2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/interrupt.h>
29 #include <linux/cpu.h>
30 #include <linux/blktrace_api.h>
35 #include <scsi/scsi_cmnd.h>
37 static void blk_unplug_work(struct work_struct *work);
38 static void blk_unplug_timeout(unsigned long data);
39 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
40 static void init_request_from_bio(struct request *req, struct bio *bio);
41 static int __make_request(request_queue_t *q, struct bio *bio);
42 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
45 * For the allocated request tables
47 static struct kmem_cache *request_cachep;
50 * For queue allocation
52 static struct kmem_cache *requestq_cachep;
55 * For io context allocations
57 static struct kmem_cache *iocontext_cachep;
60 * Controlling structure to kblockd
62 static struct workqueue_struct *kblockd_workqueue;
64 unsigned long blk_max_low_pfn, blk_max_pfn;
66 EXPORT_SYMBOL(blk_max_low_pfn);
67 EXPORT_SYMBOL(blk_max_pfn);
69 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
71 /* Amount of time in which a process may batch requests */
72 #define BLK_BATCH_TIME (HZ/50UL)
74 /* Number of requests a "batching" process may submit */
75 #define BLK_BATCH_REQ 32
78 * Return the threshold (number of used requests) at which the queue is
79 * considered to be congested. It include a little hysteresis to keep the
80 * context switch rate down.
82 static inline int queue_congestion_on_threshold(struct request_queue *q)
84 return q->nr_congestion_on;
88 * The threshold at which a queue is considered to be uncongested
90 static inline int queue_congestion_off_threshold(struct request_queue *q)
92 return q->nr_congestion_off;
95 static void blk_queue_congestion_threshold(struct request_queue *q)
99 nr = q->nr_requests - (q->nr_requests / 8) + 1;
100 if (nr > q->nr_requests)
102 q->nr_congestion_on = nr;
104 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 q->nr_congestion_off = nr;
111 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * Locates the passed device's request queue and returns the address of its
117 * Will return NULL if the request queue cannot be located.
119 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
121 struct backing_dev_info *ret = NULL;
122 request_queue_t *q = bdev_get_queue(bdev);
125 ret = &q->backing_dev_info;
128 EXPORT_SYMBOL(blk_get_backing_dev_info);
130 void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
133 q->activity_data = data;
135 EXPORT_SYMBOL(blk_queue_activity_fn);
138 * blk_queue_prep_rq - set a prepare_request function for queue
140 * @pfn: prepare_request function
142 * It's possible for a queue to register a prepare_request callback which
143 * is invoked before the request is handed to the request_fn. The goal of
144 * the function is to prepare a request for I/O, it can be used to build a
145 * cdb from the request data for instance.
148 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
153 EXPORT_SYMBOL(blk_queue_prep_rq);
156 * blk_queue_merge_bvec - set a merge_bvec function for queue
158 * @mbfn: merge_bvec_fn
160 * Usually queues have static limitations on the max sectors or segments that
161 * we can put in a request. Stacking drivers may have some settings that
162 * are dynamic, and thus we have to query the queue whether it is ok to
163 * add a new bio_vec to a bio at a given offset or not. If the block device
164 * has such limitations, it needs to register a merge_bvec_fn to control
165 * the size of bio's sent to it. Note that a block device *must* allow a
166 * single page to be added to an empty bio. The block device driver may want
167 * to use the bio_split() function to deal with these bio's. By default
168 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
171 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
173 q->merge_bvec_fn = mbfn;
176 EXPORT_SYMBOL(blk_queue_merge_bvec);
178 void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
180 q->softirq_done_fn = fn;
183 EXPORT_SYMBOL(blk_queue_softirq_done);
186 * blk_queue_make_request - define an alternate make_request function for a device
187 * @q: the request queue for the device to be affected
188 * @mfn: the alternate make_request function
191 * The normal way for &struct bios to be passed to a device
192 * driver is for them to be collected into requests on a request
193 * queue, and then to allow the device driver to select requests
194 * off that queue when it is ready. This works well for many block
195 * devices. However some block devices (typically virtual devices
196 * such as md or lvm) do not benefit from the processing on the
197 * request queue, and are served best by having the requests passed
198 * directly to them. This can be achieved by providing a function
199 * to blk_queue_make_request().
202 * The driver that does this *must* be able to deal appropriately
203 * with buffers in "highmemory". This can be accomplished by either calling
204 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
205 * blk_queue_bounce() to create a buffer in normal memory.
207 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
212 q->nr_requests = BLKDEV_MAX_RQ;
213 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
214 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
215 q->make_request_fn = mfn;
216 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
217 q->backing_dev_info.state = 0;
218 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
219 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
220 blk_queue_hardsect_size(q, 512);
221 blk_queue_dma_alignment(q, 511);
222 blk_queue_congestion_threshold(q);
223 q->nr_batching = BLK_BATCH_REQ;
225 q->unplug_thresh = 4; /* hmm */
226 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
227 if (q->unplug_delay == 0)
230 INIT_WORK(&q->unplug_work, blk_unplug_work);
232 q->unplug_timer.function = blk_unplug_timeout;
233 q->unplug_timer.data = (unsigned long)q;
236 * by default assume old behaviour and bounce for any highmem page
238 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
240 blk_queue_activity_fn(q, NULL, NULL);
243 EXPORT_SYMBOL(blk_queue_make_request);
245 static void rq_init(request_queue_t *q, struct request *rq)
247 INIT_LIST_HEAD(&rq->queuelist);
248 INIT_LIST_HEAD(&rq->donelist);
251 rq->bio = rq->biotail = NULL;
252 INIT_HLIST_NODE(&rq->hash);
253 RB_CLEAR_NODE(&rq->rb_node);
261 rq->nr_phys_segments = 0;
264 rq->end_io_data = NULL;
265 rq->completion_data = NULL;
269 * blk_queue_ordered - does this queue support ordered writes
270 * @q: the request queue
271 * @ordered: one of QUEUE_ORDERED_*
272 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
275 * For journalled file systems, doing ordered writes on a commit
276 * block instead of explicitly doing wait_on_buffer (which is bad
277 * for performance) can be a big win. Block drivers supporting this
278 * feature should call this function and indicate so.
281 int blk_queue_ordered(request_queue_t *q, unsigned ordered,
282 prepare_flush_fn *prepare_flush_fn)
284 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
285 prepare_flush_fn == NULL) {
286 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
290 if (ordered != QUEUE_ORDERED_NONE &&
291 ordered != QUEUE_ORDERED_DRAIN &&
292 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
293 ordered != QUEUE_ORDERED_DRAIN_FUA &&
294 ordered != QUEUE_ORDERED_TAG &&
295 ordered != QUEUE_ORDERED_TAG_FLUSH &&
296 ordered != QUEUE_ORDERED_TAG_FUA) {
297 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
301 q->ordered = ordered;
302 q->next_ordered = ordered;
303 q->prepare_flush_fn = prepare_flush_fn;
308 EXPORT_SYMBOL(blk_queue_ordered);
311 * blk_queue_issue_flush_fn - set function for issuing a flush
312 * @q: the request queue
313 * @iff: the function to be called issuing the flush
316 * If a driver supports issuing a flush command, the support is notified
317 * to the block layer by defining it through this call.
320 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
322 q->issue_flush_fn = iff;
325 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
328 * Cache flushing for ordered writes handling
330 inline unsigned blk_ordered_cur_seq(request_queue_t *q)
334 return 1 << ffz(q->ordseq);
337 unsigned blk_ordered_req_seq(struct request *rq)
339 request_queue_t *q = rq->q;
341 BUG_ON(q->ordseq == 0);
343 if (rq == &q->pre_flush_rq)
344 return QUEUE_ORDSEQ_PREFLUSH;
345 if (rq == &q->bar_rq)
346 return QUEUE_ORDSEQ_BAR;
347 if (rq == &q->post_flush_rq)
348 return QUEUE_ORDSEQ_POSTFLUSH;
350 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
351 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
352 return QUEUE_ORDSEQ_DRAIN;
354 return QUEUE_ORDSEQ_DONE;
357 void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
362 if (error && !q->orderr)
365 BUG_ON(q->ordseq & seq);
368 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
372 * Okay, sequence complete.
375 uptodate = q->orderr ? q->orderr : 1;
379 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
380 end_that_request_last(rq, uptodate);
383 static void pre_flush_end_io(struct request *rq, int error)
385 elv_completed_request(rq->q, rq);
386 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
389 static void bar_end_io(struct request *rq, int error)
391 elv_completed_request(rq->q, rq);
392 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
395 static void post_flush_end_io(struct request *rq, int error)
397 elv_completed_request(rq->q, rq);
398 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
401 static void queue_flush(request_queue_t *q, unsigned which)
404 rq_end_io_fn *end_io;
406 if (which == QUEUE_ORDERED_PREFLUSH) {
407 rq = &q->pre_flush_rq;
408 end_io = pre_flush_end_io;
410 rq = &q->post_flush_rq;
411 end_io = post_flush_end_io;
414 rq->cmd_flags = REQ_HARDBARRIER;
416 rq->elevator_private = NULL;
417 rq->elevator_private2 = NULL;
418 rq->rq_disk = q->bar_rq.rq_disk;
420 q->prepare_flush_fn(q, rq);
422 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
425 static inline struct request *start_ordered(request_queue_t *q,
430 q->ordered = q->next_ordered;
431 q->ordseq |= QUEUE_ORDSEQ_STARTED;
434 * Prep proxy barrier request.
436 blkdev_dequeue_request(rq);
441 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
442 rq->cmd_flags |= REQ_RW;
443 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
444 rq->elevator_private = NULL;
445 rq->elevator_private2 = NULL;
446 init_request_from_bio(rq, q->orig_bar_rq->bio);
447 rq->end_io = bar_end_io;
450 * Queue ordered sequence. As we stack them at the head, we
451 * need to queue in reverse order. Note that we rely on that
452 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
453 * request gets inbetween ordered sequence.
455 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
456 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
458 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
460 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
462 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
463 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
464 rq = &q->pre_flush_rq;
466 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
468 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
469 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
476 int blk_do_ordered(request_queue_t *q, struct request **rqp)
478 struct request *rq = *rqp;
479 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
485 if (q->next_ordered != QUEUE_ORDERED_NONE) {
486 *rqp = start_ordered(q, rq);
490 * This can happen when the queue switches to
491 * ORDERED_NONE while this request is on it.
493 blkdev_dequeue_request(rq);
494 end_that_request_first(rq, -EOPNOTSUPP,
495 rq->hard_nr_sectors);
496 end_that_request_last(rq, -EOPNOTSUPP);
503 * Ordered sequence in progress
506 /* Special requests are not subject to ordering rules. */
507 if (!blk_fs_request(rq) &&
508 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
511 if (q->ordered & QUEUE_ORDERED_TAG) {
512 /* Ordered by tag. Blocking the next barrier is enough. */
513 if (is_barrier && rq != &q->bar_rq)
516 /* Ordered by draining. Wait for turn. */
517 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
518 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
525 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
527 request_queue_t *q = bio->bi_private;
528 struct bio_vec *bvec;
532 * This is dry run, restore bio_sector and size. We'll finish
533 * this request again with the original bi_end_io after an
534 * error occurs or post flush is complete.
