2 * Public API and common code for kernel->userspace relay file support.
4 * See Documentation/filesystems/relayfs.txt for an overview of relayfs.
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
13 * This file is released under the GPL.
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
23 #include <linux/cpu.h>
25 /* list of open channels, for cpu hotplug */
26 static DEFINE_MUTEX(relay_channels_mutex);
27 static LIST_HEAD(relay_channels);
30 * close() vm_op implementation for relay file mapping.
32 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 struct rchan_buf *buf = vma->vm_private_data;
35 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
39 * nopage() vm_op implementation for relay file mapping.
41 static struct page *relay_buf_nopage(struct vm_area_struct *vma,
42 unsigned long address,
46 struct rchan_buf *buf = vma->vm_private_data;
47 unsigned long offset = address - vma->vm_start;
49 if (address > vma->vm_end)
50 return NOPAGE_SIGBUS; /* Disallow mremap */
54 page = vmalloc_to_page(buf->start + offset);
60 *type = VM_FAULT_MINOR;
66 * vm_ops for relay file mappings.
68 static struct vm_operations_struct relay_file_mmap_ops = {
69 .nopage = relay_buf_nopage,
70 .close = relay_file_mmap_close,
74 * relay_mmap_buf: - mmap channel buffer to process address space
75 * @buf: relay channel buffer
76 * @vma: vm_area_struct describing memory to be mapped
78 * Returns 0 if ok, negative on error
80 * Caller should already have grabbed mmap_sem.
82 int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
84 unsigned long length = vma->vm_end - vma->vm_start;
85 struct file *filp = vma->vm_file;
90 if (length != (unsigned long)buf->chan->alloc_size)
93 vma->vm_ops = &relay_file_mmap_ops;
94 vma->vm_private_data = buf;
95 buf->chan->cb->buf_mapped(buf, filp);
101 * relay_alloc_buf - allocate a channel buffer
102 * @buf: the buffer struct
103 * @size: total size of the buffer
105 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
106 * passed in size will get page aligned, if it isn't already.
108 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
111 unsigned int i, j, n_pages;
113 *size = PAGE_ALIGN(*size);
114 n_pages = *size >> PAGE_SHIFT;
116 buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
117 if (!buf->page_array)
120 for (i = 0; i < n_pages; i++) {
121 buf->page_array[i] = alloc_page(GFP_KERNEL);
122 if (unlikely(!buf->page_array[i]))
125 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
129 memset(mem, 0, *size);
130 buf->page_count = n_pages;
134 for (j = 0; j < i; j++)
135 __free_page(buf->page_array[j]);
136 kfree(buf->page_array);
141 * relay_create_buf - allocate and initialize a channel buffer
142 * @chan: the relay channel
144 * Returns channel buffer if successful, %NULL otherwise.
146 struct rchan_buf *relay_create_buf(struct rchan *chan)
148 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
152 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
156 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
161 kref_get(&buf->chan->kref);
171 * relay_destroy_channel - free the channel struct
172 * @kref: target kernel reference that contains the relay channel
174 * Should only be called from kref_put().
176 void relay_destroy_channel(struct kref *kref)
178 struct rchan *chan = container_of(kref, struct rchan, kref);
183 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
184 * @buf: the buffer struct
186 void relay_destroy_buf(struct rchan_buf *buf)
188 struct rchan *chan = buf->chan;
191 if (likely(buf->start)) {
193 for (i = 0; i < buf->page_count; i++)
194 __free_page(buf->page_array[i]);
195 kfree(buf->page_array);
197 chan->buf[buf->cpu] = NULL;
200 kref_put(&chan->kref, relay_destroy_channel);
204 * relay_remove_buf - remove a channel buffer
205 * @kref: target kernel reference that contains the relay buffer
207 * Removes the file from the fileystem, which also frees the
208 * rchan_buf_struct and the channel buffer. Should only be called from
211 void relay_remove_buf(struct kref *kref)
213 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
214 buf->chan->cb->remove_buf_file(buf->dentry);
215 relay_destroy_buf(buf);
219 * relay_buf_empty - boolean, is the channel buffer empty?
