1 #ifndef __ASMi386_ELF_H
2 #define __ASMi386_ELF_H
5 * ELF register definitions..
8 #include <asm/ptrace.h>
10 #include <asm/processor.h>
11 #include <asm/system.h> /* for savesegment */
12 #include <asm/auxvec.h>
14 #include <linux/utsname.h>
22 #define R_386_GLOB_DAT 6
23 #define R_386_JMP_SLOT 7
24 #define R_386_RELATIVE 8
25 #define R_386_GOTOFF 9
26 #define R_386_GOTPC 10
29 typedef unsigned long elf_greg_t;
31 #define ELF_NGREG (sizeof (struct user_regs_struct) / sizeof(elf_greg_t))
32 typedef elf_greg_t elf_gregset_t[ELF_NGREG];
34 typedef struct user_i387_struct elf_fpregset_t;
35 typedef struct user_fxsr_struct elf_fpxregset_t;
38 * This is used to ensure we don't load something for the wrong architecture.
40 #define elf_check_arch(x) \
41 (((x)->e_machine == EM_386) || ((x)->e_machine == EM_486))
44 * These are used to set parameters in the core dumps.
46 #define ELF_CLASS ELFCLASS32
47 #define ELF_DATA ELFDATA2LSB
48 #define ELF_ARCH EM_386
50 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program starts %edx
51 contains a pointer to a function which might be registered using `atexit'.
52 This provides a mean for the dynamic linker to call DT_FINI functions for
53 shared libraries that have been loaded before the code runs.
55 A value of 0 tells we have no such handler.
57 We might as well make sure everything else is cleared too (except for %esp),
58 just to make things more deterministic.
60 #define ELF_PLAT_INIT(_r, load_addr) do { \
61 _r->ebx = 0; _r->ecx = 0; _r->edx = 0; \
62 _r->esi = 0; _r->edi = 0; _r->ebp = 0; \
66 #define USE_ELF_CORE_DUMP
67 #define ELF_EXEC_PAGESIZE 4096
69 /* This is the location that an ET_DYN program is loaded if exec'ed. Typical
70 use of this is to invoke "./ld.so someprog" to test out a new version of
71 the loader. We need to make sure that it is out of the way of the program
72 that it will "exec", and that there is sufficient room for the brk. */
74 #define ELF_ET_DYN_BASE (TASK_SIZE / 3 * 2)
76 /* regs is struct pt_regs, pr_reg is elf_gregset_t (which is
77 now struct_user_regs, they are different) */
79 #define ELF_CORE_COPY_REGS(pr_reg, regs) \
80 pr_reg[0] = regs->ebx; \
81 pr_reg[1] = regs->ecx; \
82 pr_reg[2] = regs->edx; \
83 pr_reg[3] = regs->esi; \
84 pr_reg[4] = regs->edi; \
85 pr_reg[5] = regs->ebp; \
86 pr_reg[6] = regs->eax; \
87 pr_reg[7] = regs->xds; \
88 pr_reg[8] = regs->xes; \
89 savesegment(fs,pr_reg[9]); \
90 savesegment(gs,pr_reg[10]); \
91 pr_reg[11] = regs->orig_eax; \
92 pr_reg[12] = regs->eip; \
93 pr_reg[13] = regs->xcs; \
94 pr_reg[14] = regs->eflags; \
95 pr_reg[15] = regs->esp; \
96 pr_reg[16] = regs->xss;
98 /* This yields a mask that user programs can use to figure out what
99 instruction set this CPU supports. This could be done in user space,
100 but it's not easy, and we've already done it here. */
102 #define ELF_HWCAP (boot_cpu_data.x86_capability[0])
104 /* This yields a string that ld.so will use to load implementation
105 specific libraries for optimization. This is more specific in
106 intent than poking at uname or /proc/cpuinfo.
108 For the moment, we have only optimizations for the Intel generations,
109 but that could change... */
111 #define ELF_PLATFORM (system_utsname.machine)
114 #define SET_PERSONALITY(ex, ibcs2) do { } while (0)
117 * An executable for which elf_read_implies_exec() returns TRUE will
118 * have the READ_IMPLIES_EXEC personality flag set automatically.
120 #define elf_read_implies_exec(ex, executable_stack) (executable_stack != EXSTACK_DISABLE_X)
124 extern int dump_task_regs (struct task_struct *, elf_gregset_t *);
125 extern int dump_task_fpu (struct task_struct *, elf_fpregset_t *);
126 extern int dump_task_extended_fpu (struct task_struct *, struct user_fxsr_struct *);
128 #define ELF_CORE_COPY_TASK_REGS(tsk, elf_regs) dump_task_regs(tsk, elf_regs)
129 #define ELF_CORE_COPY_FPREGS(tsk, elf_fpregs) dump_task_fpu(tsk, elf_fpregs)
130 #define ELF_CORE_COPY_XFPREGS(tsk, elf_xfpregs) dump_task_extended_fpu(tsk, elf_xfpregs)
132 #define VSYSCALL_BASE (__fix_to_virt(FIX_VSYSCALL))
133 #define VSYSCALL_EHDR ((const struct elfhdr *) VSYSCALL_BASE)
134 #define VSYSCALL_ENTRY ((unsigned long) &__kernel_vsyscall)
135 extern void __kernel_vsyscall;
137 #define ARCH_DLINFO \
139 NEW_AUX_ENT(AT_SYSINFO, VSYSCALL_ENTRY); \
140 NEW_AUX_ENT(AT_SYSINFO_EHDR, VSYSCALL_BASE); \
144 * These macros parameterize elf_core_dump in fs/binfmt_elf.c to write out
145 * extra segments containing the vsyscall DSO contents. Dumping its
146 * contents makes post-mortem fully interpretable later without matching up
147 * the same kernel and hardware config to see what PC values meant.
148 * Dumping its extra ELF program headers includes all the other information
149 * a debugger needs to easily find how the vsyscall DSO was being used.
151 #define ELF_CORE_EXTRA_PHDRS (VSYSCALL_EHDR->e_phnum)
152 #define ELF_CORE_WRITE_EXTRA_PHDRS \
154 const struct elf_phdr *const vsyscall_phdrs = \
155 (const struct elf_phdr *) (VSYSCALL_BASE \
156 + VSYSCALL_EHDR->e_phoff); \
159 for (i = 0; i < VSYSCALL_EHDR->e_phnum; ++i) { \
160 struct elf_phdr phdr = vsyscall_phdrs[i]; \
161 if (phdr.p_type == PT_LOAD) { \
163 ofs = phdr.p_offset = offset; \
164 phdr.p_memsz = PAGE_ALIGN(phdr.p_memsz); \
165 phdr.p_filesz = phdr.p_memsz; \
166 offset += phdr.p_filesz; \
169 phdr.p_offset += ofs; \
170 phdr.p_paddr = 0; /* match other core phdrs */ \
171 DUMP_WRITE(&phdr, sizeof(phdr)); \
174 #define ELF_CORE_WRITE_EXTRA_DATA \
176 const struct elf_phdr *const vsyscall_phdrs = \
177 (const struct elf_phdr *) (VSYSCALL_BASE \
178 + VSYSCALL_EHDR->e_phoff); \
180 for (i = 0; i < VSYSCALL_EHDR->e_phnum; ++i) { \
181 if (vsyscall_phdrs[i].p_type == PT_LOAD) \
182 DUMP_WRITE((void *) vsyscall_phdrs[i].p_vaddr, \
183 PAGE_ALIGN(vsyscall_phdrs[i].p_memsz)); \