543 bio_for_each_segment(bvec, bio, i) {
544 bvec->bv_len += bvec->bv_offset;
549 set_bit(BIO_UPTODATE, &bio->bi_flags);
550 bio->bi_size = q->bi_size;
551 bio->bi_sector -= (q->bi_size >> 9);
557 static int ordered_bio_endio(struct request *rq, struct bio *bio,
558 unsigned int nbytes, int error)
560 request_queue_t *q = rq->q;
564 if (&q->bar_rq != rq)
568 * Okay, this is the barrier request in progress, dry finish it.
570 if (error && !q->orderr)
573 endio = bio->bi_end_io;
574 private = bio->bi_private;
575 bio->bi_end_io = flush_dry_bio_endio;
578 bio_endio(bio, nbytes, error);
580 bio->bi_end_io = endio;
581 bio->bi_private = private;
587 * blk_queue_bounce_limit - set bounce buffer limit for queue
588 * @q: the request queue for the device
589 * @dma_addr: bus address limit
592 * Different hardware can have different requirements as to what pages
593 * it can do I/O directly to. A low level driver can call
594 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
595 * buffers for doing I/O to pages residing above @page.
597 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
599 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
602 q->bounce_gfp = GFP_NOIO;
603 #if BITS_PER_LONG == 64
604 /* Assume anything <= 4GB can be handled by IOMMU.
605 Actually some IOMMUs can handle everything, but I don't
606 know of a way to test this here. */
607 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
609 q->bounce_pfn = max_low_pfn;
611 if (bounce_pfn < blk_max_low_pfn)
613 q->bounce_pfn = bounce_pfn;
616 init_emergency_isa_pool();
617 q->bounce_gfp = GFP_NOIO | GFP_DMA;
618 q->bounce_pfn = bounce_pfn;
622 EXPORT_SYMBOL(blk_queue_bounce_limit);
625 * blk_queue_max_sectors - set max sectors for a request for this queue
626 * @q: the request queue for the device
627 * @max_sectors: max sectors in the usual 512b unit
630 * Enables a low level driver to set an upper limit on the size of
633 void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
635 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
636 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
637 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
640 if (BLK_DEF_MAX_SECTORS > max_sectors)
641 q->max_hw_sectors = q->max_sectors = max_sectors;
643 q->max_sectors = BLK_DEF_MAX_SECTORS;
644 q->max_hw_sectors = max_sectors;
648 EXPORT_SYMBOL(blk_queue_max_sectors);
651 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
652 * @q: the request queue for the device
653 * @max_segments: max number of segments
656 * Enables a low level driver to set an upper limit on the number of
657 * physical data segments in a request. This would be the largest sized
658 * scatter list the driver could handle.
660 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
664 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
667 q->max_phys_segments = max_segments;
670 EXPORT_SYMBOL(blk_queue_max_phys_segments);
673 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
674 * @q: the request queue for the device
675 * @max_segments: max number of segments
678 * Enables a low level driver to set an upper limit on the number of
679 * hw data segments in a request. This would be the largest number of
680 * address/length pairs the host adapter can actually give as once
683 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
687 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
690 q->max_hw_segments = max_segments;
693 EXPORT_SYMBOL(blk_queue_max_hw_segments);
696 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
697 * @q: the request queue for the device
698 * @max_size: max size of segment in bytes
701 * Enables a low level driver to set an upper limit on the size of a
704 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
706 if (max_size < PAGE_CACHE_SIZE) {
707 max_size = PAGE_CACHE_SIZE;
708 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
711 q->max_segment_size = max_size;
714 EXPORT_SYMBOL(blk_queue_max_segment_size);
717 * blk_queue_hardsect_size - set hardware sector size for the queue
718 * @q: the request queue for the device
719 * @size: the hardware sector size, in bytes
722 * This should typically be set to the lowest possible sector size
723 * that the hardware can operate on (possible without reverting to
724 * even internal read-modify-write operations). Usually the default
725 * of 512 covers most hardware.
727 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
729 q->hardsect_size = size;
732 EXPORT_SYMBOL(blk_queue_hardsect_size);
735 * Returns the minimum that is _not_ zero, unless both are zero.
737 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
740 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
741 * @t: the stacking driver (top)
742 * @b: the underlying device (bottom)
744 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
746 /* zero is "infinity" */
747 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
748 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
750 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
751 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
752 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
753 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
754 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
755 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
758 EXPORT_SYMBOL(blk_queue_stack_limits);
761 * blk_queue_segment_boundary - set boundary rules for segment merging
762 * @q: the request queue for the device
763 * @mask: the memory boundary mask
765 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
767 if (mask < PAGE_CACHE_SIZE - 1) {
768 mask = PAGE_CACHE_SIZE - 1;
769 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
772 q->seg_boundary_mask = mask;
775 EXPORT_SYMBOL(blk_queue_segment_boundary);
778 * blk_queue_dma_alignment - set dma length and memory alignment
779 * @q: the request queue for the device
780 * @mask: alignment mask
783 * set required memory and length aligment for direct dma transactions.
784 * this is used when buiding direct io requests for the queue.
787 void blk_queue_dma_alignment(request_queue_t *q, int mask)
789 q->dma_alignment = mask;
792 EXPORT_SYMBOL(blk_queue_dma_alignment);
795 * blk_queue_find_tag - find a request by its tag and queue
796 * @q: The request queue for the device
797 * @tag: The tag of the request
800 * Should be used when a device returns a tag and you want to match
803 * no locks need be held.
805 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
807 return blk_map_queue_find_tag(q->queue_tags, tag);
810 EXPORT_SYMBOL(blk_queue_find_tag);
813 * __blk_free_tags - release a given set of tag maintenance info
814 * @bqt: the tag map to free
816 * Tries to free the specified @bqt@. Returns true if it was
817 * actually freed and false if there are still references using it
819 static int __blk_free_tags(struct blk_queue_tag *bqt)
823 retval = atomic_dec_and_test(&bqt->refcnt);
826 BUG_ON(!list_empty(&bqt->busy_list));
828 kfree(bqt->tag_index);
829 bqt->tag_index = NULL;
842 * __blk_queue_free_tags - release tag maintenance info
843 * @q: the request queue for the device
846 * blk_cleanup_queue() will take care of calling this function, if tagging
847 * has been used. So there's no need to call this directly.
849 static void __blk_queue_free_tags(request_queue_t *q)
851 struct blk_queue_tag *bqt = q->queue_tags;
856 __blk_free_tags(bqt);
858 q->queue_tags = NULL;
859 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
864 * blk_free_tags - release a given set of tag maintenance info
865 * @bqt: the tag map to free
867 * For externally managed @bqt@ frees the map. Callers of this
868 * function must guarantee to have released all the queues that
869 * might have been using this tag map.
871 void blk_free_tags(struct blk_queue_tag *bqt)
873 if (unlikely(!__blk_free_tags(bqt)))
876 EXPORT_SYMBOL(blk_free_tags);
879 * blk_queue_free_tags - release tag maintenance info
880 * @q: the request queue for the device
883 * This is used to disabled tagged queuing to a device, yet leave
886 void blk_queue_free_tags(request_queue_t *q)
888 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
891 EXPORT_SYMBOL(blk_queue_free_tags);
894 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
896 struct request **tag_index;
897 unsigned long *tag_map;
900 if (q && depth > q->nr_requests * 2) {
901 depth = q->nr_requests * 2;
902 printk(KERN_ERR "%s: adjusted depth to %d\n",
903 __FUNCTION__, depth);
906 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
910 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
911 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
915 tags->real_max_depth = depth;
916 tags->max_depth = depth;
917 tags->tag_index = tag_index;
918 tags->tag_map = tag_map;
926 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
929 struct blk_queue_tag *tags;
931 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
935 if (init_tag_map(q, tags, depth))
938 INIT_LIST_HEAD(&tags->busy_list);
940 atomic_set(&tags->refcnt, 1);
948 * blk_init_tags - initialize the tag info for an external tag map
949 * @depth: the maximum queue depth supported
950 * @tags: the tag to use
952 struct blk_queue_tag *blk_init_tags(int depth)
954 return __blk_queue_init_tags(NULL, depth);
956 EXPORT_SYMBOL(blk_init_tags);
959 * blk_queue_init_tags - initialize the queue tag info
960 * @q: the request queue for the device
961 * @depth: the maximum queue depth supported
962 * @tags: the tag to use
964 int blk_queue_init_tags(request_queue_t *q, int depth,
965 struct blk_queue_tag *tags)
969 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
971 if (!tags && !q->queue_tags) {
972 tags = __blk_queue_init_tags(q, depth);
976 } else if (q->queue_tags) {
977 if ((rc = blk_queue_resize_tags(q, depth)))
979 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
982 atomic_inc(&tags->refcnt);
985 * assign it, all done
987 q->queue_tags = tags;
988 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
995 EXPORT_SYMBOL(blk_queue_init_tags);
998 * blk_queue_resize_tags - change the queueing depth
999 * @q: the request queue for the device
1000 * @new_depth: the new max command queueing depth
1003 * Must be called with the queue lock held.
1005 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1007 struct blk_queue_tag *bqt = q->queue_tags;
1008 struct request **tag_index;
1009 unsigned long *tag_map;
1010 int max_depth, nr_ulongs;
1016 * if we already have large enough real_max_depth. just
1017 * adjust max_depth. *NOTE* as requests with tag value
1018 * between new_depth and real_max_depth can be in-flight, tag
1019 * map can not be shrunk blindly here.
1021 if (new_depth <= bqt->real_max_depth) {
1022 bqt->max_depth = new_depth;
1027 * Currently cannot replace a shared tag map with a new
1028 * one, so error out if this is the case
1030 if (atomic_read(&bqt->refcnt) != 1)
1034 * save the old state info, so we can copy it back
1036 tag_index = bqt->tag_index;
1037 tag_map = bqt->tag_map;
1038 max_depth = bqt->real_max_depth;
1040 if (init_tag_map(q, bqt, new_depth))
1043 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1044 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1045 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1052 EXPORT_SYMBOL(blk_queue_resize_tags);
1055 * blk_queue_end_tag - end tag operations for a request
1056 * @q: the request queue for the device
1057 * @rq: the request that has completed
1060 * Typically called when end_that_request_first() returns 0, meaning
1061 * all transfers have been done for a request. It's important to call
1062 * this function before end_that_request_last(), as that will put the
1063 * request back on the free list thus corrupting the internal tag list.
1066 * queue lock must be held.
1068 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1070 struct blk_queue_tag *bqt = q->queue_tags;
1075 if (unlikely(tag >= bqt->real_max_depth))
1077 * This can happen after tag depth has been reduced.
1078 * FIXME: how about a warning or info message here?
