Merge branch 'linus' into x86/paravirt-spinlocks
[linux-2.6] / drivers / ide / ide-iops.c
1 /*
2  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
4  *
5  */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32  *      Conventional PIO operations for ATA devices
33  */
34
35 static u8 ide_inb (unsigned long port)
36 {
37         return (u8) inb(port);
38 }
39
40 static void ide_outb (u8 val, unsigned long port)
41 {
42         outb(val, port);
43 }
44
45 static void ide_outbsync(ide_hwif_t *hwif, u8 addr, unsigned long port)
46 {
47         outb(addr, port);
48 }
49
50 void default_hwif_iops (ide_hwif_t *hwif)
51 {
52         hwif->OUTB      = ide_outb;
53         hwif->OUTBSYNC  = ide_outbsync;
54         hwif->INB       = ide_inb;
55 }
56
57 /*
58  *      MMIO operations, typically used for SATA controllers
59  */
60
61 static u8 ide_mm_inb (unsigned long port)
62 {
63         return (u8) readb((void __iomem *) port);
64 }
65
66 static void ide_mm_outb (u8 value, unsigned long port)
67 {
68         writeb(value, (void __iomem *) port);
69 }
70
71 static void ide_mm_outbsync(ide_hwif_t *hwif, u8 value, unsigned long port)
72 {
73         writeb(value, (void __iomem *) port);
74 }
75
76 void default_hwif_mmiops (ide_hwif_t *hwif)
77 {
78         hwif->OUTB      = ide_mm_outb;
79         /* Most systems will need to override OUTBSYNC, alas however
80            this one is controller specific! */
81         hwif->OUTBSYNC  = ide_mm_outbsync;
82         hwif->INB       = ide_mm_inb;
83 }
84
85 EXPORT_SYMBOL(default_hwif_mmiops);
86
87 void SELECT_DRIVE (ide_drive_t *drive)
88 {
89         ide_hwif_t *hwif = drive->hwif;
90         const struct ide_port_ops *port_ops = hwif->port_ops;
91
92         if (port_ops && port_ops->selectproc)
93                 port_ops->selectproc(drive);
94
95         hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
96 }
97
98 void SELECT_MASK(ide_drive_t *drive, int mask)
99 {
100         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
101
102         if (port_ops && port_ops->maskproc)
103                 port_ops->maskproc(drive, mask);
104 }
105
106 static void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
107 {
108         ide_hwif_t *hwif = drive->hwif;
109         struct ide_io_ports *io_ports = &hwif->io_ports;
110         struct ide_taskfile *tf = &task->tf;
111         void (*tf_outb)(u8 addr, unsigned long port);
112         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
113         u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
114
115         if (mmio)
116                 tf_outb = ide_mm_outb;
117         else
118                 tf_outb = ide_outb;
119
120         if (task->tf_flags & IDE_TFLAG_FLAGGED)
121                 HIHI = 0xFF;
122
123         if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
124                 u16 data = (tf->hob_data << 8) | tf->data;
125
126                 if (mmio)
127                         writew(data, (void __iomem *)io_ports->data_addr);
128                 else
129                         outw(data, io_ports->data_addr);
130         }
131
132         if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
133                 tf_outb(tf->hob_feature, io_ports->feature_addr);
134         if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
135                 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
136         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
137                 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
138         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
139                 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
140         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
141                 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
142
143         if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
144                 tf_outb(tf->feature, io_ports->feature_addr);
145         if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
146                 tf_outb(tf->nsect, io_ports->nsect_addr);
147         if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
148                 tf_outb(tf->lbal, io_ports->lbal_addr);
149         if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
150                 tf_outb(tf->lbam, io_ports->lbam_addr);
151         if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
152                 tf_outb(tf->lbah, io_ports->lbah_addr);
153
154         if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
155                 tf_outb((tf->device & HIHI) | drive->select.all,
156                          io_ports->device_addr);
157 }
158
159 static void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
160 {
161         ide_hwif_t *hwif = drive->hwif;
162         struct ide_io_ports *io_ports = &hwif->io_ports;
163         struct ide_taskfile *tf = &task->tf;
164         void (*tf_outb)(u8 addr, unsigned long port);
165         u8 (*tf_inb)(unsigned long port);
166         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
167
168         if (mmio) {
169                 tf_outb = ide_mm_outb;
170                 tf_inb  = ide_mm_inb;
171         } else {
172                 tf_outb = ide_outb;
173                 tf_inb  = ide_inb;
174         }
175
176         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
177                 u16 data;
178
179                 if (mmio)
180                         data = readw((void __iomem *)io_ports->data_addr);
181                 else
182                         data = inw(io_ports->data_addr);
183
184                 tf->data = data & 0xff;
185                 tf->hob_data = (data >> 8) & 0xff;
186         }
187
188         /* be sure we're looking at the low order bits */
189         tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
190
191         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
192                 tf->nsect  = tf_inb(io_ports->nsect_addr);
193         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
194                 tf->lbal   = tf_inb(io_ports->lbal_addr);
195         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
196                 tf->lbam   = tf_inb(io_ports->lbam_addr);
197         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
198                 tf->lbah   = tf_inb(io_ports->lbah_addr);
199         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
200                 tf->device = tf_inb(io_ports->device_addr);
201
202         if (task->tf_flags & IDE_TFLAG_LBA48) {
203                 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
204
205                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
206                         tf->hob_feature = tf_inb(io_ports->feature_addr);
207                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
208                         tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
209                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
210                         tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
211                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
212                         tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
213                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
214                         tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
215         }
216 }
217
218 /*
219  * Some localbus EIDE interfaces require a special access sequence
220  * when using 32-bit I/O instructions to transfer data.  We call this
221  * the "vlb_sync" sequence, which consists of three successive reads
222  * of the sector count register location, with interrupts disabled
223  * to ensure that the reads all happen together.