220 * @buf: channel buffer
222 * Returns 1 if the buffer is empty, 0 otherwise.
224 int relay_buf_empty(struct rchan_buf *buf)
226 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
228 EXPORT_SYMBOL_GPL(relay_buf_empty);
231 * relay_buf_full - boolean, is the channel buffer full?
232 * @buf: channel buffer
234 * Returns 1 if the buffer is full, 0 otherwise.
236 int relay_buf_full(struct rchan_buf *buf)
238 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
239 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
241 EXPORT_SYMBOL_GPL(relay_buf_full);
244 * High-level relay kernel API and associated functions.
248 * rchan_callback implementations defining default channel behavior. Used
249 * in place of corresponding NULL values in client callback struct.
253 * subbuf_start() default callback. Does nothing.
255 static int subbuf_start_default_callback (struct rchan_buf *buf,
260 if (relay_buf_full(buf))
267 * buf_mapped() default callback. Does nothing.
269 static void buf_mapped_default_callback(struct rchan_buf *buf,
275 * buf_unmapped() default callback. Does nothing.
277 static void buf_unmapped_default_callback(struct rchan_buf *buf,
283 * create_buf_file_create() default callback. Does nothing.
285 static struct dentry *create_buf_file_default_callback(const char *filename,
286 struct dentry *parent,
288 struct rchan_buf *buf,
295 * remove_buf_file() default callback. Does nothing.
297 static int remove_buf_file_default_callback(struct dentry *dentry)
302 /* relay channel default callbacks */
303 static struct rchan_callbacks default_channel_callbacks = {
304 .subbuf_start = subbuf_start_default_callback,
305 .buf_mapped = buf_mapped_default_callback,
306 .buf_unmapped = buf_unmapped_default_callback,
307 .create_buf_file = create_buf_file_default_callback,
308 .remove_buf_file = remove_buf_file_default_callback,
312 * wakeup_readers - wake up readers waiting on a channel
313 * @work: work struct that contains the the channel buffer
315 * This is the work function used to defer reader waking. The
316 * reason waking is deferred is that calling directly from write
317 * causes problems if you're writing from say the scheduler.
319 static void wakeup_readers(struct work_struct *work)
321 struct rchan_buf *buf =
322 container_of(work, struct rchan_buf, wake_readers.work);
323 wake_up_interruptible(&buf->read_wait);
327 * __relay_reset - reset a channel buffer
328 * @buf: the channel buffer
329 * @init: 1 if this is a first-time initialization
331 * See relay_reset() for description of effect.
333 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
338 init_waitqueue_head(&buf->read_wait);
339 kref_init(&buf->kref);
340 INIT_DELAYED_WORK(&buf->wake_readers, NULL);
342 cancel_delayed_work(&buf->wake_readers);
343 flush_scheduled_work();
346 buf->subbufs_produced = 0;
347 buf->subbufs_consumed = 0;
348 buf->bytes_consumed = 0;
350 buf->data = buf->start;
353 for (i = 0; i < buf->chan->n_subbufs; i++)
356 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
360 * relay_reset - reset the channel
363 * This has the effect of erasing all data from all channel buffers
364 * and restarting the channel in its initial state. The buffers
365 * are not freed, so any mappings are still in effect.
367 * NOTE. Care should be taken that the channel isn't actually
368 * being used by anything when this call is made.
370 void relay_reset(struct rchan *chan)
377 if (chan->is_global && chan->buf[0]) {
378 __relay_reset(chan->buf[0], 0);
382 mutex_lock(&relay_channels_mutex);
383 for_each_online_cpu(i)
385 __relay_reset(chan->buf[i], 0);
386 mutex_unlock(&relay_channels_mutex);
388 EXPORT_SYMBOL_GPL(relay_reset);
391 * relay_open_buf - create a new relay channel buffer
393 * used by relay_open() and CPU hotplug.
