2 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <trace/power.h>
38 #include <linux/acpi.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
43 #include <acpi/processor.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
49 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
52 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
53 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
54 MODULE_LICENSE("GPL");
57 UNDEFINED_CAPABLE = 0,
58 SYSTEM_INTEL_MSR_CAPABLE,
62 #define INTEL_MSR_RANGE (0xffff)
63 #define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
65 struct acpi_cpufreq_data {
66 struct acpi_processor_performance *acpi_data;
67 struct cpufreq_frequency_table *freq_table;
69 unsigned int cpu_feature;
72 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
74 struct acpi_msr_data {
75 u64 saved_aperf, saved_mperf;
78 static DEFINE_PER_CPU(struct acpi_msr_data, msr_data);
80 DEFINE_TRACE(power_mark);
82 /* acpi_perf_data is a pointer to percpu data. */
83 static struct acpi_processor_performance *acpi_perf_data;
85 static struct cpufreq_driver acpi_cpufreq_driver;
87 static unsigned int acpi_pstate_strict;
89 static int check_est_cpu(unsigned int cpuid)
91 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
93 return cpu_has(cpu, X86_FEATURE_EST);
96 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
98 struct acpi_processor_performance *perf;
101 perf = data->acpi_data;
103 for (i = 0; i < perf->state_count; i++) {
104 if (value == perf->states[i].status)
105 return data->freq_table[i].frequency;
110 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
113 struct acpi_processor_performance *perf;
115 msr &= INTEL_MSR_RANGE;
116 perf = data->acpi_data;
118 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
119 if (msr == perf->states[data->freq_table[i].index].status)
120 return data->freq_table[i].frequency;
122 return data->freq_table[0].frequency;
125 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
127 switch (data->cpu_feature) {
128 case SYSTEM_INTEL_MSR_CAPABLE:
129 return extract_msr(val, data);
130 case SYSTEM_IO_CAPABLE:
131 return extract_io(val, data);
148 const struct cpumask *mask;
156 /* Called via smp_call_function_single(), on the target CPU */
157 static void do_drv_read(void *_cmd)
159 struct drv_cmd *cmd = _cmd;
163 case SYSTEM_INTEL_MSR_CAPABLE:
164 rdmsr(cmd->addr.msr.reg, cmd->val, h);
166 case SYSTEM_IO_CAPABLE:
167 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
169 (u32)cmd->addr.io.bit_width);
176 /* Called via smp_call_function_many(), on the target CPUs */
177 static void do_drv_write(void *_cmd)
179 struct drv_cmd *cmd = _cmd;
183 case SYSTEM_INTEL_MSR_CAPABLE:
184 rdmsr(cmd->addr.msr.reg, lo, hi);
185 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
186 wrmsr(cmd->addr.msr.reg, lo, hi);
188 case SYSTEM_IO_CAPABLE:
189 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
191 (u32)cmd->addr.io.bit_width);
198 static void drv_read(struct drv_cmd *cmd)
202 smp_call_function_single(cpumask_any(cmd->mask), do_drv_read, cmd, 1);
205 static void drv_write(struct drv_cmd *cmd)
209 this_cpu = get_cpu();
210 if (cpumask_test_cpu(this_cpu, cmd->mask))
212 smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
216 static u32 get_cur_val(const struct cpumask *mask)
218 struct acpi_processor_performance *perf;
221 if (unlikely(cpumask_empty(mask)))
224 switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
225 case SYSTEM_INTEL_MSR_CAPABLE:
226 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
227 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
229 case SYSTEM_IO_CAPABLE:
230 cmd.type = SYSTEM_IO_CAPABLE;
231 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
232 cmd.addr.io.port = perf->control_register.address;
233 cmd.addr.io.bit_width = perf->control_register.bit_width;
242 dprintk("get_cur_val = %u\n", cmd.val);
257 /* Called via smp_call_function_single(), on the target CPU */
258 static void read_measured_perf_ctrs(void *_cur)
260 struct perf_pair *cur = _cur;
262 rdmsr(MSR_IA32_APERF, cur->aperf.split.lo, cur->aperf.split.hi);
263 rdmsr(MSR_IA32_MPERF, cur->mperf.split.lo, cur->mperf.split.hi);
267 * Return the measured active (C0) frequency on this CPU since last call
270 * Return: Average CPU frequency in terms of max frequency (zero on error)
272 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
273 * over a period of time, while CPU is in C0 state.
