2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
21 #include "transaction.h"
24 #include "print-tree.h"
28 /* magic values for the inode_only field in btrfs_log_inode:
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
38 * directory trouble cases
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
47 * rename foo/some_dir foo2/some_dir
49 * fsync foo/some_dir/some_file
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
89 #define LOG_WALK_PIN_ONLY 0
90 #define LOG_WALK_REPLAY_INODES 1
91 #define LOG_WALK_REPLAY_ALL 2
93 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
94 struct btrfs_root *root, struct inode *inode,
96 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root,
98 struct btrfs_path *path, u64 objectid);
99 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
100 struct btrfs_root *root,
101 struct btrfs_root *log,
102 struct btrfs_path *path,
103 u64 dirid, int del_all);
106 * tree logging is a special write ahead log used to make sure that
107 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 * Full tree commits are expensive because they require commonly
110 * modified blocks to be recowed, creating many dirty pages in the
111 * extent tree an 4x-6x higher write load than ext3.
113 * Instead of doing a tree commit on every fsync, we use the
114 * key ranges and transaction ids to find items for a given file or directory
115 * that have changed in this transaction. Those items are copied into
116 * a special tree (one per subvolume root), that tree is written to disk
117 * and then the fsync is considered complete.
119 * After a crash, items are copied out of the log-tree back into the
120 * subvolume tree. Any file data extents found are recorded in the extent
121 * allocation tree, and the log-tree freed.
123 * The log tree is read three times, once to pin down all the extents it is
124 * using in ram and once, once to create all the inodes logged in the tree
125 * and once to do all the other items.
129 * start a sub transaction and setup the log tree
130 * this increments the log tree writer count to make the people
131 * syncing the tree wait for us to finish
133 static int start_log_trans(struct btrfs_trans_handle *trans,
134 struct btrfs_root *root)
138 mutex_lock(&root->log_mutex);
139 if (root->log_root) {
141 atomic_inc(&root->log_writers);
142 mutex_unlock(&root->log_mutex);
145 mutex_lock(&root->fs_info->tree_log_mutex);
146 if (!root->fs_info->log_root_tree) {
147 ret = btrfs_init_log_root_tree(trans, root->fs_info);
150 if (!root->log_root) {
151 ret = btrfs_add_log_tree(trans, root);
154 mutex_unlock(&root->fs_info->tree_log_mutex);
156 atomic_inc(&root->log_writers);
157 mutex_unlock(&root->log_mutex);
162 * returns 0 if there was a log transaction running and we were able
163 * to join, or returns -ENOENT if there were not transactions
166 static int join_running_log_trans(struct btrfs_root *root)
174 mutex_lock(&root->log_mutex);
175 if (root->log_root) {
177 atomic_inc(&root->log_writers);
179 mutex_unlock(&root->log_mutex);
184 * This either makes the current running log transaction wait
185 * until you call btrfs_end_log_trans() or it makes any future
186 * log transactions wait until you call btrfs_end_log_trans()
188 int btrfs_pin_log_trans(struct btrfs_root *root)
192 mutex_lock(&root->log_mutex);
193 atomic_inc(&root->log_writers);
194 mutex_unlock(&root->log_mutex);
199 * indicate we're done making changes to the log tree
200 * and wake up anyone waiting to do a sync
202 int btrfs_end_log_trans(struct btrfs_root *root)
204 if (atomic_dec_and_test(&root->log_writers)) {
206 if (waitqueue_active(&root->log_writer_wait))
207 wake_up(&root->log_writer_wait);
214 * the walk control struct is used to pass state down the chain when
215 * processing the log tree. The stage field tells us which part
216 * of the log tree processing we are currently doing. The others
217 * are state fields used for that specific part
219 struct walk_control {