1082 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
1083 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1088 list_del_init(&rq->queuelist);
1089 rq->cmd_flags &= ~REQ_QUEUED;
1092 if (unlikely(bqt->tag_index[tag] == NULL))
1093 printk(KERN_ERR "%s: tag %d is missing\n",
1096 bqt->tag_index[tag] = NULL;
1100 EXPORT_SYMBOL(blk_queue_end_tag);
1103 * blk_queue_start_tag - find a free tag and assign it
1104 * @q: the request queue for the device
1105 * @rq: the block request that needs tagging
1108 * This can either be used as a stand-alone helper, or possibly be
1109 * assigned as the queue &prep_rq_fn (in which case &struct request
1110 * automagically gets a tag assigned). Note that this function
1111 * assumes that any type of request can be queued! if this is not
1112 * true for your device, you must check the request type before
1113 * calling this function. The request will also be removed from
1114 * the request queue, so it's the drivers responsibility to readd
1115 * it if it should need to be restarted for some reason.
1118 * queue lock must be held.
1120 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1122 struct blk_queue_tag *bqt = q->queue_tags;
1125 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1127 "%s: request %p for device [%s] already tagged %d",
1129 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1134 * Protect against shared tag maps, as we may not have exclusive
1135 * access to the tag map.
1138 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1139 if (tag >= bqt->max_depth)
1142 } while (test_and_set_bit(tag, bqt->tag_map));
1144 rq->cmd_flags |= REQ_QUEUED;
1146 bqt->tag_index[tag] = rq;
1147 blkdev_dequeue_request(rq);
1148 list_add(&rq->queuelist, &bqt->busy_list);
1153 EXPORT_SYMBOL(blk_queue_start_tag);
1156 * blk_queue_invalidate_tags - invalidate all pending tags
1157 * @q: the request queue for the device
1160 * Hardware conditions may dictate a need to stop all pending requests.
1161 * In this case, we will safely clear the block side of the tag queue and
1162 * readd all requests to the request queue in the right order.
1165 * queue lock must be held.
1167 void blk_queue_invalidate_tags(request_queue_t *q)
1169 struct blk_queue_tag *bqt = q->queue_tags;
1170 struct list_head *tmp, *n;
1173 list_for_each_safe(tmp, n, &bqt->busy_list) {
1174 rq = list_entry_rq(tmp);
1176 if (rq->tag == -1) {
1178 "%s: bad tag found on list\n", __FUNCTION__);
1179 list_del_init(&rq->queuelist);
1180 rq->cmd_flags &= ~REQ_QUEUED;
1182 blk_queue_end_tag(q, rq);
1184 rq->cmd_flags &= ~REQ_STARTED;
1185 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1189 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1191 void blk_dump_rq_flags(struct request *rq, char *msg)
1195 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1196 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1199 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1201 rq->current_nr_sectors);
1202 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1204 if (blk_pc_request(rq)) {
1206 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1207 printk("%02x ", rq->cmd[bit]);
1212 EXPORT_SYMBOL(blk_dump_rq_flags);
1214 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1216 struct bio_vec *bv, *bvprv = NULL;
1217 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1218 int high, highprv = 1;
1220 if (unlikely(!bio->bi_io_vec))
1223 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1224 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1225 bio_for_each_segment(bv, bio, i) {
1227 * the trick here is making sure that a high page is never
1228 * considered part of another segment, since that might
1229 * change with the bounce page.
1231 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1232 if (high || highprv)
1233 goto new_hw_segment;
1235 if (seg_size + bv->bv_len > q->max_segment_size)
1237 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1239 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1241 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1242 goto new_hw_segment;
1244 seg_size += bv->bv_len;
1245 hw_seg_size += bv->bv_len;
1250 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1251 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1252 hw_seg_size += bv->bv_len;
1255 if (hw_seg_size > bio->bi_hw_front_size)
1256 bio->bi_hw_front_size = hw_seg_size;
1257 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1263 seg_size = bv->bv_len;
1266 if (hw_seg_size > bio->bi_hw_back_size)
1267 bio->bi_hw_back_size = hw_seg_size;
1268 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1269 bio->bi_hw_front_size = hw_seg_size;
1270 bio->bi_phys_segments = nr_phys_segs;
1271 bio->bi_hw_segments = nr_hw_segs;
1272 bio->bi_flags |= (1 << BIO_SEG_VALID);
1276 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1279 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1282 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1284 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1288 * bio and nxt are contigous in memory, check if the queue allows
1289 * these two to be merged into one
1291 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1297 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1300 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1301 blk_recount_segments(q, bio);
1302 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1303 blk_recount_segments(q, nxt);
1304 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1305 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1307 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1314 * map a request to scatterlist, return number of sg entries setup. Caller
1315 * must make sure sg can hold rq->nr_phys_segments entries
1317 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1319 struct bio_vec *bvec, *bvprv;
1321 int nsegs, i, cluster;
1324 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1327 * for each bio in rq
1330 rq_for_each_bio(bio, rq) {
1332 * for each segment in bio
1334 bio_for_each_segment(bvec, bio, i) {
1335 int nbytes = bvec->bv_len;
1337 if (bvprv && cluster) {
1338 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1341 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1343 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1346 sg[nsegs - 1].length += nbytes;
1349 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1350 sg[nsegs].page = bvec->bv_page;
1351 sg[nsegs].length = nbytes;
1352 sg[nsegs].offset = bvec->bv_offset;
1357 } /* segments in bio */
1363 EXPORT_SYMBOL(blk_rq_map_sg);
1366 * the standard queue merge functions, can be overridden with device
1367 * specific ones if so desired
1370 static inline int ll_new_mergeable(request_queue_t *q,
1371 struct request *req,
1374 int nr_phys_segs = bio_phys_segments(q, bio);
1376 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1377 req->cmd_flags |= REQ_NOMERGE;
1378 if (req == q->last_merge)
1379 q->last_merge = NULL;
1384 * A hw segment is just getting larger, bump just the phys
1387 req->nr_phys_segments += nr_phys_segs;
1391 static inline int ll_new_hw_segment(request_queue_t *q,
1392 struct request *req,
1395 int nr_hw_segs = bio_hw_segments(q, bio);
1396 int nr_phys_segs = bio_phys_segments(q, bio);
1398 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1399 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1400 req->cmd_flags |= REQ_NOMERGE;
1401 if (req == q->last_merge)
1402 q->last_merge = NULL;
1407 * This will form the start of a new hw segment. Bump both
1410 req->nr_hw_segments += nr_hw_segs;
1411 req->nr_phys_segments += nr_phys_segs;
1415 static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1418 unsigned short max_sectors;
1421 if (unlikely(blk_pc_request(req)))
1422 max_sectors = q->max_hw_sectors;
1424 max_sectors = q->max_sectors;
1426 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1427 req->cmd_flags |= REQ_NOMERGE;
1428 if (req == q->last_merge)
1429 q->last_merge = NULL;
1432 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1433 blk_recount_segments(q, req->biotail);
1434 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1435 blk_recount_segments(q, bio);
1436 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1437 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1438 !BIOVEC_VIRT_OVERSIZE(len)) {
1439 int mergeable = ll_new_mergeable(q, req, bio);
1442 if (req->nr_hw_segments == 1)
1443 req->bio->bi_hw_front_size = len;
1444 if (bio->bi_hw_segments == 1)
1445 bio->bi_hw_back_size = len;
1450 return ll_new_hw_segment(q, req, bio);
1453 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1456 unsigned short max_sectors;
1459 if (unlikely(blk_pc_request(req)))
1460 max_sectors = q->max_hw_sectors;
1462 max_sectors = q->max_sectors;
1465 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1466 req->cmd_flags |= REQ_NOMERGE;
1467 if (req == q->last_merge)
1468 q->last_merge = NULL;
1471 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1472 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1473 blk_recount_segments(q, bio);
1474 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1475 blk_recount_segments(q, req->bio);
1476 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1477 !BIOVEC_VIRT_OVERSIZE(len)) {
1478 int mergeable = ll_new_mergeable(q, req, bio);
1481 if (bio->bi_hw_segments == 1)
1482 bio->bi_hw_front_size = len;
1483 if (req->nr_hw_segments == 1)
1484 req->biotail->bi_hw_back_size = len;
1489 return ll_new_hw_segment(q, req, bio);
1492 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1493 struct request *next)
1495 int total_phys_segments;
1496 int total_hw_segments;
1499 * First check if the either of the requests are re-queued
1500 * requests. Can't merge them if they are.
1502 if (req->special || next->special)
1506 * Will it become too large?
1508 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1511 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1512 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1513 total_phys_segments--;
1515 if (total_phys_segments > q->max_phys_segments)
1518 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1519 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1520 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1522 * propagate the combined length to the end of the requests
1524 if (req->nr_hw_segments == 1)
1525 req->bio->bi_hw_front_size = len;
1526 if (next->nr_hw_segments == 1)
1527 next->biotail->bi_hw_back_size = len;
1528 total_hw_segments--;
1531 if (total_hw_segments > q->max_hw_segments)
1534 /* Merge is OK... */
1535 req->nr_phys_segments = total_phys_segments;
1536 req->nr_hw_segments = total_hw_segments;
1541 * "plug" the device if there are no outstanding requests: this will
1542 * force the transfer to start only after we have put all the requests
1545 * This is called with interrupts off and no requests on the queue and
1546 * with the queue lock held.
1548 void blk_plug_device(request_queue_t *q)
1550 WARN_ON(!irqs_disabled());
1553 * don't plug a stopped queue, it must be paired with blk_start_queue()
1554 * which will restart the queueing
1556 if (blk_queue_stopped(q))
1559 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1560 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1561 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1565 EXPORT_SYMBOL(blk_plug_device);
1568 * remove the queue from the plugged list, if present. called with
1569 * queue lock held and interrupts disabled.
1571 int blk_remove_plug(request_queue_t *q)
1573 WARN_ON(!irqs_disabled());
1575 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1578 del_timer(&q->unplug_timer);
1582 EXPORT_SYMBOL(blk_remove_plug);
1585 * remove the plug and let it rip..
1587 void __generic_unplug_device(request_queue_t *q)
1589 if (unlikely(blk_queue_stopped(q)))
1592 if (!blk_remove_plug(q))
1597 EXPORT_SYMBOL(__generic_unplug_device);
1600 * generic_unplug_device - fire a request queue
1601 * @q: The &request_queue_t in question
1604 * Linux uses plugging to build bigger requests queues before letting
1605 * the device have at them. If a queue is plugged, the I/O scheduler
1606 * is still adding and merging requests on the queue. Once the queue
1607 * gets unplugged, the request_fn defined for the queue is invoked and
1608 * transfers started.
1610 void generic_unplug_device(request_queue_t *q)
1612 spin_lock_irq(q->queue_lock);
1613 __generic_unplug_device(q);
1614 spin_unlock_irq(q->queue_lock);
1616 EXPORT_SYMBOL(generic_unplug_device);
1618 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1621 request_queue_t *q = bdi->unplug_io_data;
1624 * devices don't necessarily have an ->unplug_fn defined
1627 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1628 q->rq.count[READ] + q->rq.count[WRITE]);
1634 static void blk_unplug_work(struct work_struct *work)
1636 request_queue_t *q = container_of(work, request_queue_t, unplug_work);
1638 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1639 q->rq.count[READ] + q->rq.count[WRITE]);
1644 static void blk_unplug_timeout(unsigned long data)
1646 request_queue_t *q = (request_queue_t *)data;
1648 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1649 q->rq.count[READ] + q->rq.count[WRITE]);
1651 kblockd_schedule_work(&q->unplug_work);
1655 * blk_start_queue - restart a previously stopped queue
1656 * @q: The &request_queue_t in question
1659 * blk_start_queue() will clear the stop flag on the queue, and call
1660 * the request_fn for the queue if it was in a stopped state when
1661 * entered. Also see blk_stop_queue(). Queue lock must be held.