224  */
225 static void ata_vlb_sync(unsigned long port)
226 {
227         (void)inb(port);
228         (void)inb(port);
229         (void)inb(port);
230 }
231
232 /*
233  * This is used for most PIO data transfers *from* the IDE interface
234  *
235  * These routines will round up any request for an odd number of bytes,
236  * so if an odd len is specified, be sure that there's at least one
237  * extra byte allocated for the buffer.
238  */
239 static void ata_input_data(ide_drive_t *drive, struct request *rq,
240                            void *buf, unsigned int len)
241 {
242         ide_hwif_t *hwif = drive->hwif;
243         struct ide_io_ports *io_ports = &hwif->io_ports;
244         unsigned long data_addr = io_ports->data_addr;
245         u8 io_32bit = drive->io_32bit;
246         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
247
248         len++;
249
250         if (io_32bit) {
251                 unsigned long uninitialized_var(flags);
252
253                 if ((io_32bit & 2) && !mmio) {
254                         local_irq_save(flags);
255                         ata_vlb_sync(io_ports->nsect_addr);
256                 }
257
258                 if (mmio)
259                         __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
260                 else
261                         insl(data_addr, buf, len / 4);
262
263                 if ((io_32bit & 2) && !mmio)
264                         local_irq_restore(flags);
265
266                 if ((len & 3) >= 2) {
267                         if (mmio)
268                                 __ide_mm_insw((void __iomem *)data_addr,
269                                                 (u8 *)buf + (len & ~3), 1);
270                         else
271                                 insw(data_addr, (u8 *)buf + (len & ~3), 1);
272                 }
273         } else {
274                 if (mmio)
275                         __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
276                 else
277                         insw(data_addr, buf, len / 2);
278         }
279 }
280
281 /*
282  * This is used for most PIO data transfers *to* the IDE interface
283  */
284 static void ata_output_data(ide_drive_t *drive, struct request *rq,
285                             void *buf, unsigned int len)
286 {
287         ide_hwif_t *hwif = drive->hwif;
288         struct ide_io_ports *io_ports = &hwif->io_ports;
289         unsigned long data_addr = io_ports->data_addr;
290         u8 io_32bit = drive->io_32bit;
291         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
292
293         if (io_32bit) {
294                 unsigned long uninitialized_var(flags);
295
296                 if ((io_32bit & 2) && !mmio) {
297                         local_irq_save(flags);
298                         ata_vlb_sync(io_ports->nsect_addr);
299                 }
300
301                 if (mmio)
302                         __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
303                 else
304                         outsl(data_addr, buf, len / 4);
305
306                 if ((io_32bit & 2) && !mmio)
307                         local_irq_restore(flags);
308
309                 if ((len & 3) >= 2) {
310                         if (mmio)
311                                 __ide_mm_outsw((void __iomem *)data_addr,
312                                                  (u8 *)buf + (len & ~3), 1);
313                         else
314                                 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
315                 }
316         } else {
317                 if (mmio)
318                         __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
319                 else
320                         outsw(data_addr, buf, len / 2);
321         }
322 }
323
324 void default_hwif_transport(ide_hwif_t *hwif)
325 {
326         hwif->tf_load     = ide_tf_load;
327         hwif->tf_read     = ide_tf_read;
328
329         hwif->input_data  = ata_input_data;
330         hwif->output_data = ata_output_data;
331 }
332
333 void ide_fix_driveid (struct hd_driveid *id)
334 {
335 #ifndef __LITTLE_ENDIAN
336 # ifdef __BIG_ENDIAN
337         int i;
338         u16 *stringcast;
339
340         id->config         = __le16_to_cpu(id->config);
341         id->cyls           = __le16_to_cpu(id->cyls);
342         id->reserved2      = __le16_to_cpu(id->reserved2);
343         id->heads          = __le16_to_cpu(id->heads);
344         id->track_bytes    = __le16_to_cpu(id->track_bytes);
345         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
346         id->sectors        = __le16_to_cpu(id->sectors);
347         id->vendor0        = __le16_to_cpu(id->vendor0);
348         id->vendor1        = __le16_to_cpu(id->vendor1);
