2 * SMP boot-related support
4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2001, 2004-2005 Intel Corp
7 * Rohit Seth <rohit.seth@intel.com>
8 * Suresh Siddha <suresh.b.siddha@intel.com>
9 * Gordon Jin <gordon.jin@intel.com>
10 * Ashok Raj <ashok.raj@intel.com>
12 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
13 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
14 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
15 * smp_boot_cpus()/smp_commence() is replaced by
16 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
17 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20 * Add multi-threading and multi-core detection
21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22 * Setup cpu_sibling_map and cpu_core_map
25 #include <linux/module.h>
26 #include <linux/acpi.h>
27 #include <linux/bootmem.h>
28 #include <linux/cpu.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/kernel.h>
34 #include <linux/kernel_stat.h>
36 #include <linux/notifier.h>
37 #include <linux/smp.h>
38 #include <linux/spinlock.h>
39 #include <linux/efi.h>
40 #include <linux/percpu.h>
41 #include <linux/bitops.h>
43 #include <asm/atomic.h>
44 #include <asm/cache.h>
45 #include <asm/current.h>
46 #include <asm/delay.h>
50 #include <asm/machvec.h>
53 #include <asm/pgalloc.h>
54 #include <asm/pgtable.h>
55 #include <asm/processor.h>
56 #include <asm/ptrace.h>
58 #include <asm/system.h>
59 #include <asm/tlbflush.h>
60 #include <asm/unistd.h>
65 #define Dprintk(x...) printk(x)
70 #ifdef CONFIG_HOTPLUG_CPU
71 #ifdef CONFIG_PERMIT_BSP_REMOVE
72 #define bsp_remove_ok 1
74 #define bsp_remove_ok 0
78 * Store all idle threads, this can be reused instead of creating
79 * a new thread. Also avoids complicated thread destroy functionality
82 struct task_struct *idle_thread_array[NR_CPUS];
85 * Global array allocated for NR_CPUS at boot time
87 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
90 * start_ap in head.S uses this to store current booting cpu
93 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
95 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
97 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
98 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
102 #define get_idle_for_cpu(x) (NULL)
103 #define set_idle_for_cpu(x,p)
104 #define set_brendez_area(x)
109 * ITC synchronization related stuff:
112 #define SLAVE (SMP_CACHE_BYTES/8)
114 #define NUM_ROUNDS 64 /* magic value */
115 #define NUM_ITERS 5 /* likewise */
117 static DEFINE_SPINLOCK(itc_sync_lock);
118 static volatile unsigned long go[SLAVE + 1];
120 #define DEBUG_ITC_SYNC 0
122 extern void __devinit calibrate_delay (void);
123 extern void start_ap (void);
124 extern unsigned long ia64_iobase;
126 struct task_struct *task_for_booting_cpu;
131 DEFINE_PER_CPU(int, cpu_state);
133 /* Bitmasks of currently online, and possible CPUs */
134 cpumask_t cpu_online_map;
135 EXPORT_SYMBOL(cpu_online_map);
136 cpumask_t cpu_possible_map = CPU_MASK_NONE;
137 EXPORT_SYMBOL(cpu_possible_map);
139 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
140 cpumask_t cpu_sibling_map[NR_CPUS] __cacheline_aligned;
141 int smp_num_siblings = 1;
142 int smp_num_cpucores = 1;
144 /* which logical CPU number maps to which CPU (physical APIC ID) */
145 volatile int ia64_cpu_to_sapicid[NR_CPUS];
146 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
148 static volatile cpumask_t cpu_callin_map;
150 struct smp_boot_data smp_boot_data __initdata;
152 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
154 char __initdata no_int_routing;
156 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
158 #ifdef CONFIG_FORCE_CPEI_RETARGET
159 #define CPEI_OVERRIDE_DEFAULT (1)
161 #define CPEI_OVERRIDE_DEFAULT (0)
164 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
167 cmdl_force_cpei(char *str)
171 get_option (&str, &value);
172 force_cpei_retarget = value;
177 __setup("force_cpei=", cmdl_force_cpei);
180 nointroute (char *str)
183 printk ("no_int_routing on\n");
187 __setup("nointroute", nointroute);
189 static void fix_b0_for_bsp(void)
191 #ifdef CONFIG_HOTPLUG_CPU
193 static int fix_bsp_b0 = 1;
195 cpuid = smp_processor_id();
198 * Cache the b0 value on the first AP that comes up
200 if (!(fix_bsp_b0 && cpuid))
203 sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
204 printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
211 sync_master (void *arg)
213 unsigned long flags, i;
217 local_irq_save(flags);
219 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
223 go[SLAVE] = ia64_get_itc();
226 local_irq_restore(flags);
230 * Return the number of cycles by which our itc differs from the itc on the master
231 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
232 * negative that it is behind.
