V4L/DVB (10439): cx18: Clean-up and enable sliced VBI handling
[linux-2.6] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
68 #include <net/dst.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
96 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
97 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
99 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
100 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
101 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
102 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
103 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
109
110 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115
116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118
119 /* Adapt the MSS value used to make delayed ack decision to the
120  * real world.
121  */
122 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
123 {
124         struct inet_connection_sock *icsk = inet_csk(sk);
125         const unsigned int lss = icsk->icsk_ack.last_seg_size;
126         unsigned int len;
127
128         icsk->icsk_ack.last_seg_size = 0;
129
130         /* skb->len may jitter because of SACKs, even if peer
131          * sends good full-sized frames.
132          */
133         len = skb_shinfo(skb)->gso_size ? : skb->len;
134         if (len >= icsk->icsk_ack.rcv_mss) {
135                 icsk->icsk_ack.rcv_mss = len;
136         } else {
137                 /* Otherwise, we make more careful check taking into account,
138                  * that SACKs block is variable.
139                  *
140                  * "len" is invariant segment length, including TCP header.
141                  */
142                 len += skb->data - skb_transport_header(skb);
143                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
144                     /* If PSH is not set, packet should be
145                      * full sized, provided peer TCP is not badly broken.
146                      * This observation (if it is correct 8)) allows
147                      * to handle super-low mtu links fairly.
148                      */
149                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
150                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
151                         /* Subtract also invariant (if peer is RFC compliant),
152                          * tcp header plus fixed timestamp option length.
153                          * Resulting "len" is MSS free of SACK jitter.
154                          */
155                         len -= tcp_sk(sk)->tcp_header_len;
156                         icsk->icsk_ack.last_seg_size = len;
157                         if (len == lss) {
158                                 icsk->icsk_ack.rcv_mss = len;
159                                 return;
160                         }
161                 }
162                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
163                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
164                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
165         }
166 }
167
168 static void tcp_incr_quickack(struct sock *sk)
169 {
170         struct inet_connection_sock *icsk = inet_csk(sk);
171         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
172
173         if (quickacks == 0)
174                 quickacks = 2;
175         if (quickacks > icsk->icsk_ack.quick)
176                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
177 }
178
179 void tcp_enter_quickack_mode(struct sock *sk)
180 {
181         struct inet_connection_sock *icsk = inet_csk(sk);
182         tcp_incr_quickack(sk);
183         icsk->icsk_ack.pingpong = 0;
184         icsk->icsk_ack.ato = TCP_ATO_MIN;
185 }
186
187 /* Send ACKs quickly, if "quick" count is not exhausted
188  * and the session is not interactive.
189  */
190
191 static inline int tcp_in_quickack_mode(const struct sock *sk)
192 {
193         const struct inet_connection_sock *icsk = inet_csk(sk);
194         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
195 }
196
197 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198 {
199         if (tp->ecn_flags & TCP_ECN_OK)
200                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
201 }
202
203 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204 {
205         if (tcp_hdr(skb)->cwr)
206                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
207 }
208
209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210 {
211         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212 }
213
214 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215 {
216         if (tp->ecn_flags & TCP_ECN_OK) {
217                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
218                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
219                 /* Funny extension: if ECT is not set on a segment,
220                  * it is surely retransmit. It is not in ECN RFC,
221                  * but Linux follows this rule. */
222                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
223                         tcp_enter_quickack_mode((struct sock *)tp);
224         }
225 }
226
227 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228 {
229         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
230                 tp->ecn_flags &= ~TCP_ECN_OK;
231 }
232
233 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234 {
235         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
236                 tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238
239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240 {
241         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
242                 return 1;
243         return 0;
244 }
245
246 /* Buffer size and advertised window tuning.
247  *
248  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
249  */
250
251 static void tcp_fixup_sndbuf(struct sock *sk)
252 {
253         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
254                      sizeof(struct sk_buff);
255
256         if (sk->sk_sndbuf < 3 * sndmem)
257                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
258 }
259
260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261  *
262  * All tcp_full_space() is split to two parts: "network" buffer, allocated
263  * forward and advertised in receiver window (tp->rcv_wnd) and
264  * "application buffer", required to isolate scheduling/application
265  * latencies from network.
266  * window_clamp is maximal advertised window. It can be less than
267  * tcp_full_space(), in this case tcp_full_space() - window_clamp
268  * is reserved for "application" buffer. The less window_clamp is
269  * the smoother our behaviour from viewpoint of network, but the lower
270  * throughput and the higher sensitivity of the connection to losses. 8)
271  *
272  * rcv_ssthresh is more strict window_clamp used at "slow start"
273  * phase to predict further behaviour of this connection.
274  * It is used for two goals:
275  * - to enforce header prediction at sender, even when application
276  *   requires some significant "application buffer". It is check #1.
277  * - to prevent pruning of receive queue because of misprediction
278  *   of receiver window. Check #2.
279  *
280  * The scheme does not work when sender sends good segments opening
281  * window and then starts to feed us spaghetti. But it should work
282  * in common situations. Otherwise, we have to rely on queue collapsing.
283  */
284
285 /* Slow part of check#2. */
286 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
287 {
288         struct tcp_sock *tp = tcp_sk(sk);
289         /* Optimize this! */
290         int truesize = tcp_win_from_space(skb->truesize) >> 1;
291         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
292
293         while (tp->rcv_ssthresh <= window) {
294                 if (truesize <= skb->len)
295                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
296
297                 truesize >>= 1;
298                 window >>= 1;
299         }
300         return 0;
301 }
302
303 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
304 {
305         struct tcp_sock *tp = tcp_sk(sk);
306
307         /* Check #1 */
308         if (tp->rcv_ssthresh < tp->window_clamp &&
309             (int)tp->rcv_ssthresh < tcp_space(sk) &&
310             !tcp_memory_pressure) {
311                 int incr;
312
313                 /* Check #2. Increase window, if skb with such overhead
314                  * will fit to rcvbuf in future.
315                  */
316                 if (tcp_win_from_space(skb->truesize) <= skb->len)
317                         incr = 2 * tp->advmss;
318                 else
319                         incr = __tcp_grow_window(sk, skb);
320
321                 if (incr) {
322                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
323                                                tp->window_clamp);
324                         inet_csk(sk)->icsk_ack.quick |= 1;
325                 }
326         }
327 }
328
329 /* 3. Tuning rcvbuf, when connection enters established state. */
330
331 static void tcp_fixup_rcvbuf(struct sock *sk)
332 {
333         struct tcp_sock *tp = tcp_sk(sk);
334         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335
336         /* Try to select rcvbuf so that 4 mss-sized segments
337          * will fit to window and corresponding skbs will fit to our rcvbuf.
338          * (was 3; 4 is minimum to allow fast retransmit to work.)
339          */
340         while (tcp_win_from_space(rcvmem) < tp->advmss)
341                 rcvmem += 128;
342         if (sk->sk_rcvbuf < 4 * rcvmem)
343                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
344 }
345
346 /* 4. Try to fixup all. It is made immediately after connection enters
347  *    established state.
348  */
349 static void tcp_init_buffer_space(struct sock *sk)
350 {
351         struct tcp_sock *tp = tcp_sk(sk);
352         int maxwin;
353
354         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
355                 tcp_fixup_rcvbuf(sk);
356         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
357                 tcp_fixup_sndbuf(sk);
358
359         tp->rcvq_space.space = tp->rcv_wnd;
360
361         maxwin = tcp_full_space(sk);
362
363         if (tp->window_clamp >= maxwin) {
364                 tp->window_clamp = maxwin;
365
366                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
367                         tp->window_clamp = max(maxwin -
368                                                (maxwin >> sysctl_tcp_app_win),
369                                                4 * tp->advmss);
370         }
371
372         /* Force reservation of one segment. */
373         if (sysctl_tcp_app_win &&
374             tp->window_clamp > 2 * tp->advmss &&
375             tp->window_clamp + tp->advmss > maxwin)
376                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377
378         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
379         tp->snd_cwnd_stamp = tcp_time_stamp;
380 }
381
382 /* 5. Recalculate window clamp after socket hit its memory bounds. */
383 static void tcp_clamp_window(struct sock *sk)
384 {
385         struct tcp_sock *tp = tcp_sk(sk);
386         struct inet_connection_sock *icsk = inet_csk(sk);
387
388         icsk->icsk_ack.quick = 0;
389
390         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
391             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
392             !tcp_memory_pressure &&
393             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
394                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
395                                     sysctl_tcp_rmem[2]);
396         }
397         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
398                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
399 }
400
401 /* Initialize RCV_MSS value.
402  * RCV_MSS is an our guess about MSS used by the peer.
403  * We haven't any direct information about the MSS.
404  * It's better to underestimate the RCV_MSS rather than overestimate.
405  * Overestimations make us ACKing less frequently than needed.
406  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407  */
408 void tcp_initialize_rcv_mss(struct sock *sk)
409 {
410         struct tcp_sock *tp = tcp_sk(sk);
411         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412
413         hint = min(hint, tp->rcv_wnd / 2);
414         hint = min(hint, TCP_MIN_RCVMSS);
415         hint = max(hint, TCP_MIN_MSS);
416
417         inet_csk(sk)->icsk_ack.rcv_mss = hint;
418 }
419
420 /* Receiver "autotuning" code.
421  *
422  * The algorithm for RTT estimation w/o timestamps is based on
423  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425  *
426  * More detail on this code can be found at
427  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428  * though this reference is out of date.  A new paper
429  * is pending.
430  */
431 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432 {
433         u32 new_sample = tp->rcv_rtt_est.rtt;
434         long m = sample;
435
436         if (m == 0)
437                 m = 1;
438
439         if (new_sample != 0) {
440                 /* If we sample in larger samples in the non-timestamp
441                  * case, we could grossly overestimate the RTT especially
442                  * with chatty applications or bulk transfer apps which
443                  * are stalled on filesystem I/O.
444                  *
445                  * Also, since we are only going for a minimum in the
446                  * non-timestamp case, we do not smooth things out
447                  * else with timestamps disabled convergence takes too
448                  * long.
449                  */
450                 if (!win_dep) {
451                         m -= (new_sample >> 3);
452                         new_sample += m;
453                 } else if (m < new_sample)
454                         new_sample = m << 3;
455         } else {
456                 /* No previous measure. */
457                 new_sample = m << 3;
458         }
459
460         if (tp->rcv_rtt_est.rtt != new_sample)
461                 tp->rcv_rtt_est.rtt = new_sample;
462 }
463
464 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465 {
466         if (tp->rcv_rtt_est.time == 0)
467                 goto new_measure;
468         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
469                 return;
470         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
471
472 new_measure:
473         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
474         tp->rcv_rtt_est.time = tcp_time_stamp;
475 }
476
477 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
478                                           const struct sk_buff *skb)
479 {
480         struct tcp_sock *tp = tcp_sk(sk);
481         if (tp->rx_opt.rcv_tsecr &&
482             (TCP_SKB_CB(skb)->end_seq -
483              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
484                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
485 }
486
487 /*
488  * This function should be called every time data is copied to user space.
489  * It calculates the appropriate TCP receive buffer space.
490  */
491 void tcp_rcv_space_adjust(struct sock *sk)
492 {
493         struct tcp_sock *tp = tcp_sk(sk);
494         int time;
495         int space;
496
497         if (tp->rcvq_space.time == 0)
498                 goto new_measure;
499
500         time = tcp_time_stamp - tp->rcvq_space.time;
501         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
502                 return;
503
504         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505
506         space = max(tp->rcvq_space.space, space);
507
508         if (tp->rcvq_space.space != space) {
509                 int rcvmem;
510
511                 tp->rcvq_space.space = space;
512
513                 if (sysctl_tcp_moderate_rcvbuf &&
514                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
515                         int new_clamp = space;
516
517                         /* Receive space grows, normalize in order to
518                          * take into account packet headers and sk_buff
519                          * structure overhead.
520                          */
521                         space /= tp->advmss;
522                         if (!space)
523                                 space = 1;
524                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
525                                   16 + sizeof(struct sk_buff));
526                         while (tcp_win_from_space(rcvmem) < tp->advmss)
527                                 rcvmem += 128;
528                         space *= rcvmem;
529                         space = min(space, sysctl_tcp_rmem[2]);
530                         if (space > sk->sk_rcvbuf) {
531                                 sk->sk_rcvbuf = space;
532
533                                 /* Make the window clamp follow along.  */
534                                 tp->window_clamp = new_clamp;
535                         }
536                 }
537         }
538
539 new_measure:
540         tp->rcvq_space.seq = tp->copied_seq;
541         tp->rcvq_space.time = tcp_time_stamp;
542 }
543
544 /* There is something which you must keep in mind when you analyze the
545  * behavior of the tp->ato delayed ack timeout interval.  When a
546  * connection starts up, we want to ack as quickly as possible.  The
547  * problem is that "good" TCP's do slow start at the beginning of data
548  * transmission.  The means that until we send the first few ACK's the
549  * sender will sit on his end and only queue most of his data, because
550  * he can only send snd_cwnd unacked packets at any given time.  For
551  * each ACK we send, he increments snd_cwnd and transmits more of his
552  * queue.  -DaveM
553  */
554 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
555 {
556         struct tcp_sock *tp = tcp_sk(sk);
557         struct inet_connection_sock *icsk = inet_csk(sk);
558         u32 now;
559
560         inet_csk_schedule_ack(sk);
561
562         tcp_measure_rcv_mss(sk, skb);
563
564         tcp_rcv_rtt_measure(tp);
565
566         now = tcp_time_stamp;
567
568         if (!icsk->icsk_ack.ato) {
569                 /* The _first_ data packet received, initialize
570                  * delayed ACK engine.
571                  */
572                 tcp_incr_quickack(sk);
573                 icsk->icsk_ack.ato = TCP_ATO_MIN;
574         } else {
575                 int m = now - icsk->icsk_ack.lrcvtime;
576
577                 if (m <= TCP_ATO_MIN / 2) {
578                         /* The fastest case is the first. */
579                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
580                 } else if (m < icsk->icsk_ack.ato) {
581                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
582                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
583                                 icsk->icsk_ack.ato = icsk->icsk_rto;
584                 } else if (m > icsk->icsk_rto) {
585                         /* Too long gap. Apparently sender failed to
586                          * restart window, so that we send ACKs quickly.
587                          */
588                         tcp_incr_quickack(sk);
589                         sk_mem_reclaim(sk);
590                 }
591         }
592         icsk->icsk_ack.lrcvtime = now;
593
594         TCP_ECN_check_ce(tp, skb);
595
596         if (skb->len >= 128)
597                 tcp_grow_window(sk, skb);
598 }
599
600 static u32 tcp_rto_min(struct sock *sk)
601 {
602         struct dst_entry *dst = __sk_dst_get(sk);
603         u32 rto_min = TCP_RTO_MIN;
604
605         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
606                 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
607         return rto_min;
608 }
609
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611  * routine either comes from timestamps, or from segments that were
612  * known _not_ to have been retransmitted [see Karn/Partridge
613  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614  * piece by Van Jacobson.
615  * NOTE: the next three routines used to be one big routine.
616  * To save cycles in the RFC 1323 implementation it was better to break
617  * it up into three procedures. -- erics
618  */
619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 {
621         struct tcp_sock *tp = tcp_sk(sk);
622         long m = mrtt; /* RTT */
623
624         /*      The following amusing code comes from Jacobson's
625          *      article in SIGCOMM '88.  Note that rtt and mdev
626          *      are scaled versions of rtt and mean deviation.
627          *      This is designed to be as fast as possible
628          *      m stands for "measurement".
629          *
630          *      On a 1990 paper the rto value is changed to:
631          *      RTO = rtt + 4 * mdev
632          *
633          * Funny. This algorithm seems to be very broken.
634          * These formulae increase RTO, when it should be decreased, increase
635          * too slowly, when it should be increased quickly, decrease too quickly
636          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637          * does not matter how to _calculate_ it. Seems, it was trap
638          * that VJ failed to avoid. 8)
639          */
640         if (m == 0)
641                 m = 1;
642         if (tp->srtt != 0) {
643                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
644                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
645                 if (m < 0) {
646                         m = -m;         /* m is now abs(error) */
647                         m -= (tp->mdev >> 2);   /* similar update on mdev */
648                         /* This is similar to one of Eifel findings.
649                          * Eifel blocks mdev updates when rtt decreases.
650                          * This solution is a bit different: we use finer gain
651                          * for mdev in this case (alpha*beta).
652                          * Like Eifel it also prevents growth of rto,
653                          * but also it limits too fast rto decreases,
654                          * happening in pure Eifel.
655                          */
656                         if (m > 0)
657                                 m >>= 3;
658                 } else {
659                         m -= (tp->mdev >> 2);   /* similar update on mdev */
660                 }
661                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
662                 if (tp->mdev > tp->mdev_max) {
663                         tp->mdev_max = tp->mdev;
664                         if (tp->mdev_max > tp->rttvar)
665                                 tp->rttvar = tp->mdev_max;
666                 }
667                 if (after(tp->snd_una, tp->rtt_seq)) {
668                         if (tp->mdev_max < tp->rttvar)
669                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
670                         tp->rtt_seq = tp->snd_nxt;
671                         tp->mdev_max = tcp_rto_min(sk);
672                 }
673         } else {
674                 /* no previous measure. */
675                 tp->srtt = m << 3;      /* take the measured time to be rtt */
676                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
677                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
678                 tp->rtt_seq = tp->snd_nxt;
679         }
680 }
681
682 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
683  * routine referred to above.
684  */
685 static inline void tcp_set_rto(struct sock *sk)
686 {
687         const struct tcp_sock *tp = tcp_sk(sk);
688         /* Old crap is replaced with new one. 8)
689          *
690          * More seriously:
691          * 1. If rtt variance happened to be less 50msec, it is hallucination.
692          *    It cannot be less due to utterly erratic ACK generation made
693          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694          *    to do with delayed acks, because at cwnd>2 true delack timeout
695          *    is invisible. Actually, Linux-2.4 also generates erratic
696          *    ACKs in some circumstances.
697          */
698         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
699
700         /* 2. Fixups made earlier cannot be right.
701          *    If we do not estimate RTO correctly without them,
702          *    all the algo is pure shit and should be replaced
703          *    with correct one. It is exactly, which we pretend to do.
704          */
705
706         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707          * guarantees that rto is higher.
708          */
709         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
710                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
711 }
712
713 /* Save metrics learned by this TCP session.
714    This function is called only, when TCP finishes successfully
715    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
716  */
717 void tcp_update_metrics(struct sock *sk)
718 {
719         struct tcp_sock *tp = tcp_sk(sk);
720         struct dst_entry *dst = __sk_dst_get(sk);
721
722         if (sysctl_tcp_nometrics_save)
723                 return;
724
725         dst_confirm(dst);
726
727         if (dst && (dst->flags & DST_HOST)) {
728                 const struct inet_connection_sock *icsk = inet_csk(sk);
729                 int m;
730                 unsigned long rtt;
731
732                 if (icsk->icsk_backoff || !tp->srtt) {
733                         /* This session failed to estimate rtt. Why?
734                          * Probably, no packets returned in time.
735                          * Reset our results.
736                          */
737                         if (!(dst_metric_locked(dst, RTAX_RTT)))
738                                 dst->metrics[RTAX_RTT - 1] = 0;
739                         return;
740                 }
741
742                 rtt = dst_metric_rtt(dst, RTAX_RTT);
743                 m = rtt - tp->srtt;
744
745                 /* If newly calculated rtt larger than stored one,
746                  * store new one. Otherwise, use EWMA. Remember,
747                  * rtt overestimation is always better than underestimation.
748                  */
749                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
750                         if (m <= 0)
751                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
752                         else
753                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
754                 }
755
756                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
757                         unsigned long var;
758                         if (m < 0)
759                                 m = -m;
760
761                         /* Scale deviation to rttvar fixed point */
762                         m >>= 1;
763                         if (m < tp->mdev)
764                                 m = tp->mdev;
765
766                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
767                         if (m >= var)
768                                 var = m;
769                         else
770                                 var -= (var - m) >> 2;
771
772                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
773                 }
774
775                 if (tp->snd_ssthresh >= 0xFFFF) {
776                         /* Slow start still did not finish. */
777                         if (dst_metric(dst, RTAX_SSTHRESH) &&
778                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
779                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
780                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
781                         if (!dst_metric_locked(dst, RTAX_CWND) &&
782                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
783                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
784                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
785                            icsk->icsk_ca_state == TCP_CA_Open) {
786                         /* Cong. avoidance phase, cwnd is reliable. */
787                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
788                                 dst->metrics[RTAX_SSTHRESH-1] =
789                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
790                         if (!dst_metric_locked(dst, RTAX_CWND))
791                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
792                 } else {
793                         /* Else slow start did not finish, cwnd is non-sense,
794                            ssthresh may be also invalid.
795                          */
796                         if (!dst_metric_locked(dst, RTAX_CWND))
797                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
798                         if (dst_metric(dst, RTAX_SSTHRESH) &&
799                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
800                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
801                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
802                 }
803
804                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
805                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
806                             tp->reordering != sysctl_tcp_reordering)
807                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
808                 }
809         }
810 }
811
812 /* Numbers are taken from RFC3390.
813  *
814  * John Heffner states:
815  *
816  *      The RFC specifies a window of no more than 4380 bytes
817  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
818  *      is a bit misleading because they use a clamp at 4380 bytes
819  *      rather than use a multiplier in the relevant range.