349         id->vendor2        = __le16_to_cpu(id->vendor2);
350         stringcast = (u16 *)&id->serial_no[0];
351         for (i = 0; i < (20/2); i++)
352                 stringcast[i] = __le16_to_cpu(stringcast[i]);
353         id->buf_type       = __le16_to_cpu(id->buf_type);
354         id->buf_size       = __le16_to_cpu(id->buf_size);
355         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
356         stringcast = (u16 *)&id->fw_rev[0];
357         for (i = 0; i < (8/2); i++)
358                 stringcast[i] = __le16_to_cpu(stringcast[i]);
359         stringcast = (u16 *)&id->model[0];
360         for (i = 0; i < (40/2); i++)
361                 stringcast[i] = __le16_to_cpu(stringcast[i]);
362         id->dword_io       = __le16_to_cpu(id->dword_io);
363         id->reserved50     = __le16_to_cpu(id->reserved50);
364         id->field_valid    = __le16_to_cpu(id->field_valid);
365         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
366         id->cur_heads      = __le16_to_cpu(id->cur_heads);
367         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
368         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
369         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
370         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
371         id->dma_1word      = __le16_to_cpu(id->dma_1word);
372         id->dma_mword      = __le16_to_cpu(id->dma_mword);
373         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
374         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
375         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
376         id->eide_pio       = __le16_to_cpu(id->eide_pio);
377         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
378         for (i = 0; i < 2; ++i)
379                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
380         for (i = 0; i < 4; ++i)
381                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
382         id->queue_depth    = __le16_to_cpu(id->queue_depth);
383         for (i = 0; i < 4; ++i)
384                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
385         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
386         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
387         id->command_set_1  = __le16_to_cpu(id->command_set_1);
388         id->command_set_2  = __le16_to_cpu(id->command_set_2);
389         id->cfsse          = __le16_to_cpu(id->cfsse);
390         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
391         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
392         id->csf_default    = __le16_to_cpu(id->csf_default);
393         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
394         id->trseuc         = __le16_to_cpu(id->trseuc);
395         id->trsEuc         = __le16_to_cpu(id->trsEuc);
396         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
397         id->mprc           = __le16_to_cpu(id->mprc);
398         id->hw_config      = __le16_to_cpu(id->hw_config);
399         id->acoustic       = __le16_to_cpu(id->acoustic);
400         id->msrqs          = __le16_to_cpu(id->msrqs);
401         id->sxfert         = __le16_to_cpu(id->sxfert);
402         id->sal            = __le16_to_cpu(id->sal);
403         id->spg            = __le32_to_cpu(id->spg);
404         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
405         for (i = 0; i < 22; i++)
406                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
407         id->last_lun       = __le16_to_cpu(id->last_lun);
408         id->word127        = __le16_to_cpu(id->word127);
409         id->dlf            = __le16_to_cpu(id->dlf);
410         id->csfo           = __le16_to_cpu(id->csfo);
411         for (i = 0; i < 26; i++)
412                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
413         id->word156        = __le16_to_cpu(id->word156);
414         for (i = 0; i < 3; i++)
415                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
416         id->cfa_power      = __le16_to_cpu(id->cfa_power);
417         for (i = 0; i < 14; i++)
418                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
419         for (i = 0; i < 31; i++)
420                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
421         for (i = 0; i < 48; i++)
422                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
423         id->integrity_word  = __le16_to_cpu(id->integrity_word);
424 # else
425 #  error "Please fix <asm/byteorder.h>"
426 # endif
427 #endif
428 }
429
430 /*
431  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
432  * removing leading/trailing blanks and compressing internal blanks.
433  * It is primarily used to tidy up the model name/number fields as
434  * returned by the WIN_[P]IDENTIFY commands.