220 /* should we free the extent on disk when done? This is used
221 * at transaction commit time while freeing a log tree
225 /* should we write out the extent buffer? This is used
226 * while flushing the log tree to disk during a sync
230 /* should we wait for the extent buffer io to finish? Also used
231 * while flushing the log tree to disk for a sync
235 /* pin only walk, we record which extents on disk belong to the
240 /* what stage of the replay code we're currently in */
243 /* the root we are currently replaying */
244 struct btrfs_root *replay_dest;
246 /* the trans handle for the current replay */
247 struct btrfs_trans_handle *trans;
249 /* the function that gets used to process blocks we find in the
250 * tree. Note the extent_buffer might not be up to date when it is
251 * passed in, and it must be checked or read if you need the data
254 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
255 struct walk_control *wc, u64 gen);
259 * process_func used to pin down extents, write them or wait on them
261 static int process_one_buffer(struct btrfs_root *log,
262 struct extent_buffer *eb,
263 struct walk_control *wc, u64 gen)
266 btrfs_update_pinned_extents(log->fs_info->extent_root,
267 eb->start, eb->len, 1);
269 if (btrfs_buffer_uptodate(eb, gen)) {
271 btrfs_write_tree_block(eb);
273 btrfs_wait_tree_block_writeback(eb);
279 * Item overwrite used by replay and tree logging. eb, slot and key all refer
280 * to the src data we are copying out.
282 * root is the tree we are copying into, and path is a scratch
283 * path for use in this function (it should be released on entry and
284 * will be released on exit).
286 * If the key is already in the destination tree the existing item is
287 * overwritten. If the existing item isn't big enough, it is extended.
288 * If it is too large, it is truncated.
290 * If the key isn't in the destination yet, a new item is inserted.
292 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
293 struct btrfs_root *root,
294 struct btrfs_path *path,
295 struct extent_buffer *eb, int slot,
296 struct btrfs_key *key)
300 u64 saved_i_size = 0;
301 int save_old_i_size = 0;
302 unsigned long src_ptr;
303 unsigned long dst_ptr;
304 int overwrite_root = 0;
306 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
309 item_size = btrfs_item_size_nr(eb, slot);
310 src_ptr = btrfs_item_ptr_offset(eb, slot);
312 /* look for the key in the destination tree */
313 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
317 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
319 if (dst_size != item_size)
322 if (item_size == 0) {
323 btrfs_release_path(root, path);
326 dst_copy = kmalloc(item_size, GFP_NOFS);
327 src_copy = kmalloc(item_size, GFP_NOFS);
329 read_extent_buffer(eb, src_copy, src_ptr, item_size);
331 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
332 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
334 ret = memcmp(dst_copy, src_copy, item_size);
339 * they have the same contents, just return, this saves
340 * us from cowing blocks in the destination tree and doing
341 * extra writes that may not have been done by a previous
345 btrfs_release_path(root, path);
351 btrfs_release_path(root, path);
352 /* try to insert the key into the destination tree */
353 ret = btrfs_insert_empty_item(trans, root, path,
356 /* make sure any existing item is the correct size */
357 if (ret == -EEXIST) {
359 found_size = btrfs_item_size_nr(path->nodes[0],
361 if (found_size > item_size) {
362 btrfs_truncate_item(trans, root, path, item_size, 1);
363 } else if (found_size < item_size) {
364 ret = btrfs_extend_item(trans, root, path,
365 item_size - found_size);
371 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
374 /* don't overwrite an existing inode if the generation number
375 * was logged as zero. This is done when the tree logging code
376 * is just logging an inode to make sure it exists after recovery.
378 * Also, don't overwrite i_size on directories during replay.