1663 void blk_start_queue(request_queue_t *q)
1665 WARN_ON(!irqs_disabled());
1667 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1670 * one level of recursion is ok and is much faster than kicking
1671 * the unplug handling
1673 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1675 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1678 kblockd_schedule_work(&q->unplug_work);
1682 EXPORT_SYMBOL(blk_start_queue);
1685 * blk_stop_queue - stop a queue
1686 * @q: The &request_queue_t in question
1689 * The Linux block layer assumes that a block driver will consume all
1690 * entries on the request queue when the request_fn strategy is called.
1691 * Often this will not happen, because of hardware limitations (queue
1692 * depth settings). If a device driver gets a 'queue full' response,
1693 * or if it simply chooses not to queue more I/O at one point, it can
1694 * call this function to prevent the request_fn from being called until
1695 * the driver has signalled it's ready to go again. This happens by calling
1696 * blk_start_queue() to restart queue operations. Queue lock must be held.
1698 void blk_stop_queue(request_queue_t *q)
1701 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1703 EXPORT_SYMBOL(blk_stop_queue);
1706 * blk_sync_queue - cancel any pending callbacks on a queue
1710 * The block layer may perform asynchronous callback activity
1711 * on a queue, such as calling the unplug function after a timeout.
1712 * A block device may call blk_sync_queue to ensure that any
1713 * such activity is cancelled, thus allowing it to release resources
1714 * the the callbacks might use. The caller must already have made sure
1715 * that its ->make_request_fn will not re-add plugging prior to calling
1719 void blk_sync_queue(struct request_queue *q)
1721 del_timer_sync(&q->unplug_timer);
1724 EXPORT_SYMBOL(blk_sync_queue);
1727 * blk_run_queue - run a single device queue
1728 * @q: The queue to run
1730 void blk_run_queue(struct request_queue *q)
1732 unsigned long flags;
1734 spin_lock_irqsave(q->queue_lock, flags);
1738 * Only recurse once to avoid overrunning the stack, let the unplug
1739 * handling reinvoke the handler shortly if we already got there.
1741 if (!elv_queue_empty(q)) {
1742 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1744 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1747 kblockd_schedule_work(&q->unplug_work);
1751 spin_unlock_irqrestore(q->queue_lock, flags);
1753 EXPORT_SYMBOL(blk_run_queue);
1756 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1757 * @kobj: the kobj belonging of the request queue to be released
1760 * blk_cleanup_queue is the pair to blk_init_queue() or
1761 * blk_queue_make_request(). It should be called when a request queue is
1762 * being released; typically when a block device is being de-registered.
1763 * Currently, its primary task it to free all the &struct request
1764 * structures that were allocated to the queue and the queue itself.
1767 * Hopefully the low level driver will have finished any
1768 * outstanding requests first...
1770 static void blk_release_queue(struct kobject *kobj)
1772 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1773 struct request_list *rl = &q->rq;
1778 mempool_destroy(rl->rq_pool);
1781 __blk_queue_free_tags(q);
1783 blk_trace_shutdown(q);
1785 kmem_cache_free(requestq_cachep, q);
1788 void blk_put_queue(request_queue_t *q)
1790 kobject_put(&q->kobj);
1792 EXPORT_SYMBOL(blk_put_queue);
1794 void blk_cleanup_queue(request_queue_t * q)
1796 mutex_lock(&q->sysfs_lock);
1797 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1798 mutex_unlock(&q->sysfs_lock);
1801 elevator_exit(q->elevator);
1806 EXPORT_SYMBOL(blk_cleanup_queue);
1808 static int blk_init_free_list(request_queue_t *q)
1810 struct request_list *rl = &q->rq;
1812 rl->count[READ] = rl->count[WRITE] = 0;
1813 rl->starved[READ] = rl->starved[WRITE] = 0;
1815 init_waitqueue_head(&rl->wait[READ]);
1816 init_waitqueue_head(&rl->wait[WRITE]);
1818 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1819 mempool_free_slab, request_cachep, q->node);
1827 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1829 return blk_alloc_queue_node(gfp_mask, -1);
1831 EXPORT_SYMBOL(blk_alloc_queue);
1833 static struct kobj_type queue_ktype;
1835 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1839 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1843 memset(q, 0, sizeof(*q));
1844 init_timer(&q->unplug_timer);
1846 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1847 q->kobj.ktype = &queue_ktype;
1848 kobject_init(&q->kobj);
1850 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1851 q->backing_dev_info.unplug_io_data = q;
1853 mutex_init(&q->sysfs_lock);
1857 EXPORT_SYMBOL(blk_alloc_queue_node);
1860 * blk_init_queue - prepare a request queue for use with a block device
1861 * @rfn: The function to be called to process requests that have been
1862 * placed on the queue.
1863 * @lock: Request queue spin lock
1866 * If a block device wishes to use the standard request handling procedures,
1867 * which sorts requests and coalesces adjacent requests, then it must
1868 * call blk_init_queue(). The function @rfn will be called when there
1869 * are requests on the queue that need to be processed. If the device
1870 * supports plugging, then @rfn may not be called immediately when requests
1871 * are available on the queue, but may be called at some time later instead.
1872 * Plugged queues are generally unplugged when a buffer belonging to one
1873 * of the requests on the queue is needed, or due to memory pressure.
1875 * @rfn is not required, or even expected, to remove all requests off the
1876 * queue, but only as many as it can handle at a time. If it does leave
1877 * requests on the queue, it is responsible for arranging that the requests
1878 * get dealt with eventually.
1880 * The queue spin lock must be held while manipulating the requests on the
1881 * request queue; this lock will be taken also from interrupt context, so irq
1882 * disabling is needed for it.
1884 * Function returns a pointer to the initialized request queue, or NULL if
1885 * it didn't succeed.
1888 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1889 * when the block device is deactivated (such as at module unload).
1892 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1894 return blk_init_queue_node(rfn, lock, -1);
1896 EXPORT_SYMBOL(blk_init_queue);
1899 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1901 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1907 if (blk_init_free_list(q)) {
1908 kmem_cache_free(requestq_cachep, q);
1913 * if caller didn't supply a lock, they get per-queue locking with
1917 spin_lock_init(&q->__queue_lock);
1918 lock = &q->__queue_lock;
1921 q->request_fn = rfn;
1922 q->back_merge_fn = ll_back_merge_fn;
1923 q->front_merge_fn = ll_front_merge_fn;
1924 q->merge_requests_fn = ll_merge_requests_fn;
1925 q->prep_rq_fn = NULL;
1926 q->unplug_fn = generic_unplug_device;
1927 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1928 q->queue_lock = lock;
1930 blk_queue_segment_boundary(q, 0xffffffff);
1932 blk_queue_make_request(q, __make_request);
1933 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1935 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1936 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1941 if (!elevator_init(q, NULL)) {
1942 blk_queue_congestion_threshold(q);
1949 EXPORT_SYMBOL(blk_init_queue_node);
1951 int blk_get_queue(request_queue_t *q)
1953 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1954 kobject_get(&q->kobj);
1961 EXPORT_SYMBOL(blk_get_queue);
1963 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1965 if (rq->cmd_flags & REQ_ELVPRIV)
1966 elv_put_request(q, rq);
1967 mempool_free(rq, q->rq.rq_pool);
1970 static struct request *
1971 blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
1973 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1979 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1980 * see bio.h and blkdev.h
1982 rq->cmd_flags = rw | REQ_ALLOCED;
1985 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
1986 mempool_free(rq, q->rq.rq_pool);
1989 rq->cmd_flags |= REQ_ELVPRIV;
1996 * ioc_batching returns true if the ioc is a valid batching request and
1997 * should be given priority access to a request.
1999 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
2005 * Make sure the process is able to allocate at least 1 request
2006 * even if the batch times out, otherwise we could theoretically
2009 return ioc->nr_batch_requests == q->nr_batching ||
2010 (ioc->nr_batch_requests > 0
2011 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2015 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2016 * will cause the process to be a "batcher" on all queues in the system. This
2017 * is the behaviour we want though - once it gets a wakeup it should be given
2020 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
2022 if (!ioc || ioc_batching(q, ioc))
2025 ioc->nr_batch_requests = q->nr_batching;
2026 ioc->last_waited = jiffies;
2029 static void __freed_request(request_queue_t *q, int rw)
2031 struct request_list *rl = &q->rq;
2033 if (rl->count[rw] < queue_congestion_off_threshold(q))
2034 blk_clear_queue_congested(q, rw);
2036 if (rl->count[rw] + 1 <= q->nr_requests) {
2037 if (waitqueue_active(&rl->wait[rw]))
2038 wake_up(&rl->wait[rw]);
2040 blk_clear_queue_full(q, rw);
2045 * A request has just been released. Account for it, update the full and
2046 * congestion status, wake up any waiters. Called under q->queue_lock.
2048 static void freed_request(request_queue_t *q, int rw, int priv)
2050 struct request_list *rl = &q->rq;
2056 __freed_request(q, rw);
2058 if (unlikely(rl->starved[rw ^ 1]))
2059 __freed_request(q, rw ^ 1);
2062 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2064 * Get a free request, queue_lock must be held.
2065 * Returns NULL on failure, with queue_lock held.
2066 * Returns !NULL on success, with queue_lock *not held*.
2068 static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
2071 struct request *rq = NULL;
2072 struct request_list *rl = &q->rq;
2073 struct io_context *ioc = NULL;
2074 int may_queue, priv;
2076 may_queue = elv_may_queue(q, rw);
2077 if (may_queue == ELV_MQUEUE_NO)
2080 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2081 if (rl->count[rw]+1 >= q->nr_requests) {
2082 ioc = current_io_context(GFP_ATOMIC, q->node);
2084 * The queue will fill after this allocation, so set
2085 * it as full, and mark this process as "batching".
2086 * This process will be allowed to complete a batch of
2087 * requests, others will be blocked.
2089 if (!blk_queue_full(q, rw)) {
2090 ioc_set_batching(q, ioc);
2091 blk_set_queue_full(q, rw);
2093 if (may_queue != ELV_MQUEUE_MUST
2094 && !ioc_batching(q, ioc)) {
2096 * The queue is full and the allocating
2097 * process is not a "batcher", and not
2098 * exempted by the IO scheduler
2104 blk_set_queue_congested(q, rw);
2108 * Only allow batching queuers to allocate up to 50% over the defined
2109 * limit of requests, otherwise we could have thousands of requests
2110 * allocated with any setting of ->nr_requests
2112 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2116 rl->starved[rw] = 0;
2118 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2122 spin_unlock_irq(q->queue_lock);
2124 rq = blk_alloc_request(q, rw, priv, gfp_mask);
2125 if (unlikely(!rq)) {
2127 * Allocation failed presumably due to memory. Undo anything
2128 * we might have messed up.