435  */
436
437 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
438 {
439         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
440
441         if (byteswap) {
442                 /* convert from big-endian to host byte order */
443                 for (p = end ; p != s;) {
444                         unsigned short *pp = (unsigned short *) (p -= 2);
445                         *pp = ntohs(*pp);
446                 }
447         }
448         /* strip leading blanks */
449         while (s != end && *s == ' ')
450                 ++s;
451         /* compress internal blanks and strip trailing blanks */
452         while (s != end && *s) {
453                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
454                         *p++ = *(s-1);
455         }
456         /* wipe out trailing garbage */
457         while (p != end)
458                 *p++ = '\0';
459 }
460
461 EXPORT_SYMBOL(ide_fixstring);
462
463 /*
464  * Needed for PCI irq sharing
465  */
466 int drive_is_ready (ide_drive_t *drive)
467 {
468         ide_hwif_t *hwif        = HWIF(drive);
469         u8 stat                 = 0;
470
471         if (drive->waiting_for_dma)
472                 return hwif->dma_ops->dma_test_irq(drive);
473
474 #if 0
475         /* need to guarantee 400ns since last command was issued */
476         udelay(1);
477 #endif
478
479         /*
480          * We do a passive status test under shared PCI interrupts on
481          * cards that truly share the ATA side interrupt, but may also share
482          * an interrupt with another pci card/device.  We make no assumptions
483          * about possible isa-pnp and pci-pnp issues yet.
484          */
485         if (hwif->io_ports.ctl_addr)
486                 stat = ide_read_altstatus(drive);
487         else
488                 /* Note: this may clear a pending IRQ!! */
489                 stat = ide_read_status(drive);
490
491         if (stat & BUSY_STAT)
492                 /* drive busy:  definitely not interrupting */
493                 return 0;
494
495         /* drive ready: *might* be interrupting */
496         return 1;
497 }
498
499 EXPORT_SYMBOL(drive_is_ready);
500
501 /*
502  * This routine busy-waits for the drive status to be not "busy".
503  * It then checks the status for all of the "good" bits and none
504  * of the "bad" bits, and if all is okay it returns 0.  All other
505  * cases return error -- caller may then invoke ide_error().
506  *
507  * This routine should get fixed to not hog the cpu during extra long waits..
508  * That could be done by busy-waiting for the first jiffy or two, and then
509  * setting a timer to wake up at half second intervals thereafter,
510  * until timeout is achieved, before timing out.
511  */
512 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
513 {
514         unsigned long flags;
515         int i;
516         u8 stat;
517
518         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
519         stat = ide_read_status(drive);
520
521         if (stat & BUSY_STAT) {
522                 local_irq_set(flags);
523                 timeout += jiffies;
524                 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
525                         if (time_after(jiffies, timeout)) {
526                                 /*
527                                  * One last read after the timeout in case
528                                  * heavy interrupt load made us not make any
529                                  * progress during the timeout..
530                                  */
531                                 stat = ide_read_status(drive);
532                                 if (!(stat & BUSY_STAT))
533                                         break;
534
535                                 local_irq_restore(flags);
536                                 *rstat = stat;
537                                 return -EBUSY;
538                         }
539                 }
540                 local_irq_restore(flags);
541         }
542         /*
543          * Allow status to settle, then read it again.
544          * A few rare drives vastly violate the 400ns spec here,
545          * so we'll wait up to 10usec for a "good" status
546          * rather than expensively fail things immediately.
547          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
548          */
549         for (i = 0; i < 10; i++) {
550                 udelay(1);
551                 stat = ide_read_status(drive);
552
553                 if (OK_STAT(stat, good, bad)) {
554                         *rstat = stat;
555                         return 0;
556                 }
557         }
558         *rstat = stat;
559         return -EFAULT;
560 }
561
562 /*
563  * In case of error returns error value after doing "*startstop = ide_error()".
564  * The caller should return the updated value of "startstop" in this case,
565  * "startstop" is unchanged when the function returns 0.
566  */
567 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
568 {
569         int err;
570         u8 stat;
571
572         /* bail early if we've exceeded max_failures */
573         if (drive->max_failures && (drive->failures > drive->max_failures)) {
574                 *startstop = ide_stopped;
575                 return 1;
576         }
577
578         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
579
580         if (err) {
581                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
582                 *startstop = ide_error(drive, s, stat);
583         }
584
585         return err;
586 }
587
588 EXPORT_SYMBOL(ide_wait_stat);
589
590 /**
591  *      ide_in_drive_list       -       look for drive in black/white list
592  *      @id: drive identifier
593  *      @drive_table: list to inspect
594  *
595  *      Look for a drive in the blacklist and the whitelist tables
596  *      Returns 1 if the drive is found in the table.
597  */
598
599 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
600 {
601         for ( ; drive_table->id_model; drive_table++)
602                 if ((!strcmp(drive_table->id_model, id->model)) &&
603                     (!drive_table->id_firmware ||
604                      strstr(id->fw_rev, drive_table->id_firmware)))
605                         return 1;
606         return 0;
607 }
608
609 EXPORT_SYMBOL_GPL(ide_in_drive_list);
610
611 /*
612  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
613  * We list them here and depend on the device side cable detection for them.
614  *
615  * Some optical devices with the buggy firmwares have the same problem.