274 * IA32_MPERF counts at the rate of max advertised frequency
275 * IA32_APERF counts at the rate of actual CPU frequency
276 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
277 * no meaning should be associated with absolute values of these MSRs.
279 static unsigned int get_measured_perf(struct cpufreq_policy *policy,
282 struct perf_pair readin, cur;
283 unsigned int perf_percent;
286 if (smp_call_function_single(cpu, read_measured_perf_ctrs, &readin, 1))
289 cur.aperf.whole = readin.aperf.whole -
290 per_cpu(msr_data, cpu).saved_aperf;
291 cur.mperf.whole = readin.mperf.whole -
292 per_cpu(msr_data, cpu).saved_mperf;
293 per_cpu(msr_data, cpu).saved_aperf = readin.aperf.whole;
294 per_cpu(msr_data, cpu).saved_mperf = readin.mperf.whole;
298 * We dont want to do 64 bit divide with 32 bit kernel
299 * Get an approximate value. Return failure in case we cannot get
300 * an approximate value.
302 if (unlikely(cur.aperf.split.hi || cur.mperf.split.hi)) {
306 h = max_t(u32, cur.aperf.split.hi, cur.mperf.split.hi);
307 shift_count = fls(h);
309 cur.aperf.whole >>= shift_count;
310 cur.mperf.whole >>= shift_count;
313 if (((unsigned long)(-1) / 100) < cur.aperf.split.lo) {
315 cur.aperf.split.lo >>= shift_count;
316 cur.mperf.split.lo >>= shift_count;
319 if (cur.aperf.split.lo && cur.mperf.split.lo)
320 perf_percent = (cur.aperf.split.lo * 100) / cur.mperf.split.lo;
325 if (unlikely(((unsigned long)(-1) / 100) < cur.aperf.whole)) {
327 cur.aperf.whole >>= shift_count;
328 cur.mperf.whole >>= shift_count;
331 if (cur.aperf.whole && cur.mperf.whole)
332 perf_percent = (cur.aperf.whole * 100) / cur.mperf.whole;
338 retval = (policy->cpuinfo.max_freq * perf_percent) / 100;
343 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
345 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
347 unsigned int cached_freq;
349 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
351 if (unlikely(data == NULL ||
352 data->acpi_data == NULL || data->freq_table == NULL)) {
356 cached_freq = data->freq_table[data->acpi_data->state].frequency;
357 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
358 if (freq != cached_freq) {
360 * The dreaded BIOS frequency change behind our back.
361 * Force set the frequency on next target call.
366 dprintk("cur freq = %u\n", freq);
371 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
372 struct acpi_cpufreq_data *data)
374 unsigned int cur_freq;
377 for (i = 0; i < 100; i++) {
378 cur_freq = extract_freq(get_cur_val(mask), data);
379 if (cur_freq == freq)
386 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
387 unsigned int target_freq, unsigned int relation)
389 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
390 struct acpi_processor_performance *perf;
391 struct cpufreq_freqs freqs;
393 unsigned int next_state = 0; /* Index into freq_table */
394 unsigned int next_perf_state = 0; /* Index into perf table */
397 struct power_trace it;
399 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
401 if (unlikely(data == NULL ||
402 data->acpi_data == NULL || data->freq_table == NULL)) {
406 perf = data->acpi_data;
407 result = cpufreq_frequency_table_target(policy,
410 relation, &next_state);
411 if (unlikely(result)) {
416 next_perf_state = data->freq_table[next_state].index;
417 if (perf->state == next_perf_state) {
418 if (unlikely(data->resume)) {
419 dprintk("Called after resume, resetting to P%d\n",
423 dprintk("Already at target state (P%d)\n",
429 trace_power_mark(&it, POWER_PSTATE, next_perf_state);
431 switch (data->cpu_feature) {
432 case SYSTEM_INTEL_MSR_CAPABLE:
433 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
434 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
435 cmd.val = (u32) perf->states[next_perf_state].control;
437 case SYSTEM_IO_CAPABLE:
438 cmd.type = SYSTEM_IO_CAPABLE;
439 cmd.addr.io.port = perf->control_register.address;
440 cmd.addr.io.bit_width = perf->control_register.bit_width;
441 cmd.val = (u32) perf->states[next_perf_state].control;