820  */
821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
822 {
823         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
824
825         if (!cwnd) {
826                 if (tp->mss_cache > 1460)
827                         cwnd = 2;
828                 else
829                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
830         }
831         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
832 }
833
834 /* Set slow start threshold and cwnd not falling to slow start */
835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
836 {
837         struct tcp_sock *tp = tcp_sk(sk);
838         const struct inet_connection_sock *icsk = inet_csk(sk);
839
840         tp->prior_ssthresh = 0;
841         tp->bytes_acked = 0;
842         if (icsk->icsk_ca_state < TCP_CA_CWR) {
843                 tp->undo_marker = 0;
844                 if (set_ssthresh)
845                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
846                 tp->snd_cwnd = min(tp->snd_cwnd,
847                                    tcp_packets_in_flight(tp) + 1U);
848                 tp->snd_cwnd_cnt = 0;
849                 tp->high_seq = tp->snd_nxt;
850                 tp->snd_cwnd_stamp = tcp_time_stamp;
851                 TCP_ECN_queue_cwr(tp);
852
853                 tcp_set_ca_state(sk, TCP_CA_CWR);
854         }
855 }
856
857 /*
858  * Packet counting of FACK is based on in-order assumptions, therefore TCP
859  * disables it when reordering is detected
860  */
861 static void tcp_disable_fack(struct tcp_sock *tp)
862 {
863         /* RFC3517 uses different metric in lost marker => reset on change */
864         if (tcp_is_fack(tp))
865                 tp->lost_skb_hint = NULL;
866         tp->rx_opt.sack_ok &= ~2;
867 }
868
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872         tp->rx_opt.sack_ok |= 4;
873 }
874
875 /* Initialize metrics on socket. */
876
877 static void tcp_init_metrics(struct sock *sk)
878 {
879         struct tcp_sock *tp = tcp_sk(sk);
880         struct dst_entry *dst = __sk_dst_get(sk);
881
882         if (dst == NULL)
883                 goto reset;
884
885         dst_confirm(dst);
886
887         if (dst_metric_locked(dst, RTAX_CWND))
888                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889         if (dst_metric(dst, RTAX_SSTHRESH)) {
890                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
893         }
894         if (dst_metric(dst, RTAX_REORDERING) &&
895             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896                 tcp_disable_fack(tp);
897                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898         }
899
900         if (dst_metric(dst, RTAX_RTT) == 0)
901                 goto reset;
902
903         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904                 goto reset;
905
906         /* Initial rtt is determined from SYN,SYN-ACK.
907          * The segment is small and rtt may appear much
908          * less than real one. Use per-dst memory
909          * to make it more realistic.
910          *
911          * A bit of theory. RTT is time passed after "normal" sized packet
912          * is sent until it is ACKed. In normal circumstances sending small
913          * packets force peer to delay ACKs and calculation is correct too.
914          * The algorithm is adaptive and, provided we follow specs, it
915          * NEVER underestimate RTT. BUT! If peer tries to make some clever
916          * tricks sort of "quick acks" for time long enough to decrease RTT
917          * to low value, and then abruptly stops to do it and starts to delay
918          * ACKs, wait for troubles.
919          */
920         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
921                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
922                 tp->rtt_seq = tp->snd_nxt;
923         }
924         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
925                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
926                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
927         }
928         tcp_set_rto(sk);
929         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
930                 goto reset;
931         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932         tp->snd_cwnd_stamp = tcp_time_stamp;
933         return;
934
935 reset:
936         /* Play conservative. If timestamps are not
937          * supported, TCP will fail to recalculate correct
938          * rtt, if initial rto is too small. FORGET ALL AND RESET!
939          */
940         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
941                 tp->srtt = 0;
942                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
943                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
944         }
945 }
946
947 static void tcp_update_reordering(struct sock *sk, const int metric,
948                                   const int ts)
949 {
950         struct tcp_sock *tp = tcp_sk(sk);
951         if (metric > tp->reordering) {
952                 int mib_idx;
953
954                 tp->reordering = min(TCP_MAX_REORDERING, metric);
955
956                 /* This exciting event is worth to be remembered. 8) */
957                 if (ts)
958                         mib_idx = LINUX_MIB_TCPTSREORDER;
959                 else if (tcp_is_reno(tp))
960                         mib_idx = LINUX_MIB_TCPRENOREORDER;
961                 else if (tcp_is_fack(tp))
962                         mib_idx = LINUX_MIB_TCPFACKREORDER;
963                 else
964                         mib_idx = LINUX_MIB_TCPSACKREORDER;
965
966                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
967 #if FASTRETRANS_DEBUG > 1
968                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
969                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
970                        tp->reordering,
971                        tp->fackets_out,
972                        tp->sacked_out,
973                        tp->undo_marker ? tp->undo_retrans : 0);
974 #endif
975                 tcp_disable_fack(tp);
976         }
977 }
978
979 /* This must be called before lost_out is incremented */
980 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
981 {
982         if ((tp->retransmit_skb_hint == NULL) ||
983             before(TCP_SKB_CB(skb)->seq,
984                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
985                 tp->retransmit_skb_hint = skb;
986
987         if (!tp->lost_out ||
988             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
989                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
990 }
991
992 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
993 {
994         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
995                 tcp_verify_retransmit_hint(tp, skb);
996
997                 tp->lost_out += tcp_skb_pcount(skb);
998                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
999         }
1000 }
1001
1002 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1003                                             struct sk_buff *skb)
1004 {
1005         tcp_verify_retransmit_hint(tp, skb);
1006
1007         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1008                 tp->lost_out += tcp_skb_pcount(skb);
1009                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1010         }
1011 }
1012
1013 /* This procedure tags the retransmission queue when SACKs arrive.
1014  *
1015  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1016  * Packets in queue with these bits set are counted in variables
1017  * sacked_out, retrans_out and lost_out, correspondingly.
1018  *
1019  * Valid combinations are:
1020  * Tag  InFlight        Description
1021  * 0    1               - orig segment is in flight.
1022  * S    0               - nothing flies, orig reached receiver.
1023  * L    0               - nothing flies, orig lost by net.
1024  * R    2               - both orig and retransmit are in flight.
1025  * L|R  1               - orig is lost, retransmit is in flight.
1026  * S|R  1               - orig reached receiver, retrans is still in flight.
1027  * (L|S|R is logically valid, it could occur when L|R is sacked,
1028  *  but it is equivalent to plain S and code short-curcuits it to S.
1029  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1030  *
1031  * These 6 states form finite state machine, controlled by the following events:
1032  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1033  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1034  * 3. Loss detection event of one of three flavors:
1035  *      A. Scoreboard estimator decided the packet is lost.
1036  *         A'. Reno "three dupacks" marks head of queue lost.
1037  *         A''. Its FACK modfication, head until snd.fack is lost.
1038  *      B. SACK arrives sacking data transmitted after never retransmitted
1039  *         hole was sent out.
1040  *      C. SACK arrives sacking SND.NXT at the moment, when the
1041  *         segment was retransmitted.
1042  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1043  *
1044  * It is pleasant to note, that state diagram turns out to be commutative,
1045  * so that we are allowed not to be bothered by order of our actions,
1046  * when multiple events arrive simultaneously. (see the function below).
1047  *
1048  * Reordering detection.
1049  * --------------------
1050  * Reordering metric is maximal distance, which a packet can be displaced
1051  * in packet stream. With SACKs we can estimate it:
1052  *
1053  * 1. SACK fills old hole and the corresponding segment was not
1054  *    ever retransmitted -> reordering. Alas, we cannot use it
1055  *    when segment was retransmitted.
1056  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1057  *    for retransmitted and already SACKed segment -> reordering..
1058  * Both of these heuristics are not used in Loss state, when we cannot
1059  * account for retransmits accurately.
1060  *
1061  * SACK block validation.
1062  * ----------------------
1063  *
1064  * SACK block range validation checks that the received SACK block fits to
1065  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1066  * Note that SND.UNA is not included to the range though being valid because
1067  * it means that the receiver is rather inconsistent with itself reporting
1068  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1069  * perfectly valid, however, in light of RFC2018 which explicitly states
1070  * that "SACK block MUST reflect the newest segment.  Even if the newest
1071  * segment is going to be discarded ...", not that it looks very clever
1072  * in case of head skb. Due to potentional receiver driven attacks, we
1073  * choose to avoid immediate execution of a walk in write queue due to
1074  * reneging and defer head skb's loss recovery to standard loss recovery
1075  * procedure that will eventually trigger (nothing forbids us doing this).
1076  *
1077  * Implements also blockage to start_seq wrap-around. Problem lies in the
1078  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1079  * there's no guarantee that it will be before snd_nxt (n). The problem
1080  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1081  * wrap (s_w):
1082  *
1083  *         <- outs wnd ->                          <- wrapzone ->
1084  *         u     e      n                         u_w   e_w  s n_w
1085  *         |     |      |                          |     |   |  |
1086  * |<------------+------+----- TCP seqno space --------------+---------->|
1087  * ...-- <2^31 ->|                                           |<--------...
1088  * ...---- >2^31 ------>|                                    |<--------...
1089  *
1090  * Current code wouldn't be vulnerable but it's better still to discard such
1091  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1092  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1093  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1094  * equal to the ideal case (infinite seqno space without wrap caused issues).
1095  *
1096  * With D-SACK the lower bound is extended to cover sequence space below
1097  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1098  * again, D-SACK block must not to go across snd_una (for the same reason as
1099  * for the normal SACK blocks, explained above). But there all simplicity
1100  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1101  * fully below undo_marker they do not affect behavior in anyway and can
1102  * therefore be safely ignored. In rare cases (which are more or less
1103  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1104  * fragmentation and packet reordering past skb's retransmission. To consider
1105  * them correctly, the acceptable range must be extended even more though
1106  * the exact amount is rather hard to quantify. However, tp->max_window can
1107  * be used as an exaggerated estimate.
1108  */
1109 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1110                                   u32 start_seq, u32 end_seq)
1111 {
1112         /* Too far in future, or reversed (interpretation is ambiguous) */
1113         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1114                 return 0;
1115
1116         /* Nasty start_seq wrap-around check (see comments above) */
1117         if (!before(start_seq, tp->snd_nxt))
1118                 return 0;
1119
1120         /* In outstanding window? ...This is valid exit for D-SACKs too.
1121          * start_seq == snd_una is non-sensical (see comments above)
1122          */
1123         if (after(start_seq, tp->snd_una))
1124                 return 1;
1125
1126         if (!is_dsack || !tp->undo_marker)
1127                 return 0;
1128
1129         /* ...Then it's D-SACK, and must reside below snd_una completely */
1130         if (!after(end_seq, tp->snd_una))
1131                 return 0;
1132
1133         if (!before(start_seq, tp->undo_marker))
1134                 return 1;
1135
1136         /* Too old */
1137         if (!after(end_seq, tp->undo_marker))
1138                 return 0;
1139
1140         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1141          *   start_seq < undo_marker and end_seq >= undo_marker.
1142          */
1143         return !before(start_seq, end_seq - tp->max_window);
1144 }
1145
1146 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1147  * Event "C". Later note: FACK people cheated me again 8), we have to account
1148  * for reordering! Ugly, but should help.
1149  *
1150  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1151  * less than what is now known to be received by the other end (derived from
1152  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1153  * retransmitted skbs to avoid some costly processing per ACKs.
1154  */
1155 static void tcp_mark_lost_retrans(struct sock *sk)
1156 {
1157         const struct inet_connection_sock *icsk = inet_csk(sk);
1158         struct tcp_sock *tp = tcp_sk(sk);
1159         struct sk_buff *skb;
1160         int cnt = 0;
1161         u32 new_low_seq = tp->snd_nxt;
1162         u32 received_upto = tcp_highest_sack_seq(tp);
1163
1164         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1165             !after(received_upto, tp->lost_retrans_low) ||
1166             icsk->icsk_ca_state != TCP_CA_Recovery)
1167                 return;
1168
1169         tcp_for_write_queue(skb, sk) {
1170                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1171
1172                 if (skb == tcp_send_head(sk))
1173                         break;
1174                 if (cnt == tp->retrans_out)
1175                         break;
1176                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1177                         continue;
1178
1179                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1180                         continue;
1181
1182                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1183                  * constraint here (see above) but figuring out that at
1184                  * least tp->reordering SACK blocks reside between ack_seq
1185                  * and received_upto is not easy task to do cheaply with
1186                  * the available datastructures.
1187                  *
1188                  * Whether FACK should check here for tp->reordering segs
1189                  * in-between one could argue for either way (it would be
1190                  * rather simple to implement as we could count fack_count
1191                  * during the walk and do tp->fackets_out - fack_count).
1192                  */
1193                 if (after(received_upto, ack_seq)) {
1194                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1195                         tp->retrans_out -= tcp_skb_pcount(skb);
1196
1197                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1198                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1199                 } else {
1200                         if (before(ack_seq, new_low_seq))
1201                                 new_low_seq = ack_seq;
1202                         cnt += tcp_skb_pcount(skb);
1203                 }
1204         }
1205
1206         if (tp->retrans_out)
1207                 tp->lost_retrans_low = new_low_seq;
1208 }
1209
1210 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1211                            struct tcp_sack_block_wire *sp, int num_sacks,
1212                            u32 prior_snd_una)
1213 {
1214         struct tcp_sock *tp = tcp_sk(sk);
1215         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1216         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1217         int dup_sack = 0;
1218
1219         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1220                 dup_sack = 1;
1221                 tcp_dsack_seen(tp);
1222                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1223         } else if (num_sacks > 1) {
1224                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1225                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1226
1227                 if (!after(end_seq_0, end_seq_1) &&
1228                     !before(start_seq_0, start_seq_1)) {
1229                         dup_sack = 1;
1230                         tcp_dsack_seen(tp);
1231                         NET_INC_STATS_BH(sock_net(sk),
1232                                         LINUX_MIB_TCPDSACKOFORECV);
1233                 }
1234         }
1235
1236         /* D-SACK for already forgotten data... Do dumb counting. */
1237         if (dup_sack &&
1238             !after(end_seq_0, prior_snd_una) &&
1239             after(end_seq_0, tp->undo_marker))
1240                 tp->undo_retrans--;
1241
1242         return dup_sack;
1243 }
1244
1245 struct tcp_sacktag_state {
1246         int reord;
1247         int fack_count;
1248         int flag;
1249 };
1250
1251 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1252  * the incoming SACK may not exactly match but we can find smaller MSS
1253  * aligned portion of it that matches. Therefore we might need to fragment
1254  * which may fail and creates some hassle (caller must handle error case
1255  * returns).
1256  *
1257  * FIXME: this could be merged to shift decision code
1258  */
1259 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1260                                  u32 start_seq, u32 end_seq)
1261 {
1262         int in_sack, err;
1263         unsigned int pkt_len;
1264         unsigned int mss;
1265
1266         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1267                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1268
1269         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1270             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1271                 mss = tcp_skb_mss(skb);
1272                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1273
1274                 if (!in_sack) {
1275                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1276                         if (pkt_len < mss)
1277                                 pkt_len = mss;
1278                 } else {
1279                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1280                         if (pkt_len < mss)
1281                                 return -EINVAL;
1282                 }
1283
1284                 /* Round if necessary so that SACKs cover only full MSSes
1285                  * and/or the remaining small portion (if present)
1286                  */
1287                 if (pkt_len > mss) {
1288                         unsigned int new_len = (pkt_len / mss) * mss;
1289                         if (!in_sack && new_len < pkt_len) {
1290                                 new_len += mss;
1291                                 if (new_len > skb->len)
1292                                         return 0;
1293                         }
1294                         pkt_len = new_len;
1295                 }
1296                 err = tcp_fragment(sk, skb, pkt_len, mss);
1297                 if (err < 0)
1298                         return err;
1299         }
1300
1301         return in_sack;
1302 }
1303
1304 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1305                           struct tcp_sacktag_state *state,
1306                           int dup_sack, int pcount)
1307 {
1308         struct tcp_sock *tp = tcp_sk(sk);
1309         u8 sacked = TCP_SKB_CB(skb)->sacked;
1310         int fack_count = state->fack_count;
1311
1312         /* Account D-SACK for retransmitted packet. */
1313         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1314                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1315                         tp->undo_retrans--;
1316                 if (sacked & TCPCB_SACKED_ACKED)
1317                         state->reord = min(fack_count, state->reord);
1318         }
1319
1320         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1321         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1322                 return sacked;
1323
1324         if (!(sacked & TCPCB_SACKED_ACKED)) {
1325                 if (sacked & TCPCB_SACKED_RETRANS) {
1326                         /* If the segment is not tagged as lost,
1327                          * we do not clear RETRANS, believing
1328                          * that retransmission is still in flight.
1329                          */
1330                         if (sacked & TCPCB_LOST) {
1331                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1332                                 tp->lost_out -= pcount;
1333                                 tp->retrans_out -= pcount;
1334                         }
1335                 } else {
1336                         if (!(sacked & TCPCB_RETRANS)) {
1337                                 /* New sack for not retransmitted frame,
1338                                  * which was in hole. It is reordering.
1339                                  */
1340                                 if (before(TCP_SKB_CB(skb)->seq,
1341                                            tcp_highest_sack_seq(tp)))
1342                                         state->reord = min(fack_count,
1343                                                            state->reord);
1344
1345                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1346                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1347                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1348                         }
1349
1350                         if (sacked & TCPCB_LOST) {
1351                                 sacked &= ~TCPCB_LOST;
1352                                 tp->lost_out -= pcount;
1353                         }
1354                 }
1355
1356                 sacked |= TCPCB_SACKED_ACKED;
1357                 state->flag |= FLAG_DATA_SACKED;
1358                 tp->sacked_out += pcount;
1359
1360                 fack_count += pcount;
1361
1362                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1363                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1364                     before(TCP_SKB_CB(skb)->seq,
1365                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1366                         tp->lost_cnt_hint += pcount;
1367
1368                 if (fack_count > tp->fackets_out)
1369                         tp->fackets_out = fack_count;
1370         }
1371
1372         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1373          * frames and clear it. undo_retrans is decreased above, L|R frames
1374          * are accounted above as well.
1375          */
1376         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1377                 sacked &= ~TCPCB_SACKED_RETRANS;
1378                 tp->retrans_out -= pcount;
1379         }
1380
1381         return sacked;
1382 }
1383
1384 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1385                            struct tcp_sacktag_state *state,
1386                            unsigned int pcount, int shifted, int mss,
1387                            int dup_sack)
1388 {
1389         struct tcp_sock *tp = tcp_sk(sk);
1390         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1391
1392         BUG_ON(!pcount);
1393
1394         /* Tweak before seqno plays */
1395         if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1396             !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1397                 tp->lost_cnt_hint += pcount;
1398
1399         TCP_SKB_CB(prev)->end_seq += shifted;
1400         TCP_SKB_CB(skb)->seq += shifted;
1401
1402         skb_shinfo(prev)->gso_segs += pcount;
1403         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1404         skb_shinfo(skb)->gso_segs -= pcount;
1405
1406         /* When we're adding to gso_segs == 1, gso_size will be zero,
1407          * in theory this shouldn't be necessary but as long as DSACK
1408          * code can come after this skb later on it's better to keep
1409          * setting gso_size to something.
1410          */
1411         if (!skb_shinfo(prev)->gso_size) {
1412                 skb_shinfo(prev)->gso_size = mss;
1413                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1414         }
1415
1416         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1417         if (skb_shinfo(skb)->gso_segs <= 1) {
1418                 skb_shinfo(skb)->gso_size = 0;
1419                 skb_shinfo(skb)->gso_type = 0;
1420         }
1421
1422         /* We discard results */
1423         tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1424
1425         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1426         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1427
1428         if (skb->len > 0) {
1429                 BUG_ON(!tcp_skb_pcount(skb));
1430                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1431                 return 0;
1432         }
1433
1434         /* Whole SKB was eaten :-) */
1435
1436         if (skb == tp->retransmit_skb_hint)
1437                 tp->retransmit_skb_hint = prev;
1438         if (skb == tp->scoreboard_skb_hint)
1439                 tp->scoreboard_skb_hint = prev;
1440         if (skb == tp->lost_skb_hint) {
1441                 tp->lost_skb_hint = prev;
1442                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1443         }
1444
1445         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1446         if (skb == tcp_highest_sack(sk))
1447                 tcp_advance_highest_sack(sk, skb);
1448
1449         tcp_unlink_write_queue(skb, sk);
1450         sk_wmem_free_skb(sk, skb);
1451
1452         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1453
1454         return 1;
1455 }
1456
1457 /* I wish gso_size would have a bit more sane initialization than
1458  * something-or-zero which complicates things
1459  */
1460 static int tcp_skb_seglen(struct sk_buff *skb)
1461 {
1462         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1463 }
1464
1465 /* Shifting pages past head area doesn't work */
1466 static int skb_can_shift(struct sk_buff *skb)
1467 {
1468         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1469 }
1470
1471 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1472  * skb.
1473  */
1474 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1475                                           struct tcp_sacktag_state *state,
1476                                           u32 start_seq, u32 end_seq,
1477                                           int dup_sack)
1478 {
1479         struct tcp_sock *tp = tcp_sk(sk);
1480         struct sk_buff *prev;
1481         int mss;
1482         int pcount = 0;
1483         int len;
1484         int in_sack;
1485
1486         if (!sk_can_gso(sk))
1487                 goto fallback;
1488
1489         /* Normally R but no L won't result in plain S */
1490         if (!dup_sack &&
1491             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1492                 goto fallback;
1493         if (!skb_can_shift(skb))
1494                 goto fallback;
1495         /* This frame is about to be dropped (was ACKed). */
1496         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1497                 goto fallback;
1498
1499         /* Can only happen with delayed DSACK + discard craziness */
1500         if (unlikely(skb == tcp_write_queue_head(sk)))
1501                 goto fallback;
1502         prev = tcp_write_queue_prev(sk, skb);
1503
1504         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1505                 goto fallback;
1506
1507         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1508                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1509
1510         if (in_sack) {
1511                 len = skb->len;
1512                 pcount = tcp_skb_pcount(skb);
1513                 mss = tcp_skb_seglen(skb);
1514
1515                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1516                  * drop this restriction as unnecessary
1517                  */
1518                 if (mss != tcp_skb_seglen(prev))
1519                         goto fallback;
1520         } else {
1521                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1522                         goto noop;
1523                 /* CHECKME: This is non-MSS split case only?, this will
1524                  * cause skipped skbs due to advancing loop btw, original
1525                  * has that feature too
1526                  */
1527                 if (tcp_skb_pcount(skb) <= 1)
1528                         goto noop;
1529
1530                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1531                 if (!in_sack) {
1532                         /* TODO: head merge to next could be attempted here
1533                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1534                          * though it might not be worth of the additional hassle
1535                          *
1536                          * ...we can probably just fallback to what was done
1537                          * previously. We could try merging non-SACKed ones
1538                          * as well but it probably isn't going to buy off
1539                          * because later SACKs might again split them, and
1540                          * it would make skb timestamp tracking considerably
1541                          * harder problem.