616  */
617 static const struct drive_list_entry ivb_list[] = {
618         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
619         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
620         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
621         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
622         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
623         { "TSSTcorp CDDVDW SH-S202H"    , "SB00"        },
624         { "TSSTcorp CDDVDW SH-S202H"    , "SB01"        },
625         { NULL                          , NULL          }
626 };
627
628 /*
629  *  All hosts that use the 80c ribbon must use!
630  *  The name is derived from upper byte of word 93 and the 80c ribbon.
631  */
632 u8 eighty_ninty_three (ide_drive_t *drive)
633 {
634         ide_hwif_t *hwif = drive->hwif;
635         struct hd_driveid *id = drive->id;
636         int ivb = ide_in_drive_list(id, ivb_list);
637
638         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
639                 return 1;
640
641         if (ivb)
642                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
643                                   drive->name);
644
645         if (ide_dev_is_sata(id) && !ivb)
646                 return 1;
647
648         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
649                 goto no_80w;
650
651         /*
652          * FIXME:
653          * - change master/slave IDENTIFY order
654          * - force bit13 (80c cable present) check also for !ivb devices
655          *   (unless the slave device is pre-ATA3)
656          */
657         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
658                 return 1;
659
660 no_80w:
661         if (drive->udma33_warned == 1)
662                 return 0;
663
664         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
665                             "limiting max speed to UDMA33\n",
666                             drive->name,
667                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
668
669         drive->udma33_warned = 1;
670
671         return 0;
672 }
673
674 int ide_driveid_update(ide_drive_t *drive)
675 {
676         ide_hwif_t *hwif = drive->hwif;
677         struct hd_driveid *id;
678         unsigned long timeout, flags;
679         u8 stat;
680
681         /*
682          * Re-read drive->id for possible DMA mode
683          * change (copied from ide-probe.c)
684          */
685
686         SELECT_MASK(drive, 1);
687         ide_set_irq(drive, 0);
688         msleep(50);
689         hwif->OUTBSYNC(hwif, WIN_IDENTIFY, hwif->io_ports.command_addr);
690         timeout = jiffies + WAIT_WORSTCASE;
691         do {
692                 if (time_after(jiffies, timeout)) {
693                         SELECT_MASK(drive, 0);
694                         return 0;       /* drive timed-out */
695                 }
696
697                 msleep(50);     /* give drive a breather */
698                 stat = ide_read_altstatus(drive);
699         } while (stat & BUSY_STAT);
700
701         msleep(50);     /* wait for IRQ and DRQ_STAT */
702         stat = ide_read_status(drive);
703
704         if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
705                 SELECT_MASK(drive, 0);
706                 printk("%s: CHECK for good STATUS\n", drive->name);
707                 return 0;
708         }
709         local_irq_save(flags);
710         SELECT_MASK(drive, 0);
711         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
712         if (!id) {
713                 local_irq_restore(flags);
714                 return 0;
715         }
716         hwif->input_data(drive, NULL, id, SECTOR_SIZE);
717         (void)ide_read_status(drive);   /* clear drive IRQ */
718         local_irq_enable();
719         local_irq_restore(flags);
720         ide_fix_driveid(id);
721         if (id) {
722                 drive->id->dma_ultra = id->dma_ultra;
723                 drive->id->dma_mword = id->dma_mword;
724                 drive->id->dma_1word = id->dma_1word;
725                 /* anything more ? */
726                 kfree(id);
727
728                 if (drive->using_dma && ide_id_dma_bug(drive))
729                         ide_dma_off(drive);
730         }
731
732         return 1;
733 }
734
735 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
736 {
737         ide_hwif_t *hwif = drive->hwif;
738         struct ide_io_ports *io_ports = &hwif->io_ports;
739         int error = 0;
740         u8 stat;
741
742 #ifdef CONFIG_BLK_DEV_IDEDMA
743         if (hwif->dma_ops)      /* check if host supports DMA */
744                 hwif->dma_ops->dma_host_set(drive, 0);
745 #endif
746
747         /* Skip setting PIO flow-control modes on pre-EIDE drives */
748         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
749                 goto skip;
750
751         /*
752          * Don't use ide_wait_cmd here - it will
753          * attempt to set_geometry and recalibrate,
754          * but for some reason these don't work at
755          * this point (lost interrupt).
756          */
757         /*
758          * Select the drive, and issue the SETFEATURES command
759          */
760         disable_irq_nosync(hwif->irq);
761         
762         /*
763          *      FIXME: we race against the running IRQ here if
764          *      this is called from non IRQ context. If we use
765          *      disable_irq() we hang on the error path. Work
766          *      is needed.