379 * log replay inserts and removes directory items based on the
380 * state of the tree found in the subvolume, and i_size is modified
383 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
384 struct btrfs_inode_item *src_item;
385 struct btrfs_inode_item *dst_item;
387 src_item = (struct btrfs_inode_item *)src_ptr;
388 dst_item = (struct btrfs_inode_item *)dst_ptr;
390 if (btrfs_inode_generation(eb, src_item) == 0)
393 if (overwrite_root &&
394 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
395 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
397 saved_i_size = btrfs_inode_size(path->nodes[0],
402 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
405 if (save_old_i_size) {
406 struct btrfs_inode_item *dst_item;
407 dst_item = (struct btrfs_inode_item *)dst_ptr;
408 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
411 /* make sure the generation is filled in */
412 if (key->type == BTRFS_INODE_ITEM_KEY) {
413 struct btrfs_inode_item *dst_item;
414 dst_item = (struct btrfs_inode_item *)dst_ptr;
415 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
416 btrfs_set_inode_generation(path->nodes[0], dst_item,
421 btrfs_mark_buffer_dirty(path->nodes[0]);
422 btrfs_release_path(root, path);
427 * simple helper to read an inode off the disk from a given root
428 * This can only be called for subvolume roots and not for the log
430 static noinline struct inode *read_one_inode(struct btrfs_root *root,
434 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
435 if (inode->i_state & I_NEW) {
436 BTRFS_I(inode)->root = root;
437 BTRFS_I(inode)->location.objectid = objectid;
438 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
439 BTRFS_I(inode)->location.offset = 0;
440 btrfs_read_locked_inode(inode);
441 unlock_new_inode(inode);
444 if (is_bad_inode(inode)) {
451 /* replays a single extent in 'eb' at 'slot' with 'key' into the
452 * subvolume 'root'. path is released on entry and should be released
455 * extents in the log tree have not been allocated out of the extent
456 * tree yet. So, this completes the allocation, taking a reference
457 * as required if the extent already exists or creating a new extent
458 * if it isn't in the extent allocation tree yet.
460 * The extent is inserted into the file, dropping any existing extents
461 * from the file that overlap the new one.
463 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
464 struct btrfs_root *root,
465 struct btrfs_path *path,
466 struct extent_buffer *eb, int slot,
467 struct btrfs_key *key)
470 u64 mask = root->sectorsize - 1;
473 u64 start = key->offset;
475 struct btrfs_file_extent_item *item;
476 struct inode *inode = NULL;
480 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
481 found_type = btrfs_file_extent_type(eb, item);
483 if (found_type == BTRFS_FILE_EXTENT_REG ||
484 found_type == BTRFS_FILE_EXTENT_PREALLOC)
485 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
486 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
487 size = btrfs_file_extent_inline_len(eb, item);
488 extent_end = (start + size + mask) & ~mask;
494 inode = read_one_inode(root, key->objectid);
501 * first check to see if we already have this extent in the
502 * file. This must be done before the btrfs_drop_extents run
503 * so we don't try to drop this extent.
505 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
509 (found_type == BTRFS_FILE_EXTENT_REG ||
510 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
511 struct btrfs_file_extent_item cmp1;
512 struct btrfs_file_extent_item cmp2;
513 struct btrfs_file_extent_item *existing;
514 struct extent_buffer *leaf;
516 leaf = path->nodes[0];
517 existing = btrfs_item_ptr(leaf, path->slots[0],
518 struct btrfs_file_extent_item);
520 read_extent_buffer(eb, &cmp1, (unsigned long)item,
522 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
526 * we already have a pointer to this exact extent,
527 * we don't have to do anything
529 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
530 btrfs_release_path(root, path);
534 btrfs_release_path(root, path);
536 saved_nbytes = inode_get_bytes(inode);
537 /* drop any overlapping extents */
538 ret = btrfs_drop_extents(trans, root, inode,
539 start, extent_end, start, &alloc_hint);