1542                          */
1543                         goto fallback;
1544                 }
1545
1546                 len = end_seq - TCP_SKB_CB(skb)->seq;
1547                 BUG_ON(len < 0);
1548                 BUG_ON(len > skb->len);
1549
1550                 /* MSS boundaries should be honoured or else pcount will
1551                  * severely break even though it makes things bit trickier.
1552                  * Optimize common case to avoid most of the divides
1553                  */
1554                 mss = tcp_skb_mss(skb);
1555
1556                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1557                  * drop this restriction as unnecessary
1558                  */
1559                 if (mss != tcp_skb_seglen(prev))
1560                         goto fallback;
1561
1562                 if (len == mss) {
1563                         pcount = 1;
1564                 } else if (len < mss) {
1565                         goto noop;
1566                 } else {
1567                         pcount = len / mss;
1568                         len = pcount * mss;
1569                 }
1570         }
1571
1572         if (!skb_shift(prev, skb, len))
1573                 goto fallback;
1574         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1575                 goto out;
1576
1577         /* Hole filled allows collapsing with the next as well, this is very
1578          * useful when hole on every nth skb pattern happens
1579          */
1580         if (prev == tcp_write_queue_tail(sk))
1581                 goto out;
1582         skb = tcp_write_queue_next(sk, prev);
1583
1584         if (!skb_can_shift(skb) ||
1585             (skb == tcp_send_head(sk)) ||
1586             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1587             (mss != tcp_skb_seglen(skb)))
1588                 goto out;
1589
1590         len = skb->len;
1591         if (skb_shift(prev, skb, len)) {
1592                 pcount += tcp_skb_pcount(skb);
1593                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1594         }
1595
1596 out:
1597         state->fack_count += pcount;
1598         return prev;
1599
1600 noop:
1601         return skb;
1602
1603 fallback:
1604         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1605         return NULL;
1606 }
1607
1608 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1609                                         struct tcp_sack_block *next_dup,
1610                                         struct tcp_sacktag_state *state,
1611                                         u32 start_seq, u32 end_seq,
1612                                         int dup_sack_in)
1613 {
1614         struct tcp_sock *tp = tcp_sk(sk);
1615         struct sk_buff *tmp;
1616
1617         tcp_for_write_queue_from(skb, sk) {
1618                 int in_sack = 0;
1619                 int dup_sack = dup_sack_in;
1620
1621                 if (skb == tcp_send_head(sk))
1622                         break;
1623
1624                 /* queue is in-order => we can short-circuit the walk early */
1625                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1626                         break;
1627
1628                 if ((next_dup != NULL) &&
1629                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1630                         in_sack = tcp_match_skb_to_sack(sk, skb,
1631                                                         next_dup->start_seq,
1632                                                         next_dup->end_seq);
1633                         if (in_sack > 0)
1634                                 dup_sack = 1;
1635                 }
1636
1637                 /* skb reference here is a bit tricky to get right, since
1638                  * shifting can eat and free both this skb and the next,
1639                  * so not even _safe variant of the loop is enough.
1640                  */
1641                 if (in_sack <= 0) {
1642                         tmp = tcp_shift_skb_data(sk, skb, state,
1643                                                  start_seq, end_seq, dup_sack);
1644                         if (tmp != NULL) {
1645                                 if (tmp != skb) {
1646                                         skb = tmp;
1647                                         continue;
1648                                 }
1649
1650                                 in_sack = 0;
1651                         } else {
1652                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1653                                                                 start_seq,
1654                                                                 end_seq);
1655                         }
1656                 }
1657
1658                 if (unlikely(in_sack < 0))
1659                         break;
1660
1661                 if (in_sack) {
1662                         TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1663                                                                   state,
1664                                                                   dup_sack,
1665                                                                   tcp_skb_pcount(skb));
1666
1667                         if (!before(TCP_SKB_CB(skb)->seq,
1668                                     tcp_highest_sack_seq(tp)))
1669                                 tcp_advance_highest_sack(sk, skb);
1670                 }
1671
1672                 state->fack_count += tcp_skb_pcount(skb);
1673         }
1674         return skb;
1675 }
1676
1677 /* Avoid all extra work that is being done by sacktag while walking in
1678  * a normal way
1679  */
1680 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1681                                         struct tcp_sacktag_state *state,
1682                                         u32 skip_to_seq)
1683 {
1684         tcp_for_write_queue_from(skb, sk) {
1685                 if (skb == tcp_send_head(sk))
1686                         break;
1687
1688                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1689                         break;
1690
1691                 state->fack_count += tcp_skb_pcount(skb);
1692         }
1693         return skb;
1694 }
1695
1696 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1697                                                 struct sock *sk,
1698                                                 struct tcp_sack_block *next_dup,
1699                                                 struct tcp_sacktag_state *state,
1700                                                 u32 skip_to_seq)
1701 {
1702         if (next_dup == NULL)
1703                 return skb;
1704
1705         if (before(next_dup->start_seq, skip_to_seq)) {
1706                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1707                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1708                                        next_dup->start_seq, next_dup->end_seq,
1709                                        1);
1710         }
1711
1712         return skb;
1713 }
1714
1715 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1716 {
1717         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1718 }
1719
1720 static int
1721 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1722                         u32 prior_snd_una)
1723 {
1724         const struct inet_connection_sock *icsk = inet_csk(sk);
1725         struct tcp_sock *tp = tcp_sk(sk);
1726         unsigned char *ptr = (skb_transport_header(ack_skb) +
1727                               TCP_SKB_CB(ack_skb)->sacked);
1728         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1729         struct tcp_sack_block sp[TCP_NUM_SACKS];
1730         struct tcp_sack_block *cache;
1731         struct tcp_sacktag_state state;
1732         struct sk_buff *skb;
1733         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1734         int used_sacks;
1735         int found_dup_sack = 0;
1736         int i, j;
1737         int first_sack_index;
1738
1739         state.flag = 0;
1740         state.reord = tp->packets_out;
1741
1742         if (!tp->sacked_out) {
1743                 if (WARN_ON(tp->fackets_out))
1744                         tp->fackets_out = 0;
1745                 tcp_highest_sack_reset(sk);
1746         }
1747
1748         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1749                                          num_sacks, prior_snd_una);
1750         if (found_dup_sack)
1751                 state.flag |= FLAG_DSACKING_ACK;
1752
1753         /* Eliminate too old ACKs, but take into
1754          * account more or less fresh ones, they can
1755          * contain valid SACK info.
1756          */
1757         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1758                 return 0;
1759
1760         if (!tp->packets_out)
1761                 goto out;
1762
1763         used_sacks = 0;
1764         first_sack_index = 0;
1765         for (i = 0; i < num_sacks; i++) {
1766                 int dup_sack = !i && found_dup_sack;
1767
1768                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1769                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1770
1771                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1772                                             sp[used_sacks].start_seq,
1773                                             sp[used_sacks].end_seq)) {
1774                         int mib_idx;
1775
1776                         if (dup_sack) {
1777                                 if (!tp->undo_marker)
1778                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1779                                 else
1780                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1781                         } else {
1782                                 /* Don't count olds caused by ACK reordering */
1783                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1784                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1785                                         continue;
1786                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1787                         }
1788
1789                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1790                         if (i == 0)
1791                                 first_sack_index = -1;
1792                         continue;
1793                 }
1794
1795                 /* Ignore very old stuff early */
1796                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1797                         continue;
1798
1799                 used_sacks++;
1800         }
1801
1802         /* order SACK blocks to allow in order walk of the retrans queue */
1803         for (i = used_sacks - 1; i > 0; i--) {
1804                 for (j = 0; j < i; j++) {
1805                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1806                                 swap(sp[j], sp[j + 1]);
1807
1808                                 /* Track where the first SACK block goes to */
1809                                 if (j == first_sack_index)
1810                                         first_sack_index = j + 1;
1811                         }
1812                 }
1813         }
1814
1815         skb = tcp_write_queue_head(sk);
1816         state.fack_count = 0;
1817         i = 0;
1818
1819         if (!tp->sacked_out) {
1820                 /* It's already past, so skip checking against it */
1821                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1822         } else {
1823                 cache = tp->recv_sack_cache;
1824                 /* Skip empty blocks in at head of the cache */
1825                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1826                        !cache->end_seq)
1827                         cache++;
1828         }
1829
1830         while (i < used_sacks) {
1831                 u32 start_seq = sp[i].start_seq;
1832                 u32 end_seq = sp[i].end_seq;
1833                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1834                 struct tcp_sack_block *next_dup = NULL;
1835
1836                 if (found_dup_sack && ((i + 1) == first_sack_index))
1837                         next_dup = &sp[i + 1];
1838
1839                 /* Event "B" in the comment above. */
1840                 if (after(end_seq, tp->high_seq))
1841                         state.flag |= FLAG_DATA_LOST;
1842
1843                 /* Skip too early cached blocks */
1844                 while (tcp_sack_cache_ok(tp, cache) &&
1845                        !before(start_seq, cache->end_seq))
1846                         cache++;
1847
1848                 /* Can skip some work by looking recv_sack_cache? */
1849                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1850                     after(end_seq, cache->start_seq)) {
1851
1852                         /* Head todo? */
1853                         if (before(start_seq, cache->start_seq)) {
1854                                 skb = tcp_sacktag_skip(skb, sk, &state,
1855                                                        start_seq);
1856                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1857                                                        &state,
1858                                                        start_seq,
1859                                                        cache->start_seq,
1860                                                        dup_sack);
1861                         }
1862
1863                         /* Rest of the block already fully processed? */
1864                         if (!after(end_seq, cache->end_seq))
1865                                 goto advance_sp;
1866
1867                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1868                                                        &state,
1869                                                        cache->end_seq);
1870
1871                         /* ...tail remains todo... */
1872                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1873                                 /* ...but better entrypoint exists! */
1874                                 skb = tcp_highest_sack(sk);
1875                                 if (skb == NULL)
1876                                         break;
1877                                 state.fack_count = tp->fackets_out;
1878                                 cache++;
1879                                 goto walk;
1880                         }
1881
1882                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1883                         /* Check overlap against next cached too (past this one already) */
1884                         cache++;
1885                         continue;
1886                 }
1887
1888                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1889                         skb = tcp_highest_sack(sk);
1890                         if (skb == NULL)
1891                                 break;
1892                         state.fack_count = tp->fackets_out;
1893                 }
1894                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1895
1896 walk:
1897                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1898                                        start_seq, end_seq, dup_sack);
1899
1900 advance_sp:
1901                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1902                  * due to in-order walk
1903                  */
1904                 if (after(end_seq, tp->frto_highmark))
1905                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1906
1907                 i++;
1908         }
1909
1910         /* Clear the head of the cache sack blocks so we can skip it next time */
1911         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1912                 tp->recv_sack_cache[i].start_seq = 0;
1913                 tp->recv_sack_cache[i].end_seq = 0;
1914         }
1915         for (j = 0; j < used_sacks; j++)
1916                 tp->recv_sack_cache[i++] = sp[j];
1917
1918         tcp_mark_lost_retrans(sk);
1919
1920         tcp_verify_left_out(tp);
1921
1922         if ((state.reord < tp->fackets_out) &&
1923             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1924             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1925                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1926
1927 out:
1928
1929 #if FASTRETRANS_DEBUG > 0
1930         WARN_ON((int)tp->sacked_out < 0);
1931         WARN_ON((int)tp->lost_out < 0);
1932         WARN_ON((int)tp->retrans_out < 0);
1933         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1934 #endif
1935         return state.flag;
1936 }
1937
1938 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1939  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1940  */
1941 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1942 {
1943         u32 holes;
1944
1945         holes = max(tp->lost_out, 1U);
1946         holes = min(holes, tp->packets_out);
1947
1948         if ((tp->sacked_out + holes) > tp->packets_out) {
1949                 tp->sacked_out = tp->packets_out - holes;
1950                 return 1;
1951         }
1952         return 0;
1953 }
1954
1955 /* If we receive more dupacks than we expected counting segments
1956  * in assumption of absent reordering, interpret this as reordering.
1957  * The only another reason could be bug in receiver TCP.
1958  */
1959 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1960 {
1961         struct tcp_sock *tp = tcp_sk(sk);
1962         if (tcp_limit_reno_sacked(tp))
1963                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1964 }
1965
1966 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1967
1968 static void tcp_add_reno_sack(struct sock *sk)
1969 {
1970         struct tcp_sock *tp = tcp_sk(sk);
1971         tp->sacked_out++;
1972         tcp_check_reno_reordering(sk, 0);
1973         tcp_verify_left_out(tp);
1974 }
1975
1976 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1977
1978 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1979 {
1980         struct tcp_sock *tp = tcp_sk(sk);
1981
1982         if (acked > 0) {
1983                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1984                 if (acked - 1 >= tp->sacked_out)
1985                         tp->sacked_out = 0;
1986                 else
1987                         tp->sacked_out -= acked - 1;
1988         }
1989         tcp_check_reno_reordering(sk, acked);
1990         tcp_verify_left_out(tp);
1991 }
1992
1993 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1994 {
1995         tp->sacked_out = 0;
1996 }
1997
1998 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1999 {
2000         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2001 }
2002
2003 /* F-RTO can only be used if TCP has never retransmitted anything other than
2004  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2005  */
2006 int tcp_use_frto(struct sock *sk)
2007 {
2008         const struct tcp_sock *tp = tcp_sk(sk);
2009         const struct inet_connection_sock *icsk = inet_csk(sk);
2010         struct sk_buff *skb;
2011
2012         if (!sysctl_tcp_frto)
2013                 return 0;
2014
2015         /* MTU probe and F-RTO won't really play nicely along currently */
2016         if (icsk->icsk_mtup.probe_size)
2017                 return 0;
2018
2019         if (tcp_is_sackfrto(tp))
2020                 return 1;
2021
2022         /* Avoid expensive walking of rexmit queue if possible */
2023         if (tp->retrans_out > 1)
2024                 return 0;
2025
2026         skb = tcp_write_queue_head(sk);
2027         if (tcp_skb_is_last(sk, skb))
2028                 return 1;
2029         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2030         tcp_for_write_queue_from(skb, sk) {
2031                 if (skb == tcp_send_head(sk))
2032                         break;
2033                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2034                         return 0;
2035                 /* Short-circuit when first non-SACKed skb has been checked */
2036                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2037                         break;
2038         }
2039         return 1;
2040 }
2041
2042 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2043  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2044  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2045  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2046  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2047  * bits are handled if the Loss state is really to be entered (in
2048  * tcp_enter_frto_loss).
2049  *
2050  * Do like tcp_enter_loss() would; when RTO expires the second time it
2051  * does:
2052  *  "Reduce ssthresh if it has not yet been made inside this window."
2053  */
2054 void tcp_enter_frto(struct sock *sk)
2055 {
2056         const struct inet_connection_sock *icsk = inet_csk(sk);
2057         struct tcp_sock *tp = tcp_sk(sk);
2058         struct sk_buff *skb;
2059
2060         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2061             tp->snd_una == tp->high_seq ||
2062             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2063              !icsk->icsk_retransmits)) {
2064                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2065                 /* Our state is too optimistic in ssthresh() call because cwnd
2066                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2067                  * recovery has not yet completed. Pattern would be this: RTO,
2068                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2069                  * up here twice).
2070                  * RFC4138 should be more specific on what to do, even though
2071                  * RTO is quite unlikely to occur after the first Cumulative ACK
2072                  * due to back-off and complexity of triggering events ...
2073                  */
2074                 if (tp->frto_counter) {
2075                         u32 stored_cwnd;
2076                         stored_cwnd = tp->snd_cwnd;
2077                         tp->snd_cwnd = 2;
2078                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2079                         tp->snd_cwnd = stored_cwnd;
2080                 } else {
2081                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2082                 }
2083                 /* ... in theory, cong.control module could do "any tricks" in
2084                  * ssthresh(), which means that ca_state, lost bits and lost_out
2085                  * counter would have to be faked before the call occurs. We
2086                  * consider that too expensive, unlikely and hacky, so modules
2087                  * using these in ssthresh() must deal these incompatibility
2088                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2089                  */
2090                 tcp_ca_event(sk, CA_EVENT_FRTO);
2091         }
2092
2093         tp->undo_marker = tp->snd_una;
2094         tp->undo_retrans = 0;
2095
2096         skb = tcp_write_queue_head(sk);
2097         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2098                 tp->undo_marker = 0;
2099         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2100                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2101                 tp->retrans_out -= tcp_skb_pcount(skb);
2102         }
2103         tcp_verify_left_out(tp);
2104
2105         /* Too bad if TCP was application limited */
2106         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2107
2108         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2109          * The last condition is necessary at least in tp->frto_counter case.
2110          */
2111         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2112             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2113             after(tp->high_seq, tp->snd_una)) {
2114                 tp->frto_highmark = tp->high_seq;
2115         } else {
2116                 tp->frto_highmark = tp->snd_nxt;
2117         }
2118         tcp_set_ca_state(sk, TCP_CA_Disorder);
2119         tp->high_seq = tp->snd_nxt;
2120         tp->frto_counter = 1;
2121 }
2122
2123 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2124  * which indicates that we should follow the traditional RTO recovery,
2125  * i.e. mark everything lost and do go-back-N retransmission.
2126  */
2127 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2128 {
2129         struct tcp_sock *tp = tcp_sk(sk);
2130         struct sk_buff *skb;
2131
2132         tp->lost_out = 0;
2133         tp->retrans_out = 0;
2134         if (tcp_is_reno(tp))
2135                 tcp_reset_reno_sack(tp);
2136
2137         tcp_for_write_queue(skb, sk) {
2138                 if (skb == tcp_send_head(sk))
2139                         break;
2140
2141                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2142                 /*
2143                  * Count the retransmission made on RTO correctly (only when
2144                  * waiting for the first ACK and did not get it)...
2145                  */
2146                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2147                         /* For some reason this R-bit might get cleared? */
2148                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2149                                 tp->retrans_out += tcp_skb_pcount(skb);
2150                         /* ...enter this if branch just for the first segment */
2151                         flag |= FLAG_DATA_ACKED;
2152                 } else {
2153                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2154                                 tp->undo_marker = 0;
2155                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2156                 }
2157
2158                 /* Marking forward transmissions that were made after RTO lost
2159                  * can cause unnecessary retransmissions in some scenarios,
2160                  * SACK blocks will mitigate that in some but not in all cases.
2161                  * We used to not mark them but it was causing break-ups with
2162                  * receivers that do only in-order receival.
2163                  *
2164                  * TODO: we could detect presence of such receiver and select
2165                  * different behavior per flow.
2166                  */
2167                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2168                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2169                         tp->lost_out += tcp_skb_pcount(skb);
2170                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2171                 }
2172         }
2173         tcp_verify_left_out(tp);
2174
2175         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2176         tp->snd_cwnd_cnt = 0;
2177         tp->snd_cwnd_stamp = tcp_time_stamp;
2178         tp->frto_counter = 0;
2179         tp->bytes_acked = 0;
2180
2181         tp->reordering = min_t(unsigned int, tp->reordering,
2182                                sysctl_tcp_reordering);
2183         tcp_set_ca_state(sk, TCP_CA_Loss);
2184         tp->high_seq = tp->snd_nxt;
2185         TCP_ECN_queue_cwr(tp);
2186
2187         tcp_clear_all_retrans_hints(tp);
2188 }
2189
2190 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2191 {
2192         tp->retrans_out = 0;
2193         tp->lost_out = 0;
2194
2195         tp->undo_marker = 0;
2196         tp->undo_retrans = 0;
2197 }
2198
2199 void tcp_clear_retrans(struct tcp_sock *tp)
2200 {
2201         tcp_clear_retrans_partial(tp);
2202
2203         tp->fackets_out = 0;
2204         tp->sacked_out = 0;
2205 }
2206
2207 /* Enter Loss state. If "how" is not zero, forget all SACK information
2208  * and reset tags completely, otherwise preserve SACKs. If receiver
2209  * dropped its ofo queue, we will know this due to reneging detection.
2210  */
2211 void tcp_enter_loss(struct sock *sk, int how)
2212 {
2213         const struct inet_connection_sock *icsk = inet_csk(sk);
2214         struct tcp_sock *tp = tcp_sk(sk);
2215         struct sk_buff *skb;
2216
2217         /* Reduce ssthresh if it has not yet been made inside this window. */
2218         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2219             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2220                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2221                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2222                 tcp_ca_event(sk, CA_EVENT_LOSS);
2223         }
2224         tp->snd_cwnd       = 1;
2225         tp->snd_cwnd_cnt   = 0;
2226         tp->snd_cwnd_stamp = tcp_time_stamp;
2227
2228         tp->bytes_acked = 0;
2229         tcp_clear_retrans_partial(tp);
2230
2231         if (tcp_is_reno(tp))
2232                 tcp_reset_reno_sack(tp);
2233
2234         if (!how) {
2235                 /* Push undo marker, if it was plain RTO and nothing
2236                  * was retransmitted. */
2237                 tp->undo_marker = tp->snd_una;
2238         } else {
2239                 tp->sacked_out = 0;
2240                 tp->fackets_out = 0;
2241         }
2242         tcp_clear_all_retrans_hints(tp);
2243
2244         tcp_for_write_queue(skb, sk) {
2245                 if (skb == tcp_send_head(sk))
2246                         break;
2247
2248                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2249                         tp->undo_marker = 0;
2250                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2251                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2252                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2253                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2254                         tp->lost_out += tcp_skb_pcount(skb);
2255                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2256                 }
2257         }
2258         tcp_verify_left_out(tp);
2259
2260         tp->reordering = min_t(unsigned int, tp->reordering,
2261                                sysctl_tcp_reordering);
2262         tcp_set_ca_state(sk, TCP_CA_Loss);
2263         tp->high_seq = tp->snd_nxt;
2264         TCP_ECN_queue_cwr(tp);
2265         /* Abort F-RTO algorithm if one is in progress */
2266         tp->frto_counter = 0;
2267 }
2268
2269 /* If ACK arrived pointing to a remembered SACK, it means that our
2270  * remembered SACKs do not reflect real state of receiver i.e.
2271  * receiver _host_ is heavily congested (or buggy).