767          */
768          
769         udelay(1);
770         SELECT_DRIVE(drive);
771         SELECT_MASK(drive, 0);
772         udelay(1);
773         ide_set_irq(drive, 0);
774         hwif->OUTB(speed, io_ports->nsect_addr);
775         hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
776         hwif->OUTBSYNC(hwif, WIN_SETFEATURES, io_ports->command_addr);
777         if (drive->quirk_list == 2)
778                 ide_set_irq(drive, 1);
779
780         error = __ide_wait_stat(drive, drive->ready_stat,
781                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
782                                 WAIT_CMD, &stat);
783
784         SELECT_MASK(drive, 0);
785
786         enable_irq(hwif->irq);
787
788         if (error) {
789                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
790                 return error;
791         }
792
793         drive->id->dma_ultra &= ~0xFF00;
794         drive->id->dma_mword &= ~0x0F00;
795         drive->id->dma_1word &= ~0x0F00;
796
797  skip:
798 #ifdef CONFIG_BLK_DEV_IDEDMA
799         if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
800             drive->using_dma)
801                 hwif->dma_ops->dma_host_set(drive, 1);
802         else if (hwif->dma_ops) /* check if host supports DMA */
803                 ide_dma_off_quietly(drive);
804 #endif
805
806         switch(speed) {
807                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
808                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
809                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
810                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
811                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
812                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
813                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
814                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
815                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
816                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
817                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
818                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
819                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
820                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
821                 default: break;
822         }
823         if (!drive->init_speed)
824                 drive->init_speed = speed;
825         drive->current_speed = speed;
826         return error;
827 }
828
829 /*
830  * This should get invoked any time we exit the driver to
831  * wait for an interrupt response from a drive.  handler() points
832  * at the appropriate code to handle the next interrupt, and a
833  * timer is started to prevent us from waiting forever in case
834  * something goes wrong (see the ide_timer_expiry() handler later on).
835  *
836  * See also ide_execute_command
837  */
838 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
839                       unsigned int timeout, ide_expiry_t *expiry)
840 {
841         ide_hwgroup_t *hwgroup = HWGROUP(drive);
842
843         BUG_ON(hwgroup->handler);
844         hwgroup->handler        = handler;
845         hwgroup->expiry         = expiry;
846         hwgroup->timer.expires  = jiffies + timeout;
847         hwgroup->req_gen_timer  = hwgroup->req_gen;
848         add_timer(&hwgroup->timer);
849 }
850
851 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
852                       unsigned int timeout, ide_expiry_t *expiry)
853 {
854         unsigned long flags;
855         spin_lock_irqsave(&ide_lock, flags);
856         __ide_set_handler(drive, handler, timeout, expiry);
857         spin_unlock_irqrestore(&ide_lock, flags);
858 }
859
860 EXPORT_SYMBOL(ide_set_handler);
861  
862 /**
863  *      ide_execute_command     -       execute an IDE command
864  *      @drive: IDE drive to issue the command against
865  *      @command: command byte to write
866  *      @handler: handler for next phase
867  *      @timeout: timeout for command
868  *      @expiry:  handler to run on timeout
869  *
870  *      Helper function to issue an IDE command. This handles the
871  *      atomicity requirements, command timing and ensures that the 
872  *      handler and IRQ setup do not race. All IDE command kick off
873  *      should go via this function or do equivalent locking.
874  */
875
876 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
877                          unsigned timeout, ide_expiry_t *expiry)
878 {
879         unsigned long flags;
880         ide_hwif_t *hwif = HWIF(drive);
881
882         spin_lock_irqsave(&ide_lock, flags);
883         __ide_set_handler(drive, handler, timeout, expiry);
884         hwif->OUTBSYNC(hwif, cmd, hwif->io_ports.command_addr);
885         /*
886          * Drive takes 400nS to respond, we must avoid the IRQ being
887          * serviced before that.
888          *
889          * FIXME: we could skip this delay with care on non shared devices
890          */
891         ndelay(400);
892         spin_unlock_irqrestore(&ide_lock, flags);
893 }
894 EXPORT_SYMBOL(ide_execute_command);
895
896 void ide_execute_pkt_cmd(ide_drive_t *drive)
897 {
898         ide_hwif_t *hwif = drive->hwif;
899         unsigned long flags;
900
901         spin_lock_irqsave(&ide_lock, flags);
902         hwif->OUTBSYNC(hwif, WIN_PACKETCMD, hwif->io_ports.command_addr);
903         ndelay(400);
904         spin_unlock_irqrestore(&ide_lock, flags);
905 }
906 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
907
908 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
909 {
910         struct request *rq = drive->hwif->hwgroup->rq;
911
912         if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
913                 ide_end_request(drive, err ? err : 1, 0);
914 }
915
916 /* needed below */
917 static ide_startstop_t do_reset1 (ide_drive_t *, int);
918
919 /*
920  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
921  * during an atapi drive reset operation. If the drive has not yet responded,
922  * and we have not yet hit our maximum waiting time, then the timer is restarted
923  * for another 50ms.