2130 * Allocating task should really be put onto the front of the
2131 * wait queue, but this is pretty rare.
2133 spin_lock_irq(q->queue_lock);
2134 freed_request(q, rw, priv);
2137 * in the very unlikely event that allocation failed and no
2138 * requests for this direction was pending, mark us starved
2139 * so that freeing of a request in the other direction will
2140 * notice us. another possible fix would be to split the
2141 * rq mempool into READ and WRITE
2144 if (unlikely(rl->count[rw] == 0))
2145 rl->starved[rw] = 1;
2151 * ioc may be NULL here, and ioc_batching will be false. That's
2152 * OK, if the queue is under the request limit then requests need
2153 * not count toward the nr_batch_requests limit. There will always
2154 * be some limit enforced by BLK_BATCH_TIME.
2156 if (ioc_batching(q, ioc))
2157 ioc->nr_batch_requests--;
2161 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2167 * No available requests for this queue, unplug the device and wait for some
2168 * requests to become available.
2170 * Called with q->queue_lock held, and returns with it unlocked.
2172 static struct request *get_request_wait(request_queue_t *q, int rw,
2177 rq = get_request(q, rw, bio, GFP_NOIO);
2180 struct request_list *rl = &q->rq;
2182 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2183 TASK_UNINTERRUPTIBLE);
2185 rq = get_request(q, rw, bio, GFP_NOIO);
2188 struct io_context *ioc;
2190 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2192 __generic_unplug_device(q);
2193 spin_unlock_irq(q->queue_lock);
2197 * After sleeping, we become a "batching" process and
2198 * will be able to allocate at least one request, and
2199 * up to a big batch of them for a small period time.
2200 * See ioc_batching, ioc_set_batching
2202 ioc = current_io_context(GFP_NOIO, q->node);
2203 ioc_set_batching(q, ioc);
2205 spin_lock_irq(q->queue_lock);
2207 finish_wait(&rl->wait[rw], &wait);
2213 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2217 BUG_ON(rw != READ && rw != WRITE);
2219 spin_lock_irq(q->queue_lock);
2220 if (gfp_mask & __GFP_WAIT) {
2221 rq = get_request_wait(q, rw, NULL);
2223 rq = get_request(q, rw, NULL, gfp_mask);
2225 spin_unlock_irq(q->queue_lock);
2227 /* q->queue_lock is unlocked at this point */
2231 EXPORT_SYMBOL(blk_get_request);
2234 * blk_start_queueing - initiate dispatch of requests to device
2235 * @q: request queue to kick into gear
2237 * This is basically a helper to remove the need to know whether a queue
2238 * is plugged or not if someone just wants to initiate dispatch of requests
2241 * The queue lock must be held with interrupts disabled.
2243 void blk_start_queueing(request_queue_t *q)
2245 if (!blk_queue_plugged(q))
2248 __generic_unplug_device(q);
2250 EXPORT_SYMBOL(blk_start_queueing);
2253 * blk_requeue_request - put a request back on queue
2254 * @q: request queue where request should be inserted
2255 * @rq: request to be inserted
2258 * Drivers often keep queueing requests until the hardware cannot accept
2259 * more, when that condition happens we need to put the request back
2260 * on the queue. Must be called with queue lock held.
2262 void blk_requeue_request(request_queue_t *q, struct request *rq)
2264 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2266 if (blk_rq_tagged(rq))
2267 blk_queue_end_tag(q, rq);
2269 elv_requeue_request(q, rq);
2272 EXPORT_SYMBOL(blk_requeue_request);
2275 * blk_insert_request - insert a special request in to a request queue
2276 * @q: request queue where request should be inserted
2277 * @rq: request to be inserted
2278 * @at_head: insert request at head or tail of queue
2279 * @data: private data
2282 * Many block devices need to execute commands asynchronously, so they don't
2283 * block the whole kernel from preemption during request execution. This is
2284 * accomplished normally by inserting aritficial requests tagged as
2285 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2286 * scheduled for actual execution by the request queue.
2288 * We have the option of inserting the head or the tail of the queue.
2289 * Typically we use the tail for new ioctls and so forth. We use the head
2290 * of the queue for things like a QUEUE_FULL message from a device, or a
2291 * host that is unable to accept a particular command.
2293 void blk_insert_request(request_queue_t *q, struct request *rq,
2294 int at_head, void *data)
2296 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2297 unsigned long flags;
2300 * tell I/O scheduler that this isn't a regular read/write (ie it
2301 * must not attempt merges on this) and that it acts as a soft
2304 rq->cmd_type = REQ_TYPE_SPECIAL;
2305 rq->cmd_flags |= REQ_SOFTBARRIER;
2309 spin_lock_irqsave(q->queue_lock, flags);
2312 * If command is tagged, release the tag
2314 if (blk_rq_tagged(rq))
2315 blk_queue_end_tag(q, rq);
2317 drive_stat_acct(rq, rq->nr_sectors, 1);
2318 __elv_add_request(q, rq, where, 0);
2319 blk_start_queueing(q);
2320 spin_unlock_irqrestore(q->queue_lock, flags);
2323 EXPORT_SYMBOL(blk_insert_request);
2325 static int __blk_rq_unmap_user(struct bio *bio)
2330 if (bio_flagged(bio, BIO_USER_MAPPED))
2331 bio_unmap_user(bio);
2333 ret = bio_uncopy_user(bio);
2339 static int __blk_rq_map_user(request_queue_t *q, struct request *rq,
2340 void __user *ubuf, unsigned int len)
2342 unsigned long uaddr;
2343 struct bio *bio, *orig_bio;
2346 reading = rq_data_dir(rq) == READ;
2349 * if alignment requirement is satisfied, map in user pages for
2350 * direct dma. else, set up kernel bounce buffers
2352 uaddr = (unsigned long) ubuf;
2353 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2354 bio = bio_map_user(q, NULL, uaddr, len, reading);
2356 bio = bio_copy_user(q, uaddr, len, reading);
2359 return PTR_ERR(bio);
2363 blk_queue_bounce(q, &bio);
2365 * We link the bounce buffer in and could have to traverse it
2366 * later so we have to get a ref to prevent it from being freed
2371 * for most (all? don't know of any) queues we could
2372 * skip grabbing the queue lock here. only drivers with
2373 * funky private ->back_merge_fn() function could be
2376 spin_lock_irq(q->queue_lock);
2378 blk_rq_bio_prep(q, rq, bio);
2379 else if (!q->back_merge_fn(q, rq, bio)) {
2381 spin_unlock_irq(q->queue_lock);
2384 rq->biotail->bi_next = bio;
2387 rq->nr_sectors += bio_sectors(bio);
2388 rq->hard_nr_sectors = rq->nr_sectors;
2389 rq->data_len += bio->bi_size;
2391 spin_unlock_irq(q->queue_lock);
2393 return bio->bi_size;
2396 /* if it was boucned we must call the end io function */
2397 bio_endio(bio, bio->bi_size, 0);
2398 __blk_rq_unmap_user(orig_bio);
2404 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2405 * @q: request queue where request should be inserted
2406 * @rq: request structure to fill
2407 * @ubuf: the user buffer
2408 * @len: length of user data
2411 * Data will be mapped directly for zero copy io, if possible. Otherwise
2412 * a kernel bounce buffer is used.
2414 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2415 * still in process context.
2417 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2418 * before being submitted to the device, as pages mapped may be out of
2419 * reach. It's the callers responsibility to make sure this happens. The
2420 * original bio must be passed back in to blk_rq_unmap_user() for proper
2423 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2426 unsigned long bytes_read = 0;
2429 if (len > (q->max_hw_sectors << 9))
2434 while (bytes_read != len) {
2435 unsigned long map_len, end, start;
2437 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2438 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2440 start = (unsigned long)ubuf >> PAGE_SHIFT;
2443 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2444 * pages. If this happens we just lower the requested
2445 * mapping len by a page so that we can fit
2447 if (end - start > BIO_MAX_PAGES)
2448 map_len -= PAGE_SIZE;
2450 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2457 rq->buffer = rq->data = NULL;
2460 blk_rq_unmap_user(rq);
2464 EXPORT_SYMBOL(blk_rq_map_user);
2467 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2468 * @q: request queue where request should be inserted
2469 * @rq: request to map data to
2470 * @iov: pointer to the iovec
2471 * @iov_count: number of elements in the iovec
2474 * Data will be mapped directly for zero copy io, if possible. Otherwise
2475 * a kernel bounce buffer is used.
2477 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2478 * still in process context.
2480 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2481 * before being submitted to the device, as pages mapped may be out of
2482 * reach. It's the callers responsibility to make sure this happens. The
2483 * original bio must be passed back in to blk_rq_unmap_user() for proper
2486 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2487 struct sg_iovec *iov, int iov_count, unsigned int len)
2491 if (!iov || iov_count <= 0)
2494 /* we don't allow misaligned data like bio_map_user() does. If the
2495 * user is using sg, they're expected to know the alignment constraints
2496 * and respect them accordingly */
2497 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2499 return PTR_ERR(bio);
2501 if (bio->bi_size != len) {
2502 bio_endio(bio, bio->bi_size, 0);
2503 bio_unmap_user(bio);
2508 blk_rq_bio_prep(q, rq, bio);
2509 rq->buffer = rq->data = NULL;
2513 EXPORT_SYMBOL(blk_rq_map_user_iov);
2516 * blk_rq_unmap_user - unmap a request with user data
2517 * @rq: rq to be unmapped
2520 * Unmap a rq previously mapped by blk_rq_map_user().
2521 * rq->bio must be set to the original head of the request.
2523 int blk_rq_unmap_user(struct request *rq)
2525 struct bio *bio, *mapped_bio;
2527 while ((bio = rq->bio)) {
2528 if (bio_flagged(bio, BIO_BOUNCED))
2529 mapped_bio = bio->bi_private;
2533 __blk_rq_unmap_user(mapped_bio);
2534 rq->bio = bio->bi_next;
2540 EXPORT_SYMBOL(blk_rq_unmap_user);
2543 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2544 * @q: request queue where request should be inserted
2545 * @rq: request to fill
2546 * @kbuf: the kernel buffer
2547 * @len: length of user data
2548 * @gfp_mask: memory allocation flags
2550 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2551 unsigned int len, gfp_t gfp_mask)
2555 if (len > (q->max_hw_sectors << 9))
2560 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2562 return PTR_ERR(bio);
2564 if (rq_data_dir(rq) == WRITE)
2565 bio->bi_rw |= (1 << BIO_RW);
2567 blk_rq_bio_prep(q, rq, bio);
2568 rq->buffer = rq->data = NULL;
2572 EXPORT_SYMBOL(blk_rq_map_kern);
2575 * blk_execute_rq_nowait - insert a request into queue for execution
2576 * @q: queue to insert the request in
2577 * @bd_disk: matching gendisk
2578 * @rq: request to insert
2579 * @at_head: insert request at head or tail of queue
2580 * @done: I/O completion handler
2583 * Insert a fully prepared request at the back of the io scheduler queue
2584 * for execution. Don't wait for completion.