235 get_delta (long *rt, long *master)
237 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
238 unsigned long tcenter, t0, t1, tm;
241 for (i = 0; i < NUM_ITERS; ++i) {
244 while (!(tm = go[SLAVE]))
249 if (t1 - t0 < best_t1 - best_t0)
250 best_t0 = t0, best_t1 = t1, best_tm = tm;
253 *rt = best_t1 - best_t0;
254 *master = best_tm - best_t0;
256 /* average best_t0 and best_t1 without overflow: */
257 tcenter = (best_t0/2 + best_t1/2);
258 if (best_t0 % 2 + best_t1 % 2 == 2)
260 return tcenter - best_tm;
264 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
265 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
266 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
267 * step). The basic idea is for the slave to ask the master what itc value it has and to
268 * read its own itc before and after the master responds. Each iteration gives us three
282 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
283 * and t1. If we achieve this, the clocks are synchronized provided the interconnect
284 * between the slave and the master is symmetric. Even if the interconnect were
285 * asymmetric, we would still know that the synchronization error is smaller than the
286 * roundtrip latency (t0 - t1).
288 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
289 * within one or two cycles. However, we can only *guarantee* that the synchronization is
290 * accurate to within a round-trip time, which is typically in the range of several
291 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
292 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
293 * than half a micro second or so.
296 ia64_sync_itc (unsigned int master)
298 long i, delta, adj, adjust_latency = 0, done = 0;
299 unsigned long flags, rt, master_time_stamp, bound;
302 long rt; /* roundtrip time */
303 long master; /* master's timestamp */
304 long diff; /* difference between midpoint and master's timestamp */
305 long lat; /* estimate of itc adjustment latency */
310 * Make sure local timer ticks are disabled while we sync. If
311 * they were enabled, we'd have to worry about nasty issues
312 * like setting the ITC ahead of (or a long time before) the
313 * next scheduled tick.
315 BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
319 if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
320 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
325 cpu_relax(); /* wait for master to be ready */
327 spin_lock_irqsave(&itc_sync_lock, flags);
329 for (i = 0; i < NUM_ROUNDS; ++i) {
330 delta = get_delta(&rt, &master_time_stamp);
332 done = 1; /* let's lock on to this... */
338 adjust_latency += -delta;
339 adj = -delta + adjust_latency/4;
343 ia64_set_itc(ia64_get_itc() + adj);
347 t[i].master = master_time_stamp;
349 t[i].lat = adjust_latency/4;
353 spin_unlock_irqrestore(&itc_sync_lock, flags);
356 for (i = 0; i < NUM_ROUNDS; ++i)
357 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
358 t[i].rt, t[i].master, t[i].diff, t[i].lat);
361 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
362 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
366 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
368 static inline void __devinit
369 smp_setup_percpu_timer (void)
373 static void __cpuinit
376 int cpuid, phys_id, itc_master;
377 struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
378 extern void ia64_init_itm(void);
379 extern volatile int time_keeper_id;
381 #ifdef CONFIG_PERFMON
382 extern void pfm_init_percpu(void);
385 cpuid = smp_processor_id();
386 phys_id = hard_smp_processor_id();
387 itc_master = time_keeper_id;
389 if (cpu_online(cpuid)) {
390 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
398 spin_lock(&vector_lock);
399 /* Setup the per cpu irq handling data structures */
400 __setup_vector_irq(cpuid);
401 cpu_set(cpuid, cpu_online_map);
402 unlock_ipi_calllock();
403 per_cpu(cpu_state, cpuid) = CPU_ONLINE;
404 spin_unlock(&vector_lock);
406 smp_setup_percpu_timer();
408 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
410 #ifdef CONFIG_PERFMON
416 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
418 * Synchronize the ITC with the BP. Need to do this after irqs are
419 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
420 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
421 * local_bh_enable(), which bugs out if irqs are not enabled...
