2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2003 Erez Zadok
5 * Copyright (C) 2001-2003 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 * Tyler Hicks <tyhicks@ou.edu>
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; either version 2 of the
14 * License, or (at your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/dcache.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/namei.h>
31 #include <linux/skbuff.h>
32 #include <linux/crypto.h>
33 #include <linux/netlink.h>
34 #include <linux/mount.h>
35 #include <linux/pagemap.h>
36 #include <linux/key.h>
37 #include <linux/parser.h>
38 #include <linux/fs_stack.h>
39 #include "ecryptfs_kernel.h"
42 * Module parameter that defines the ecryptfs_verbosity level.
44 int ecryptfs_verbosity = 0;
46 module_param(ecryptfs_verbosity, int, 0);
47 MODULE_PARM_DESC(ecryptfs_verbosity,
48 "Initial verbosity level (0 or 1; defaults to "
49 "0, which is Quiet)");
52 * Module parameter that defines the number of netlink message buffer
55 unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
57 module_param(ecryptfs_message_buf_len, uint, 0);
58 MODULE_PARM_DESC(ecryptfs_message_buf_len,
59 "Number of message buffer elements");
62 * Module parameter that defines the maximum guaranteed amount of time to wait
63 * for a response through netlink. The actual sleep time will be, more than
64 * likely, a small amount greater than this specified value, but only less if
65 * the netlink message successfully arrives.
67 signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
69 module_param(ecryptfs_message_wait_timeout, long, 0);
70 MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
71 "Maximum number of seconds that an operation will "
72 "sleep while waiting for a message response from "
76 * Module parameter that is an estimate of the maximum number of users
77 * that will be concurrently using eCryptfs. Set this to the right
78 * value to balance performance and memory use.
80 unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
82 module_param(ecryptfs_number_of_users, uint, 0);
83 MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
84 "concurrent users of eCryptfs");
86 unsigned int ecryptfs_transport = ECRYPTFS_DEFAULT_TRANSPORT;
88 void __ecryptfs_printk(const char *fmt, ...)
92 if (fmt[1] == '7') { /* KERN_DEBUG */
93 if (ecryptfs_verbosity >= 1)
101 * ecryptfs_init_persistent_file
102 * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
103 * the lower dentry and the lower mount set
105 * eCryptfs only ever keeps a single open file for every lower
106 * inode. All I/O operations to the lower inode occur through that
107 * file. When the first eCryptfs dentry that interposes with the first
108 * lower dentry for that inode is created, this function creates the
109 * persistent file struct and associates it with the eCryptfs
110 * inode. When the eCryptfs inode is destroyed, the file is closed.
112 * The persistent file will be opened with read/write permissions, if
113 * possible. Otherwise, it is opened read-only.
115 * This function does nothing if a lower persistent file is already
116 * associated with the eCryptfs inode.
118 * Returns zero on success; non-zero otherwise
120 static int ecryptfs_init_persistent_file(struct dentry *ecryptfs_dentry)
122 struct ecryptfs_inode_info *inode_info =
123 ecryptfs_inode_to_private(ecryptfs_dentry->d_inode);
126 mutex_lock(&inode_info->lower_file_mutex);
127 if (!inode_info->lower_file) {
128 struct dentry *lower_dentry;
129 struct vfsmount *lower_mnt =
130 ecryptfs_dentry_to_lower_mnt(ecryptfs_dentry);
132 lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
133 /* Corresponding dput() and mntput() are done when the
134 * persistent file is fput() when the eCryptfs inode
138 inode_info->lower_file = dentry_open(lower_dentry,
140 (O_RDWR | O_LARGEFILE));
141 if (IS_ERR(inode_info->lower_file)) {
144 inode_info->lower_file = dentry_open(lower_dentry,
149 if (IS_ERR(inode_info->lower_file)) {
150 printk(KERN_ERR "Error opening lower persistent file "
151 "for lower_dentry [0x%p] and lower_mnt [0x%p]\n",
152 lower_dentry, lower_mnt);
153 rc = PTR_ERR(inode_info->lower_file);
154 inode_info->lower_file = NULL;
157 mutex_unlock(&inode_info->lower_file_mutex);
163 * @lower_dentry: Existing dentry in the lower filesystem
164 * @dentry: ecryptfs' dentry
165 * @sb: ecryptfs's super_block
166 * @flag: If set to true, then d_add is called, else d_instantiate is called
168 * Interposes upper and lower dentries.