2272  *
2273  * Do processing similar to RTO timeout.
2274  */
2275 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2276 {
2277         if (flag & FLAG_SACK_RENEGING) {
2278                 struct inet_connection_sock *icsk = inet_csk(sk);
2279                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2280
2281                 tcp_enter_loss(sk, 1);
2282                 icsk->icsk_retransmits++;
2283                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2284                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2285                                           icsk->icsk_rto, TCP_RTO_MAX);
2286                 return 1;
2287         }
2288         return 0;
2289 }
2290
2291 static inline int tcp_fackets_out(struct tcp_sock *tp)
2292 {
2293         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2294 }
2295
2296 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2297  * counter when SACK is enabled (without SACK, sacked_out is used for
2298  * that purpose).
2299  *
2300  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2301  * segments up to the highest received SACK block so far and holes in
2302  * between them.
2303  *
2304  * With reordering, holes may still be in flight, so RFC3517 recovery
2305  * uses pure sacked_out (total number of SACKed segments) even though
2306  * it violates the RFC that uses duplicate ACKs, often these are equal
2307  * but when e.g. out-of-window ACKs or packet duplication occurs,
2308  * they differ. Since neither occurs due to loss, TCP should really
2309  * ignore them.
2310  */
2311 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2312 {
2313         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2314 }
2315
2316 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2317 {
2318         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2319 }
2320
2321 static inline int tcp_head_timedout(struct sock *sk)
2322 {
2323         struct tcp_sock *tp = tcp_sk(sk);
2324
2325         return tp->packets_out &&
2326                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2327 }
2328
2329 /* Linux NewReno/SACK/FACK/ECN state machine.
2330  * --------------------------------------
2331  *
2332  * "Open"       Normal state, no dubious events, fast path.
2333  * "Disorder"   In all the respects it is "Open",
2334  *              but requires a bit more attention. It is entered when
2335  *              we see some SACKs or dupacks. It is split of "Open"
2336  *              mainly to move some processing from fast path to slow one.
2337  * "CWR"        CWND was reduced due to some Congestion Notification event.
2338  *              It can be ECN, ICMP source quench, local device congestion.
2339  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2340  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2341  *
2342  * tcp_fastretrans_alert() is entered:
2343  * - each incoming ACK, if state is not "Open"
2344  * - when arrived ACK is unusual, namely:
2345  *      * SACK
2346  *      * Duplicate ACK.
2347  *      * ECN ECE.
2348  *
2349  * Counting packets in flight is pretty simple.
2350  *
2351  *      in_flight = packets_out - left_out + retrans_out
2352  *
2353  *      packets_out is SND.NXT-SND.UNA counted in packets.
2354  *
2355  *      retrans_out is number of retransmitted segments.
2356  *
2357  *      left_out is number of segments left network, but not ACKed yet.
2358  *
2359  *              left_out = sacked_out + lost_out
2360  *
2361  *     sacked_out: Packets, which arrived to receiver out of order
2362  *                 and hence not ACKed. With SACKs this number is simply
2363  *                 amount of SACKed data. Even without SACKs
2364  *                 it is easy to give pretty reliable estimate of this number,
2365  *                 counting duplicate ACKs.
2366  *
2367  *       lost_out: Packets lost by network. TCP has no explicit
2368  *                 "loss notification" feedback from network (for now).
2369  *                 It means that this number can be only _guessed_.
2370  *                 Actually, it is the heuristics to predict lossage that
2371  *                 distinguishes different algorithms.
2372  *
2373  *      F.e. after RTO, when all the queue is considered as lost,
2374  *      lost_out = packets_out and in_flight = retrans_out.
2375  *
2376  *              Essentially, we have now two algorithms counting
2377  *              lost packets.
2378  *
2379  *              FACK: It is the simplest heuristics. As soon as we decided
2380  *              that something is lost, we decide that _all_ not SACKed
2381  *              packets until the most forward SACK are lost. I.e.
2382  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2383  *              It is absolutely correct estimate, if network does not reorder
2384  *              packets. And it loses any connection to reality when reordering
2385  *              takes place. We use FACK by default until reordering
2386  *              is suspected on the path to this destination.
2387  *
2388  *              NewReno: when Recovery is entered, we assume that one segment
2389  *              is lost (classic Reno). While we are in Recovery and
2390  *              a partial ACK arrives, we assume that one more packet
2391  *              is lost (NewReno). This heuristics are the same in NewReno
2392  *              and SACK.
2393  *
2394  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2395  *  deflation etc. CWND is real congestion window, never inflated, changes
2396  *  only according to classic VJ rules.
2397  *
2398  * Really tricky (and requiring careful tuning) part of algorithm
2399  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2400  * The first determines the moment _when_ we should reduce CWND and,
2401  * hence, slow down forward transmission. In fact, it determines the moment
2402  * when we decide that hole is caused by loss, rather than by a reorder.
2403  *
2404  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2405  * holes, caused by lost packets.
2406  *
2407  * And the most logically complicated part of algorithm is undo
2408  * heuristics. We detect false retransmits due to both too early
2409  * fast retransmit (reordering) and underestimated RTO, analyzing
2410  * timestamps and D-SACKs. When we detect that some segments were
2411  * retransmitted by mistake and CWND reduction was wrong, we undo
2412  * window reduction and abort recovery phase. This logic is hidden
2413  * inside several functions named tcp_try_undo_<something>.
2414  */
2415
2416 /* This function decides, when we should leave Disordered state
2417  * and enter Recovery phase, reducing congestion window.
2418  *
2419  * Main question: may we further continue forward transmission
2420  * with the same cwnd?
2421  */
2422 static int tcp_time_to_recover(struct sock *sk)
2423 {
2424         struct tcp_sock *tp = tcp_sk(sk);
2425         __u32 packets_out;
2426
2427         /* Do not perform any recovery during F-RTO algorithm */
2428         if (tp->frto_counter)
2429                 return 0;
2430
2431         /* Trick#1: The loss is proven. */
2432         if (tp->lost_out)
2433                 return 1;
2434
2435         /* Not-A-Trick#2 : Classic rule... */
2436         if (tcp_dupack_heurestics(tp) > tp->reordering)
2437                 return 1;
2438
2439         /* Trick#3 : when we use RFC2988 timer restart, fast
2440          * retransmit can be triggered by timeout of queue head.
2441          */
2442         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2443                 return 1;
2444
2445         /* Trick#4: It is still not OK... But will it be useful to delay
2446          * recovery more?
2447          */
2448         packets_out = tp->packets_out;
2449         if (packets_out <= tp->reordering &&
2450             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2451             !tcp_may_send_now(sk)) {
2452                 /* We have nothing to send. This connection is limited
2453                  * either by receiver window or by application.
2454                  */
2455                 return 1;
2456         }
2457
2458         return 0;
2459 }
2460
2461 /* New heuristics: it is possible only after we switched to restart timer
2462  * each time when something is ACKed. Hence, we can detect timed out packets
2463  * during fast retransmit without falling to slow start.
2464  *
2465  * Usefulness of this as is very questionable, since we should know which of
2466  * the segments is the next to timeout which is relatively expensive to find
2467  * in general case unless we add some data structure just for that. The
2468  * current approach certainly won't find the right one too often and when it
2469  * finally does find _something_ it usually marks large part of the window
2470  * right away (because a retransmission with a larger timestamp blocks the
2471  * loop from advancing). -ij
2472  */
2473 static void tcp_timeout_skbs(struct sock *sk)
2474 {
2475         struct tcp_sock *tp = tcp_sk(sk);
2476         struct sk_buff *skb;
2477
2478         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2479                 return;
2480
2481         skb = tp->scoreboard_skb_hint;
2482         if (tp->scoreboard_skb_hint == NULL)
2483                 skb = tcp_write_queue_head(sk);
2484
2485         tcp_for_write_queue_from(skb, sk) {
2486                 if (skb == tcp_send_head(sk))
2487                         break;
2488                 if (!tcp_skb_timedout(sk, skb))
2489                         break;
2490
2491                 tcp_skb_mark_lost(tp, skb);
2492         }
2493
2494         tp->scoreboard_skb_hint = skb;
2495
2496         tcp_verify_left_out(tp);
2497 }
2498
2499 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2500  * is against sacked "cnt", otherwise it's against facked "cnt"
2501  */
2502 static void tcp_mark_head_lost(struct sock *sk, int packets)
2503 {
2504         struct tcp_sock *tp = tcp_sk(sk);
2505         struct sk_buff *skb;
2506         int cnt, oldcnt;
2507         int err;
2508         unsigned int mss;
2509
2510         WARN_ON(packets > tp->packets_out);
2511         if (tp->lost_skb_hint) {
2512                 skb = tp->lost_skb_hint;
2513                 cnt = tp->lost_cnt_hint;
2514         } else {
2515                 skb = tcp_write_queue_head(sk);
2516                 cnt = 0;
2517         }
2518
2519         tcp_for_write_queue_from(skb, sk) {
2520                 if (skb == tcp_send_head(sk))
2521                         break;
2522                 /* TODO: do this better */
2523                 /* this is not the most efficient way to do this... */
2524                 tp->lost_skb_hint = skb;
2525                 tp->lost_cnt_hint = cnt;
2526
2527                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2528                         break;
2529
2530                 oldcnt = cnt;
2531                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2532                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2533                         cnt += tcp_skb_pcount(skb);
2534
2535                 if (cnt > packets) {
2536                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2537                                 break;
2538
2539                         mss = skb_shinfo(skb)->gso_size;
2540                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2541                         if (err < 0)
2542                                 break;
2543                         cnt = packets;
2544                 }
2545
2546                 tcp_skb_mark_lost(tp, skb);
2547         }
2548         tcp_verify_left_out(tp);
2549 }
2550
2551 /* Account newly detected lost packet(s) */
2552
2553 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2554 {
2555         struct tcp_sock *tp = tcp_sk(sk);
2556
2557         if (tcp_is_reno(tp)) {
2558                 tcp_mark_head_lost(sk, 1);
2559         } else if (tcp_is_fack(tp)) {
2560                 int lost = tp->fackets_out - tp->reordering;
2561                 if (lost <= 0)
2562                         lost = 1;
2563                 tcp_mark_head_lost(sk, lost);
2564         } else {
2565                 int sacked_upto = tp->sacked_out - tp->reordering;
2566                 if (sacked_upto < fast_rexmit)
2567                         sacked_upto = fast_rexmit;
2568                 tcp_mark_head_lost(sk, sacked_upto);
2569         }
2570
2571         tcp_timeout_skbs(sk);
2572 }
2573
2574 /* CWND moderation, preventing bursts due to too big ACKs
2575  * in dubious situations.
2576  */
2577 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2578 {
2579         tp->snd_cwnd = min(tp->snd_cwnd,
2580                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2581         tp->snd_cwnd_stamp = tcp_time_stamp;
2582 }
2583
2584 /* Lower bound on congestion window is slow start threshold
2585  * unless congestion avoidance choice decides to overide it.
2586  */
2587 static inline u32 tcp_cwnd_min(const struct sock *sk)
2588 {
2589         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2590
2591         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2592 }
2593
2594 /* Decrease cwnd each second ack. */
2595 static void tcp_cwnd_down(struct sock *sk, int flag)
2596 {
2597         struct tcp_sock *tp = tcp_sk(sk);
2598         int decr = tp->snd_cwnd_cnt + 1;
2599
2600         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2601             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2602                 tp->snd_cwnd_cnt = decr & 1;
2603                 decr >>= 1;
2604
2605                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2606                         tp->snd_cwnd -= decr;
2607
2608                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2609                 tp->snd_cwnd_stamp = tcp_time_stamp;
2610         }
2611 }
2612
2613 /* Nothing was retransmitted or returned timestamp is less
2614  * than timestamp of the first retransmission.
2615  */
2616 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2617 {
2618         return !tp->retrans_stamp ||
2619                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2620                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2621 }
2622
2623 /* Undo procedures. */
2624
2625 #if FASTRETRANS_DEBUG > 1
2626 static void DBGUNDO(struct sock *sk, const char *msg)
2627 {
2628         struct tcp_sock *tp = tcp_sk(sk);
2629         struct inet_sock *inet = inet_sk(sk);
2630
2631         if (sk->sk_family == AF_INET) {
2632                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2633                        msg,
2634                        &inet->daddr, ntohs(inet->dport),
2635                        tp->snd_cwnd, tcp_left_out(tp),
2636                        tp->snd_ssthresh, tp->prior_ssthresh,
2637                        tp->packets_out);
2638         }
2639 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2640         else if (sk->sk_family == AF_INET6) {
2641                 struct ipv6_pinfo *np = inet6_sk(sk);
2642                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2643                        msg,
2644                        &np->daddr, ntohs(inet->dport),
2645                        tp->snd_cwnd, tcp_left_out(tp),
2646                        tp->snd_ssthresh, tp->prior_ssthresh,
2647                        tp->packets_out);
2648         }
2649 #endif
2650 }
2651 #else
2652 #define DBGUNDO(x...) do { } while (0)
2653 #endif
2654
2655 static void tcp_undo_cwr(struct sock *sk, const int undo)
2656 {
2657         struct tcp_sock *tp = tcp_sk(sk);
2658
2659         if (tp->prior_ssthresh) {
2660                 const struct inet_connection_sock *icsk = inet_csk(sk);
2661
2662                 if (icsk->icsk_ca_ops->undo_cwnd)
2663                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2664                 else
2665                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2666
2667                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2668                         tp->snd_ssthresh = tp->prior_ssthresh;
2669                         TCP_ECN_withdraw_cwr(tp);
2670                 }
2671         } else {
2672                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2673         }
2674         tcp_moderate_cwnd(tp);
2675         tp->snd_cwnd_stamp = tcp_time_stamp;
2676 }
2677
2678 static inline int tcp_may_undo(struct tcp_sock *tp)
2679 {
2680         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2681 }
2682
2683 /* People celebrate: "We love our President!" */
2684 static int tcp_try_undo_recovery(struct sock *sk)
2685 {
2686         struct tcp_sock *tp = tcp_sk(sk);
2687
2688         if (tcp_may_undo(tp)) {
2689                 int mib_idx;
2690
2691                 /* Happy end! We did not retransmit anything
2692                  * or our original transmission succeeded.
2693                  */
2694                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2695                 tcp_undo_cwr(sk, 1);
2696                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2697                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2698                 else
2699                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2700
2701                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2702                 tp->undo_marker = 0;
2703         }
2704         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2705                 /* Hold old state until something *above* high_seq
2706                  * is ACKed. For Reno it is MUST to prevent false
2707                  * fast retransmits (RFC2582). SACK TCP is safe. */
2708                 tcp_moderate_cwnd(tp);
2709                 return 1;
2710         }
2711         tcp_set_ca_state(sk, TCP_CA_Open);
2712         return 0;
2713 }
2714
2715 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2716 static void tcp_try_undo_dsack(struct sock *sk)
2717 {
2718         struct tcp_sock *tp = tcp_sk(sk);
2719
2720         if (tp->undo_marker && !tp->undo_retrans) {
2721                 DBGUNDO(sk, "D-SACK");
2722                 tcp_undo_cwr(sk, 1);
2723                 tp->undo_marker = 0;
2724                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2725         }
2726 }
2727
2728 /* Undo during fast recovery after partial ACK. */
2729
2730 static int tcp_try_undo_partial(struct sock *sk, int acked)
2731 {
2732         struct tcp_sock *tp = tcp_sk(sk);
2733         /* Partial ACK arrived. Force Hoe's retransmit. */
2734         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2735
2736         if (tcp_may_undo(tp)) {
2737                 /* Plain luck! Hole if filled with delayed
2738                  * packet, rather than with a retransmit.
2739                  */
2740                 if (tp->retrans_out == 0)
2741                         tp->retrans_stamp = 0;
2742
2743                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2744
2745                 DBGUNDO(sk, "Hoe");
2746                 tcp_undo_cwr(sk, 0);
2747                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2748
2749                 /* So... Do not make Hoe's retransmit yet.
2750                  * If the first packet was delayed, the rest
2751                  * ones are most probably delayed as well.
2752                  */
2753                 failed = 0;
2754         }
2755         return failed;
2756 }
2757
2758 /* Undo during loss recovery after partial ACK. */
2759 static int tcp_try_undo_loss(struct sock *sk)
2760 {
2761         struct tcp_sock *tp = tcp_sk(sk);
2762
2763         if (tcp_may_undo(tp)) {
2764                 struct sk_buff *skb;
2765                 tcp_for_write_queue(skb, sk) {
2766                         if (skb == tcp_send_head(sk))
2767                                 break;
2768                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2769                 }
2770
2771                 tcp_clear_all_retrans_hints(tp);
2772
2773                 DBGUNDO(sk, "partial loss");
2774                 tp->lost_out = 0;
2775                 tcp_undo_cwr(sk, 1);
2776                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2777                 inet_csk(sk)->icsk_retransmits = 0;
2778                 tp->undo_marker = 0;
2779                 if (tcp_is_sack(tp))
2780                         tcp_set_ca_state(sk, TCP_CA_Open);
2781                 return 1;
2782         }
2783         return 0;
2784 }
2785
2786 static inline void tcp_complete_cwr(struct sock *sk)
2787 {
2788         struct tcp_sock *tp = tcp_sk(sk);
2789         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2790         tp->snd_cwnd_stamp = tcp_time_stamp;
2791         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2792 }
2793
2794 static void tcp_try_keep_open(struct sock *sk)
2795 {
2796         struct tcp_sock *tp = tcp_sk(sk);
2797         int state = TCP_CA_Open;
2798
2799         if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2800                 state = TCP_CA_Disorder;
2801
2802         if (inet_csk(sk)->icsk_ca_state != state) {
2803                 tcp_set_ca_state(sk, state);
2804                 tp->high_seq = tp->snd_nxt;
2805         }
2806 }
2807
2808 static void tcp_try_to_open(struct sock *sk, int flag)
2809 {
2810         struct tcp_sock *tp = tcp_sk(sk);
2811
2812         tcp_verify_left_out(tp);
2813
2814         if (!tp->frto_counter && tp->retrans_out == 0)
2815                 tp->retrans_stamp = 0;
2816
2817         if (flag & FLAG_ECE)
2818                 tcp_enter_cwr(sk, 1);
2819
2820         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2821                 tcp_try_keep_open(sk);
2822                 tcp_moderate_cwnd(tp);
2823         } else {
2824                 tcp_cwnd_down(sk, flag);
2825         }
2826 }
2827
2828 static void tcp_mtup_probe_failed(struct sock *sk)
2829 {
2830         struct inet_connection_sock *icsk = inet_csk(sk);
2831
2832         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2833         icsk->icsk_mtup.probe_size = 0;
2834 }
2835
2836 static void tcp_mtup_probe_success(struct sock *sk)
2837 {
2838         struct tcp_sock *tp = tcp_sk(sk);
2839         struct inet_connection_sock *icsk = inet_csk(sk);
2840
2841         /* FIXME: breaks with very large cwnd */
2842         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2843         tp->snd_cwnd = tp->snd_cwnd *
2844                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2845                        icsk->icsk_mtup.probe_size;
2846         tp->snd_cwnd_cnt = 0;
2847         tp->snd_cwnd_stamp = tcp_time_stamp;
2848         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2849
2850         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2851         icsk->icsk_mtup.probe_size = 0;
2852         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2853 }
2854
2855 /* Do a simple retransmit without using the backoff mechanisms in
2856  * tcp_timer. This is used for path mtu discovery.
2857  * The socket is already locked here.
2858  */
2859 void tcp_simple_retransmit(struct sock *sk)
2860 {
2861         const struct inet_connection_sock *icsk = inet_csk(sk);
2862         struct tcp_sock *tp = tcp_sk(sk);
2863         struct sk_buff *skb;
2864         unsigned int mss = tcp_current_mss(sk);
2865         u32 prior_lost = tp->lost_out;
2866
2867         tcp_for_write_queue(skb, sk) {
2868                 if (skb == tcp_send_head(sk))
2869                         break;
2870                 if (tcp_skb_seglen(skb) > mss &&
2871                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2872                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2873                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2874                                 tp->retrans_out -= tcp_skb_pcount(skb);
2875                         }
2876                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2877                 }
2878         }
2879
2880         tcp_clear_retrans_hints_partial(tp);
2881
2882         if (prior_lost == tp->lost_out)
2883                 return;
2884
2885         if (tcp_is_reno(tp))
2886                 tcp_limit_reno_sacked(tp);
2887
2888         tcp_verify_left_out(tp);
2889
2890         /* Don't muck with the congestion window here.
2891          * Reason is that we do not increase amount of _data_
2892          * in network, but units changed and effective
2893          * cwnd/ssthresh really reduced now.
2894          */
2895         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2896                 tp->high_seq = tp->snd_nxt;
2897                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2898                 tp->prior_ssthresh = 0;
2899                 tp->undo_marker = 0;
2900                 tcp_set_ca_state(sk, TCP_CA_Loss);
2901         }
2902         tcp_xmit_retransmit_queue(sk);
2903 }
2904
2905 /* Process an event, which can update packets-in-flight not trivially.
2906  * Main goal of this function is to calculate new estimate for left_out,
2907  * taking into account both packets sitting in receiver's buffer and
2908  * packets lost by network.
2909  *
2910  * Besides that it does CWND reduction, when packet loss is detected
2911  * and changes state of machine.
2912  *
2913  * It does _not_ decide what to send, it is made in function
2914  * tcp_xmit_retransmit_queue().
2915  */
2916 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2917 {
2918         struct inet_connection_sock *icsk = inet_csk(sk);
2919         struct tcp_sock *tp = tcp_sk(sk);
2920         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2921         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2922                                     (tcp_fackets_out(tp) > tp->reordering));
2923         int fast_rexmit = 0, mib_idx;
2924
2925         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2926                 tp->sacked_out = 0;
2927         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2928                 tp->fackets_out = 0;
2929
2930         /* Now state machine starts.