423 Dprintk("Going to syncup ITC with ITC Master.\n");
424 ia64_sync_itc(itc_master);
433 * Delay calibration can be skipped if new processor is identical to the
434 * previous processor.
436 last_cpuinfo = cpu_data(cpuid - 1);
437 this_cpuinfo = local_cpu_data;
438 if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
439 last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
440 last_cpuinfo->features != this_cpuinfo->features ||
441 last_cpuinfo->revision != this_cpuinfo->revision ||
442 last_cpuinfo->family != this_cpuinfo->family ||
443 last_cpuinfo->archrev != this_cpuinfo->archrev ||
444 last_cpuinfo->model != this_cpuinfo->model)
446 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
448 #ifdef CONFIG_IA32_SUPPORT
453 * Allow the master to continue.
455 cpu_set(cpuid, cpu_callin_map);
456 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
461 * Activate a secondary processor. head.S calls this.
464 start_secondary (void *unused)
466 /* Early console may use I/O ports */
467 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
468 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
478 struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
484 struct work_struct work;
485 struct task_struct *idle;
486 struct completion done;
491 do_fork_idle(struct work_struct *work)
493 struct create_idle *c_idle =
494 container_of(work, struct create_idle, work);
496 c_idle->idle = fork_idle(c_idle->cpu);
497 complete(&c_idle->done);
501 do_boot_cpu (int sapicid, int cpu)
504 struct create_idle c_idle = {
505 .work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
507 .done = COMPLETION_INITIALIZER(c_idle.done),
510 c_idle.idle = get_idle_for_cpu(cpu);
512 init_idle(c_idle.idle, cpu);
517 * We can't use kernel_thread since we must avoid to reschedule the child.
519 if (!keventd_up() || current_is_keventd())
520 c_idle.work.func(&c_idle.work);
522 schedule_work(&c_idle.work);
523 wait_for_completion(&c_idle.done);
526 if (IS_ERR(c_idle.idle))
527 panic("failed fork for CPU %d", cpu);
529 set_idle_for_cpu(cpu, c_idle.idle);
532 task_for_booting_cpu = c_idle.idle;
534 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
536 set_brendez_area(cpu);
537 platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
540 * Wait 10s total for the AP to start
542 Dprintk("Waiting on callin_map ...");
543 for (timeout = 0; timeout < 100000; timeout++) {
544 if (cpu_isset(cpu, cpu_callin_map))
545 break; /* It has booted */
550 if (!cpu_isset(cpu, cpu_callin_map)) {
551 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
552 ia64_cpu_to_sapicid[cpu] = -1;
553 cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */
563 get_option (&str, &ticks);
567 __setup("decay=", decay);
570 * Initialize the logical CPU number to SAPICID mapping
573 smp_build_cpu_map (void)
576 int boot_cpu_id = hard_smp_processor_id();
578 for (cpu = 0; cpu < NR_CPUS; cpu++) {
579 ia64_cpu_to_sapicid[cpu] = -1;
582 ia64_cpu_to_sapicid[0] = boot_cpu_id;
583 cpus_clear(cpu_present_map);
584 cpu_set(0, cpu_present_map);
585 cpu_set(0, cpu_possible_map);
586 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
587 sapicid = smp_boot_data.cpu_phys_id[i];
588 if (sapicid == boot_cpu_id)
590 cpu_set(cpu, cpu_present_map);
591 cpu_set(cpu, cpu_possible_map);
592 ia64_cpu_to_sapicid[cpu] = sapicid;
598 * Cycle through the APs sending Wakeup IPIs to boot each.