170 * Returns zero on success; non-zero otherwise
172 int ecryptfs_interpose(struct dentry *lower_dentry, struct dentry *dentry,
173 struct super_block *sb, int flag)
175 struct inode *lower_inode;
179 lower_inode = lower_dentry->d_inode;
180 if (lower_inode->i_sb != ecryptfs_superblock_to_lower(sb)) {
184 if (!igrab(lower_inode)) {
188 inode = iget5_locked(sb, (unsigned long)lower_inode,
189 ecryptfs_inode_test, ecryptfs_inode_set,
196 if (inode->i_state & I_NEW)
197 unlock_new_inode(inode);
200 if (S_ISLNK(lower_inode->i_mode))
201 inode->i_op = &ecryptfs_symlink_iops;
202 else if (S_ISDIR(lower_inode->i_mode))
203 inode->i_op = &ecryptfs_dir_iops;
204 if (S_ISDIR(lower_inode->i_mode))
205 inode->i_fop = &ecryptfs_dir_fops;
206 if (special_file(lower_inode->i_mode))
207 init_special_inode(inode, lower_inode->i_mode,
208 lower_inode->i_rdev);
209 dentry->d_op = &ecryptfs_dops;
211 d_add(dentry, inode);
213 d_instantiate(dentry, inode);
214 fsstack_copy_attr_all(inode, lower_inode, NULL);
215 /* This size will be overwritten for real files w/ headers and
217 fsstack_copy_inode_size(inode, lower_inode);
218 rc = ecryptfs_init_persistent_file(dentry);
220 printk(KERN_ERR "%s: Error attempting to initialize the "
221 "persistent file for the dentry with name [%s]; "
222 "rc = [%d]\n", __func__, dentry->d_name.name, rc);
229 enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig,
230 ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher,
231 ecryptfs_opt_ecryptfs_key_bytes,
232 ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata,
233 ecryptfs_opt_encrypted_view, ecryptfs_opt_err };
235 static match_table_t tokens = {
236 {ecryptfs_opt_sig, "sig=%s"},
237 {ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"},
238 {ecryptfs_opt_cipher, "cipher=%s"},
239 {ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"},
240 {ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"},
241 {ecryptfs_opt_passthrough, "ecryptfs_passthrough"},
242 {ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"},
243 {ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"},
244 {ecryptfs_opt_err, NULL}
247 static int ecryptfs_init_global_auth_toks(
248 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
250 struct ecryptfs_global_auth_tok *global_auth_tok;
253 list_for_each_entry(global_auth_tok,
254 &mount_crypt_stat->global_auth_tok_list,
255 mount_crypt_stat_list) {
256 rc = ecryptfs_keyring_auth_tok_for_sig(
257 &global_auth_tok->global_auth_tok_key,
258 &global_auth_tok->global_auth_tok,
259 global_auth_tok->sig);
261 printk(KERN_ERR "Could not find valid key in user "
262 "session keyring for sig specified in mount "
263 "option: [%s]\n", global_auth_tok->sig);
264 global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
267 global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
272 static void ecryptfs_init_mount_crypt_stat(
273 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
275 memset((void *)mount_crypt_stat, 0,
276 sizeof(struct ecryptfs_mount_crypt_stat));
277 INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
278 mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
279 mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
283 * ecryptfs_parse_options
284 * @sb: The ecryptfs super block
285 * @options: The options pased to the kernel
287 * Parse mount options:
288 * debug=N - ecryptfs_verbosity level for debug output
289 * sig=XXX - description(signature) of the key to use
291 * Returns the dentry object of the lower-level (lower/interposed)
292 * directory; We want to mount our stackable file system on top of
293 * that lower directory.