2931          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2932         if (flag & FLAG_ECE)
2933                 tp->prior_ssthresh = 0;
2934
2935         /* B. In all the states check for reneging SACKs. */
2936         if (tcp_check_sack_reneging(sk, flag))
2937                 return;
2938
2939         /* C. Process data loss notification, provided it is valid. */
2940         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2941             before(tp->snd_una, tp->high_seq) &&
2942             icsk->icsk_ca_state != TCP_CA_Open &&
2943             tp->fackets_out > tp->reordering) {
2944                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2945                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2946         }
2947
2948         /* D. Check consistency of the current state. */
2949         tcp_verify_left_out(tp);
2950
2951         /* E. Check state exit conditions. State can be terminated
2952          *    when high_seq is ACKed. */
2953         if (icsk->icsk_ca_state == TCP_CA_Open) {
2954                 WARN_ON(tp->retrans_out != 0);
2955                 tp->retrans_stamp = 0;
2956         } else if (!before(tp->snd_una, tp->high_seq)) {
2957                 switch (icsk->icsk_ca_state) {
2958                 case TCP_CA_Loss:
2959                         icsk->icsk_retransmits = 0;
2960                         if (tcp_try_undo_recovery(sk))
2961                                 return;
2962                         break;
2963
2964                 case TCP_CA_CWR:
2965                         /* CWR is to be held something *above* high_seq
2966                          * is ACKed for CWR bit to reach receiver. */
2967                         if (tp->snd_una != tp->high_seq) {
2968                                 tcp_complete_cwr(sk);
2969                                 tcp_set_ca_state(sk, TCP_CA_Open);
2970                         }
2971                         break;
2972
2973                 case TCP_CA_Disorder:
2974                         tcp_try_undo_dsack(sk);
2975                         if (!tp->undo_marker ||
2976                             /* For SACK case do not Open to allow to undo
2977                              * catching for all duplicate ACKs. */
2978                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2979                                 tp->undo_marker = 0;
2980                                 tcp_set_ca_state(sk, TCP_CA_Open);
2981                         }
2982                         break;
2983
2984                 case TCP_CA_Recovery:
2985                         if (tcp_is_reno(tp))
2986                                 tcp_reset_reno_sack(tp);
2987                         if (tcp_try_undo_recovery(sk))
2988                                 return;
2989                         tcp_complete_cwr(sk);
2990                         break;
2991                 }
2992         }
2993
2994         /* F. Process state. */
2995         switch (icsk->icsk_ca_state) {
2996         case TCP_CA_Recovery:
2997                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2998                         if (tcp_is_reno(tp) && is_dupack)
2999                                 tcp_add_reno_sack(sk);
3000                 } else
3001                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3002                 break;
3003         case TCP_CA_Loss:
3004                 if (flag & FLAG_DATA_ACKED)
3005                         icsk->icsk_retransmits = 0;
3006                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3007                         tcp_reset_reno_sack(tp);
3008                 if (!tcp_try_undo_loss(sk)) {
3009                         tcp_moderate_cwnd(tp);
3010                         tcp_xmit_retransmit_queue(sk);
3011                         return;
3012                 }
3013                 if (icsk->icsk_ca_state != TCP_CA_Open)
3014                         return;
3015                 /* Loss is undone; fall through to processing in Open state. */
3016         default:
3017                 if (tcp_is_reno(tp)) {
3018                         if (flag & FLAG_SND_UNA_ADVANCED)
3019                                 tcp_reset_reno_sack(tp);
3020                         if (is_dupack)
3021                                 tcp_add_reno_sack(sk);
3022                 }
3023
3024                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3025                         tcp_try_undo_dsack(sk);
3026
3027                 if (!tcp_time_to_recover(sk)) {
3028                         tcp_try_to_open(sk, flag);
3029                         return;
3030                 }
3031
3032                 /* MTU probe failure: don't reduce cwnd */
3033                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3034                     icsk->icsk_mtup.probe_size &&
3035                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3036                         tcp_mtup_probe_failed(sk);
3037                         /* Restores the reduction we did in tcp_mtup_probe() */
3038                         tp->snd_cwnd++;
3039                         tcp_simple_retransmit(sk);
3040                         return;
3041                 }
3042
3043                 /* Otherwise enter Recovery state */
3044
3045                 if (tcp_is_reno(tp))
3046                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3047                 else
3048                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3049
3050                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3051
3052                 tp->high_seq = tp->snd_nxt;
3053                 tp->prior_ssthresh = 0;
3054                 tp->undo_marker = tp->snd_una;
3055                 tp->undo_retrans = tp->retrans_out;
3056
3057                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3058                         if (!(flag & FLAG_ECE))
3059                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3060                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3061                         TCP_ECN_queue_cwr(tp);
3062                 }
3063
3064                 tp->bytes_acked = 0;
3065                 tp->snd_cwnd_cnt = 0;
3066                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3067                 fast_rexmit = 1;
3068         }
3069
3070         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3071                 tcp_update_scoreboard(sk, fast_rexmit);
3072         tcp_cwnd_down(sk, flag);
3073         tcp_xmit_retransmit_queue(sk);
3074 }
3075
3076 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3077 {
3078         tcp_rtt_estimator(sk, seq_rtt);
3079         tcp_set_rto(sk);
3080         inet_csk(sk)->icsk_backoff = 0;
3081 }
3082
3083 /* Read draft-ietf-tcplw-high-performance before mucking
3084  * with this code. (Supersedes RFC1323)
3085  */
3086 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3087 {
3088         /* RTTM Rule: A TSecr value received in a segment is used to
3089          * update the averaged RTT measurement only if the segment
3090          * acknowledges some new data, i.e., only if it advances the
3091          * left edge of the send window.
3092          *
3093          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3094          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3095          *
3096          * Changed: reset backoff as soon as we see the first valid sample.
3097          * If we do not, we get strongly overestimated rto. With timestamps
3098          * samples are accepted even from very old segments: f.e., when rtt=1
3099          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3100          * answer arrives rto becomes 120 seconds! If at least one of segments
3101          * in window is lost... Voila.                          --ANK (010210)
3102          */
3103         struct tcp_sock *tp = tcp_sk(sk);
3104
3105         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3106 }
3107
3108 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3109 {
3110         /* We don't have a timestamp. Can only use
3111          * packets that are not retransmitted to determine
3112          * rtt estimates. Also, we must not reset the
3113          * backoff for rto until we get a non-retransmitted
3114          * packet. This allows us to deal with a situation
3115          * where the network delay has increased suddenly.
3116          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3117          */
3118
3119         if (flag & FLAG_RETRANS_DATA_ACKED)
3120                 return;
3121
3122         tcp_valid_rtt_meas(sk, seq_rtt);
3123 }
3124
3125 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3126                                       const s32 seq_rtt)
3127 {
3128         const struct tcp_sock *tp = tcp_sk(sk);
3129         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3130         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3131                 tcp_ack_saw_tstamp(sk, flag);
3132         else if (seq_rtt >= 0)
3133                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3134 }
3135
3136 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3137 {
3138         const struct inet_connection_sock *icsk = inet_csk(sk);
3139         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3140         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3141 }
3142
3143 /* Restart timer after forward progress on connection.
3144  * RFC2988 recommends to restart timer to now+rto.
3145  */
3146 static void tcp_rearm_rto(struct sock *sk)
3147 {
3148         struct tcp_sock *tp = tcp_sk(sk);
3149
3150         if (!tp->packets_out) {
3151                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3152         } else {
3153                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3154                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3155         }
3156 }
3157
3158 /* If we get here, the whole TSO packet has not been acked. */
3159 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3160 {
3161         struct tcp_sock *tp = tcp_sk(sk);
3162         u32 packets_acked;
3163
3164         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3165
3166         packets_acked = tcp_skb_pcount(skb);
3167         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3168                 return 0;
3169         packets_acked -= tcp_skb_pcount(skb);
3170
3171         if (packets_acked) {
3172                 BUG_ON(tcp_skb_pcount(skb) == 0);
3173                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3174         }
3175
3176         return packets_acked;
3177 }
3178
3179 /* Remove acknowledged frames from the retransmission queue. If our packet
3180  * is before the ack sequence we can discard it as it's confirmed to have
3181  * arrived at the other end.
3182  */
3183 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3184                                u32 prior_snd_una)
3185 {
3186         struct tcp_sock *tp = tcp_sk(sk);
3187         const struct inet_connection_sock *icsk = inet_csk(sk);
3188         struct sk_buff *skb;
3189         u32 now = tcp_time_stamp;
3190         int fully_acked = 1;
3191         int flag = 0;
3192         u32 pkts_acked = 0;
3193         u32 reord = tp->packets_out;
3194         u32 prior_sacked = tp->sacked_out;
3195         s32 seq_rtt = -1;
3196         s32 ca_seq_rtt = -1;
3197         ktime_t last_ackt = net_invalid_timestamp();
3198
3199         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3200                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3201                 u32 acked_pcount;
3202                 u8 sacked = scb->sacked;
3203
3204                 /* Determine how many packets and what bytes were acked, tso and else */
3205                 if (after(scb->end_seq, tp->snd_una)) {
3206                         if (tcp_skb_pcount(skb) == 1 ||
3207                             !after(tp->snd_una, scb->seq))
3208                                 break;
3209
3210                         acked_pcount = tcp_tso_acked(sk, skb);
3211                         if (!acked_pcount)
3212                                 break;
3213
3214                         fully_acked = 0;
3215                 } else {
3216                         acked_pcount = tcp_skb_pcount(skb);
3217                 }
3218
3219                 if (sacked & TCPCB_RETRANS) {
3220                         if (sacked & TCPCB_SACKED_RETRANS)
3221                                 tp->retrans_out -= acked_pcount;
3222                         flag |= FLAG_RETRANS_DATA_ACKED;
3223                         ca_seq_rtt = -1;
3224                         seq_rtt = -1;
3225                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3226                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3227                 } else {
3228                         ca_seq_rtt = now - scb->when;
3229                         last_ackt = skb->tstamp;
3230                         if (seq_rtt < 0) {
3231                                 seq_rtt = ca_seq_rtt;
3232                         }
3233                         if (!(sacked & TCPCB_SACKED_ACKED))
3234                                 reord = min(pkts_acked, reord);
3235                 }
3236
3237                 if (sacked & TCPCB_SACKED_ACKED)
3238                         tp->sacked_out -= acked_pcount;
3239                 if (sacked & TCPCB_LOST)
3240                         tp->lost_out -= acked_pcount;
3241
3242                 tp->packets_out -= acked_pcount;
3243                 pkts_acked += acked_pcount;
3244
3245                 /* Initial outgoing SYN's get put onto the write_queue
3246                  * just like anything else we transmit.  It is not
3247                  * true data, and if we misinform our callers that
3248                  * this ACK acks real data, we will erroneously exit
3249                  * connection startup slow start one packet too
3250                  * quickly.  This is severely frowned upon behavior.
3251                  */
3252                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3253                         flag |= FLAG_DATA_ACKED;
3254                 } else {
3255                         flag |= FLAG_SYN_ACKED;
3256                         tp->retrans_stamp = 0;
3257                 }
3258
3259                 if (!fully_acked)
3260                         break;
3261
3262                 tcp_unlink_write_queue(skb, sk);
3263                 sk_wmem_free_skb(sk, skb);
3264                 tp->scoreboard_skb_hint = NULL;
3265                 if (skb == tp->retransmit_skb_hint)
3266                         tp->retransmit_skb_hint = NULL;
3267                 if (skb == tp->lost_skb_hint)
3268                         tp->lost_skb_hint = NULL;
3269         }
3270
3271         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3272                 tp->snd_up = tp->snd_una;
3273
3274         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3275                 flag |= FLAG_SACK_RENEGING;
3276
3277         if (flag & FLAG_ACKED) {
3278                 const struct tcp_congestion_ops *ca_ops
3279                         = inet_csk(sk)->icsk_ca_ops;
3280
3281                 if (unlikely(icsk->icsk_mtup.probe_size &&
3282                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3283                         tcp_mtup_probe_success(sk);
3284                 }
3285
3286                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3287                 tcp_rearm_rto(sk);
3288
3289                 if (tcp_is_reno(tp)) {
3290                         tcp_remove_reno_sacks(sk, pkts_acked);
3291                 } else {
3292                         int delta;
3293
3294                         /* Non-retransmitted hole got filled? That's reordering */
3295                         if (reord < prior_fackets)
3296                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3297
3298                         delta = tcp_is_fack(tp) ? pkts_acked :
3299                                                   prior_sacked - tp->sacked_out;
3300                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3301                 }
3302
3303                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3304
3305                 if (ca_ops->pkts_acked) {
3306                         s32 rtt_us = -1;
3307
3308                         /* Is the ACK triggering packet unambiguous? */
3309                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3310                                 /* High resolution needed and available? */
3311                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3312                                     !ktime_equal(last_ackt,
3313                                                  net_invalid_timestamp()))
3314                                         rtt_us = ktime_us_delta(ktime_get_real(),
3315                                                                 last_ackt);
3316                                 else if (ca_seq_rtt > 0)
3317                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3318                         }
3319
3320                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3321                 }
3322         }
3323
3324 #if FASTRETRANS_DEBUG > 0
3325         WARN_ON((int)tp->sacked_out < 0);
3326         WARN_ON((int)tp->lost_out < 0);
3327         WARN_ON((int)tp->retrans_out < 0);
3328         if (!tp->packets_out && tcp_is_sack(tp)) {
3329                 icsk = inet_csk(sk);
3330                 if (tp->lost_out) {
3331                         printk(KERN_DEBUG "Leak l=%u %d\n",
3332                                tp->lost_out, icsk->icsk_ca_state);
3333                         tp->lost_out = 0;
3334                 }
3335                 if (tp->sacked_out) {
3336                         printk(KERN_DEBUG "Leak s=%u %d\n",
3337                                tp->sacked_out, icsk->icsk_ca_state);
3338                         tp->sacked_out = 0;
3339                 }
3340                 if (tp->retrans_out) {
3341                         printk(KERN_DEBUG "Leak r=%u %d\n",
3342                                tp->retrans_out, icsk->icsk_ca_state);
3343                         tp->retrans_out = 0;
3344                 }
3345         }
3346 #endif
3347         return flag;
3348 }
3349
3350 static void tcp_ack_probe(struct sock *sk)
3351 {
3352         const struct tcp_sock *tp = tcp_sk(sk);
3353         struct inet_connection_sock *icsk = inet_csk(sk);
3354
3355         /* Was it a usable window open? */
3356
3357         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3358                 icsk->icsk_backoff = 0;
3359                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3360                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3361                  * This function is not for random using!
3362                  */
3363         } else {
3364                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3365                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3366                                           TCP_RTO_MAX);
3367         }
3368 }
3369
3370 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3371 {
3372         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3373                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3374 }
3375
3376 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3377 {
3378         const struct tcp_sock *tp = tcp_sk(sk);
3379         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3380                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3381 }
3382
3383 /* Check that window update is acceptable.
3384  * The function assumes that snd_una<=ack<=snd_next.
3385  */
3386 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3387                                         const u32 ack, const u32 ack_seq,
3388                                         const u32 nwin)
3389 {
3390         return (after(ack, tp->snd_una) ||
3391                 after(ack_seq, tp->snd_wl1) ||
3392                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3393 }
3394
3395 /* Update our send window.
3396  *
3397  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3398  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3399  */
3400 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3401                                  u32 ack_seq)
3402 {
3403         struct tcp_sock *tp = tcp_sk(sk);
3404         int flag = 0;
3405         u32 nwin = ntohs(tcp_hdr(skb)->window);
3406
3407         if (likely(!tcp_hdr(skb)->syn))
3408                 nwin <<= tp->rx_opt.snd_wscale;
3409
3410         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3411                 flag |= FLAG_WIN_UPDATE;
3412                 tcp_update_wl(tp, ack_seq);
3413
3414                 if (tp->snd_wnd != nwin) {
3415                         tp->snd_wnd = nwin;
3416
3417                         /* Note, it is the only place, where
3418                          * fast path is recovered for sending TCP.
3419                          */
3420                         tp->pred_flags = 0;
3421                         tcp_fast_path_check(sk);
3422
3423                         if (nwin > tp->max_window) {
3424                                 tp->max_window = nwin;
3425                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3426                         }
3427                 }
3428         }
3429
3430         tp->snd_una = ack;
3431
3432         return flag;
3433 }
3434
3435 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3436  * continue in congestion avoidance.
3437  */
3438 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3439 {
3440         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3441         tp->snd_cwnd_cnt = 0;
3442         tp->bytes_acked = 0;
3443         TCP_ECN_queue_cwr(tp);
3444         tcp_moderate_cwnd(tp);
3445 }
3446
3447 /* A conservative spurious RTO response algorithm: reduce cwnd using
3448  * rate halving and continue in congestion avoidance.
3449  */
3450 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3451 {
3452         tcp_enter_cwr(sk, 0);
3453 }
3454
3455 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3456 {
3457         if (flag & FLAG_ECE)
3458                 tcp_ratehalving_spur_to_response(sk);
3459         else
3460                 tcp_undo_cwr(sk, 1);
3461 }
3462
3463 /* F-RTO spurious RTO detection algorithm (RFC4138)
3464  *
3465  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3466  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3467  * window (but not to or beyond highest sequence sent before RTO):
3468  *   On First ACK,  send two new segments out.
3469  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3470  *                  algorithm is not part of the F-RTO detection algorithm
3471  *                  given in RFC4138 but can be selected separately).
3472  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3473  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3474  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3475  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3476  *
3477  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3478  * original window even after we transmit two new data segments.
3479  *
3480  * SACK version:
3481  *   on first step, wait until first cumulative ACK arrives, then move to
3482  *   the second step. In second step, the next ACK decides.
3483  *
3484  * F-RTO is implemented (mainly) in four functions:
3485  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3486  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3487  *     called when tcp_use_frto() showed green light
3488  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3489  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3490  *     to prove that the RTO is indeed spurious. It transfers the control
3491  *     from F-RTO to the conventional RTO recovery
3492  */
3493 static int tcp_process_frto(struct sock *sk, int flag)
3494 {
3495         struct tcp_sock *tp = tcp_sk(sk);
3496
3497         tcp_verify_left_out(tp);
3498
3499         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3500         if (flag & FLAG_DATA_ACKED)
3501                 inet_csk(sk)->icsk_retransmits = 0;
3502
3503         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3504             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3505                 tp->undo_marker = 0;
3506
3507         if (!before(tp->snd_una, tp->frto_highmark)) {
3508                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3509                 return 1;
3510         }
3511
3512         if (!tcp_is_sackfrto(tp)) {
3513                 /* RFC4138 shortcoming in step 2; should also have case c):
3514                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3515                  * data, winupdate
3516                  */
3517                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3518                         return 1;
3519
3520                 if (!(flag & FLAG_DATA_ACKED)) {
3521                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3522                                             flag);
3523                         return 1;
3524                 }
3525         } else {
3526                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3527                         /* Prevent sending of new data. */
3528                         tp->snd_cwnd = min(tp->snd_cwnd,
3529                                            tcp_packets_in_flight(tp));
3530                         return 1;
3531                 }
3532
3533                 if ((tp->frto_counter >= 2) &&
3534                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3535                      ((flag & FLAG_DATA_SACKED) &&
3536                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3537                         /* RFC4138 shortcoming (see comment above) */
3538                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3539                             (flag & FLAG_NOT_DUP))
3540                                 return 1;
3541
3542                         tcp_enter_frto_loss(sk, 3, flag);
3543                         return 1;
3544                 }
3545         }
3546
3547         if (tp->frto_counter == 1) {
3548                 /* tcp_may_send_now needs to see updated state */
3549                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3550                 tp->frto_counter = 2;
3551
3552                 if (!tcp_may_send_now(sk))
3553                         tcp_enter_frto_loss(sk, 2, flag);
3554
3555                 return 1;
3556         } else {
3557                 switch (sysctl_tcp_frto_response) {
3558                 case 2:
3559                         tcp_undo_spur_to_response(sk, flag);
3560                         break;
3561                 case 1:
3562                         tcp_conservative_spur_to_response(tp);
3563                         break;
3564                 default:
3565                         tcp_ratehalving_spur_to_response(sk);
3566                         break;
3567                 }
3568                 tp->frto_counter = 0;
3569                 tp->undo_marker = 0;
3570                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3571         }
3572         return 0;
3573 }
3574
3575 /* This routine deals with incoming acks, but not outgoing ones. */
3576 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3577 {
3578         struct inet_connection_sock *icsk = inet_csk(sk);
3579         struct tcp_sock *tp = tcp_sk(sk);
3580         u32 prior_snd_una = tp->snd_una;
3581         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3582         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3583         u32 prior_in_flight;
3584         u32 prior_fackets;
3585         int prior_packets;
3586         int frto_cwnd = 0;
3587
3588         /* If the ack is older than previous acks
3589          * then we can probably ignore it.
3590          */
3591         if (before(ack, prior_snd_una))
3592                 goto old_ack;
3593
3594         /* If the ack includes data we haven't sent yet, discard
3595          * this segment (RFC793 Section 3.9).
3596          */
3597         if (after(ack, tp->snd_nxt))
3598                 goto invalid_ack;
3599
3600         if (after(ack, prior_snd_una))
3601                 flag |= FLAG_SND_UNA_ADVANCED;
3602
3603         if (sysctl_tcp_abc) {
3604                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3605                         tp->bytes_acked += ack - prior_snd_una;
3606                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3607                         /* we assume just one segment left network */
3608                         tp->bytes_acked += min(ack - prior_snd_una,
3609                                                tp->mss_cache);
3610         }
3611
3612         prior_fackets = tp->fackets_out;
3613         prior_in_flight = tcp_packets_in_flight(tp);
3614
3615         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3616                 /* Window is constant, pure forward advance.
3617                  * No more checks are required.
3618                  * Note, we use the fact that SND.UNA>=SND.WL2.
3619                  */
3620                 tcp_update_wl(tp, ack_seq);
3621                 tp->snd_una = ack;
3622                 flag |= FLAG_WIN_UPDATE;
3623
3624                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3625
3626                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3627         } else {
3628                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3629                         flag |= FLAG_DATA;
3630                 else
3631                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3632
3633                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3634
3635                 if (TCP_SKB_CB(skb)->sacked)
3636                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3637
3638                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3639                         flag |= FLAG_ECE;
3640
3641                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3642         }
3643
3644         /* We passed data and got it acked, remove any soft error
3645          * log. Something worked...