924  */
925 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
926 {
927         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
928         u8 stat;
929
930         SELECT_DRIVE(drive);
931         udelay (10);
932         stat = ide_read_status(drive);
933
934         if (OK_STAT(stat, 0, BUSY_STAT))
935                 printk("%s: ATAPI reset complete\n", drive->name);
936         else {
937                 if (time_before(jiffies, hwgroup->poll_timeout)) {
938                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
939                         /* continue polling */
940                         return ide_started;
941                 }
942                 /* end of polling */
943                 hwgroup->polling = 0;
944                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
945                                 drive->name, stat);
946                 /* do it the old fashioned way */
947                 return do_reset1(drive, 1);
948         }
949         /* done polling */
950         hwgroup->polling = 0;
951         ide_complete_drive_reset(drive, 0);
952         return ide_stopped;
953 }
954
955 /*
956  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
957  * during an ide reset operation. If the drives have not yet responded,
958  * and we have not yet hit our maximum waiting time, then the timer is restarted
959  * for another 50ms.
960  */
961 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
962 {
963         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
964         ide_hwif_t *hwif        = HWIF(drive);
965         const struct ide_port_ops *port_ops = hwif->port_ops;
966         u8 tmp;
967         int err = 0;
968
969         if (port_ops && port_ops->reset_poll) {
970                 err = port_ops->reset_poll(drive);
971                 if (err) {
972                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
973                                 hwif->name, drive->name);
974                         goto out;
975                 }
976         }
977
978         tmp = ide_read_status(drive);
979
980         if (!OK_STAT(tmp, 0, BUSY_STAT)) {
981                 if (time_before(jiffies, hwgroup->poll_timeout)) {
982                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
983                         /* continue polling */
984                         return ide_started;
985                 }
986                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
987                 drive->failures++;
988                 err = -EIO;
989         } else  {
990                 printk("%s: reset: ", hwif->name);
991                 tmp = ide_read_error(drive);
992
993                 if (tmp == 1) {
994                         printk("success\n");
995                         drive->failures = 0;
996                 } else {
997                         drive->failures++;
998                         printk("master: ");
999                         switch (tmp & 0x7f) {
1000                                 case 1: printk("passed");
1001                                         break;
1002                                 case 2: printk("formatter device error");
1003                                         break;
1004                                 case 3: printk("sector buffer error");
1005                                         break;
1006                                 case 4: printk("ECC circuitry error");
1007                                         break;
1008                                 case 5: printk("controlling MPU error");
1009                                         break;
1010                                 default:printk("error (0x%02x?)", tmp);
1011                         }
1012                         if (tmp & 0x80)
1013                                 printk("; slave: failed");
1014                         printk("\n");
1015                         err = -EIO;
1016                 }
1017         }
1018 out:
1019         hwgroup->polling = 0;   /* done polling */
1020         ide_complete_drive_reset(drive, err);
1021         return ide_stopped;
1022 }
1023
1024 static void ide_disk_pre_reset(ide_drive_t *drive)
1025 {
1026         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1027
1028         drive->special.all = 0;
1029         drive->special.b.set_geometry = legacy;
1030         drive->special.b.recalibrate  = legacy;
1031         drive->mult_count = 0;
1032         if (!drive->keep_settings && !drive->using_dma)
1033                 drive->mult_req = 0;
1034         if (drive->mult_req != drive->mult_count)
1035                 drive->special.b.set_multmode = 1;
1036 }
1037
1038 static void pre_reset(ide_drive_t *drive)
1039 {
1040         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1041
1042         if (drive->media == ide_disk)
1043                 ide_disk_pre_reset(drive);
1044         else
1045                 drive->post_reset = 1;
1046
1047         if (drive->using_dma) {
1048                 if (drive->crc_count)
1049                         ide_check_dma_crc(drive);
1050                 else
1051                         ide_dma_off(drive);
1052         }
1053
1054         if (!drive->keep_settings) {
1055                 if (!drive->using_dma) {
1056                         drive->unmask = 0;
1057                         drive->io_32bit = 0;
1058                 }
1059                 return;
1060         }
1061
1062         if (port_ops && port_ops->pre_reset)
1063                 port_ops->pre_reset(drive);
1064
1065         if (drive->current_speed != 0xff)
1066                 drive->desired_speed = drive->current_speed;
1067         drive->current_speed = 0xff;
1068 }
1069
1070 /*
1071  * do_reset1() attempts to recover a confused drive by resetting it.
1072  * Unfortunately, resetting a disk drive actually resets all devices on
1073  * the same interface, so it can really be thought of as resetting the
1074  * interface rather than resetting the drive.
1075  *
1076  * ATAPI devices have their own reset mechanism which allows them to be
1077  * individually reset without clobbering other devices on the same interface.