2586 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2587 struct request *rq, int at_head,
2590 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2592 rq->rq_disk = bd_disk;
2593 rq->cmd_flags |= REQ_NOMERGE;
2595 WARN_ON(irqs_disabled());
2596 spin_lock_irq(q->queue_lock);
2597 __elv_add_request(q, rq, where, 1);
2598 __generic_unplug_device(q);
2599 spin_unlock_irq(q->queue_lock);
2601 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2604 * blk_execute_rq - insert a request into queue for execution
2605 * @q: queue to insert the request in
2606 * @bd_disk: matching gendisk
2607 * @rq: request to insert
2608 * @at_head: insert request at head or tail of queue
2611 * Insert a fully prepared request at the back of the io scheduler queue
2612 * for execution and wait for completion.
2614 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2615 struct request *rq, int at_head)
2617 DECLARE_COMPLETION_ONSTACK(wait);
2618 char sense[SCSI_SENSE_BUFFERSIZE];
2622 * we need an extra reference to the request, so we can look at
2623 * it after io completion
2628 memset(sense, 0, sizeof(sense));
2633 rq->end_io_data = &wait;
2634 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2635 wait_for_completion(&wait);
2643 EXPORT_SYMBOL(blk_execute_rq);
2646 * blkdev_issue_flush - queue a flush
2647 * @bdev: blockdev to issue flush for
2648 * @error_sector: error sector
2651 * Issue a flush for the block device in question. Caller can supply
2652 * room for storing the error offset in case of a flush error, if they
2653 * wish to. Caller must run wait_for_completion() on its own.
2655 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2659 if (bdev->bd_disk == NULL)
2662 q = bdev_get_queue(bdev);
2665 if (!q->issue_flush_fn)
2668 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2671 EXPORT_SYMBOL(blkdev_issue_flush);
2673 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2675 int rw = rq_data_dir(rq);
2677 if (!blk_fs_request(rq) || !rq->rq_disk)
2681 __disk_stat_inc(rq->rq_disk, merges[rw]);
2683 disk_round_stats(rq->rq_disk);
2684 rq->rq_disk->in_flight++;
2689 * add-request adds a request to the linked list.
2690 * queue lock is held and interrupts disabled, as we muck with the
2691 * request queue list.
2693 static inline void add_request(request_queue_t * q, struct request * req)
2695 drive_stat_acct(req, req->nr_sectors, 1);
2698 q->activity_fn(q->activity_data, rq_data_dir(req));
2701 * elevator indicated where it wants this request to be
2702 * inserted at elevator_merge time
2704 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2708 * disk_round_stats() - Round off the performance stats on a struct
2711 * The average IO queue length and utilisation statistics are maintained
2712 * by observing the current state of the queue length and the amount of
2713 * time it has been in this state for.
2715 * Normally, that accounting is done on IO completion, but that can result
2716 * in more than a second's worth of IO being accounted for within any one
2717 * second, leading to >100% utilisation. To deal with that, we call this
2718 * function to do a round-off before returning the results when reading
2719 * /proc/diskstats. This accounts immediately for all queue usage up to
2720 * the current jiffies and restarts the counters again.
2722 void disk_round_stats(struct gendisk *disk)
2724 unsigned long now = jiffies;
2726 if (now == disk->stamp)
2729 if (disk->in_flight) {
2730 __disk_stat_add(disk, time_in_queue,
2731 disk->in_flight * (now - disk->stamp));
2732 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2737 EXPORT_SYMBOL_GPL(disk_round_stats);
2740 * queue lock must be held
2742 void __blk_put_request(request_queue_t *q, struct request *req)
2746 if (unlikely(--req->ref_count))
2749 elv_completed_request(q, req);
2752 * Request may not have originated from ll_rw_blk. if not,
2753 * it didn't come out of our reserved rq pools
2755 if (req->cmd_flags & REQ_ALLOCED) {
2756 int rw = rq_data_dir(req);
2757 int priv = req->cmd_flags & REQ_ELVPRIV;
2759 BUG_ON(!list_empty(&req->queuelist));
2760 BUG_ON(!hlist_unhashed(&req->hash));
2762 blk_free_request(q, req);
2763 freed_request(q, rw, priv);
2767 EXPORT_SYMBOL_GPL(__blk_put_request);
2769 void blk_put_request(struct request *req)
2771 unsigned long flags;
2772 request_queue_t *q = req->q;
2775 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2776 * following if (q) test.
2779 spin_lock_irqsave(q->queue_lock, flags);
2780 __blk_put_request(q, req);
2781 spin_unlock_irqrestore(q->queue_lock, flags);
2785 EXPORT_SYMBOL(blk_put_request);
2788 * blk_end_sync_rq - executes a completion event on a request
2789 * @rq: request to complete
2790 * @error: end io status of the request
2792 void blk_end_sync_rq(struct request *rq, int error)
2794 struct completion *waiting = rq->end_io_data;
2796 rq->end_io_data = NULL;
2797 __blk_put_request(rq->q, rq);
2800 * complete last, if this is a stack request the process (and thus
2801 * the rq pointer) could be invalid right after this complete()
2805 EXPORT_SYMBOL(blk_end_sync_rq);
2808 * Has to be called with the request spinlock acquired
2810 static int attempt_merge(request_queue_t *q, struct request *req,
2811 struct request *next)
2813 if (!rq_mergeable(req) || !rq_mergeable(next))
2819 if (req->sector + req->nr_sectors != next->sector)
2822 if (rq_data_dir(req) != rq_data_dir(next)
2823 || req->rq_disk != next->rq_disk
2828 * If we are allowed to merge, then append bio list
2829 * from next to rq and release next. merge_requests_fn
2830 * will have updated segment counts, update sector
2833 if (!q->merge_requests_fn(q, req, next))
2837 * At this point we have either done a back merge
2838 * or front merge. We need the smaller start_time of
2839 * the merged requests to be the current request
2840 * for accounting purposes.
2842 if (time_after(req->start_time, next->start_time))
2843 req->start_time = next->start_time;
2845 req->biotail->bi_next = next->bio;
2846 req->biotail = next->biotail;
2848 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2850 elv_merge_requests(q, req, next);
2853 disk_round_stats(req->rq_disk);
2854 req->rq_disk->in_flight--;
2857 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2859 __blk_put_request(q, next);
2863 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2865 struct request *next = elv_latter_request(q, rq);
2868 return attempt_merge(q, rq, next);
2873 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2875 struct request *prev = elv_former_request(q, rq);
2878 return attempt_merge(q, prev, rq);
2883 static void init_request_from_bio(struct request *req, struct bio *bio)
2885 req->cmd_type = REQ_TYPE_FS;
2888 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2890 if (bio_rw_ahead(bio) || bio_failfast(bio))
2891 req->cmd_flags |= REQ_FAILFAST;
2894 * REQ_BARRIER implies no merging, but lets make it explicit
2896 if (unlikely(bio_barrier(bio)))
2897 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2900 req->cmd_flags |= REQ_RW_SYNC;
2901 if (bio_rw_meta(bio))
2902 req->cmd_flags |= REQ_RW_META;
2905 req->hard_sector = req->sector = bio->bi_sector;
2906 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2907 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2908 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2909 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2910 req->buffer = bio_data(bio); /* see ->buffer comment above */
2911 req->bio = req->biotail = bio;
2912 req->ioprio = bio_prio(bio);
2913 req->rq_disk = bio->bi_bdev->bd_disk;
2914 req->start_time = jiffies;
2917 static int __make_request(request_queue_t *q, struct bio *bio)
2919 struct request *req;
2920 int el_ret, nr_sectors, barrier, err;
2921 const unsigned short prio = bio_prio(bio);
2922 const int sync = bio_sync(bio);
2924 nr_sectors = bio_sectors(bio);
2927 * low level driver can indicate that it wants pages above a
2928 * certain limit bounced to low memory (ie for highmem, or even
2929 * ISA dma in theory)
2931 blk_queue_bounce(q, &bio);
2933 barrier = bio_barrier(bio);
2934 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2939 spin_lock_irq(q->queue_lock);
2941 if (unlikely(barrier) || elv_queue_empty(q))
2944 el_ret = elv_merge(q, &req, bio);
2946 case ELEVATOR_BACK_MERGE:
2947 BUG_ON(!rq_mergeable(req));
2949 if (!q->back_merge_fn(q, req, bio))
2952 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2954 req->biotail->bi_next = bio;
2956 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2957 req->ioprio = ioprio_best(req->ioprio, prio);
2958 drive_stat_acct(req, nr_sectors, 0);
2959 if (!attempt_back_merge(q, req))
2960 elv_merged_request(q, req, el_ret);
2963 case ELEVATOR_FRONT_MERGE:
2964 BUG_ON(!rq_mergeable(req));
2966 if (!q->front_merge_fn(q, req, bio))
2969 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2971 bio->bi_next = req->bio;
2975 * may not be valid. if the low level driver said
2976 * it didn't need a bounce buffer then it better
2977 * not touch req->buffer either...
2979 req->buffer = bio_data(bio);
2980 req->current_nr_sectors = bio_cur_sectors(bio);
2981 req->hard_cur_sectors = req->current_nr_sectors;
2982 req->sector = req->hard_sector = bio->bi_sector;
2983 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2984 req->ioprio = ioprio_best(req->ioprio, prio);
2985 drive_stat_acct(req, nr_sectors, 0);
2986 if (!attempt_front_merge(q, req))
2987 elv_merged_request(q, req, el_ret);
2990 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2997 * Grab a free request. This is might sleep but can not fail.
2998 * Returns with the queue unlocked.
3000 req = get_request_wait(q, bio_data_dir(bio), bio);
3003 * After dropping the lock and possibly sleeping here, our request
3004 * may now be mergeable after it had proven unmergeable (above).
3005 * We don't worry about that case for efficiency. It won't happen
3006 * often, and the elevators are able to handle it.
3008 init_request_from_bio(req, bio);
3010 spin_lock_irq(q->queue_lock);
3011 if (elv_queue_empty(q))
3013 add_request(q, req);
3016 __generic_unplug_device(q);
3018 spin_unlock_irq(q->queue_lock);
3022 bio_endio(bio, nr_sectors << 9, err);
3027 * If bio->bi_dev is a partition, remap the location
3029 static inline void blk_partition_remap(struct bio *bio)
3031 struct block_device *bdev = bio->bi_bdev;
3033 if (bdev != bdev->bd_contains) {
3034 struct hd_struct *p = bdev->bd_part;
3035 const int rw = bio_data_dir(bio);
3037 p->sectors[rw] += bio_sectors(bio);
3040 bio->bi_sector += p->start_sect;
3041 bio->bi_bdev = bdev->bd_contains;
3045 static void handle_bad_sector(struct bio *bio)
3047 char b[BDEVNAME_SIZE];
3049 printk(KERN_INFO "attempt to access beyond end of device\n");
3050 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3051 bdevname(bio->bi_bdev, b),
3053 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3054 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3056 set_bit(BIO_EOF, &bio->bi_flags);
3060 * generic_make_request: hand a buffer to its device driver for I/O
3061 * @bio: The bio describing the location in memory and on the device.