3646          */
3647         sk->sk_err_soft = 0;
3648         icsk->icsk_probes_out = 0;
3649         tp->rcv_tstamp = tcp_time_stamp;
3650         prior_packets = tp->packets_out;
3651         if (!prior_packets)
3652                 goto no_queue;
3653
3654         /* See if we can take anything off of the retransmit queue. */
3655         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3656
3657         if (tp->frto_counter)
3658                 frto_cwnd = tcp_process_frto(sk, flag);
3659         /* Guarantee sacktag reordering detection against wrap-arounds */
3660         if (before(tp->frto_highmark, tp->snd_una))
3661                 tp->frto_highmark = 0;
3662
3663         if (tcp_ack_is_dubious(sk, flag)) {
3664                 /* Advance CWND, if state allows this. */
3665                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3666                     tcp_may_raise_cwnd(sk, flag))
3667                         tcp_cong_avoid(sk, ack, prior_in_flight);
3668                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3669                                       flag);
3670         } else {
3671                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3672                         tcp_cong_avoid(sk, ack, prior_in_flight);
3673         }
3674
3675         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3676                 dst_confirm(sk->sk_dst_cache);
3677
3678         return 1;
3679
3680 no_queue:
3681         /* If this ack opens up a zero window, clear backoff.  It was
3682          * being used to time the probes, and is probably far higher than
3683          * it needs to be for normal retransmission.
3684          */
3685         if (tcp_send_head(sk))
3686                 tcp_ack_probe(sk);
3687         return 1;
3688
3689 invalid_ack:
3690         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3691         return -1;
3692
3693 old_ack:
3694         if (TCP_SKB_CB(skb)->sacked) {
3695                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3696                 if (icsk->icsk_ca_state == TCP_CA_Open)
3697                         tcp_try_keep_open(sk);
3698         }
3699
3700         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3701         return 0;
3702 }
3703
3704 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3705  * But, this can also be called on packets in the established flow when
3706  * the fast version below fails.
3707  */
3708 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3709                        int estab)
3710 {
3711         unsigned char *ptr;
3712         struct tcphdr *th = tcp_hdr(skb);
3713         int length = (th->doff * 4) - sizeof(struct tcphdr);
3714
3715         ptr = (unsigned char *)(th + 1);
3716         opt_rx->saw_tstamp = 0;
3717
3718         while (length > 0) {
3719                 int opcode = *ptr++;
3720                 int opsize;
3721
3722                 switch (opcode) {
3723                 case TCPOPT_EOL:
3724                         return;
3725                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3726                         length--;
3727                         continue;
3728                 default:
3729                         opsize = *ptr++;
3730                         if (opsize < 2) /* "silly options" */
3731                                 return;
3732                         if (opsize > length)
3733                                 return; /* don't parse partial options */
3734                         switch (opcode) {
3735                         case TCPOPT_MSS:
3736                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3737                                         u16 in_mss = get_unaligned_be16(ptr);
3738                                         if (in_mss) {
3739                                                 if (opt_rx->user_mss &&
3740                                                     opt_rx->user_mss < in_mss)
3741                                                         in_mss = opt_rx->user_mss;
3742                                                 opt_rx->mss_clamp = in_mss;
3743                                         }
3744                                 }
3745                                 break;
3746                         case TCPOPT_WINDOW:
3747                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3748                                     !estab && sysctl_tcp_window_scaling) {
3749                                         __u8 snd_wscale = *(__u8 *)ptr;
3750                                         opt_rx->wscale_ok = 1;
3751                                         if (snd_wscale > 14) {
3752                                                 if (net_ratelimit())
3753                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3754                                                                "scaling value %d >14 received.\n",
3755                                                                snd_wscale);
3756                                                 snd_wscale = 14;
3757                                         }
3758                                         opt_rx->snd_wscale = snd_wscale;
3759                                 }
3760                                 break;
3761                         case TCPOPT_TIMESTAMP:
3762                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3763                                     ((estab && opt_rx->tstamp_ok) ||
3764                                      (!estab && sysctl_tcp_timestamps))) {
3765                                         opt_rx->saw_tstamp = 1;
3766                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3767                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3768                                 }
3769                                 break;
3770                         case TCPOPT_SACK_PERM:
3771                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3772                                     !estab && sysctl_tcp_sack) {
3773                                         opt_rx->sack_ok = 1;
3774                                         tcp_sack_reset(opt_rx);
3775                                 }
3776                                 break;
3777
3778                         case TCPOPT_SACK:
3779                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3780                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3781                                    opt_rx->sack_ok) {
3782                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3783                                 }
3784                                 break;
3785 #ifdef CONFIG_TCP_MD5SIG
3786                         case TCPOPT_MD5SIG:
3787                                 /*
3788                                  * The MD5 Hash has already been
3789                                  * checked (see tcp_v{4,6}_do_rcv()).
3790                                  */
3791                                 break;
3792 #endif
3793                         }
3794
3795                         ptr += opsize-2;
3796                         length -= opsize;
3797                 }
3798         }
3799 }
3800
3801 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3802 {
3803         __be32 *ptr = (__be32 *)(th + 1);
3804
3805         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3806                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3807                 tp->rx_opt.saw_tstamp = 1;
3808                 ++ptr;
3809                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3810                 ++ptr;
3811                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3812                 return 1;
3813         }
3814         return 0;
3815 }
3816
3817 /* Fast parse options. This hopes to only see timestamps.
3818  * If it is wrong it falls back on tcp_parse_options().
3819  */
3820 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3821                                   struct tcp_sock *tp)
3822 {
3823         if (th->doff == sizeof(struct tcphdr) >> 2) {
3824                 tp->rx_opt.saw_tstamp = 0;
3825                 return 0;
3826         } else if (tp->rx_opt.tstamp_ok &&
3827                    th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3828                 if (tcp_parse_aligned_timestamp(tp, th))
3829                         return 1;
3830         }
3831         tcp_parse_options(skb, &tp->rx_opt, 1);
3832         return 1;
3833 }
3834
3835 #ifdef CONFIG_TCP_MD5SIG
3836 /*
3837  * Parse MD5 Signature option
3838  */
3839 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3840 {
3841         int length = (th->doff << 2) - sizeof (*th);
3842         u8 *ptr = (u8*)(th + 1);
3843
3844         /* If the TCP option is too short, we can short cut */
3845         if (length < TCPOLEN_MD5SIG)
3846                 return NULL;
3847
3848         while (length > 0) {
3849                 int opcode = *ptr++;
3850                 int opsize;
3851
3852                 switch(opcode) {
3853                 case TCPOPT_EOL:
3854                         return NULL;
3855                 case TCPOPT_NOP:
3856                         length--;
3857                         continue;
3858                 default:
3859                         opsize = *ptr++;
3860                         if (opsize < 2 || opsize > length)
3861                                 return NULL;
3862                         if (opcode == TCPOPT_MD5SIG)
3863                                 return ptr;
3864                 }
3865                 ptr += opsize - 2;
3866                 length -= opsize;
3867         }
3868         return NULL;
3869 }
3870 #endif
3871
3872 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3873 {
3874         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3875         tp->rx_opt.ts_recent_stamp = get_seconds();
3876 }
3877
3878 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3879 {
3880         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3881                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3882                  * extra check below makes sure this can only happen
3883                  * for pure ACK frames.  -DaveM
3884                  *
3885                  * Not only, also it occurs for expired timestamps.
3886                  */
3887
3888                 if (tcp_paws_check(&tp->rx_opt, 0))
3889                         tcp_store_ts_recent(tp);
3890         }
3891 }
3892
3893 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3894  *
3895  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3896  * it can pass through stack. So, the following predicate verifies that
3897  * this segment is not used for anything but congestion avoidance or
3898  * fast retransmit. Moreover, we even are able to eliminate most of such
3899  * second order effects, if we apply some small "replay" window (~RTO)
3900  * to timestamp space.
3901  *
3902  * All these measures still do not guarantee that we reject wrapped ACKs
3903  * on networks with high bandwidth, when sequence space is recycled fastly,
3904  * but it guarantees that such events will be very rare and do not affect
3905  * connection seriously. This doesn't look nice, but alas, PAWS is really
3906  * buggy extension.
3907  *
3908  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3909  * states that events when retransmit arrives after original data are rare.
3910  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3911  * the biggest problem on large power networks even with minor reordering.
3912  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3913  * up to bandwidth of 18Gigabit/sec. 8) ]
3914  */
3915
3916 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3917 {
3918         struct tcp_sock *tp = tcp_sk(sk);
3919         struct tcphdr *th = tcp_hdr(skb);
3920         u32 seq = TCP_SKB_CB(skb)->seq;
3921         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3922
3923         return (/* 1. Pure ACK with correct sequence number. */
3924                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3925
3926                 /* 2. ... and duplicate ACK. */
3927                 ack == tp->snd_una &&
3928
3929                 /* 3. ... and does not update window. */
3930                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3931
3932                 /* 4. ... and sits in replay window. */
3933                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3934 }
3935
3936 static inline int tcp_paws_discard(const struct sock *sk,
3937                                    const struct sk_buff *skb)
3938 {
3939         const struct tcp_sock *tp = tcp_sk(sk);
3940
3941         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3942                !tcp_disordered_ack(sk, skb);
3943 }
3944
3945 /* Check segment sequence number for validity.
3946  *
3947  * Segment controls are considered valid, if the segment
3948  * fits to the window after truncation to the window. Acceptability
3949  * of data (and SYN, FIN, of course) is checked separately.
3950  * See tcp_data_queue(), for example.
3951  *
3952  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3953  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3954  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3955  * (borrowed from freebsd)
3956  */
3957
3958 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3959 {
3960         return  !before(end_seq, tp->rcv_wup) &&
3961                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3962 }
3963
3964 /* When we get a reset we do this. */
3965 static void tcp_reset(struct sock *sk)
3966 {
3967         /* We want the right error as BSD sees it (and indeed as we do). */
3968         switch (sk->sk_state) {
3969         case TCP_SYN_SENT:
3970                 sk->sk_err = ECONNREFUSED;
3971                 break;
3972         case TCP_CLOSE_WAIT:
3973                 sk->sk_err = EPIPE;
3974                 break;
3975         case TCP_CLOSE:
3976                 return;
3977         default:
3978                 sk->sk_err = ECONNRESET;
3979         }
3980
3981         if (!sock_flag(sk, SOCK_DEAD))
3982                 sk->sk_error_report(sk);
3983
3984         tcp_done(sk);
3985 }
3986
3987 /*
3988  *      Process the FIN bit. This now behaves as it is supposed to work
3989  *      and the FIN takes effect when it is validly part of sequence
3990  *      space. Not before when we get holes.
3991  *
3992  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3993  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
3994  *      TIME-WAIT)
3995  *
3996  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
3997  *      close and we go into CLOSING (and later onto TIME-WAIT)
3998  *
3999  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4000  */
4001 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4002 {
4003         struct tcp_sock *tp = tcp_sk(sk);
4004
4005         inet_csk_schedule_ack(sk);
4006
4007         sk->sk_shutdown |= RCV_SHUTDOWN;
4008         sock_set_flag(sk, SOCK_DONE);
4009
4010         switch (sk->sk_state) {
4011         case TCP_SYN_RECV:
4012         case TCP_ESTABLISHED:
4013                 /* Move to CLOSE_WAIT */
4014                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4015                 inet_csk(sk)->icsk_ack.pingpong = 1;
4016                 break;
4017
4018         case TCP_CLOSE_WAIT:
4019         case TCP_CLOSING:
4020                 /* Received a retransmission of the FIN, do
4021                  * nothing.
4022                  */
4023                 break;
4024         case TCP_LAST_ACK:
4025                 /* RFC793: Remain in the LAST-ACK state. */
4026                 break;
4027
4028         case TCP_FIN_WAIT1:
4029                 /* This case occurs when a simultaneous close
4030                  * happens, we must ack the received FIN and
4031                  * enter the CLOSING state.
4032                  */
4033                 tcp_send_ack(sk);
4034                 tcp_set_state(sk, TCP_CLOSING);
4035                 break;
4036         case TCP_FIN_WAIT2:
4037                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4038                 tcp_send_ack(sk);
4039                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4040                 break;
4041         default:
4042                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4043                  * cases we should never reach this piece of code.
4044                  */
4045                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4046                        __func__, sk->sk_state);
4047                 break;
4048         }
4049
4050         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4051          * Probably, we should reset in this case. For now drop them.
4052          */
4053         __skb_queue_purge(&tp->out_of_order_queue);
4054         if (tcp_is_sack(tp))
4055                 tcp_sack_reset(&tp->rx_opt);
4056         sk_mem_reclaim(sk);
4057
4058         if (!sock_flag(sk, SOCK_DEAD)) {
4059                 sk->sk_state_change(sk);
4060
4061                 /* Do not send POLL_HUP for half duplex close. */
4062                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4063                     sk->sk_state == TCP_CLOSE)
4064                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4065                 else
4066                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4067         }
4068 }
4069
4070 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4071                                   u32 end_seq)
4072 {
4073         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4074                 if (before(seq, sp->start_seq))
4075                         sp->start_seq = seq;
4076                 if (after(end_seq, sp->end_seq))
4077                         sp->end_seq = end_seq;
4078                 return 1;
4079         }
4080         return 0;
4081 }
4082
4083 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4084 {
4085         struct tcp_sock *tp = tcp_sk(sk);
4086
4087         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4088                 int mib_idx;
4089
4090                 if (before(seq, tp->rcv_nxt))
4091                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4092                 else
4093                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4094
4095                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4096
4097                 tp->rx_opt.dsack = 1;
4098                 tp->duplicate_sack[0].start_seq = seq;
4099                 tp->duplicate_sack[0].end_seq = end_seq;
4100         }
4101 }
4102
4103 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4104 {
4105         struct tcp_sock *tp = tcp_sk(sk);
4106
4107         if (!tp->rx_opt.dsack)
4108                 tcp_dsack_set(sk, seq, end_seq);
4109         else
4110                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4111 }
4112
4113 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4114 {
4115         struct tcp_sock *tp = tcp_sk(sk);
4116
4117         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4118             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4119                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4120                 tcp_enter_quickack_mode(sk);
4121
4122                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4123                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4124
4125                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4126                                 end_seq = tp->rcv_nxt;
4127                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4128                 }
4129         }
4130
4131         tcp_send_ack(sk);
4132 }
4133
4134 /* These routines update the SACK block as out-of-order packets arrive or
4135  * in-order packets close up the sequence space.
4136  */
4137 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4138 {
4139         int this_sack;
4140         struct tcp_sack_block *sp = &tp->selective_acks[0];
4141         struct tcp_sack_block *swalk = sp + 1;
4142
4143         /* See if the recent change to the first SACK eats into
4144          * or hits the sequence space of other SACK blocks, if so coalesce.
4145          */
4146         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4147                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4148                         int i;
4149
4150                         /* Zap SWALK, by moving every further SACK up by one slot.
4151                          * Decrease num_sacks.
4152                          */
4153                         tp->rx_opt.num_sacks--;
4154                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4155                                 sp[i] = sp[i + 1];
4156                         continue;
4157                 }
4158                 this_sack++, swalk++;
4159         }
4160 }
4161
4162 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4163 {
4164         struct tcp_sock *tp = tcp_sk(sk);
4165         struct tcp_sack_block *sp = &tp->selective_acks[0];
4166         int cur_sacks = tp->rx_opt.num_sacks;
4167         int this_sack;
4168
4169         if (!cur_sacks)
4170                 goto new_sack;
4171
4172         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4173                 if (tcp_sack_extend(sp, seq, end_seq)) {
4174                         /* Rotate this_sack to the first one. */
4175                         for (; this_sack > 0; this_sack--, sp--)
4176                                 swap(*sp, *(sp - 1));
4177                         if (cur_sacks > 1)
4178                                 tcp_sack_maybe_coalesce(tp);
4179                         return;
4180                 }
4181         }
4182
4183         /* Could not find an adjacent existing SACK, build a new one,
4184          * put it at the front, and shift everyone else down.  We
4185          * always know there is at least one SACK present already here.
4186          *
4187          * If the sack array is full, forget about the last one.
4188          */
4189         if (this_sack >= TCP_NUM_SACKS) {
4190                 this_sack--;
4191                 tp->rx_opt.num_sacks--;
4192                 sp--;
4193         }
4194         for (; this_sack > 0; this_sack--, sp--)
4195                 *sp = *(sp - 1);
4196
4197 new_sack:
4198         /* Build the new head SACK, and we're done. */
4199         sp->start_seq = seq;
4200         sp->end_seq = end_seq;
4201         tp->rx_opt.num_sacks++;
4202 }
4203
4204 /* RCV.NXT advances, some SACKs should be eaten. */
4205
4206 static void tcp_sack_remove(struct tcp_sock *tp)
4207 {
4208         struct tcp_sack_block *sp = &tp->selective_acks[0];
4209         int num_sacks = tp->rx_opt.num_sacks;
4210         int this_sack;
4211
4212         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4213         if (skb_queue_empty(&tp->out_of_order_queue)) {
4214                 tp->rx_opt.num_sacks = 0;
4215                 return;
4216         }
4217
4218         for (this_sack = 0; this_sack < num_sacks;) {
4219                 /* Check if the start of the sack is covered by RCV.NXT. */
4220                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4221                         int i;
4222
4223                         /* RCV.NXT must cover all the block! */
4224                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4225
4226                         /* Zap this SACK, by moving forward any other SACKS. */
4227                         for (i=this_sack+1; i < num_sacks; i++)
4228                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4229                         num_sacks--;
4230                         continue;
4231                 }
4232                 this_sack++;
4233                 sp++;
4234         }
4235         tp->rx_opt.num_sacks = num_sacks;
4236 }
4237
4238 /* This one checks to see if we can put data from the
4239  * out_of_order queue into the receive_queue.
4240  */
4241 static void tcp_ofo_queue(struct sock *sk)
4242 {
4243         struct tcp_sock *tp = tcp_sk(sk);
4244         __u32 dsack_high = tp->rcv_nxt;
4245         struct sk_buff *skb;
4246
4247         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4248                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4249                         break;
4250
4251                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4252                         __u32 dsack = dsack_high;
4253                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4254                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4255                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4256                 }
4257
4258                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4259                         SOCK_DEBUG(sk, "ofo packet was already received \n");
4260                         __skb_unlink(skb, &tp->out_of_order_queue);
4261                         __kfree_skb(skb);
4262                         continue;
4263                 }
4264                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4265                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4266                            TCP_SKB_CB(skb)->end_seq);
4267
4268                 __skb_unlink(skb, &tp->out_of_order_queue);
4269                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4270                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4271                 if (tcp_hdr(skb)->fin)
4272                         tcp_fin(skb, sk, tcp_hdr(skb));
4273         }
4274 }
4275
4276 static int tcp_prune_ofo_queue(struct sock *sk);
4277 static int tcp_prune_queue(struct sock *sk);
4278
4279 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4280 {
4281         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4282             !sk_rmem_schedule(sk, size)) {
4283
4284                 if (tcp_prune_queue(sk) < 0)
4285                         return -1;
4286
4287                 if (!sk_rmem_schedule(sk, size)) {
4288                         if (!tcp_prune_ofo_queue(sk))
4289                                 return -1;
4290
4291                         if (!sk_rmem_schedule(sk, size))
4292                                 return -1;
4293                 }
4294         }
4295         return 0;
4296 }
4297
4298 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4299 {
4300         struct tcphdr *th = tcp_hdr(skb);
4301         struct tcp_sock *tp = tcp_sk(sk);
4302         int eaten = -1;
4303
4304         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4305                 goto drop;
4306
4307         __skb_pull(skb, th->doff * 4);
4308
4309         TCP_ECN_accept_cwr(tp, skb);
4310
4311         tp->rx_opt.dsack = 0;
4312
4313         /*  Queue data for delivery to the user.
4314          *  Packets in sequence go to the receive queue.
4315          *  Out of sequence packets to the out_of_order_queue.
4316          */
4317         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4318                 if (tcp_receive_window(tp) == 0)
4319                         goto out_of_window;
4320
4321                 /* Ok. In sequence. In window. */
4322                 if (tp->ucopy.task == current &&
4323                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4324                     sock_owned_by_user(sk) && !tp->urg_data) {
4325                         int chunk = min_t(unsigned int, skb->len,
4326                                           tp->ucopy.len);
4327
4328                         __set_current_state(TASK_RUNNING);
4329
4330                         local_bh_enable();
4331                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4332                                 tp->ucopy.len -= chunk;
4333                                 tp->copied_seq += chunk;
4334                                 eaten = (chunk == skb->len && !th->fin);
4335                                 tcp_rcv_space_adjust(sk);
4336                         }
4337                         local_bh_disable();
4338                 }
4339
4340                 if (eaten <= 0) {
4341 queue_and_out:
4342                         if (eaten < 0 &&
4343                             tcp_try_rmem_schedule(sk, skb->truesize))
4344                                 goto drop;
4345
4346                         skb_set_owner_r(skb, sk);
4347                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4348                 }
4349                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4350                 if (skb->len)
4351                         tcp_event_data_recv(sk, skb);
4352                 if (th->fin)
4353                         tcp_fin(skb, sk, th);
4354
4355                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4356                         tcp_ofo_queue(sk);
4357
4358                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4359                          * gap in queue is filled.
4360                          */
4361                         if (skb_queue_empty(&tp->out_of_order_queue))
4362                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4363                 }
4364
4365                 if (tp->rx_opt.num_sacks)
4366                         tcp_sack_remove(tp);
4367
4368                 tcp_fast_path_check(sk);
4369
4370                 if (eaten > 0)
4371                         __kfree_skb(skb);
4372                 else if (!sock_flag(sk, SOCK_DEAD))
4373                         sk->sk_data_ready(sk, 0);
4374                 return;
4375         }
4376
4377         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4378                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4379                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4380                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4381
4382 out_of_window:
4383                 tcp_enter_quickack_mode(sk);
4384                 inet_csk_schedule_ack(sk);
4385 drop:
4386                 __kfree_skb(skb);
4387                 return;
4388         }
4389
4390         /* Out of window. F.e. zero window probe. */
4391         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4392                 goto out_of_window;
4393
4394         tcp_enter_quickack_mode(sk);
4395
4396         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4397                 /* Partial packet, seq < rcv_next < end_seq */
4398                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4399                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4400                            TCP_SKB_CB(skb)->end_seq);
4401
4402                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4403
4404                 /* If window is closed, drop tail of packet. But after
4405                  * remembering D-SACK for its head made in previous line.