395 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
397 struct rchan_buf *buf = NULL;
398 struct dentry *dentry;
404 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
407 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
409 buf = relay_create_buf(chan);
414 __relay_reset(buf, 1);
416 /* Create file in fs */
417 dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
418 buf, &chan->is_global);
422 buf->dentry = dentry;
424 if(chan->is_global) {
432 relay_destroy_buf(buf);
440 * relay_close_buf - close a channel buffer
441 * @buf: channel buffer
443 * Marks the buffer finalized and restores the default callbacks.
444 * The channel buffer and channel buffer data structure are then freed
445 * automatically when the last reference is given up.
447 static void relay_close_buf(struct rchan_buf *buf)
450 cancel_delayed_work(&buf->wake_readers);
451 flush_scheduled_work();
452 kref_put(&buf->kref, relay_remove_buf);
455 static void setup_callbacks(struct rchan *chan,
456 struct rchan_callbacks *cb)
459 chan->cb = &default_channel_callbacks;
463 if (!cb->subbuf_start)
464 cb->subbuf_start = subbuf_start_default_callback;
466 cb->buf_mapped = buf_mapped_default_callback;
467 if (!cb->buf_unmapped)
468 cb->buf_unmapped = buf_unmapped_default_callback;
469 if (!cb->create_buf_file)
470 cb->create_buf_file = create_buf_file_default_callback;
471 if (!cb->remove_buf_file)
472 cb->remove_buf_file = remove_buf_file_default_callback;
478 * relay_hotcpu_callback - CPU hotplug callback
479 * @nb: notifier block
480 * @action: hotplug action to take
483 * Returns the success/failure of the operation. (NOTIFY_OK, NOTIFY_BAD)
485 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
486 unsigned long action,
489 unsigned int hotcpu = (unsigned long)hcpu;
494 mutex_lock(&relay_channels_mutex);
495 list_for_each_entry(chan, &relay_channels, list) {
496 if (chan->buf[hotcpu])
498 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
499 if(!chan->buf[hotcpu]) {
501 "relay_hotcpu_callback: cpu %d buffer "
502 "creation failed\n", hotcpu);
503 mutex_unlock(&relay_channels_mutex);
507 mutex_unlock(&relay_channels_mutex);
510 /* No need to flush the cpu : will be flushed upon
511 * final relay_flush() call. */
518 * relay_open - create a new relay channel
519 * @base_filename: base name of files to create
520 * @parent: dentry of parent directory, %NULL for root directory
521 * @subbuf_size: size of sub-buffers
522 * @n_subbufs: number of sub-buffers
523 * @cb: client callback functions
524 * @private_data: user-defined data
526 * Returns channel pointer if successful, %NULL otherwise.
528 * Creates a channel buffer for each cpu using the sizes and
529 * attributes specified. The created channel buffer files
530 * will be named base_filename0...base_filenameN-1. File
531 * permissions will be %S_IRUSR.
533 struct rchan *relay_open(const char *base_filename,
534 struct dentry *parent,
537 struct rchan_callbacks *cb,
545 if (!(subbuf_size && n_subbufs))
548 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
552 chan->version = RELAYFS_CHANNEL_VERSION;
553 chan->n_subbufs = n_subbufs;
554 chan->subbuf_size = subbuf_size;
555 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
556 chan->parent = parent;
557 chan->private_data = private_data;
558 strlcpy(chan->base_filename, base_filename, NAME_MAX);
559 setup_callbacks(chan, cb);
560 kref_init(&chan->kref);
562 mutex_lock(&relay_channels_mutex);
563 for_each_online_cpu(i) {
564 chan->buf[i] = relay_open_buf(chan, i);
568 list_add(&chan->list, &relay_channels);
569 mutex_unlock(&relay_channels_mutex);
574 for_each_online_cpu(i) {
577 relay_close_buf(chan->buf[i]);
580 kref_put(&chan->kref, relay_destroy_channel);
581 mutex_unlock(&relay_channels_mutex);
584 EXPORT_SYMBOL_GPL(relay_open);
587 * relay_switch_subbuf - switch to a new sub-buffer
588 * @buf: channel buffer
589 * @length: size of current event
591 * Returns either the length passed in or 0 if full.