1078  *
1079  * Unfortunately, the IDE interface does not generate an interrupt to let
1080  * us know when the reset operation has finished, so we must poll for this.
1081  * Equally poor, though, is the fact that this may a very long time to complete,
1082  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1083  * we set a timer to poll at 50ms intervals.
1084  */
1085 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1086 {
1087         unsigned int unit;
1088         unsigned long flags;
1089         ide_hwif_t *hwif;
1090         ide_hwgroup_t *hwgroup;
1091         struct ide_io_ports *io_ports;
1092         const struct ide_port_ops *port_ops;
1093         u8 ctl;
1094
1095         spin_lock_irqsave(&ide_lock, flags);
1096         hwif = HWIF(drive);
1097         hwgroup = HWGROUP(drive);
1098
1099         io_ports = &hwif->io_ports;
1100
1101         /* We must not reset with running handlers */
1102         BUG_ON(hwgroup->handler != NULL);
1103
1104         /* For an ATAPI device, first try an ATAPI SRST. */
1105         if (drive->media != ide_disk && !do_not_try_atapi) {
1106                 pre_reset(drive);
1107                 SELECT_DRIVE(drive);
1108                 udelay (20);
1109                 hwif->OUTBSYNC(hwif, WIN_SRST, io_ports->command_addr);
1110                 ndelay(400);
1111                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1112                 hwgroup->polling = 1;
1113                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1114                 spin_unlock_irqrestore(&ide_lock, flags);
1115                 return ide_started;
1116         }
1117
1118         /*
1119          * First, reset any device state data we were maintaining
1120          * for any of the drives on this interface.
1121          */
1122         for (unit = 0; unit < MAX_DRIVES; ++unit)
1123                 pre_reset(&hwif->drives[unit]);
1124
1125         if (io_ports->ctl_addr == 0) {
1126                 spin_unlock_irqrestore(&ide_lock, flags);
1127                 ide_complete_drive_reset(drive, -ENXIO);
1128                 return ide_stopped;
1129         }
1130
1131         /*
1132          * Note that we also set nIEN while resetting the device,
1133          * to mask unwanted interrupts from the interface during the reset.
1134          * However, due to the design of PC hardware, this will cause an
1135          * immediate interrupt due to the edge transition it produces.
1136          * This single interrupt gives us a "fast poll" for drives that
1137          * recover from reset very quickly, saving us the first 50ms wait time.
1138          */
1139         /* set SRST and nIEN */
1140         hwif->OUTBSYNC(hwif, ATA_DEVCTL_OBS | 6, io_ports->ctl_addr);
1141         /* more than enough time */
1142         udelay(10);
1143         if (drive->quirk_list == 2)
1144                 ctl = ATA_DEVCTL_OBS;           /* clear SRST and nIEN */
1145         else
1146                 ctl = ATA_DEVCTL_OBS | 2;       /* clear SRST, leave nIEN */
1147         hwif->OUTBSYNC(hwif, ctl, io_ports->ctl_addr);
1148         /* more than enough time */
1149         udelay(10);
1150         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1151         hwgroup->polling = 1;
1152         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1153
1154         /*
1155          * Some weird controller like resetting themselves to a strange
1156          * state when the disks are reset this way. At least, the Winbond
1157          * 553 documentation says that
1158          */
1159         port_ops = hwif->port_ops;
1160         if (port_ops && port_ops->resetproc)
1161                 port_ops->resetproc(drive);
1162
1163         spin_unlock_irqrestore(&ide_lock, flags);
1164         return ide_started;
1165 }
1166
1167 /*
1168  * ide_do_reset() is the entry point to the drive/interface reset code.
1169  */
1170
1171 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1172 {
1173         return do_reset1(drive, 0);
1174 }
1175
1176 EXPORT_SYMBOL(ide_do_reset);
1177
1178 /*
1179  * ide_wait_not_busy() waits for the currently selected device on the hwif
1180  * to report a non-busy status, see comments in ide_probe_port().
1181  */
1182 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1183 {
1184         u8 stat = 0;
1185
1186         while(timeout--) {
1187                 /*
1188                  * Turn this into a schedule() sleep once I'm sure
1189                  * about locking issues (2.5 work ?).
1190                  */
1191                 mdelay(1);
1192                 stat = hwif->INB(hwif->io_ports.status_addr);
1193                 if ((stat & BUSY_STAT) == 0)
1194                         return 0;
1195                 /*
1196                  * Assume a value of 0xff means nothing is connected to
1197                  * the interface and it doesn't implement the pull-down
1198                  * resistor on D7.
1199                  */
1200                 if (stat == 0xff)
1201                         return -ENODEV;
1202                 touch_softlockup_watchdog();
1203                 touch_nmi_watchdog();
1204         }
1205         return -EBUSY;
1206 }
1207
1208 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1209