542 if (found_type == BTRFS_FILE_EXTENT_REG ||
543 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
544 unsigned long dest_offset;
545 struct btrfs_key ins;
547 ret = btrfs_insert_empty_item(trans, root, path, key,
550 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
552 copy_extent_buffer(path->nodes[0], eb, dest_offset,
553 (unsigned long)item, sizeof(*item));
555 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
556 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
557 ins.type = BTRFS_EXTENT_ITEM_KEY;
559 if (ins.objectid > 0) {
562 LIST_HEAD(ordered_sums);
564 * is this extent already allocated in the extent
565 * allocation tree? If so, just add a reference
567 ret = btrfs_lookup_extent(root, ins.objectid,
570 ret = btrfs_inc_extent_ref(trans, root,
571 ins.objectid, ins.offset,
572 path->nodes[0]->start,
573 root->root_key.objectid,
574 trans->transid, key->objectid);
577 * insert the extent pointer in the extent
580 ret = btrfs_alloc_logged_extent(trans, root,
581 path->nodes[0]->start,
582 root->root_key.objectid,
583 trans->transid, key->objectid,
587 btrfs_release_path(root, path);
589 if (btrfs_file_extent_compression(eb, item)) {
590 csum_start = ins.objectid;
591 csum_end = csum_start + ins.offset;
593 csum_start = ins.objectid +
594 btrfs_file_extent_offset(eb, item);
595 csum_end = csum_start +
596 btrfs_file_extent_num_bytes(eb, item);
599 ret = btrfs_lookup_csums_range(root->log_root,
600 csum_start, csum_end - 1,
603 while (!list_empty(&ordered_sums)) {
604 struct btrfs_ordered_sum *sums;
605 sums = list_entry(ordered_sums.next,
606 struct btrfs_ordered_sum,
608 ret = btrfs_csum_file_blocks(trans,
609 root->fs_info->csum_root,
612 list_del(&sums->list);
616 btrfs_release_path(root, path);
618 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
619 /* inline extents are easy, we just overwrite them */
620 ret = overwrite_item(trans, root, path, eb, slot, key);
624 inode_set_bytes(inode, saved_nbytes);
625 btrfs_update_inode(trans, root, inode);
633 * when cleaning up conflicts between the directory names in the
634 * subvolume, directory names in the log and directory names in the
635 * inode back references, we may have to unlink inodes from directories.
637 * This is a helper function to do the unlink of a specific directory
640 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
641 struct btrfs_root *root,
642 struct btrfs_path *path,
644 struct btrfs_dir_item *di)
649 struct extent_buffer *leaf;
650 struct btrfs_key location;
653 leaf = path->nodes[0];
655 btrfs_dir_item_key_to_cpu(leaf, di, &location);
656 name_len = btrfs_dir_name_len(leaf, di);
657 name = kmalloc(name_len, GFP_NOFS);
658 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
659 btrfs_release_path(root, path);
661 inode = read_one_inode(root, location.objectid);
664 ret = link_to_fixup_dir(trans, root, path, location.objectid);
667 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
676 * helper function to see if a given name and sequence number found
677 * in an inode back reference are already in a directory and correctly
678 * point to this inode
680 static noinline int inode_in_dir(struct btrfs_root *root,
681 struct btrfs_path *path,
682 u64 dirid, u64 objectid, u64 index,
683 const char *name, int name_len)
685 struct btrfs_dir_item *di;
686 struct btrfs_key location;
689 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
690 index, name, name_len, 0);
691 if (di && !IS_ERR(di)) {
692 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
693 if (location.objectid != objectid)
697 btrfs_release_path(root, path);
699 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
700 if (di && !IS_ERR(di)) {
701 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
702 if (location.objectid != objectid)
708 btrfs_release_path(root, path);
713 * helper function to check a log tree for a named back reference in
714 * an inode. This is used to decide if a back reference that is
715 * found in the subvolume conflicts with what we find in the log.
717 * inode backreferences may have multiple refs in a single item,
718 * during replay we process one reference at a time, and we don't
719 * want to delete valid links to a file from the subvolume if that
720 * link is also in the log.