295 * The signature of the key to use must be the description of a key
296 * already in the keyring. Mounting will fail if the key can not be
299 * Returns zero on success; non-zero on error
301 static int ecryptfs_parse_options(struct super_block *sb, char *options)
306 int cipher_name_set = 0;
307 int cipher_key_bytes;
308 int cipher_key_bytes_set = 0;
309 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
310 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
311 substring_t args[MAX_OPT_ARGS];
314 char *cipher_name_dst;
315 char *cipher_name_src;
316 char *cipher_key_bytes_src;
323 ecryptfs_init_mount_crypt_stat(mount_crypt_stat);
324 while ((p = strsep(&options, ",")) != NULL) {
327 token = match_token(p, tokens, args);
329 case ecryptfs_opt_sig:
330 case ecryptfs_opt_ecryptfs_sig:
331 sig_src = args[0].from;
332 rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
335 printk(KERN_ERR "Error attempting to register "
336 "global sig; rc = [%d]\n", rc);
341 case ecryptfs_opt_cipher:
342 case ecryptfs_opt_ecryptfs_cipher:
343 cipher_name_src = args[0].from;
346 global_default_cipher_name;
347 strncpy(cipher_name_dst, cipher_name_src,
348 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
349 ecryptfs_printk(KERN_DEBUG,
350 "The mount_crypt_stat "
351 "global_default_cipher_name set to: "
352 "[%s]\n", cipher_name_dst);
355 case ecryptfs_opt_ecryptfs_key_bytes:
356 cipher_key_bytes_src = args[0].from;
358 (int)simple_strtol(cipher_key_bytes_src,
359 &cipher_key_bytes_src, 0);
360 mount_crypt_stat->global_default_cipher_key_size =
362 ecryptfs_printk(KERN_DEBUG,
363 "The mount_crypt_stat "
364 "global_default_cipher_key_size "
365 "set to: [%d]\n", mount_crypt_stat->
366 global_default_cipher_key_size);
367 cipher_key_bytes_set = 1;
369 case ecryptfs_opt_passthrough:
370 mount_crypt_stat->flags |=
371 ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
373 case ecryptfs_opt_xattr_metadata:
374 mount_crypt_stat->flags |=
375 ECRYPTFS_XATTR_METADATA_ENABLED;
377 case ecryptfs_opt_encrypted_view:
378 mount_crypt_stat->flags |=
379 ECRYPTFS_XATTR_METADATA_ENABLED;
380 mount_crypt_stat->flags |=
381 ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
383 case ecryptfs_opt_err:
385 ecryptfs_printk(KERN_WARNING,
386 "eCryptfs: unrecognized option '%s'\n",
392 ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
393 "auth tok signature as a mount "
394 "parameter; see the eCryptfs README\n");
397 if (!cipher_name_set) {
398 cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
399 if (unlikely(cipher_name_len
400 >= ECRYPTFS_MAX_CIPHER_NAME_SIZE)) {
405 memcpy(mount_crypt_stat->global_default_cipher_name,
406 ECRYPTFS_DEFAULT_CIPHER, cipher_name_len);
407 mount_crypt_stat->global_default_cipher_name[cipher_name_len]
410 if (!cipher_key_bytes_set) {
411 mount_crypt_stat->global_default_cipher_key_size = 0;
413 mutex_lock(&key_tfm_list_mutex);
414 if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
416 rc = ecryptfs_add_new_key_tfm(
417 NULL, mount_crypt_stat->global_default_cipher_name,
418 mount_crypt_stat->global_default_cipher_key_size);
419 mutex_unlock(&key_tfm_list_mutex);