593 * Performs sub-buffer-switch tasks such as invoking callbacks,
594 * updating padding counts, waking up readers, etc.
596 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
599 size_t old_subbuf, new_subbuf;
601 if (unlikely(length > buf->chan->subbuf_size))
604 if (buf->offset != buf->chan->subbuf_size + 1) {
605 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
606 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
607 buf->padding[old_subbuf] = buf->prev_padding;
608 buf->subbufs_produced++;
609 buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
610 buf->padding[old_subbuf];
612 if (waitqueue_active(&buf->read_wait)) {
613 PREPARE_DELAYED_WORK(&buf->wake_readers,
615 schedule_delayed_work(&buf->wake_readers, 1);
620 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
621 new = buf->start + new_subbuf * buf->chan->subbuf_size;
623 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
624 buf->offset = buf->chan->subbuf_size + 1;
628 buf->padding[new_subbuf] = 0;
630 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
636 buf->chan->last_toobig = length;
639 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
642 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
644 * @cpu: the cpu associated with the channel buffer to update
645 * @subbufs_consumed: number of sub-buffers to add to current buf's count
647 * Adds to the channel buffer's consumed sub-buffer count.
648 * subbufs_consumed should be the number of sub-buffers newly consumed,
649 * not the total consumed.
651 * NOTE. Kernel clients don't need to call this function if the channel
652 * mode is 'overwrite'.
654 void relay_subbufs_consumed(struct rchan *chan,
656 size_t subbufs_consumed)
658 struct rchan_buf *buf;
663 if (cpu >= NR_CPUS || !chan->buf[cpu])
666 buf = chan->buf[cpu];
667 buf->subbufs_consumed += subbufs_consumed;
668 if (buf->subbufs_consumed > buf->subbufs_produced)
669 buf->subbufs_consumed = buf->subbufs_produced;
671 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
674 * relay_close - close the channel
677 * Closes all channel buffers and frees the channel.
679 void relay_close(struct rchan *chan)
686 mutex_lock(&relay_channels_mutex);
687 if (chan->is_global && chan->buf[0])
688 relay_close_buf(chan->buf[0]);
690 for_each_possible_cpu(i)
692 relay_close_buf(chan->buf[i]);
694 if (chan->last_toobig)
695 printk(KERN_WARNING "relay: one or more items not logged "
696 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
697 chan->last_toobig, chan->subbuf_size);
699 list_del(&chan->list);
700 kref_put(&chan->kref, relay_destroy_channel);
701 mutex_unlock(&relay_channels_mutex);
703 EXPORT_SYMBOL_GPL(relay_close);
706 * relay_flush - close the channel
709 * Flushes all channel buffers, i.e. forces buffer switch.
711 void relay_flush(struct rchan *chan)
718 if (chan->is_global && chan->buf[0]) {
719 relay_switch_subbuf(chan->buf[0], 0);
723 mutex_lock(&relay_channels_mutex);
724 for_each_possible_cpu(i)
726 relay_switch_subbuf(chan->buf[i], 0);
727 mutex_unlock(&relay_channels_mutex);
729 EXPORT_SYMBOL_GPL(relay_flush);
732 * relay_file_open - open file op for relay files
736 * Increments the channel buffer refcount.