4406                  */
4407                 if (!tcp_receive_window(tp))
4408                         goto out_of_window;
4409                 goto queue_and_out;
4410         }
4411
4412         TCP_ECN_check_ce(tp, skb);
4413
4414         if (tcp_try_rmem_schedule(sk, skb->truesize))
4415                 goto drop;
4416
4417         /* Disable header prediction. */
4418         tp->pred_flags = 0;
4419         inet_csk_schedule_ack(sk);
4420
4421         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4422                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4423
4424         skb_set_owner_r(skb, sk);
4425
4426         if (!skb_peek(&tp->out_of_order_queue)) {
4427                 /* Initial out of order segment, build 1 SACK. */
4428                 if (tcp_is_sack(tp)) {
4429                         tp->rx_opt.num_sacks = 1;
4430                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4431                         tp->selective_acks[0].end_seq =
4432                                                 TCP_SKB_CB(skb)->end_seq;
4433                 }
4434                 __skb_queue_head(&tp->out_of_order_queue, skb);
4435         } else {
4436                 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4437                 u32 seq = TCP_SKB_CB(skb)->seq;
4438                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4439
4440                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4441                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4442
4443                         if (!tp->rx_opt.num_sacks ||
4444                             tp->selective_acks[0].end_seq != seq)
4445                                 goto add_sack;
4446
4447                         /* Common case: data arrive in order after hole. */
4448                         tp->selective_acks[0].end_seq = end_seq;
4449                         return;
4450                 }
4451
4452                 /* Find place to insert this segment. */
4453                 do {
4454                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4455                                 break;
4456                 } while ((skb1 = skb1->prev) !=
4457                          (struct sk_buff *)&tp->out_of_order_queue);
4458
4459                 /* Do skb overlap to previous one? */
4460                 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4461                     before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4462                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4463                                 /* All the bits are present. Drop. */
4464                                 __kfree_skb(skb);
4465                                 tcp_dsack_set(sk, seq, end_seq);
4466                                 goto add_sack;
4467                         }
4468                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4469                                 /* Partial overlap. */
4470                                 tcp_dsack_set(sk, seq,
4471                                               TCP_SKB_CB(skb1)->end_seq);
4472                         } else {
4473                                 skb1 = skb1->prev;
4474                         }
4475                 }
4476                 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4477
4478                 /* And clean segments covered by new one as whole. */
4479                 while ((skb1 = skb->next) !=
4480                        (struct sk_buff *)&tp->out_of_order_queue &&
4481                        after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4482                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4483                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4484                                                  end_seq);
4485                                 break;
4486                         }
4487                         __skb_unlink(skb1, &tp->out_of_order_queue);
4488                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4489                                          TCP_SKB_CB(skb1)->end_seq);
4490                         __kfree_skb(skb1);
4491                 }
4492
4493 add_sack:
4494                 if (tcp_is_sack(tp))
4495                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4496         }
4497 }
4498
4499 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4500                                         struct sk_buff_head *list)
4501 {
4502         struct sk_buff *next = skb->next;
4503
4504         __skb_unlink(skb, list);
4505         __kfree_skb(skb);
4506         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4507
4508         return next;
4509 }
4510
4511 /* Collapse contiguous sequence of skbs head..tail with
4512  * sequence numbers start..end.
4513  * Segments with FIN/SYN are not collapsed (only because this
4514  * simplifies code)
4515  */
4516 static void
4517 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4518              struct sk_buff *head, struct sk_buff *tail,
4519              u32 start, u32 end)
4520 {
4521         struct sk_buff *skb;
4522
4523         /* First, check that queue is collapsible and find
4524          * the point where collapsing can be useful. */
4525         for (skb = head; skb != tail;) {
4526                 /* No new bits? It is possible on ofo queue. */
4527                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4528                         skb = tcp_collapse_one(sk, skb, list);
4529                         continue;
4530                 }
4531
4532                 /* The first skb to collapse is:
4533                  * - not SYN/FIN and
4534                  * - bloated or contains data before "start" or
4535                  *   overlaps to the next one.
4536                  */
4537                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4538                     (tcp_win_from_space(skb->truesize) > skb->len ||
4539                      before(TCP_SKB_CB(skb)->seq, start) ||
4540                      (skb->next != tail &&
4541                       TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4542                         break;
4543
4544                 /* Decided to skip this, advance start seq. */
4545                 start = TCP_SKB_CB(skb)->end_seq;
4546                 skb = skb->next;
4547         }
4548         if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4549                 return;
4550
4551         while (before(start, end)) {
4552                 struct sk_buff *nskb;
4553                 unsigned int header = skb_headroom(skb);
4554                 int copy = SKB_MAX_ORDER(header, 0);
4555
4556                 /* Too big header? This can happen with IPv6. */
4557                 if (copy < 0)
4558                         return;
4559                 if (end - start < copy)
4560                         copy = end - start;
4561                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4562                 if (!nskb)
4563                         return;
4564
4565                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4566                 skb_set_network_header(nskb, (skb_network_header(skb) -
4567                                               skb->head));
4568                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4569                                                 skb->head));
4570                 skb_reserve(nskb, header);
4571                 memcpy(nskb->head, skb->head, header);
4572                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4573                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4574                 __skb_queue_before(list, skb, nskb);
4575                 skb_set_owner_r(nskb, sk);
4576
4577                 /* Copy data, releasing collapsed skbs. */
4578                 while (copy > 0) {
4579                         int offset = start - TCP_SKB_CB(skb)->seq;
4580                         int size = TCP_SKB_CB(skb)->end_seq - start;
4581
4582                         BUG_ON(offset < 0);
4583                         if (size > 0) {
4584                                 size = min(copy, size);
4585                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4586                                         BUG();
4587                                 TCP_SKB_CB(nskb)->end_seq += size;
4588                                 copy -= size;
4589                                 start += size;
4590                         }
4591                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4592                                 skb = tcp_collapse_one(sk, skb, list);
4593                                 if (skb == tail ||
4594                                     tcp_hdr(skb)->syn ||
4595                                     tcp_hdr(skb)->fin)
4596                                         return;
4597                         }
4598                 }
4599         }
4600 }
4601
4602 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4603  * and tcp_collapse() them until all the queue is collapsed.
4604  */
4605 static void tcp_collapse_ofo_queue(struct sock *sk)
4606 {
4607         struct tcp_sock *tp = tcp_sk(sk);
4608         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4609         struct sk_buff *head;
4610         u32 start, end;
4611
4612         if (skb == NULL)
4613                 return;
4614
4615         start = TCP_SKB_CB(skb)->seq;
4616         end = TCP_SKB_CB(skb)->end_seq;
4617         head = skb;
4618
4619         for (;;) {
4620                 skb = skb->next;
4621
4622                 /* Segment is terminated when we see gap or when
4623                  * we are at the end of all the queue. */
4624                 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4625                     after(TCP_SKB_CB(skb)->seq, end) ||
4626                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4627                         tcp_collapse(sk, &tp->out_of_order_queue,
4628                                      head, skb, start, end);
4629                         head = skb;
4630                         if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4631                                 break;
4632                         /* Start new segment */
4633                         start = TCP_SKB_CB(skb)->seq;
4634                         end = TCP_SKB_CB(skb)->end_seq;
4635                 } else {
4636                         if (before(TCP_SKB_CB(skb)->seq, start))
4637                                 start = TCP_SKB_CB(skb)->seq;
4638                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4639                                 end = TCP_SKB_CB(skb)->end_seq;
4640                 }
4641         }
4642 }
4643
4644 /*
4645  * Purge the out-of-order queue.
4646  * Return true if queue was pruned.
4647  */
4648 static int tcp_prune_ofo_queue(struct sock *sk)
4649 {
4650         struct tcp_sock *tp = tcp_sk(sk);
4651         int res = 0;
4652
4653         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4654                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4655                 __skb_queue_purge(&tp->out_of_order_queue);
4656
4657                 /* Reset SACK state.  A conforming SACK implementation will
4658                  * do the same at a timeout based retransmit.  When a connection
4659                  * is in a sad state like this, we care only about integrity
4660                  * of the connection not performance.
4661                  */
4662                 if (tp->rx_opt.sack_ok)
4663                         tcp_sack_reset(&tp->rx_opt);
4664                 sk_mem_reclaim(sk);
4665                 res = 1;
4666         }
4667         return res;
4668 }
4669
4670 /* Reduce allocated memory if we can, trying to get
4671  * the socket within its memory limits again.
4672  *
4673  * Return less than zero if we should start dropping frames
4674  * until the socket owning process reads some of the data
4675  * to stabilize the situation.
4676  */
4677 static int tcp_prune_queue(struct sock *sk)
4678 {
4679         struct tcp_sock *tp = tcp_sk(sk);
4680
4681         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4682
4683         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4684
4685         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4686                 tcp_clamp_window(sk);
4687         else if (tcp_memory_pressure)
4688                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4689
4690         tcp_collapse_ofo_queue(sk);
4691         tcp_collapse(sk, &sk->sk_receive_queue,
4692                      sk->sk_receive_queue.next,
4693                      (struct sk_buff *)&sk->sk_receive_queue,
4694                      tp->copied_seq, tp->rcv_nxt);
4695         sk_mem_reclaim(sk);
4696
4697         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4698                 return 0;
4699
4700         /* Collapsing did not help, destructive actions follow.
4701          * This must not ever occur. */
4702
4703         tcp_prune_ofo_queue(sk);
4704
4705         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4706                 return 0;
4707
4708         /* If we are really being abused, tell the caller to silently
4709          * drop receive data on the floor.  It will get retransmitted
4710          * and hopefully then we'll have sufficient space.
4711          */
4712         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4713
4714         /* Massive buffer overcommit. */
4715         tp->pred_flags = 0;
4716         return -1;
4717 }
4718
4719 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4720  * As additional protections, we do not touch cwnd in retransmission phases,
4721  * and if application hit its sndbuf limit recently.
4722  */
4723 void tcp_cwnd_application_limited(struct sock *sk)
4724 {
4725         struct tcp_sock *tp = tcp_sk(sk);
4726
4727         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4728             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4729                 /* Limited by application or receiver window. */
4730                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4731                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4732                 if (win_used < tp->snd_cwnd) {
4733                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4734                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4735                 }
4736                 tp->snd_cwnd_used = 0;
4737         }
4738         tp->snd_cwnd_stamp = tcp_time_stamp;
4739 }
4740
4741 static int tcp_should_expand_sndbuf(struct sock *sk)
4742 {
4743         struct tcp_sock *tp = tcp_sk(sk);
4744
4745         /* If the user specified a specific send buffer setting, do
4746          * not modify it.
4747          */
4748         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4749                 return 0;
4750
4751         /* If we are under global TCP memory pressure, do not expand.  */
4752         if (tcp_memory_pressure)
4753                 return 0;
4754
4755         /* If we are under soft global TCP memory pressure, do not expand.  */
4756         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4757                 return 0;
4758
4759         /* If we filled the congestion window, do not expand.  */
4760         if (tp->packets_out >= tp->snd_cwnd)
4761                 return 0;
4762
4763         return 1;
4764 }
4765
4766 /* When incoming ACK allowed to free some skb from write_queue,
4767  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4768  * on the exit from tcp input handler.
4769  *
4770  * PROBLEM: sndbuf expansion does not work well with largesend.
4771  */
4772 static void tcp_new_space(struct sock *sk)
4773 {
4774         struct tcp_sock *tp = tcp_sk(sk);
4775
4776         if (tcp_should_expand_sndbuf(sk)) {
4777                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4778                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4779                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4780                                      tp->reordering + 1);
4781                 sndmem *= 2 * demanded;
4782                 if (sndmem > sk->sk_sndbuf)
4783                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4784                 tp->snd_cwnd_stamp = tcp_time_stamp;
4785         }
4786
4787         sk->sk_write_space(sk);
4788 }
4789
4790 static void tcp_check_space(struct sock *sk)
4791 {
4792         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4793                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4794                 if (sk->sk_socket &&
4795                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4796                         tcp_new_space(sk);
4797         }
4798 }
4799
4800 static inline void tcp_data_snd_check(struct sock *sk)
4801 {
4802         tcp_push_pending_frames(sk);
4803         tcp_check_space(sk);
4804 }
4805
4806 /*
4807  * Check if sending an ack is needed.
4808  */
4809 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4810 {
4811         struct tcp_sock *tp = tcp_sk(sk);
4812
4813             /* More than one full frame received... */
4814         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4815              /* ... and right edge of window advances far enough.
4816               * (tcp_recvmsg() will send ACK otherwise). Or...
4817               */
4818              && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4819             /* We ACK each frame or... */
4820             tcp_in_quickack_mode(sk) ||
4821             /* We have out of order data. */
4822             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4823                 /* Then ack it now */
4824                 tcp_send_ack(sk);
4825         } else {
4826                 /* Else, send delayed ack. */
4827                 tcp_send_delayed_ack(sk);
4828         }
4829 }
4830
4831 static inline void tcp_ack_snd_check(struct sock *sk)
4832 {
4833         if (!inet_csk_ack_scheduled(sk)) {
4834                 /* We sent a data segment already. */
4835                 return;
4836         }
4837         __tcp_ack_snd_check(sk, 1);
4838 }
4839
4840 /*
4841  *      This routine is only called when we have urgent data
4842  *      signaled. Its the 'slow' part of tcp_urg. It could be
4843  *      moved inline now as tcp_urg is only called from one
4844  *      place. We handle URGent data wrong. We have to - as
4845  *      BSD still doesn't use the correction from RFC961.
4846  *      For 1003.1g we should support a new option TCP_STDURG to permit
4847  *      either form (or just set the sysctl tcp_stdurg).
4848  */
4849
4850 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4851 {
4852         struct tcp_sock *tp = tcp_sk(sk);
4853         u32 ptr = ntohs(th->urg_ptr);
4854
4855         if (ptr && !sysctl_tcp_stdurg)
4856                 ptr--;
4857         ptr += ntohl(th->seq);
4858
4859         /* Ignore urgent data that we've already seen and read. */
4860         if (after(tp->copied_seq, ptr))
4861                 return;
4862
4863         /* Do not replay urg ptr.
4864          *
4865          * NOTE: interesting situation not covered by specs.
4866          * Misbehaving sender may send urg ptr, pointing to segment,
4867          * which we already have in ofo queue. We are not able to fetch
4868          * such data and will stay in TCP_URG_NOTYET until will be eaten
4869          * by recvmsg(). Seems, we are not obliged to handle such wicked
4870          * situations. But it is worth to think about possibility of some
4871          * DoSes using some hypothetical application level deadlock.
4872          */
4873         if (before(ptr, tp->rcv_nxt))
4874                 return;
4875
4876         /* Do we already have a newer (or duplicate) urgent pointer? */
4877         if (tp->urg_data && !after(ptr, tp->urg_seq))
4878                 return;
4879
4880         /* Tell the world about our new urgent pointer. */
4881         sk_send_sigurg(sk);
4882
4883         /* We may be adding urgent data when the last byte read was
4884          * urgent. To do this requires some care. We cannot just ignore
4885          * tp->copied_seq since we would read the last urgent byte again
4886          * as data, nor can we alter copied_seq until this data arrives
4887          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4888          *
4889          * NOTE. Double Dutch. Rendering to plain English: author of comment
4890          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4891          * and expect that both A and B disappear from stream. This is _wrong_.
4892          * Though this happens in BSD with high probability, this is occasional.
4893          * Any application relying on this is buggy. Note also, that fix "works"
4894          * only in this artificial test. Insert some normal data between A and B and we will
4895          * decline of BSD again. Verdict: it is better to remove to trap
4896          * buggy users.
4897          */
4898         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4899             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4900                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4901                 tp->copied_seq++;
4902                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4903                         __skb_unlink(skb, &sk->sk_receive_queue);
4904                         __kfree_skb(skb);
4905                 }
4906         }
4907
4908         tp->urg_data = TCP_URG_NOTYET;
4909         tp->urg_seq = ptr;
4910
4911         /* Disable header prediction. */
4912         tp->pred_flags = 0;
4913 }
4914
4915 /* This is the 'fast' part of urgent handling. */
4916 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4917 {
4918         struct tcp_sock *tp = tcp_sk(sk);
4919
4920         /* Check if we get a new urgent pointer - normally not. */
4921         if (th->urg)
4922                 tcp_check_urg(sk, th);
4923
4924         /* Do we wait for any urgent data? - normally not... */
4925         if (tp->urg_data == TCP_URG_NOTYET) {
4926                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4927                           th->syn;
4928
4929                 /* Is the urgent pointer pointing into this packet? */
4930                 if (ptr < skb->len) {
4931                         u8 tmp;
4932                         if (skb_copy_bits(skb, ptr, &tmp, 1))
4933                                 BUG();
4934                         tp->urg_data = TCP_URG_VALID | tmp;
4935                         if (!sock_flag(sk, SOCK_DEAD))
4936                                 sk->sk_data_ready(sk, 0);
4937                 }
4938         }
4939 }
4940
4941 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4942 {
4943         struct tcp_sock *tp = tcp_sk(sk);
4944         int chunk = skb->len - hlen;
4945         int err;
4946
4947         local_bh_enable();
4948         if (skb_csum_unnecessary(skb))
4949                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4950         else
4951                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4952                                                        tp->ucopy.iov);
4953
4954         if (!err) {
4955                 tp->ucopy.len -= chunk;
4956                 tp->copied_seq += chunk;
4957                 tcp_rcv_space_adjust(sk);
4958         }
4959
4960         local_bh_disable();
4961         return err;
4962 }
4963
4964 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4965                                             struct sk_buff *skb)
4966 {
4967         __sum16 result;
4968
4969         if (sock_owned_by_user(sk)) {
4970                 local_bh_enable();
4971                 result = __tcp_checksum_complete(skb);
4972                 local_bh_disable();
4973         } else {
4974                 result = __tcp_checksum_complete(skb);
4975         }
4976         return result;
4977 }
4978
4979 static inline int tcp_checksum_complete_user(struct sock *sk,
4980                                              struct sk_buff *skb)
4981 {
4982         return !skb_csum_unnecessary(skb) &&
4983                __tcp_checksum_complete_user(sk, skb);
4984 }
4985
4986 #ifdef CONFIG_NET_DMA
4987 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4988                                   int hlen)
4989 {
4990         struct tcp_sock *tp = tcp_sk(sk);
4991         int chunk = skb->len - hlen;
4992         int dma_cookie;
4993         int copied_early = 0;
4994
4995         if (tp->ucopy.wakeup)
4996                 return 0;
4997
4998         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4999                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5000
5001         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5002
5003                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5004                                                          skb, hlen,
5005                                                          tp->ucopy.iov, chunk,
5006                                                          tp->ucopy.pinned_list);
5007
5008                 if (dma_cookie < 0)
5009                         goto out;
5010
5011                 tp->ucopy.dma_cookie = dma_cookie;
5012                 copied_early = 1;
5013
5014                 tp->ucopy.len -= chunk;
5015                 tp->copied_seq += chunk;
5016                 tcp_rcv_space_adjust(sk);
5017
5018                 if ((tp->ucopy.len == 0) ||
5019                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5020                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5021                         tp->ucopy.wakeup = 1;
5022                         sk->sk_data_ready(sk, 0);
5023                 }
5024         } else if (chunk > 0) {
5025                 tp->ucopy.wakeup = 1;
5026                 sk->sk_data_ready(sk, 0);
5027         }
5028 out:
5029         return copied_early;
5030 }
5031 #endif /* CONFIG_NET_DMA */
5032
5033 /* Does PAWS and seqno based validation of an incoming segment, flags will
5034  * play significant role here.
5035  */
5036 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5037                               struct tcphdr *th, int syn_inerr)
5038 {
5039         struct tcp_sock *tp = tcp_sk(sk);
5040
5041         /* RFC1323: H1. Apply PAWS check first. */
5042         if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5043             tcp_paws_discard(sk, skb)) {
5044                 if (!th->rst) {
5045                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5046                         tcp_send_dupack(sk, skb);
5047                         goto discard;
5048                 }
5049                 /* Reset is accepted even if it did not pass PAWS. */
5050         }
5051
5052         /* Step 1: check sequence number */
5053         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5054                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5055                  * (RST) segments are validated by checking their SEQ-fields."
5056                  * And page 69: "If an incoming segment is not acceptable,
5057                  * an acknowledgment should be sent in reply (unless the RST
5058                  * bit is set, if so drop the segment and return)".
5059                  */
5060                 if (!th->rst)
5061                         tcp_send_dupack(sk, skb);
5062                 goto discard;
5063         }
5064
5065         /* Step 2: check RST bit */
5066         if (th->rst) {
5067                 tcp_reset(sk);
5068                 goto discard;
5069         }
5070
5071         /* ts_recent update must be made after we are sure that the packet
5072          * is in window.
5073          */
5074         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5075
5076         /* step 3: check security and precedence [ignored] */
5077
5078         /* step 4: Check for a SYN in window. */
5079         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5080                 if (syn_inerr)
5081                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5082                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5083                 tcp_reset(sk);
5084                 return -1;
5085         }
5086
5087         return 1;
5088
5089 discard:
5090         __kfree_skb(skb);
5091         return 0;
5092 }
5093
5094 /*
5095  *      TCP receive function for the ESTABLISHED state.
5096  *
5097  *      It is split into a fast path and a slow path. The fast path is
5098  *      disabled when:
5099  *      - A zero window was announced from us - zero window probing
5100  *        is only handled properly in the slow path.
5101  *      - Out of order segments arrived.
5102  *      - Urgent data is expected.
5103  *      - There is no buffer space left
5104  *      - Unexpected TCP flags/window values/header lengths are received
5105  *        (detected by checking the TCP header against pred_flags)
5106  *      - Data is sent in both directions. Fast path only supports pure senders
5107  *        or pure receivers (this means either the sequence number or the ack
5108  *        value must stay constant)
5109  *      - Unexpected TCP option.