3063 * generic_make_request() is used to make I/O requests of block
3064 * devices. It is passed a &struct bio, which describes the I/O that needs
3067 * generic_make_request() does not return any status. The
3068 * success/failure status of the request, along with notification of
3069 * completion, is delivered asynchronously through the bio->bi_end_io
3070 * function described (one day) else where.
3072 * The caller of generic_make_request must make sure that bi_io_vec
3073 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3074 * set to describe the device address, and the
3075 * bi_end_io and optionally bi_private are set to describe how
3076 * completion notification should be signaled.
3078 * generic_make_request and the drivers it calls may use bi_next if this
3079 * bio happens to be merged with someone else, and may change bi_dev and
3080 * bi_sector for remaps as it sees fit. So the values of these fields
3081 * should NOT be depended on after the call to generic_make_request.
3083 void generic_make_request(struct bio *bio)
3087 sector_t old_sector;
3088 int ret, nr_sectors = bio_sectors(bio);
3092 /* Test device or partition size, when known. */
3093 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3095 sector_t sector = bio->bi_sector;
3097 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3099 * This may well happen - the kernel calls bread()
3100 * without checking the size of the device, e.g., when
3101 * mounting a device.
3103 handle_bad_sector(bio);
3109 * Resolve the mapping until finished. (drivers are
3110 * still free to implement/resolve their own stacking
3111 * by explicitly returning 0)
3113 * NOTE: we don't repeat the blk_size check for each new device.
3114 * Stacking drivers are expected to know what they are doing.
3119 char b[BDEVNAME_SIZE];
3121 q = bdev_get_queue(bio->bi_bdev);
3124 "generic_make_request: Trying to access "
3125 "nonexistent block-device %s (%Lu)\n",
3126 bdevname(bio->bi_bdev, b),
3127 (long long) bio->bi_sector);
3129 bio_endio(bio, bio->bi_size, -EIO);
3133 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3134 printk("bio too big device %s (%u > %u)\n",
3135 bdevname(bio->bi_bdev, b),
3141 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3145 * If this device has partitions, remap block n
3146 * of partition p to block n+start(p) of the disk.
3148 blk_partition_remap(bio);
3150 if (old_sector != -1)
3151 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3154 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3156 old_sector = bio->bi_sector;
3157 old_dev = bio->bi_bdev->bd_dev;
3159 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3161 sector_t sector = bio->bi_sector;
3163 if (maxsector < nr_sectors ||
3164 maxsector - nr_sectors < sector) {
3166 * This may well happen - partitions are not
3167 * checked to make sure they are within the size
3168 * of the whole device.
3170 handle_bad_sector(bio);
3175 ret = q->make_request_fn(q, bio);
3179 EXPORT_SYMBOL(generic_make_request);
3182 * submit_bio: submit a bio to the block device layer for I/O
3183 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3184 * @bio: The &struct bio which describes the I/O
3186 * submit_bio() is very similar in purpose to generic_make_request(), and
3187 * uses that function to do most of the work. Both are fairly rough
3188 * interfaces, @bio must be presetup and ready for I/O.
3191 void submit_bio(int rw, struct bio *bio)
3193 int count = bio_sectors(bio);
3195 BIO_BUG_ON(!bio->bi_size);
3196 BIO_BUG_ON(!bio->bi_io_vec);
3199 count_vm_events(PGPGOUT, count);
3201 count_vm_events(PGPGIN, count);
3203 if (unlikely(block_dump)) {
3204 char b[BDEVNAME_SIZE];
3205 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3206 current->comm, current->pid,
3207 (rw & WRITE) ? "WRITE" : "READ",
3208 (unsigned long long)bio->bi_sector,
3209 bdevname(bio->bi_bdev,b));
3212 generic_make_request(bio);
3215 EXPORT_SYMBOL(submit_bio);
3217 static void blk_recalc_rq_segments(struct request *rq)
3219 struct bio *bio, *prevbio = NULL;
3220 int nr_phys_segs, nr_hw_segs;
3221 unsigned int phys_size, hw_size;
3222 request_queue_t *q = rq->q;
3227 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3228 rq_for_each_bio(bio, rq) {
3229 /* Force bio hw/phys segs to be recalculated. */
3230 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3232 nr_phys_segs += bio_phys_segments(q, bio);
3233 nr_hw_segs += bio_hw_segments(q, bio);
3235 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3236 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3238 if (blk_phys_contig_segment(q, prevbio, bio) &&
3239 pseg <= q->max_segment_size) {
3241 phys_size += prevbio->bi_size + bio->bi_size;
3245 if (blk_hw_contig_segment(q, prevbio, bio) &&
3246 hseg <= q->max_segment_size) {
3248 hw_size += prevbio->bi_size + bio->bi_size;
3255 rq->nr_phys_segments = nr_phys_segs;
3256 rq->nr_hw_segments = nr_hw_segs;
3259 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3261 if (blk_fs_request(rq)) {
3262 rq->hard_sector += nsect;
3263 rq->hard_nr_sectors -= nsect;
3266 * Move the I/O submission pointers ahead if required.
3268 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3269 (rq->sector <= rq->hard_sector)) {
3270 rq->sector = rq->hard_sector;
3271 rq->nr_sectors = rq->hard_nr_sectors;
3272 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3273 rq->current_nr_sectors = rq->hard_cur_sectors;
3274 rq->buffer = bio_data(rq->bio);
3278 * if total number of sectors is less than the first segment
3279 * size, something has gone terribly wrong
3281 if (rq->nr_sectors < rq->current_nr_sectors) {
3282 printk("blk: request botched\n");
3283 rq->nr_sectors = rq->current_nr_sectors;
3288 static int __end_that_request_first(struct request *req, int uptodate,
3291 int total_bytes, bio_nbytes, error, next_idx = 0;
3294 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3297 * extend uptodate bool to allow < 0 value to be direct io error
3300 if (end_io_error(uptodate))
3301 error = !uptodate ? -EIO : uptodate;
3304 * for a REQ_BLOCK_PC request, we want to carry any eventual
3305 * sense key with us all the way through
3307 if (!blk_pc_request(req))
3311 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3312 printk("end_request: I/O error, dev %s, sector %llu\n",
3313 req->rq_disk ? req->rq_disk->disk_name : "?",
3314 (unsigned long long)req->sector);
3317 if (blk_fs_request(req) && req->rq_disk) {
3318 const int rw = rq_data_dir(req);
3320 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3323 total_bytes = bio_nbytes = 0;
3324 while ((bio = req->bio) != NULL) {
3327 if (nr_bytes >= bio->bi_size) {
3328 req->bio = bio->bi_next;
3329 nbytes = bio->bi_size;
3330 if (!ordered_bio_endio(req, bio, nbytes, error))
3331 bio_endio(bio, nbytes, error);
3335 int idx = bio->bi_idx + next_idx;
3337 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3338 blk_dump_rq_flags(req, "__end_that");
3339 printk("%s: bio idx %d >= vcnt %d\n",
3341 bio->bi_idx, bio->bi_vcnt);
3345 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3346 BIO_BUG_ON(nbytes > bio->bi_size);
3349 * not a complete bvec done
3351 if (unlikely(nbytes > nr_bytes)) {
3352 bio_nbytes += nr_bytes;
3353 total_bytes += nr_bytes;
3358 * advance to the next vector
3361 bio_nbytes += nbytes;
3364 total_bytes += nbytes;
3367 if ((bio = req->bio)) {
3369 * end more in this run, or just return 'not-done'
3371 if (unlikely(nr_bytes <= 0))
3383 * if the request wasn't completed, update state
3386 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3387 bio_endio(bio, bio_nbytes, error);
3388 bio->bi_idx += next_idx;
3389 bio_iovec(bio)->bv_offset += nr_bytes;
3390 bio_iovec(bio)->bv_len -= nr_bytes;
3393 blk_recalc_rq_sectors(req, total_bytes >> 9);
3394 blk_recalc_rq_segments(req);
3399 * end_that_request_first - end I/O on a request
3400 * @req: the request being processed
3401 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3402 * @nr_sectors: number of sectors to end I/O on
3405 * Ends I/O on a number of sectors attached to @req, and sets it up
3406 * for the next range of segments (if any) in the cluster.
3409 * 0 - we are done with this request, call end_that_request_last()
3410 * 1 - still buffers pending for this request
3412 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3414 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3417 EXPORT_SYMBOL(end_that_request_first);
3420 * end_that_request_chunk - end I/O on a request
3421 * @req: the request being processed
3422 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3423 * @nr_bytes: number of bytes to complete
3426 * Ends I/O on a number of bytes attached to @req, and sets it up
3427 * for the next range of segments (if any). Like end_that_request_first(),
3428 * but deals with bytes instead of sectors.
3431 * 0 - we are done with this request, call end_that_request_last()
3432 * 1 - still buffers pending for this request
3434 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3436 return __end_that_request_first(req, uptodate, nr_bytes);
3439 EXPORT_SYMBOL(end_that_request_chunk);
3442 * splice the completion data to a local structure and hand off to
3443 * process_completion_queue() to complete the requests
3445 static void blk_done_softirq(struct softirq_action *h)
3447 struct list_head *cpu_list, local_list;
3449 local_irq_disable();
3450 cpu_list = &__get_cpu_var(blk_cpu_done);
3451 list_replace_init(cpu_list, &local_list);
3454 while (!list_empty(&local_list)) {
3455 struct request *rq = list_entry(local_list.next, struct request, donelist);
3457 list_del_init(&rq->donelist);
3458 rq->q->softirq_done_fn(rq);
3462 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3466 * If a CPU goes away, splice its entries to the current CPU
3467 * and trigger a run of the softirq
3469 if (action == CPU_DEAD) {
3470 int cpu = (unsigned long) hcpu;
3472 local_irq_disable();
3473 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3474 &__get_cpu_var(blk_cpu_done));
3475 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3483 static struct notifier_block __devinitdata blk_cpu_notifier = {
3484 .notifier_call = blk_cpu_notify,
3488 * blk_complete_request - end I/O on a request
3489 * @req: the request being processed
3492 * Ends all I/O on a request. It does not handle partial completions,
3493 * unless the driver actually implements this in its completion callback
3494 * through requeueing. Theh actual completion happens out-of-order,
3495 * through a softirq handler. The user must have registered a completion
3496 * callback through blk_queue_softirq_done().
