mtd_info *mtd)
2276 {
2277         return onenand_get_device(mtd, FL_PM_SUSPENDED);
2278 }
2279
2280 /**
2281  * onenand_resume - [MTD Interface] Resume the OneNAND flash
2282  * @param mtd           MTD device structure
2283  */
2284 static void onenand_resume(struct mtd_info *mtd)
2285 {
2286         struct onenand_chip *this = mtd->priv;
2287
2288         if (this->state == FL_PM_SUSPENDED)
2289                 onenand_release_device(mtd);
2290         else
2291                 printk(KERN_ERR "resume() called for the chip which is not"
2292                                 "in suspended state\n");
2293 }
2294
2295 /**
2296  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2297  * @param mtd           MTD device structure
2298  * @param maxchips      Number of chips to scan for
2299  *
2300  * This fills out all the not initialized function pointers
2301  * with the defaults.
2302  * The flash ID is read and the mtd/chip structures are
2303  * filled with the appropriate values.
2304  */
2305 int onenand_scan(struct mtd_info *mtd, int maxchips)
2306 {
2307         int i;
2308         struct onenand_chip *this = mtd->priv;
2309
2310         if (!this->read_word)
2311                 this->read_word = onenand_readw;
2312         if (!this->write_word)
2313                 this->write_word = onenand_writew;
2314
2315         if (!this->command)
2316                 this->command = onenand_command;
2317         if (!this->wait)
2318                 onenand_setup_wait(mtd);
2319
2320         if (!this->read_bufferram)
2321                 this->read_bufferram = onenand_read_bufferram;
2322         if (!this->write_bufferram)
2323                 this->write_bufferram = onenand_write_bufferram;
2324
2325         if (!this->block_markbad)
2326                 this->block_markbad = onenand_default_block_markbad;
2327         if (!this->scan_bbt)
2328                 this->scan_bbt = onenand_default_bbt;
2329
2330         if (onenand_probe(mtd))
2331                 return -ENXIO;
2332
2333         /* Set Sync. Burst Read after probing */
2334         if (this->mmcontrol) {
2335                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2336                 this->read_bufferram = onenand_sync_read_bufferram;
2337         }
2338
2339         /* Allocate buffers, if necessary */
2340         if (!this->page_buf) {
2341                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2342                 if (!this->page_buf) {
2343                         printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2344                         return -ENOMEM;
2345                 }
2346                 this->options |= ONENAND_PAGEBUF_ALLOC;
2347         }
2348         if (!this->oob_buf) {
2349                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2350                 if (!this->oob_buf) {
2351                         printk(KERN_ERR "onenand_scan(): Can't allocate oob_buf\n");
2352                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
2353                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
2354                                 kfree(this->page_buf);
2355                         }
2356                         return -ENOMEM;
2357                 }
2358                 this->options |= ONENAND_OOBBUF_ALLOC;
2359         }
2360
2361         this->state = FL_READY;
2362         init_waitqueue_head(&this->wq);
2363         spin_lock_init(&this->chip_lock);
2364
2365         /*
2366          * Allow subpage writes up to oobsize.
2367          */
2368         switch (mtd->oobsize) {
2369         case 64:
2370                 this->ecclayout = &onenand_oob_64;
2371                 mtd->subpage_sft = 2;
2372                 break;
2373
2374         case 32:
2375                 this->ecclayout = &onenand_oob_32;
2376                 mtd->subpage_sft = 1;
2377                 break;
2378
2379         default:
2380                 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2381                         mtd->oobsize);
2382                 mtd->subpage_sft = 0;
2383                 /* To prevent kernel oops */
2384                 this->ecclayout = &onenand_oob_32;
2385                 break;
2386         }
2387
2388         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2389
2390         /*
2391          * The number of bytes available for a client to place data into
2392          * the out of band area
2393          */
2394         this->ecclayout->oobavail = 0;
2395         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2396             this->ecclayout->oobfree[i].length; i++)
2397                 this->ecclayout->oobavail +=
2398                         this->ecclayout->oobfree[i].length;
2399         mtd->oobavail = this->ecclayout->oobavail;
2400
2401         mtd->ecclayout = this->ecclayout;
2402
2403         /* Fill in remaining MTD driver data */
2404         mtd->type = MTD_NANDFLASH;
2405         mtd->flags = MTD_CAP_NANDFLASH;
2406         mtd->erase = onenand_erase;
2407         mtd->point = NULL;
2408         mtd->unpoint = NULL;
2409         mtd->read = onenand_read;
2410         mtd->write = onenand_write;
2411         mtd->read_oob = onenand_read_oob;
2412         mtd->write_oob = onenand_write_oob;
2413 #ifdef CONFIG_MTD_ONENAND_OTP
2414         mtd->get_fact_prot_info = onenand_get_fact_prot_info;
2415         mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
2416         mtd->get_user_prot_info = onenand_get_user_prot_info;
2417         mtd->read_user_prot_reg = onenand_read_user_prot_reg;
2418         mtd->write_user_prot_reg = onenand_write_user_prot_reg;
2419         mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
2420 #endif
2421         mtd->sync = onenand_sync;
2422         mtd->lock = onenand_lock;
2423         mtd->unlock = onenand_unlock;
2424         mtd->suspend = onenand_suspend;
2425         mtd->resume = onenand_resume;
2426         mtd->block_isbad = onenand_block_isbad;
2427         mtd->block_markbad = onenand_block_markbad;
2428         mtd->owner = THIS_MODULE;
2429
2430         /* Unlock whole block */
2431         onenand_unlock_all(mtd);
2432
2433         return this->scan_bbt(mtd);
2434 }
2435
2436 /**
2437  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2438  * @param mtd           MTD device structure
2439  */
2440 void onenand_release(struct mtd_info *mtd)
2441 {
2442         struct onenand_chip *this = mtd->priv;
2443
2444 #ifdef CONFIG_MTD_PARTITIONS
2445         /* Deregister partitions */
2446         del_mtd_partitions (mtd);
2447 #endif
2448         /* Deregister the device */
2449         del_mtd_device (mtd);
2450
2451         /* Free bad block table memory, if allocated */
2452         if (this->bbm) {
2453                 struct bbm_info *bbm = this->bbm;
2454                 kfree(bbm->bbt);
2455                 kfree(this->bbm);
2456         }
2457         /* Buffers allocated by onenand_scan */
2458         if (this->options & ONENAND_PAGEBUF_ALLOC)
2459                 kfree(this->page_buf);
2460         if (this->options & ONENAND_OOBBUF_ALLOC)
2461                 kfree(this->oob_buf);
2462 }
2463
2464 EXPORT_SYMBOL_GPL(onenand_scan);
2465 EXPORT_SYMBOL_GPL(onenand_release);
2466
2467 MODULE_LICENSE("GPL");
2468 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
2469 MODULE_DESCRIPTION("Generic OneNAND flash driver code");