601 smp_prepare_cpus (unsigned int max_cpus)
603 int boot_cpu_id = hard_smp_processor_id();
606 * Initialize the per-CPU profiling counter/multiplier
609 smp_setup_percpu_timer();
612 * We have the boot CPU online for sure.
614 cpu_set(0, cpu_online_map);
615 cpu_set(0, cpu_callin_map);
617 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
618 ia64_cpu_to_sapicid[0] = boot_cpu_id;
620 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
622 current_thread_info()->cpu = 0;
625 * If SMP should be disabled, then really disable it!
628 printk(KERN_INFO "SMP mode deactivated.\n");
629 cpus_clear(cpu_online_map);
630 cpus_clear(cpu_present_map);
631 cpus_clear(cpu_possible_map);
632 cpu_set(0, cpu_online_map);
633 cpu_set(0, cpu_present_map);
634 cpu_set(0, cpu_possible_map);
639 void __devinit smp_prepare_boot_cpu(void)
641 cpu_set(smp_processor_id(), cpu_online_map);
642 cpu_set(smp_processor_id(), cpu_callin_map);
643 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
646 #ifdef CONFIG_HOTPLUG_CPU
648 clear_cpu_sibling_map(int cpu)
652 for_each_cpu_mask(i, cpu_sibling_map[cpu])
653 cpu_clear(cpu, cpu_sibling_map[i]);
654 for_each_cpu_mask(i, cpu_core_map[cpu])
655 cpu_clear(cpu, cpu_core_map[i]);
657 cpu_sibling_map[cpu] = cpu_core_map[cpu] = CPU_MASK_NONE;
661 remove_siblinginfo(int cpu)
665 if (cpu_data(cpu)->threads_per_core == 1 &&
666 cpu_data(cpu)->cores_per_socket == 1) {
667 cpu_clear(cpu, cpu_core_map[cpu]);
668 cpu_clear(cpu, cpu_sibling_map[cpu]);
672 last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
674 /* remove it from all sibling map's */
675 clear_cpu_sibling_map(cpu);
678 extern void fixup_irqs(void);
680 int migrate_platform_irqs(unsigned int cpu)
683 irq_desc_t *desc = NULL;
688 * dont permit CPEI target to removed.
690 if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
691 printk ("CPU (%d) is CPEI Target\n", cpu);
692 if (can_cpei_retarget()) {
694 * Now re-target the CPEI to a different processor
696 new_cpei_cpu = any_online_cpu(cpu_online_map);
697 mask = cpumask_of_cpu(new_cpei_cpu);
698 set_cpei_target_cpu(new_cpei_cpu);
699 desc = irq_desc + ia64_cpe_irq;
701 * Switch for now, immediately, we need to do fake intr
702 * as other interrupts, but need to study CPEI behaviour with
703 * polling before making changes.