722 static noinline int backref_in_log(struct btrfs_root *log,
723 struct btrfs_key *key,
724 char *name, int namelen)
726 struct btrfs_path *path;
727 struct btrfs_inode_ref *ref;
729 unsigned long ptr_end;
730 unsigned long name_ptr;
736 path = btrfs_alloc_path();
737 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
741 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
742 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
743 ptr_end = ptr + item_size;
744 while (ptr < ptr_end) {
745 ref = (struct btrfs_inode_ref *)ptr;
746 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
747 if (found_name_len == namelen) {
748 name_ptr = (unsigned long)(ref + 1);
749 ret = memcmp_extent_buffer(path->nodes[0], name,
756 ptr = (unsigned long)(ref + 1) + found_name_len;
759 btrfs_free_path(path);
765 * replay one inode back reference item found in the log tree.
766 * eb, slot and key refer to the buffer and key found in the log tree.
767 * root is the destination we are replaying into, and path is for temp
768 * use by this function. (it should be released on return).
770 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
771 struct btrfs_root *root,
772 struct btrfs_root *log,
773 struct btrfs_path *path,
774 struct extent_buffer *eb, int slot,
775 struct btrfs_key *key)
779 struct btrfs_key location;
780 struct btrfs_inode_ref *ref;
781 struct btrfs_dir_item *di;
785 unsigned long ref_ptr;
786 unsigned long ref_end;
788 location.objectid = key->objectid;
789 location.type = BTRFS_INODE_ITEM_KEY;
793 * it is possible that we didn't log all the parent directories
794 * for a given inode. If we don't find the dir, just don't
795 * copy the back ref in. The link count fixup code will take
798 dir = read_one_inode(root, key->offset);
802 inode = read_one_inode(root, key->objectid);
805 ref_ptr = btrfs_item_ptr_offset(eb, slot);
806 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
809 ref = (struct btrfs_inode_ref *)ref_ptr;
811 namelen = btrfs_inode_ref_name_len(eb, ref);
812 name = kmalloc(namelen, GFP_NOFS);
815 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
817 /* if we already have a perfect match, we're done */
818 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
819 btrfs_inode_ref_index(eb, ref),
825 * look for a conflicting back reference in the metadata.
826 * if we find one we have to unlink that name of the file
827 * before we add our new link. Later on, we overwrite any
828 * existing back reference, and we don't want to create
829 * dangling pointers in the directory.
832 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
836 struct btrfs_inode_ref *victim_ref;
838 unsigned long ptr_end;
839 struct extent_buffer *leaf = path->nodes[0];
841 /* are we trying to overwrite a back ref for the root directory
842 * if so, just jump out, we're done
844 if (key->objectid == key->offset)
847 /* check all the names in this back reference to see
848 * if they are in the log. if so, we allow them to stay
849 * otherwise they must be unlinked as a conflict
851 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
852 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
853 while (ptr < ptr_end) {
854 victim_ref = (struct btrfs_inode_ref *)ptr;
855 victim_name_len = btrfs_inode_ref_name_len(leaf,
857 victim_name = kmalloc(victim_name_len, GFP_NOFS);
858 BUG_ON(!victim_name);
860 read_extent_buffer(leaf, victim_name,
861 (unsigned long)(victim_ref + 1),
864 if (!backref_in_log(log, key, victim_name,
866 btrfs_inc_nlink(inode);
867 btrfs_release_path(root, path);
869 ret = btrfs_unlink_inode(trans, root, dir,
873 btrfs_release_path(root, path);
877 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
881 btrfs_release_path(root, path);
883 /* look for a conflicting sequence number */
884 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
885 btrfs_inode_ref_index(eb, ref),
887 if (di && !IS_ERR(di)) {
888 ret = drop_one_dir_item(trans, root, path, dir, di);
891 btrfs_release_path(root, path);
894 /* look for a conflicting name */
895 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
897 if (di && !IS_ERR(di)) {
898 ret = drop_one_dir_item(trans, root, path, dir, di);
901 btrfs_release_path(root, path);
903 /* insert our name */
904 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
905 btrfs_inode_ref_index(eb, ref));
908 btrfs_update_inode(trans, root, inode);
911 ref_ptr = (unsigned long)(ref + 1) + namelen;
913 if (ref_ptr < ref_end)
916 /* finally write the back reference in the inode */
917 ret = overwrite_item(trans, root, path, eb, slot, key);
921 btrfs_release_path(root, path);
928 * There are a few corners where the link count of the file can't
929 * be properly maintained during replay. So, instead of adding
930 * lots of complexity to the log code, we just scan the backrefs
931 * for any file that has been through replay.