421 printk(KERN_ERR "Error attempting to initialize cipher with "
422 "name = [%s] and key size = [%td]; rc = [%d]\n",
423 mount_crypt_stat->global_default_cipher_name,
424 mount_crypt_stat->global_default_cipher_key_size, rc);
428 rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
430 printk(KERN_WARNING "One or more global auth toks could not "
431 "properly register; rc = [%d]\n", rc);
438 struct kmem_cache *ecryptfs_sb_info_cache;
441 * ecryptfs_fill_super
442 * @sb: The ecryptfs super block
443 * @raw_data: The options passed to mount
444 * @silent: Not used but required by function prototype
446 * Sets up what we can of the sb, rest is done in ecryptfs_read_super
448 * Returns zero on success; non-zero otherwise
451 ecryptfs_fill_super(struct super_block *sb, void *raw_data, int silent)
455 /* Released in ecryptfs_put_super() */
456 ecryptfs_set_superblock_private(sb,
457 kmem_cache_zalloc(ecryptfs_sb_info_cache,
459 if (!ecryptfs_superblock_to_private(sb)) {
460 ecryptfs_printk(KERN_WARNING, "Out of memory\n");
464 sb->s_op = &ecryptfs_sops;
465 /* Released through deactivate_super(sb) from get_sb_nodev */
466 sb->s_root = d_alloc(NULL, &(const struct qstr) {
467 .hash = 0,.name = "/",.len = 1});
469 ecryptfs_printk(KERN_ERR, "d_alloc failed\n");
473 sb->s_root->d_op = &ecryptfs_dops;
474 sb->s_root->d_sb = sb;
475 sb->s_root->d_parent = sb->s_root;
476 /* Released in d_release when dput(sb->s_root) is called */
477 /* through deactivate_super(sb) from get_sb_nodev() */
478 ecryptfs_set_dentry_private(sb->s_root,
479 kmem_cache_zalloc(ecryptfs_dentry_info_cache,
481 if (!ecryptfs_dentry_to_private(sb->s_root)) {
482 ecryptfs_printk(KERN_ERR,
483 "dentry_info_cache alloc failed\n");
489 /* Should be able to rely on deactivate_super called from
495 * ecryptfs_read_super
496 * @sb: The ecryptfs super block
497 * @dev_name: The path to mount over
499 * Read the super block of the lower filesystem, and use
500 * ecryptfs_interpose to create our initial inode and super block
503 static int ecryptfs_read_super(struct super_block *sb, const char *dev_name)
507 struct dentry *lower_root;
508 struct vfsmount *lower_mnt;
510 memset(&nd, 0, sizeof(struct nameidata));
511 rc = path_lookup(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &nd);
513 ecryptfs_printk(KERN_WARNING, "path_lookup() failed\n");
516 lower_root = nd.path.dentry;
517 lower_mnt = nd.path.mnt;
518 ecryptfs_set_superblock_lower(sb, lower_root->d_sb);
519 sb->s_maxbytes = lower_root->d_sb->s_maxbytes;
520 sb->s_blocksize = lower_root->d_sb->s_blocksize;
521 ecryptfs_set_dentry_lower(sb->s_root, lower_root);
522 ecryptfs_set_dentry_lower_mnt(sb->s_root, lower_mnt);
523 rc = ecryptfs_interpose(lower_root, sb->s_root, sb, 0);
538 * @dev_name: The path to mount over
539 * @raw_data: The options passed into the kernel
541 * The whole ecryptfs_get_sb process is broken into 4 functions:
542 * ecryptfs_parse_options(): handle options passed to ecryptfs, if any
543 * ecryptfs_fill_super(): used by get_sb_nodev, fills out the super_block
544 * with as much information as it can before needing
545 * the lower filesystem.