448 /* cpufreq holds the hotplug lock, so we are safe from here on */
449 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
450 cmd.mask = policy->cpus;
452 cmd.mask = cpumask_of(policy->cpu);
454 freqs.old = perf->states[perf->state].core_frequency * 1000;
455 freqs.new = data->freq_table[next_state].frequency;
456 for_each_cpu(i, cmd.mask) {
458 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
463 if (acpi_pstate_strict) {
464 if (!check_freqs(cmd.mask, freqs.new, data)) {
465 dprintk("acpi_cpufreq_target failed (%d)\n",
472 for_each_cpu(i, cmd.mask) {
474 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
476 perf->state = next_perf_state;
482 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
484 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
486 dprintk("acpi_cpufreq_verify\n");
488 return cpufreq_frequency_table_verify(policy, data->freq_table);
492 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
494 struct acpi_processor_performance *perf = data->acpi_data;
497 /* search the closest match to cpu_khz */
500 unsigned long freqn = perf->states[0].core_frequency * 1000;
502 for (i = 0; i < (perf->state_count-1); i++) {
504 freqn = perf->states[i+1].core_frequency * 1000;
505 if ((2 * cpu_khz) > (freqn + freq)) {
510 perf->state = perf->state_count-1;
513 /* assume CPU is at P0... */
515 return perf->states[0].core_frequency * 1000;
519 static void free_acpi_perf_data(void)
523 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
524 for_each_possible_cpu(i)
525 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
527 free_percpu(acpi_perf_data);
531 * acpi_cpufreq_early_init - initialize ACPI P-States library
533 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
534 * in order to determine correct frequency and voltage pairings. We can
535 * do _PDC and _PSD and find out the processor dependency for the
536 * actual init that will happen later...
538 static int __init acpi_cpufreq_early_init(void)
541 dprintk("acpi_cpufreq_early_init\n");
543 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
544 if (!acpi_perf_data) {
545 dprintk("Memory allocation error for acpi_perf_data.\n");
548 for_each_possible_cpu(i) {
549 if (!zalloc_cpumask_var_node(
550 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
551 GFP_KERNEL, cpu_to_node(i))) {
553 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
554 free_acpi_perf_data();
559 /* Do initialization in ACPI core */
560 acpi_processor_preregister_performance(acpi_perf_data);
566 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
567 * or do it in BIOS firmware and won't inform about it to OS. If not
568 * detected, this has a side effect of making CPU run at a different speed
569 * than OS intended it to run at. Detect it and handle it cleanly.
571 static int bios_with_sw_any_bug;
573 static int sw_any_bug_found(const struct dmi_system_id *d)
575 bios_with_sw_any_bug = 1;
579 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
581 .callback = sw_any_bug_found,
582 .ident = "Supermicro Server X6DLP",
584 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
585 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
586 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
593 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
596 unsigned int valid_states = 0;
597 unsigned int cpu = policy->cpu;
598 struct acpi_cpufreq_data *data;
599 unsigned int result = 0;
600 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
601 struct acpi_processor_performance *perf;
603 dprintk("acpi_cpufreq_cpu_init\n");
605 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
609 data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
610 per_cpu(drv_data, cpu) = data;
612 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
613 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
615 result = acpi_processor_register_performance(data->acpi_data, cpu);
619 perf = data->acpi_data;
620 policy->shared_type = perf->shared_type;
623 * Will let policy->cpus know about dependency only when software
624 * coordination is required.