738 static int relay_file_open(struct inode *inode, struct file *filp)
740 struct rchan_buf *buf = inode->i_private;
741 kref_get(&buf->kref);
742 filp->private_data = buf;
748 * relay_file_mmap - mmap file op for relay files
750 * @vma: the vma describing what to map
752 * Calls upon relay_mmap_buf() to map the file into user space.
754 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
756 struct rchan_buf *buf = filp->private_data;
757 return relay_mmap_buf(buf, vma);
761 * relay_file_poll - poll file op for relay files
767 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
769 unsigned int mask = 0;
770 struct rchan_buf *buf = filp->private_data;
775 if (filp->f_mode & FMODE_READ) {
776 poll_wait(filp, &buf->read_wait, wait);
777 if (!relay_buf_empty(buf))
778 mask |= POLLIN | POLLRDNORM;
785 * relay_file_release - release file op for relay files
789 * Decrements the channel refcount, as the filesystem is
790 * no longer using it.
792 static int relay_file_release(struct inode *inode, struct file *filp)
794 struct rchan_buf *buf = filp->private_data;
795 kref_put(&buf->kref, relay_remove_buf);
801 * relay_file_read_consume - update the consumed count for the buffer
803 static void relay_file_read_consume(struct rchan_buf *buf,
805 size_t bytes_consumed)
807 size_t subbuf_size = buf->chan->subbuf_size;
808 size_t n_subbufs = buf->chan->n_subbufs;
811 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
812 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
813 buf->bytes_consumed = 0;
816 buf->bytes_consumed += bytes_consumed;
817 read_subbuf = read_pos / buf->chan->subbuf_size;
818 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
819 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
820 (buf->offset == subbuf_size))
822 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
823 buf->bytes_consumed = 0;
828 * relay_file_read_avail - boolean, are there unconsumed bytes available?
830 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
832 size_t subbuf_size = buf->chan->subbuf_size;
833 size_t n_subbufs = buf->chan->n_subbufs;
834 size_t produced = buf->subbufs_produced;
835 size_t consumed = buf->subbufs_consumed;
837 relay_file_read_consume(buf, read_pos, 0);
839 if (unlikely(buf->offset > subbuf_size)) {
840 if (produced == consumed)
845 if (unlikely(produced - consumed >= n_subbufs)) {
846 consumed = (produced / n_subbufs) * n_subbufs;
847 buf->subbufs_consumed = consumed;
850 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
851 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
853 if (consumed > produced)
854 produced += n_subbufs * subbuf_size;
856 if (consumed == produced)
863 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
864 * @read_pos: file read position
865 * @buf: relay channel buffer
867 static size_t relay_file_read_subbuf_avail(size_t read_pos,
868 struct rchan_buf *buf)
870 size_t padding, avail = 0;
871 size_t read_subbuf, read_offset, write_subbuf, write_offset;
872 size_t subbuf_size = buf->chan->subbuf_size;
874 write_subbuf = (buf->data - buf->start) / subbuf_size;
875 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
876 read_subbuf = read_pos / subbuf_size;
877 read_offset = read_pos % subbuf_size;
878 padding = buf->padding[read_subbuf];
880 if (read_subbuf == write_subbuf) {
881 if (read_offset + padding < write_offset)
882 avail = write_offset - (read_offset + padding);
884 avail = (subbuf_size - padding) - read_offset;
890 * relay_file_read_start_pos - find the first available byte to read
891 * @read_pos: file read position
892 * @buf: relay channel buffer
894 * If the @read_pos is in the middle of padding, return the
895 * position of the first actually available byte, otherwise
896 * return the original value.