546 * ecryptfs_read_super(): this accesses the lower filesystem and uses
547 * ecryptfs_interpolate to perform most of the linking
548 * ecryptfs_interpolate(): links the lower filesystem into ecryptfs
550 static int ecryptfs_get_sb(struct file_system_type *fs_type, int flags,
551 const char *dev_name, void *raw_data,
552 struct vfsmount *mnt)
555 struct super_block *sb;
557 rc = get_sb_nodev(fs_type, flags, raw_data, ecryptfs_fill_super, mnt);
559 printk(KERN_ERR "Getting sb failed; rc = [%d]\n", rc);
563 rc = ecryptfs_parse_options(sb, raw_data);
565 printk(KERN_ERR "Error parsing options; rc = [%d]\n", rc);
568 rc = ecryptfs_read_super(sb, dev_name);
570 printk(KERN_ERR "Reading sb failed; rc = [%d]\n", rc);
576 up_write(&sb->s_umount);
577 deactivate_super(sb);
583 * ecryptfs_kill_block_super
584 * @sb: The ecryptfs super block
586 * Used to bring the superblock down and free the private data.
587 * Private data is free'd in ecryptfs_put_super()
589 static void ecryptfs_kill_block_super(struct super_block *sb)
591 generic_shutdown_super(sb);
594 static struct file_system_type ecryptfs_fs_type = {
595 .owner = THIS_MODULE,
597 .get_sb = ecryptfs_get_sb,
598 .kill_sb = ecryptfs_kill_block_super,
603 * inode_info_init_once
605 * Initializes the ecryptfs_inode_info_cache when it is created
608 inode_info_init_once(struct kmem_cache *cachep, void *vptr)
610 struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
612 inode_init_once(&ei->vfs_inode);
615 static struct ecryptfs_cache_info {
616 struct kmem_cache **cache;
619 void (*ctor)(struct kmem_cache *cache, void *obj);
620 } ecryptfs_cache_infos[] = {
622 .cache = &ecryptfs_auth_tok_list_item_cache,
623 .name = "ecryptfs_auth_tok_list_item",
624 .size = sizeof(struct ecryptfs_auth_tok_list_item),
627 .cache = &ecryptfs_file_info_cache,
628 .name = "ecryptfs_file_cache",
629 .size = sizeof(struct ecryptfs_file_info),
632 .cache = &ecryptfs_dentry_info_cache,
633 .name = "ecryptfs_dentry_info_cache",
634 .size = sizeof(struct ecryptfs_dentry_info),
637 .cache = &ecryptfs_inode_info_cache,
638 .name = "ecryptfs_inode_cache",
639 .size = sizeof(struct ecryptfs_inode_info),
640 .ctor = inode_info_init_once,
643 .cache = &ecryptfs_sb_info_cache,
644 .name = "ecryptfs_sb_cache",
645 .size = sizeof(struct ecryptfs_sb_info),
648 .cache = &ecryptfs_header_cache_1,
649 .name = "ecryptfs_headers_1",
650 .size = PAGE_CACHE_SIZE,
653 .cache = &ecryptfs_header_cache_2,
654 .name = "ecryptfs_headers_2",
655 .size = PAGE_CACHE_SIZE,
658 .cache = &ecryptfs_xattr_cache,
659 .name = "ecryptfs_xattr_cache",
660 .size = PAGE_CACHE_SIZE,
663 .cache = &ecryptfs_key_record_cache,
664 .name = "ecryptfs_key_record_cache",
665 .size = sizeof(struct ecryptfs_key_record),
668 .cache = &ecryptfs_key_sig_cache,
669 .name = "ecryptfs_key_sig_cache",
670 .size = sizeof(struct ecryptfs_key_sig),
673 .cache = &ecryptfs_global_auth_tok_cache,
674 .name = "ecryptfs_global_auth_tok_cache",
675 .size = sizeof(struct ecryptfs_global_auth_tok),
678 .cache = &ecryptfs_key_tfm_cache,
679 .name = "ecryptfs_key_tfm_cache",
680 .size = sizeof(struct ecryptfs_key_tfm),
684 static void ecryptfs_free_kmem_caches(void)
688 for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
689 struct ecryptfs_cache_info *info;
691 info = &ecryptfs_cache_infos[i];
693 kmem_cache_destroy(*(info->cache));