626 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
627 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
628 cpumask_copy(policy->cpus, perf->shared_cpu_map);
630 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
633 dmi_check_system(sw_any_bug_dmi_table);
634 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
635 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
636 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
640 /* capability check */
641 if (perf->state_count <= 1) {
642 dprintk("No P-States\n");
647 if (perf->control_register.space_id != perf->status_register.space_id) {
652 switch (perf->control_register.space_id) {
653 case ACPI_ADR_SPACE_SYSTEM_IO:
654 dprintk("SYSTEM IO addr space\n");
655 data->cpu_feature = SYSTEM_IO_CAPABLE;
657 case ACPI_ADR_SPACE_FIXED_HARDWARE:
658 dprintk("HARDWARE addr space\n");
659 if (!check_est_cpu(cpu)) {
663 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
666 dprintk("Unknown addr space %d\n",
667 (u32) (perf->control_register.space_id));
672 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
673 (perf->state_count+1), GFP_KERNEL);
674 if (!data->freq_table) {
679 /* detect transition latency */
680 policy->cpuinfo.transition_latency = 0;
681 for (i = 0; i < perf->state_count; i++) {
682 if ((perf->states[i].transition_latency * 1000) >
683 policy->cpuinfo.transition_latency)
684 policy->cpuinfo.transition_latency =
685 perf->states[i].transition_latency * 1000;
688 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
689 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
690 policy->cpuinfo.transition_latency > 20 * 1000) {
691 policy->cpuinfo.transition_latency = 20 * 1000;
692 printk_once(KERN_INFO
693 "P-state transition latency capped at 20 uS\n");
697 for (i = 0; i < perf->state_count; i++) {
698 if (i > 0 && perf->states[i].core_frequency >=
699 data->freq_table[valid_states-1].frequency / 1000)
702 data->freq_table[valid_states].index = i;
703 data->freq_table[valid_states].frequency =
704 perf->states[i].core_frequency * 1000;
707 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
710 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
714 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
715 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
717 switch (perf->control_register.space_id) {
718 case ACPI_ADR_SPACE_SYSTEM_IO:
719 /* Current speed is unknown and not detectable by IO port */
720 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
722 case ACPI_ADR_SPACE_FIXED_HARDWARE:
723 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
724 policy->cur = get_cur_freq_on_cpu(cpu);
730 /* notify BIOS that we exist */
731 acpi_processor_notify_smm(THIS_MODULE);
733 /* Check for APERF/MPERF support in hardware */
734 if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
737 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
738 acpi_cpufreq_driver.getavg = get_measured_perf;
741 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
742 for (i = 0; i < perf->state_count; i++)
743 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
744 (i == perf->state ? '*' : ' '), i,
745 (u32) perf->states[i].core_frequency,
746 (u32) perf->states[i].power,
747 (u32) perf->states[i].transition_latency);
749 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
752 * the first call to ->target() should result in us actually
753 * writing something to the appropriate registers.
760 kfree(data->freq_table);
762 acpi_processor_unregister_performance(perf, cpu);
765 per_cpu(drv_data, cpu) = NULL;
770 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
772 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
774 dprintk("acpi_cpufreq_cpu_exit\n");
777 cpufreq_frequency_table_put_attr(policy->cpu);
778 per_cpu(drv_data, policy->cpu) = NULL;
779 acpi_processor_unregister_performance(data->acpi_data,
787 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
789 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
791 dprintk("acpi_cpufreq_resume\n");
798 static struct freq_attr *acpi_cpufreq_attr[] = {
799 &cpufreq_freq_attr_scaling_available_freqs,
803 static struct cpufreq_driver acpi_cpufreq_driver = {
804 .verify = acpi_cpufreq_verify,
805 .target = acpi_cpufreq_target,
806 .init = acpi_cpufreq_cpu_init,
807 .exit = acpi_cpufreq_cpu_exit,
808 .resume = acpi_cpufreq_resume,
809 .name = "acpi-cpufreq",
810 .owner = THIS_MODULE,
811 .attr = acpi_cpufreq_attr,
814 static int __init acpi_cpufreq_init(void)
821 dprintk("acpi_cpufreq_init\n");
823 ret = acpi_cpufreq_early_init();
827 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
829 free_acpi_perf_data();
834 static void __exit acpi_cpufreq_exit(void)
836 dprintk("acpi_cpufreq_exit\n");
838 cpufreq_unregister_driver(&acpi_cpufreq_driver);
840 free_percpu(acpi_perf_data);
843 module_param(acpi_pstate_strict, uint, 0644);
844 MODULE_PARM_DESC(acpi_pstate_strict,
845 "value 0 or non-zero. non-zero -> strict ACPI checks are "
846 "performed during frequency changes.");
848 late_initcall(acpi_cpufreq_init);
849 module_exit(acpi_cpufreq_exit);
851 MODULE_ALIAS("acpi");