706 desc->chip->disable(ia64_cpe_irq);
707 desc->chip->set_affinity(ia64_cpe_irq, mask);
708 desc->chip->enable(ia64_cpe_irq);
709 printk ("Re-targetting CPEI to cpu %d\n", new_cpei_cpu);
713 printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
720 /* must be called with cpucontrol mutex held */
721 int __cpu_disable(void)
723 int cpu = smp_processor_id();
726 * dont permit boot processor for now
728 if (cpu == 0 && !bsp_remove_ok) {
729 printk ("Your platform does not support removal of BSP\n");
733 cpu_clear(cpu, cpu_online_map);
735 if (migrate_platform_irqs(cpu)) {
736 cpu_set(cpu, cpu_online_map);
740 remove_siblinginfo(cpu);
741 cpu_clear(cpu, cpu_online_map);
743 local_flush_tlb_all();
744 cpu_clear(cpu, cpu_callin_map);
748 void __cpu_die(unsigned int cpu)
752 for (i = 0; i < 100; i++) {
753 /* They ack this in play_dead by setting CPU_DEAD */
754 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
756 printk ("CPU %d is now offline\n", cpu);
761 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
763 #else /* !CONFIG_HOTPLUG_CPU */
764 int __cpu_disable(void)
769 void __cpu_die(unsigned int cpu)
771 /* We said "no" in __cpu_disable */
774 #endif /* CONFIG_HOTPLUG_CPU */
777 smp_cpus_done (unsigned int dummy)
780 unsigned long bogosum = 0;
783 * Allow the user to impress friends.
786 for_each_online_cpu(cpu) {
787 bogosum += cpu_data(cpu)->loops_per_jiffy;
790 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
791 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
794 static inline void __devinit
795 set_cpu_sibling_map(int cpu)
799 for_each_online_cpu(i) {
800 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
801 cpu_set(i, cpu_core_map[cpu]);
802 cpu_set(cpu, cpu_core_map[i]);
803 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
804 cpu_set(i, cpu_sibling_map[cpu]);
805 cpu_set(cpu, cpu_sibling_map[i]);
812 __cpu_up (unsigned int cpu)
817 sapicid = ia64_cpu_to_sapicid[cpu];
822 * Already booted cpu? not valid anymore since we dont
823 * do idle loop tightspin anymore.
825 if (cpu_isset(cpu, cpu_callin_map))
828 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
829 /* Processor goes to start_secondary(), sets online flag */
830 ret = do_boot_cpu(sapicid, cpu);
834 if (cpu_data(cpu)->threads_per_core == 1 &&
835 cpu_data(cpu)->cores_per_socket == 1) {
836 cpu_set(cpu, cpu_sibling_map[cpu]);
837 cpu_set(cpu, cpu_core_map[cpu]);
841 set_cpu_sibling_map(cpu);
847 * Assume that CPUs have been discovered by some platform-dependent interface. For
848 * SoftSDV/Lion, that would be ACPI.
850 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
853 init_smp_config(void)
861 /* Tell SAL where to drop the APs. */
862 ap_startup = (struct fptr *) start_ap;
863 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
864 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
866 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
867 ia64_sal_strerror(sal_ret));
871 * identify_siblings(cpu) gets called from identify_cpu. This populates the
872 * information related to logical execution units in per_cpu_data structure.
875 identify_siblings(struct cpuinfo_ia64 *c)
879 pal_logical_to_physical_t info;
881 if (smp_num_cpucores == 1 && smp_num_siblings == 1)
884 if ((status = ia64_pal_logical_to_phys(-1, &info)) != PAL_STATUS_SUCCESS) {
885 printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
889 if ((status = ia64_sal_physical_id_info(&pltid)) != PAL_STATUS_SUCCESS) {
890 printk(KERN_ERR "ia64_sal_pltid failed with %ld\n", status);
894 c->socket_id = (pltid << 8) | info.overview_ppid;
895 c->cores_per_socket = info.overview_cpp;
896 c->threads_per_core = info.overview_tpc;
897 c->num_log = info.overview_num_log;
899 c->core_id = info.log1_cid;
900 c->thread_id = info.log1_tid;
904 * returns non zero, if multi-threading is enabled
905 * on at least one physical package. Due to hotplug cpu
906 * and (maxcpus=), all threads may not necessarily be enabled
907 * even though the processor supports multi-threading.
909 int is_multithreading_enabled(void)
913 for_each_present_cpu(i) {
914 for_each_present_cpu(j) {
917 if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
918 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
925 EXPORT_SYMBOL_GPL(is_multithreading_enabled);