698 * ecryptfs_init_kmem_caches
700 * Returns zero on success; non-zero otherwise
702 static int ecryptfs_init_kmem_caches(void)
706 for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
707 struct ecryptfs_cache_info *info;
709 info = &ecryptfs_cache_infos[i];
710 *(info->cache) = kmem_cache_create(info->name, info->size,
711 0, SLAB_HWCACHE_ALIGN, info->ctor);
712 if (!*(info->cache)) {
713 ecryptfs_free_kmem_caches();
714 ecryptfs_printk(KERN_WARNING, "%s: "
715 "kmem_cache_create failed\n",
723 static struct kobject *ecryptfs_kobj;
725 static ssize_t version_show(struct kobject *kobj,
726 struct kobj_attribute *attr, char *buff)
728 return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
731 static struct kobj_attribute version_attr = __ATTR_RO(version);
733 static struct attribute *attributes[] = {
738 static struct attribute_group attr_group = {
742 static int do_sysfs_registration(void)
746 ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
747 if (!ecryptfs_kobj) {
748 printk(KERN_ERR "Unable to create ecryptfs kset\n");
752 rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
755 "Unable to create ecryptfs version attributes\n");
756 kobject_put(ecryptfs_kobj);
762 static void do_sysfs_unregistration(void)
764 sysfs_remove_group(ecryptfs_kobj, &attr_group);
765 kobject_put(ecryptfs_kobj);
768 static int __init ecryptfs_init(void)
772 if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_CACHE_SIZE) {
774 ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
775 "larger than the host's page size, and so "
776 "eCryptfs cannot run on this system. The "
777 "default eCryptfs extent size is [%d] bytes; "
778 "the page size is [%d] bytes.\n",
779 ECRYPTFS_DEFAULT_EXTENT_SIZE, PAGE_CACHE_SIZE);
782 rc = ecryptfs_init_kmem_caches();
785 "Failed to allocate one or more kmem_cache objects\n");
788 rc = register_filesystem(&ecryptfs_fs_type);
790 printk(KERN_ERR "Failed to register filesystem\n");
791 goto out_free_kmem_caches;
793 rc = do_sysfs_registration();
795 printk(KERN_ERR "sysfs registration failed\n");
796 goto out_unregister_filesystem;
798 rc = ecryptfs_init_messaging(ecryptfs_transport);
800 ecryptfs_printk(KERN_ERR, "Failure occured while attempting to "
801 "initialize the eCryptfs netlink socket\n");
802 goto out_do_sysfs_unregistration;
804 rc = ecryptfs_init_crypto();
806 printk(KERN_ERR "Failure whilst attempting to init crypto; "
808 goto out_release_messaging;
810 if (ecryptfs_verbosity > 0)
811 printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
812 "will be written to the syslog!\n", ecryptfs_verbosity);
815 out_release_messaging:
816 ecryptfs_release_messaging(ecryptfs_transport);
817 out_do_sysfs_unregistration:
818 do_sysfs_unregistration();
819 out_unregister_filesystem:
820 unregister_filesystem(&ecryptfs_fs_type);
821 out_free_kmem_caches:
822 ecryptfs_free_kmem_caches();
827 static void __exit ecryptfs_exit(void)
831 rc = ecryptfs_destroy_crypto();
833 printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
835 ecryptfs_release_messaging(ecryptfs_transport);
836 do_sysfs_unregistration();
837 unregister_filesystem(&ecryptfs_fs_type);
838 ecryptfs_free_kmem_caches();
841 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
842 MODULE_DESCRIPTION("eCryptfs");
844 MODULE_LICENSE("GPL");
846 module_init(ecryptfs_init)
847 module_exit(ecryptfs_exit)