5110  *
5111  *      When these conditions are not satisfied it drops into a standard
5112  *      receive procedure patterned after RFC793 to handle all cases.
5113  *      The first three cases are guaranteed by proper pred_flags setting,
5114  *      the rest is checked inline. Fast processing is turned on in
5115  *      tcp_data_queue when everything is OK.
5116  */
5117 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5118                         struct tcphdr *th, unsigned len)
5119 {
5120         struct tcp_sock *tp = tcp_sk(sk);
5121         int res;
5122
5123         /*
5124          *      Header prediction.
5125          *      The code loosely follows the one in the famous
5126          *      "30 instruction TCP receive" Van Jacobson mail.
5127          *
5128          *      Van's trick is to deposit buffers into socket queue
5129          *      on a device interrupt, to call tcp_recv function
5130          *      on the receive process context and checksum and copy
5131          *      the buffer to user space. smart...
5132          *
5133          *      Our current scheme is not silly either but we take the
5134          *      extra cost of the net_bh soft interrupt processing...
5135          *      We do checksum and copy also but from device to kernel.
5136          */
5137
5138         tp->rx_opt.saw_tstamp = 0;
5139
5140         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5141          *      if header_prediction is to be made
5142          *      'S' will always be tp->tcp_header_len >> 2
5143          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5144          *  turn it off (when there are holes in the receive
5145          *       space for instance)
5146          *      PSH flag is ignored.
5147          */
5148
5149         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5150             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5151             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5152                 int tcp_header_len = tp->tcp_header_len;
5153
5154                 /* Timestamp header prediction: tcp_header_len
5155                  * is automatically equal to th->doff*4 due to pred_flags
5156                  * match.
5157                  */
5158
5159                 /* Check timestamp */
5160                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5161                         /* No? Slow path! */
5162                         if (!tcp_parse_aligned_timestamp(tp, th))
5163                                 goto slow_path;
5164
5165                         /* If PAWS failed, check it more carefully in slow path */
5166                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5167                                 goto slow_path;
5168
5169                         /* DO NOT update ts_recent here, if checksum fails
5170                          * and timestamp was corrupted part, it will result
5171                          * in a hung connection since we will drop all
5172                          * future packets due to the PAWS test.
5173                          */
5174                 }
5175
5176                 if (len <= tcp_header_len) {
5177                         /* Bulk data transfer: sender */
5178                         if (len == tcp_header_len) {
5179                                 /* Predicted packet is in window by definition.
5180                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5181                                  * Hence, check seq<=rcv_wup reduces to:
5182                                  */
5183                                 if (tcp_header_len ==
5184                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5185                                     tp->rcv_nxt == tp->rcv_wup)
5186                                         tcp_store_ts_recent(tp);
5187
5188                                 /* We know that such packets are checksummed
5189                                  * on entry.
5190                                  */
5191                                 tcp_ack(sk, skb, 0);
5192                                 __kfree_skb(skb);
5193                                 tcp_data_snd_check(sk);
5194                                 return 0;
5195                         } else { /* Header too small */
5196                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5197                                 goto discard;
5198                         }
5199                 } else {
5200                         int eaten = 0;
5201                         int copied_early = 0;
5202
5203                         if (tp->copied_seq == tp->rcv_nxt &&
5204                             len - tcp_header_len <= tp->ucopy.len) {
5205 #ifdef CONFIG_NET_DMA
5206                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5207                                         copied_early = 1;
5208                                         eaten = 1;
5209                                 }
5210 #endif
5211                                 if (tp->ucopy.task == current &&
5212                                     sock_owned_by_user(sk) && !copied_early) {
5213                                         __set_current_state(TASK_RUNNING);
5214
5215                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5216                                                 eaten = 1;
5217                                 }
5218                                 if (eaten) {
5219                                         /* Predicted packet is in window by definition.
5220                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5221                                          * Hence, check seq<=rcv_wup reduces to:
5222                                          */
5223                                         if (tcp_header_len ==
5224                                             (sizeof(struct tcphdr) +
5225                                              TCPOLEN_TSTAMP_ALIGNED) &&
5226                                             tp->rcv_nxt == tp->rcv_wup)
5227                                                 tcp_store_ts_recent(tp);
5228
5229                                         tcp_rcv_rtt_measure_ts(sk, skb);
5230
5231                                         __skb_pull(skb, tcp_header_len);
5232                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5233                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5234                                 }
5235                                 if (copied_early)
5236                                         tcp_cleanup_rbuf(sk, skb->len);
5237                         }
5238                         if (!eaten) {
5239                                 if (tcp_checksum_complete_user(sk, skb))
5240                                         goto csum_error;
5241
5242                                 /* Predicted packet is in window by definition.
5243                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5244                                  * Hence, check seq<=rcv_wup reduces to:
5245                                  */
5246                                 if (tcp_header_len ==
5247                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5248                                     tp->rcv_nxt == tp->rcv_wup)
5249                                         tcp_store_ts_recent(tp);
5250
5251                                 tcp_rcv_rtt_measure_ts(sk, skb);
5252
5253                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5254                                         goto step5;
5255
5256                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5257
5258                                 /* Bulk data transfer: receiver */
5259                                 __skb_pull(skb, tcp_header_len);
5260                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5261                                 skb_set_owner_r(skb, sk);
5262                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5263                         }
5264
5265                         tcp_event_data_recv(sk, skb);
5266
5267                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5268                                 /* Well, only one small jumplet in fast path... */
5269                                 tcp_ack(sk, skb, FLAG_DATA);
5270                                 tcp_data_snd_check(sk);
5271                                 if (!inet_csk_ack_scheduled(sk))
5272                                         goto no_ack;
5273                         }
5274
5275                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5276                                 __tcp_ack_snd_check(sk, 0);
5277 no_ack:
5278 #ifdef CONFIG_NET_DMA
5279                         if (copied_early)
5280                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5281                         else
5282 #endif
5283                         if (eaten)
5284                                 __kfree_skb(skb);
5285                         else
5286                                 sk->sk_data_ready(sk, 0);
5287                         return 0;
5288                 }
5289         }
5290
5291 slow_path:
5292         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5293                 goto csum_error;
5294
5295         /*
5296          *      Standard slow path.
5297          */
5298
5299         res = tcp_validate_incoming(sk, skb, th, 1);
5300         if (res <= 0)
5301                 return -res;
5302
5303 step5:
5304         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5305                 goto discard;
5306
5307         tcp_rcv_rtt_measure_ts(sk, skb);
5308
5309         /* Process urgent data. */
5310         tcp_urg(sk, skb, th);
5311
5312         /* step 7: process the segment text */
5313         tcp_data_queue(sk, skb);
5314
5315         tcp_data_snd_check(sk);
5316         tcp_ack_snd_check(sk);
5317         return 0;
5318
5319 csum_error:
5320         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5321
5322 discard:
5323         __kfree_skb(skb);
5324         return 0;
5325 }
5326
5327 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5328                                          struct tcphdr *th, unsigned len)
5329 {
5330         struct tcp_sock *tp = tcp_sk(sk);
5331         struct inet_connection_sock *icsk = inet_csk(sk);
5332         int saved_clamp = tp->rx_opt.mss_clamp;
5333
5334         tcp_parse_options(skb, &tp->rx_opt, 0);
5335
5336         if (th->ack) {
5337                 /* rfc793:
5338                  * "If the state is SYN-SENT then
5339                  *    first check the ACK bit
5340                  *      If the ACK bit is set
5341                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5342                  *        a reset (unless the RST bit is set, if so drop
5343                  *        the segment and return)"
5344                  *
5345                  *  We do not send data with SYN, so that RFC-correct
5346                  *  test reduces to:
5347                  */
5348                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5349                         goto reset_and_undo;
5350
5351                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5352                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5353                              tcp_time_stamp)) {
5354                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5355                         goto reset_and_undo;
5356                 }
5357
5358                 /* Now ACK is acceptable.
5359                  *
5360                  * "If the RST bit is set
5361                  *    If the ACK was acceptable then signal the user "error:
5362                  *    connection reset", drop the segment, enter CLOSED state,
5363                  *    delete TCB, and return."
5364                  */
5365
5366                 if (th->rst) {
5367                         tcp_reset(sk);
5368                         goto discard;
5369                 }
5370
5371                 /* rfc793:
5372                  *   "fifth, if neither of the SYN or RST bits is set then
5373                  *    drop the segment and return."
5374                  *
5375                  *    See note below!
5376                  *                                        --ANK(990513)
5377                  */
5378                 if (!th->syn)
5379                         goto discard_and_undo;
5380
5381                 /* rfc793:
5382                  *   "If the SYN bit is on ...
5383                  *    are acceptable then ...
5384                  *    (our SYN has been ACKed), change the connection
5385                  *    state to ESTABLISHED..."
5386                  */
5387
5388                 TCP_ECN_rcv_synack(tp, th);
5389
5390                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5391                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5392
5393                 /* Ok.. it's good. Set up sequence numbers and
5394                  * move to established.
5395                  */
5396                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5397                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5398
5399                 /* RFC1323: The window in SYN & SYN/ACK segments is
5400                  * never scaled.
5401                  */
5402                 tp->snd_wnd = ntohs(th->window);
5403                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5404
5405                 if (!tp->rx_opt.wscale_ok) {
5406                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5407                         tp->window_clamp = min(tp->window_clamp, 65535U);
5408                 }
5409
5410                 if (tp->rx_opt.saw_tstamp) {
5411                         tp->rx_opt.tstamp_ok       = 1;
5412                         tp->tcp_header_len =
5413                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5414                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5415                         tcp_store_ts_recent(tp);
5416                 } else {
5417                         tp->tcp_header_len = sizeof(struct tcphdr);
5418                 }
5419
5420                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5421                         tcp_enable_fack(tp);
5422
5423                 tcp_mtup_init(sk);
5424                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5425                 tcp_initialize_rcv_mss(sk);
5426
5427                 /* Remember, tcp_poll() does not lock socket!
5428                  * Change state from SYN-SENT only after copied_seq
5429                  * is initialized. */
5430                 tp->copied_seq = tp->rcv_nxt;
5431                 smp_mb();
5432                 tcp_set_state(sk, TCP_ESTABLISHED);
5433
5434                 security_inet_conn_established(sk, skb);
5435
5436                 /* Make sure socket is routed, for correct metrics.  */
5437                 icsk->icsk_af_ops->rebuild_header(sk);
5438
5439                 tcp_init_metrics(sk);
5440
5441                 tcp_init_congestion_control(sk);
5442
5443                 /* Prevent spurious tcp_cwnd_restart() on first data
5444                  * packet.
5445                  */
5446                 tp->lsndtime = tcp_time_stamp;
5447
5448                 tcp_init_buffer_space(sk);
5449
5450                 if (sock_flag(sk, SOCK_KEEPOPEN))
5451                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5452
5453                 if (!tp->rx_opt.snd_wscale)
5454                         __tcp_fast_path_on(tp, tp->snd_wnd);
5455                 else
5456                         tp->pred_flags = 0;
5457
5458                 if (!sock_flag(sk, SOCK_DEAD)) {
5459                         sk->sk_state_change(sk);
5460                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5461                 }
5462
5463                 if (sk->sk_write_pending ||
5464                     icsk->icsk_accept_queue.rskq_defer_accept ||
5465                     icsk->icsk_ack.pingpong) {
5466                         /* Save one ACK. Data will be ready after
5467                          * several ticks, if write_pending is set.
5468                          *
5469                          * It may be deleted, but with this feature tcpdumps
5470                          * look so _wonderfully_ clever, that I was not able
5471                          * to stand against the temptation 8)     --ANK
5472                          */
5473                         inet_csk_schedule_ack(sk);
5474                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5475                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5476                         tcp_incr_quickack(sk);
5477                         tcp_enter_quickack_mode(sk);
5478                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5479                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5480
5481 discard:
5482                         __kfree_skb(skb);
5483                         return 0;
5484                 } else {
5485                         tcp_send_ack(sk);
5486                 }
5487                 return -1;
5488         }
5489
5490         /* No ACK in the segment */
5491
5492         if (th->rst) {
5493                 /* rfc793:
5494                  * "If the RST bit is set
5495                  *
5496                  *      Otherwise (no ACK) drop the segment and return."
5497                  */
5498
5499                 goto discard_and_undo;
5500         }
5501
5502         /* PAWS check. */
5503         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5504             tcp_paws_reject(&tp->rx_opt, 0))
5505                 goto discard_and_undo;
5506
5507         if (th->syn) {
5508                 /* We see SYN without ACK. It is attempt of
5509                  * simultaneous connect with crossed SYNs.
5510                  * Particularly, it can be connect to self.
5511                  */
5512                 tcp_set_state(sk, TCP_SYN_RECV);
5513
5514                 if (tp->rx_opt.saw_tstamp) {
5515                         tp->rx_opt.tstamp_ok = 1;
5516                         tcp_store_ts_recent(tp);
5517                         tp->tcp_header_len =
5518                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5519                 } else {
5520                         tp->tcp_header_len = sizeof(struct tcphdr);
5521                 }
5522
5523                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5524                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5525
5526                 /* RFC1323: The window in SYN & SYN/ACK segments is
5527                  * never scaled.
5528                  */
5529                 tp->snd_wnd    = ntohs(th->window);
5530                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5531                 tp->max_window = tp->snd_wnd;
5532
5533                 TCP_ECN_rcv_syn(tp, th);
5534
5535                 tcp_mtup_init(sk);
5536                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5537                 tcp_initialize_rcv_mss(sk);
5538
5539                 tcp_send_synack(sk);
5540 #if 0
5541                 /* Note, we could accept data and URG from this segment.
5542                  * There are no obstacles to make this.
5543                  *
5544                  * However, if we ignore data in ACKless segments sometimes,
5545                  * we have no reasons to accept it sometimes.
5546                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5547                  * is not flawless. So, discard packet for sanity.
5548                  * Uncomment this return to process the data.
5549                  */
5550                 return -1;
5551 #else
5552                 goto discard;
5553 #endif
5554         }
5555         /* "fifth, if neither of the SYN or RST bits is set then
5556          * drop the segment and return."
5557          */
5558
5559 discard_and_undo:
5560         tcp_clear_options(&tp->rx_opt);
5561         tp->rx_opt.mss_clamp = saved_clamp;
5562         goto discard;
5563
5564 reset_and_undo:
5565         tcp_clear_options(&tp->rx_opt);
5566         tp->rx_opt.mss_clamp = saved_clamp;
5567         return 1;
5568 }
5569
5570 /*
5571  *      This function implements the receiving procedure of RFC 793 for
5572  *      all states except ESTABLISHED and TIME_WAIT.
5573  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5574  *      address independent.
5575  */
5576
5577 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5578                           struct tcphdr *th, unsigned len)
5579 {
5580         struct tcp_sock *tp = tcp_sk(sk);
5581         struct inet_connection_sock *icsk = inet_csk(sk);
5582         int queued = 0;
5583         int res;
5584
5585         tp->rx_opt.saw_tstamp = 0;
5586
5587         switch (sk->sk_state) {
5588         case TCP_CLOSE:
5589                 goto discard;
5590
5591         case TCP_LISTEN:
5592                 if (th->ack)
5593                         return 1;
5594
5595                 if (th->rst)
5596                         goto discard;
5597
5598                 if (th->syn) {
5599                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5600                                 return 1;
5601
5602                         /* Now we have several options: In theory there is
5603                          * nothing else in the frame. KA9Q has an option to
5604                          * send data with the syn, BSD accepts data with the
5605                          * syn up to the [to be] advertised window and
5606                          * Solaris 2.1 gives you a protocol error. For now
5607                          * we just ignore it, that fits the spec precisely
5608                          * and avoids incompatibilities. It would be nice in
5609                          * future to drop through and process the data.
5610                          *
5611                          * Now that TTCP is starting to be used we ought to
5612                          * queue this data.
5613                          * But, this leaves one open to an easy denial of
5614                          * service attack, and SYN cookies can't defend
5615                          * against this problem. So, we drop the data
5616                          * in the interest of security over speed unless
5617                          * it's still in use.
5618                          */
5619                         kfree_skb(skb);
5620                         return 0;
5621                 }
5622                 goto discard;
5623
5624         case TCP_SYN_SENT:
5625                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5626                 if (queued >= 0)
5627                         return queued;
5628
5629                 /* Do step6 onward by hand. */
5630                 tcp_urg(sk, skb, th);
5631                 __kfree_skb(skb);
5632                 tcp_data_snd_check(sk);
5633                 return 0;
5634         }
5635
5636         res = tcp_validate_incoming(sk, skb, th, 0);
5637         if (res <= 0)
5638                 return -res;
5639
5640         /* step 5: check the ACK field */
5641         if (th->ack) {
5642                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5643
5644                 switch (sk->sk_state) {
5645                 case TCP_SYN_RECV:
5646                         if (acceptable) {
5647                                 tp->copied_seq = tp->rcv_nxt;
5648                                 smp_mb();
5649                                 tcp_set_state(sk, TCP_ESTABLISHED);
5650                                 sk->sk_state_change(sk);
5651
5652                                 /* Note, that this wakeup is only for marginal
5653                                  * crossed SYN case. Passively open sockets
5654                                  * are not waked up, because sk->sk_sleep ==
5655                                  * NULL and sk->sk_socket == NULL.
5656                                  */
5657                                 if (sk->sk_socket)
5658                                         sk_wake_async(sk,
5659                                                       SOCK_WAKE_IO, POLL_OUT);
5660
5661                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5662                                 tp->snd_wnd = ntohs(th->window) <<
5663                                               tp->rx_opt.snd_wscale;
5664                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5665
5666                                 /* tcp_ack considers this ACK as duplicate
5667                                  * and does not calculate rtt.
5668                                  * Fix it at least with timestamps.
5669                                  */
5670                                 if (tp->rx_opt.saw_tstamp &&
5671                                     tp->rx_opt.rcv_tsecr && !tp->srtt)
5672                                         tcp_ack_saw_tstamp(sk, 0);
5673
5674                                 if (tp->rx_opt.tstamp_ok)
5675                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5676
5677                                 /* Make sure socket is routed, for
5678                                  * correct metrics.
5679                                  */
5680                                 icsk->icsk_af_ops->rebuild_header(sk);
5681
5682                                 tcp_init_metrics(sk);
5683
5684                                 tcp_init_congestion_control(sk);
5685
5686                                 /* Prevent spurious tcp_cwnd_restart() on
5687                                  * first data packet.
5688                                  */
5689                                 tp->lsndtime = tcp_time_stamp;
5690
5691                                 tcp_mtup_init(sk);
5692                                 tcp_initialize_rcv_mss(sk);
5693                                 tcp_init_buffer_space(sk);
5694                                 tcp_fast_path_on(tp);
5695                         } else {
5696                                 return 1;
5697                         }
5698                         break;
5699
5700                 case TCP_FIN_WAIT1:
5701                         if (tp->snd_una == tp->write_seq) {
5702                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5703                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5704                                 dst_confirm(sk->sk_dst_cache);
5705
5706                                 if (!sock_flag(sk, SOCK_DEAD))
5707                                         /* Wake up lingering close() */
5708                                         sk->sk_state_change(sk);
5709                                 else {
5710                                         int tmo;
5711
5712                                         if (tp->linger2 < 0 ||
5713                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5714                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5715                                                 tcp_done(sk);
5716                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5717                                                 return 1;
5718                                         }
5719
5720                                         tmo = tcp_fin_time(sk);
5721                                         if (tmo > TCP_TIMEWAIT_LEN) {
5722                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5723                                         } else if (th->fin || sock_owned_by_user(sk)) {
5724                                                 /* Bad case. We could lose such FIN otherwise.
5725                                                  * It is not a big problem, but it looks confusing
5726                                                  * and not so rare event. We still can lose it now,
5727                                                  * if it spins in bh_lock_sock(), but it is really
5728                                                  * marginal case.
5729                                                  */
5730                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5731                                         } else {
5732                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5733                                                 goto discard;
5734                                         }
5735                                 }
5736                         }
5737                         break;
5738
5739                 case TCP_CLOSING:
5740                         if (tp->snd_una == tp->write_seq) {
5741                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5742                                 goto discard;
5743                         }
5744                         break;
5745
5746                 case TCP_LAST_ACK:
5747                         if (tp->snd_una == tp->write_seq) {
5748                                 tcp_update_metrics(sk);
5749                                 tcp_done(sk);
5750                                 goto discard;
5751                         }
5752                         break;
5753                 }
5754         } else
5755                 goto discard;
5756
5757         /* step 6: check the URG bit */
5758         tcp_urg(sk, skb, th);
5759
5760         /* step 7: process the segment text */
5761         switch (sk->sk_state) {
5762         case TCP_CLOSE_WAIT:
5763         case TCP_CLOSING:
5764         case TCP_LAST_ACK:
5765                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5766                         break;
5767         case TCP_FIN_WAIT1:
5768         case TCP_FIN_WAIT2:
5769                 /* RFC 793 says to queue data in these states,
5770                  * RFC 1122 says we MUST send a reset.
5771                  * BSD 4.4 also does reset.
5772                  */
5773                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5774                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5775                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5776                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5777                                 tcp_reset(sk);
5778                                 return 1;
5779                         }
5780                 }
5781                 /* Fall through */
5782         case TCP_ESTABLISHED:
5783                 tcp_data_queue(sk, skb);
5784                 queued = 1;
5785                 break;
5786         }
5787
5788         /* tcp_data could move socket to TIME-WAIT */
5789         if (sk->sk_state != TCP_CLOSE) {
5790                 tcp_data_snd_check(sk);
5791                 tcp_ack_snd_check(sk);
5792         }
5793
5794         if (!queued) {
5795 discard:
5796                 __kfree_skb(skb);
5797         }
5798         return 0;
5799 }
5800
5801 EXPORT_SYMBOL(sysctl_tcp_ecn);
5802 EXPORT_SYMBOL(sysctl_tcp_reordering);
5803 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5804 EXPORT_SYMBOL(tcp_parse_options);
5805 #ifdef CONFIG_TCP_MD5SIG
5806 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5807 #endif
5808 EXPORT_SYMBOL(tcp_rcv_established);
5809 EXPORT_SYMBOL(tcp_rcv_state_process);
5810 EXPORT_SYMBOL(tcp_initialize_rcv_mss);