3499 void blk_complete_request(struct request *req)
3501 struct list_head *cpu_list;
3502 unsigned long flags;
3504 BUG_ON(!req->q->softirq_done_fn);
3506 local_irq_save(flags);
3508 cpu_list = &__get_cpu_var(blk_cpu_done);
3509 list_add_tail(&req->donelist, cpu_list);
3510 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3512 local_irq_restore(flags);
3515 EXPORT_SYMBOL(blk_complete_request);
3518 * queue lock must be held
3520 void end_that_request_last(struct request *req, int uptodate)
3522 struct gendisk *disk = req->rq_disk;
3526 * extend uptodate bool to allow < 0 value to be direct io error
3529 if (end_io_error(uptodate))
3530 error = !uptodate ? -EIO : uptodate;
3532 if (unlikely(laptop_mode) && blk_fs_request(req))
3533 laptop_io_completion();
3536 * Account IO completion. bar_rq isn't accounted as a normal
3537 * IO on queueing nor completion. Accounting the containing
3538 * request is enough.
3540 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3541 unsigned long duration = jiffies - req->start_time;
3542 const int rw = rq_data_dir(req);
3544 __disk_stat_inc(disk, ios[rw]);
3545 __disk_stat_add(disk, ticks[rw], duration);
3546 disk_round_stats(disk);
3550 req->end_io(req, error);
3552 __blk_put_request(req->q, req);
3555 EXPORT_SYMBOL(end_that_request_last);
3557 void end_request(struct request *req, int uptodate)
3559 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3560 add_disk_randomness(req->rq_disk);
3561 blkdev_dequeue_request(req);
3562 end_that_request_last(req, uptodate);
3566 EXPORT_SYMBOL(end_request);
3568 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3570 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3571 rq->cmd_flags |= (bio->bi_rw & 3);
3573 rq->nr_phys_segments = bio_phys_segments(q, bio);
3574 rq->nr_hw_segments = bio_hw_segments(q, bio);
3575 rq->current_nr_sectors = bio_cur_sectors(bio);
3576 rq->hard_cur_sectors = rq->current_nr_sectors;
3577 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3578 rq->buffer = bio_data(bio);
3579 rq->data_len = bio->bi_size;
3581 rq->bio = rq->biotail = bio;
3584 EXPORT_SYMBOL(blk_rq_bio_prep);
3586 int kblockd_schedule_work(struct work_struct *work)
3588 return queue_work(kblockd_workqueue, work);
3591 EXPORT_SYMBOL(kblockd_schedule_work);
3593 void kblockd_flush(void)
3595 flush_workqueue(kblockd_workqueue);
3597 EXPORT_SYMBOL(kblockd_flush);
3599 int __init blk_dev_init(void)
3603 kblockd_workqueue = create_workqueue("kblockd");
3604 if (!kblockd_workqueue)
3605 panic("Failed to create kblockd\n");
3607 request_cachep = kmem_cache_create("blkdev_requests",
3608 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3610 requestq_cachep = kmem_cache_create("blkdev_queue",
3611 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3613 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3614 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3616 for_each_possible_cpu(i)
3617 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3619 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3620 register_hotcpu_notifier(&blk_cpu_notifier);
3622 blk_max_low_pfn = max_low_pfn;
3623 blk_max_pfn = max_pfn;
3629 * IO Context helper functions
3631 void put_io_context(struct io_context *ioc)
3636 BUG_ON(atomic_read(&ioc->refcount) == 0);
3638 if (atomic_dec_and_test(&ioc->refcount)) {
3639 struct cfq_io_context *cic;
3642 if (ioc->aic && ioc->aic->dtor)
3643 ioc->aic->dtor(ioc->aic);
3644 if (ioc->cic_root.rb_node != NULL) {
3645 struct rb_node *n = rb_first(&ioc->cic_root);
3647 cic = rb_entry(n, struct cfq_io_context, rb_node);
3652 kmem_cache_free(iocontext_cachep, ioc);
3655 EXPORT_SYMBOL(put_io_context);
3657 /* Called by the exitting task */
3658 void exit_io_context(void)
3660 struct io_context *ioc;
3661 struct cfq_io_context *cic;
3664 ioc = current->io_context;
3665 current->io_context = NULL;
3666 task_unlock(current);
3669 if (ioc->aic && ioc->aic->exit)
3670 ioc->aic->exit(ioc->aic);
3671 if (ioc->cic_root.rb_node != NULL) {
3672 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3676 put_io_context(ioc);
3680 * If the current task has no IO context then create one and initialise it.
3681 * Otherwise, return its existing IO context.
3683 * This returned IO context doesn't have a specifically elevated refcount,
3684 * but since the current task itself holds a reference, the context can be
3685 * used in general code, so long as it stays within `current` context.
3687 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3689 struct task_struct *tsk = current;
3690 struct io_context *ret;
3692 ret = tsk->io_context;
3696 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3698 atomic_set(&ret->refcount, 1);
3699 ret->task = current;
3700 ret->ioprio_changed = 0;
3701 ret->last_waited = jiffies; /* doesn't matter... */
3702 ret->nr_batch_requests = 0; /* because this is 0 */
3704 ret->cic_root.rb_node = NULL;
3705 /* make sure set_task_ioprio() sees the settings above */
3707 tsk->io_context = ret;
3712 EXPORT_SYMBOL(current_io_context);
3715 * If the current task has no IO context then create one and initialise it.
3716 * If it does have a context, take a ref on it.
3718 * This is always called in the context of the task which submitted the I/O.
3720 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3722 struct io_context *ret;
3723 ret = current_io_context(gfp_flags, node);
3725 atomic_inc(&ret->refcount);
3728 EXPORT_SYMBOL(get_io_context);
3730 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3732 struct io_context *src = *psrc;
3733 struct io_context *dst = *pdst;
3736 BUG_ON(atomic_read(&src->refcount) == 0);
3737 atomic_inc(&src->refcount);
3738 put_io_context(dst);
3742 EXPORT_SYMBOL(copy_io_context);
3744 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3746 struct io_context *temp;
3751 EXPORT_SYMBOL(swap_io_context);
3756 struct queue_sysfs_entry {
3757 struct attribute attr;
3758 ssize_t (*show)(struct request_queue *, char *);
3759 ssize_t (*store)(struct request_queue *, const char *, size_t);
3763 queue_var_show(unsigned int var, char *page)
3765 return sprintf(page, "%d\n", var);
3769 queue_var_store(unsigned long *var, const char *page, size_t count)
3771 char *p = (char *) page;
3773 *var = simple_strtoul(p, &p, 10);
3777 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3779 return queue_var_show(q->nr_requests, (page));
3783 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3785 struct request_list *rl = &q->rq;
3787 int ret = queue_var_store(&nr, page, count);
3788 if (nr < BLKDEV_MIN_RQ)
3791 spin_lock_irq(q->queue_lock);
3792 q->nr_requests = nr;
3793 blk_queue_congestion_threshold(q);
3795 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3796 blk_set_queue_congested(q, READ);
3797 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3798 blk_clear_queue_congested(q, READ);
3800 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3801 blk_set_queue_congested(q, WRITE);
3802 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3803 blk_clear_queue_congested(q, WRITE);
3805 if (rl->count[READ] >= q->nr_requests) {
3806 blk_set_queue_full(q, READ);
3807 } else if (rl->count[READ]+1 <= q->nr_requests) {
3808 blk_clear_queue_full(q, READ);
3809 wake_up(&rl->wait[READ]);
3812 if (rl->count[WRITE] >= q->nr_requests) {
3813 blk_set_queue_full(q, WRITE);
3814 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3815 blk_clear_queue_full(q, WRITE);
3816 wake_up(&rl->wait[WRITE]);
3818 spin_unlock_irq(q->queue_lock);
3822 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3824 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3826 return queue_var_show(ra_kb, (page));
3830 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3832 unsigned long ra_kb;
3833 ssize_t ret = queue_var_store(&ra_kb, page, count);
3835 spin_lock_irq(q->queue_lock);
3836 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3837 spin_unlock_irq(q->queue_lock);
3842 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3844 int max_sectors_kb = q->max_sectors >> 1;
3846 return queue_var_show(max_sectors_kb, (page));
3850 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3852 unsigned long max_sectors_kb,
3853 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3854 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3855 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3858 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3861 * Take the queue lock to update the readahead and max_sectors
3862 * values synchronously:
3864 spin_lock_irq(q->queue_lock);
3866 * Trim readahead window as well, if necessary:
3868 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3869 if (ra_kb > max_sectors_kb)
3870 q->backing_dev_info.ra_pages =
3871 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3873 q->max_sectors = max_sectors_kb << 1;
3874 spin_unlock_irq(q->queue_lock);
3879 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3881 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3883 return queue_var_show(max_hw_sectors_kb, (page));
3887 static struct queue_sysfs_entry queue_requests_entry = {
3888 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3889 .show = queue_requests_show,
3890 .store = queue_requests_store,
3893 static struct queue_sysfs_entry queue_ra_entry = {
3894 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3895 .show = queue_ra_show,
3896 .store = queue_ra_store,
3899 static struct queue_sysfs_entry queue_max_sectors_entry = {
3900 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3901 .show = queue_max_sectors_show,
3902 .store = queue_max_sectors_store,
3905 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3906 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3907 .show = queue_max_hw_sectors_show,
3910 static struct queue_sysfs_entry queue_iosched_entry = {
3911 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3912 .show = elv_iosched_show,
3913 .store = elv_iosched_store,
3916 static struct attribute *default_attrs[] = {
3917 &queue_requests_entry.attr,
3918 &queue_ra_entry.attr,
3919 &queue_max_hw_sectors_entry.attr,
3920 &queue_max_sectors_entry.attr,
3921 &queue_iosched_entry.attr,
3925 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3928 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3930 struct queue_sysfs_entry *entry = to_queue(attr);
3931 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3936 mutex_lock(&q->sysfs_lock);
3937 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3938 mutex_unlock(&q->sysfs_lock);
3941 res = entry->show(q, page);
3942 mutex_unlock(&q->sysfs_lock);
3947 queue_attr_store(struct kobject *kobj, struct attribute *attr,
3948 const char *page, size_t length)
3950 struct queue_sysfs_entry *entry = to_queue(attr);
3951 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
3957 mutex_lock(&q->sysfs_lock);
3958 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
3959 mutex_unlock(&q->sysfs_lock);
3962 res = entry->store(q, page, length);
3963 mutex_unlock(&q->sysfs_lock);
3967 static struct sysfs_ops queue_sysfs_ops = {
3968 .show = queue_attr_show,
3969 .store = queue_attr_store,
3972 static struct kobj_type queue_ktype = {
3973 .sysfs_ops = &queue_sysfs_ops,
3974 .default_attrs = default_attrs,
3975 .release = blk_release_queue,
3978 int blk_register_queue(struct gendisk *disk)
3982 request_queue_t *q = disk->queue;
3984 if (!q || !q->request_fn)
3987 q->kobj.parent = kobject_get(&disk->kobj);
3989 ret = kobject_add(&q->kobj);
3993 kobject_uevent(&q->kobj, KOBJ_ADD);
3995 ret = elv_register_queue(q);
3997 kobject_uevent(&q->kobj, KOBJ_REMOVE);
3998 kobject_del(&q->kobj);
4005 void blk_unregister_queue(struct gendisk *disk)
4007 request_queue_t *q = disk->queue;
4009 if (q && q->request_fn) {
4010 elv_unregister_queue(q);
4012 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4013 kobject_del(&q->kobj);
4014 kobject_put(&disk->kobj);