898 static size_t relay_file_read_start_pos(size_t read_pos,
899 struct rchan_buf *buf)
901 size_t read_subbuf, padding, padding_start, padding_end;
902 size_t subbuf_size = buf->chan->subbuf_size;
903 size_t n_subbufs = buf->chan->n_subbufs;
905 read_subbuf = read_pos / subbuf_size;
906 padding = buf->padding[read_subbuf];
907 padding_start = (read_subbuf + 1) * subbuf_size - padding;
908 padding_end = (read_subbuf + 1) * subbuf_size;
909 if (read_pos >= padding_start && read_pos < padding_end) {
910 read_subbuf = (read_subbuf + 1) % n_subbufs;
911 read_pos = read_subbuf * subbuf_size;
918 * relay_file_read_end_pos - return the new read position
919 * @read_pos: file read position
920 * @buf: relay channel buffer
921 * @count: number of bytes to be read
923 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
927 size_t read_subbuf, padding, end_pos;
928 size_t subbuf_size = buf->chan->subbuf_size;
929 size_t n_subbufs = buf->chan->n_subbufs;
931 read_subbuf = read_pos / subbuf_size;
932 padding = buf->padding[read_subbuf];
933 if (read_pos % subbuf_size + count + padding == subbuf_size)
934 end_pos = (read_subbuf + 1) * subbuf_size;
936 end_pos = read_pos + count;
937 if (end_pos >= subbuf_size * n_subbufs)
944 * subbuf_read_actor - read up to one subbuf's worth of data
946 static int subbuf_read_actor(size_t read_start,
947 struct rchan_buf *buf,
949 read_descriptor_t *desc,
955 from = buf->start + read_start;
957 if (copy_to_user(desc->arg.buf, from, avail)) {
958 desc->error = -EFAULT;
961 desc->arg.data += ret;
962 desc->written += ret;
969 * subbuf_send_actor - send up to one subbuf's worth of data
971 static int subbuf_send_actor(size_t read_start,
972 struct rchan_buf *buf,
974 read_descriptor_t *desc,
977 unsigned long pidx, poff;
978 unsigned int subbuf_pages;
981 subbuf_pages = buf->chan->alloc_size >> PAGE_SHIFT;
982 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
983 poff = read_start & ~PAGE_MASK;
985 struct page *p = buf->page_array[pidx];
988 len = PAGE_SIZE - poff;
992 len = actor(desc, p, poff, len);
999 pidx = (pidx + 1) % subbuf_pages;
1005 typedef int (*subbuf_actor_t) (size_t read_start,
1006 struct rchan_buf *buf,
1008 read_descriptor_t *desc,
1009 read_actor_t actor);
1012 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1014 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1015 subbuf_actor_t subbuf_actor,
1017 read_descriptor_t *desc)
1019 struct rchan_buf *buf = filp->private_data;
1020 size_t read_start, avail;
1026 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1028 if (!relay_file_read_avail(buf, *ppos))
1031 read_start = relay_file_read_start_pos(*ppos, buf);
1032 avail = relay_file_read_subbuf_avail(read_start, buf);
1036 avail = min(desc->count, avail);
1037 ret = subbuf_actor(read_start, buf, avail, desc, actor);
1038 if (desc->error < 0)
1042 relay_file_read_consume(buf, read_start, ret);
1043 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1045 } while (desc->count && ret);
1046 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1048 return desc->written;
1051 static ssize_t relay_file_read(struct file *filp,
1052 char __user *buffer,
1056 read_descriptor_t desc;
1059 desc.arg.buf = buffer;
1061 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1065 static ssize_t relay_file_sendfile(struct file *filp,
1071 read_descriptor_t desc;
1074 desc.arg.data = target;
1076 return relay_file_read_subbufs(filp, ppos, subbuf_send_actor,
1080 const struct file_operations relay_file_operations = {
1081 .open = relay_file_open,
1082 .poll = relay_file_poll,
1083 .mmap = relay_file_mmap,
1084 .read = relay_file_read,
1085 .llseek = no_llseek,
1086 .release = relay_file_release,
1087 .sendfile = relay_file_sendfile,
1089 EXPORT_SYMBOL_GPL(relay_file_operations);
1091 static __init int relay_init(void)
1094 hotcpu_notifier(relay_hotcpu_callback, 0);
1098 module_init(relay_init);