933 * The scan will update the link count on the inode to reflect the
934 * number of back refs found. If it goes down to zero, the iput
935 * will free the inode.
937 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
938 struct btrfs_root *root,
941 struct btrfs_path *path;
943 struct btrfs_key key;
946 unsigned long ptr_end;
949 key.objectid = inode->i_ino;
950 key.type = BTRFS_INODE_REF_KEY;
951 key.offset = (u64)-1;
953 path = btrfs_alloc_path();
956 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
960 if (path->slots[0] == 0)
964 btrfs_item_key_to_cpu(path->nodes[0], &key,
966 if (key.objectid != inode->i_ino ||
967 key.type != BTRFS_INODE_REF_KEY)
969 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
970 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
972 while (ptr < ptr_end) {
973 struct btrfs_inode_ref *ref;
975 ref = (struct btrfs_inode_ref *)ptr;
976 name_len = btrfs_inode_ref_name_len(path->nodes[0],
978 ptr = (unsigned long)(ref + 1) + name_len;
985 btrfs_release_path(root, path);
987 btrfs_release_path(root, path);
988 if (nlink != inode->i_nlink) {
989 inode->i_nlink = nlink;
990 btrfs_update_inode(trans, root, inode);
992 BTRFS_I(inode)->index_cnt = (u64)-1;
994 if (inode->i_nlink == 0 && S_ISDIR(inode->i_mode)) {
995 ret = replay_dir_deletes(trans, root, NULL, path,
999 btrfs_free_path(path);
1004 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1005 struct btrfs_root *root,
1006 struct btrfs_path *path)
1009 struct btrfs_key key;
1010 struct inode *inode;
1012 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1013 key.type = BTRFS_ORPHAN_ITEM_KEY;
1014 key.offset = (u64)-1;
1016 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1021 if (path->slots[0] == 0)
1026 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1027 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1028 key.type != BTRFS_ORPHAN_ITEM_KEY)
1031 ret = btrfs_del_item(trans, root, path);
1034 btrfs_release_path(root, path);
1035 inode = read_one_inode(root, key.offset);
1038 ret = fixup_inode_link_count(trans, root, inode);
1044 * fixup on a directory may create new entries,
1045 * make sure we always look for the highset possible
1048 key.offset = (u64)-1;
1050 btrfs_release_path(root, path);
1056 * record a given inode in the fixup dir so we can check its link
1057 * count when replay is done. The link count is incremented here
1058 * so the inode won't go away until we check it
1060 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1061 struct btrfs_root *root,
1062 struct btrfs_path *path,
1065 struct btrfs_key key;
1067 struct inode *inode;
1069 inode = read_one_inode(root, objectid);
1072 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1073 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1074 key.offset = objectid;
1076 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1078 btrfs_release_path(root, path);
1080 btrfs_inc_nlink(inode);
1081 btrfs_update_inode(trans, root, inode);
1082 } else if (ret == -EEXIST) {
1093 * when replaying the log for a directory, we only insert names
1094 * for inodes that actually exist. This means an fsync on a directory
1095 * does not implicitly fsync all the new files in it
1097 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1098 struct btrfs_root *root,
1099 struct btrfs_path *path,
1100 u64 dirid, u64 index,
1101 char *name, int name_len, u8 type,
1102 struct btrfs_key *location)
1104 struct inode *inode;
1108 inode = read_one_inode(root, location->objectid);
1112 dir = read_one_inode(root, dirid);
1117 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1119 /* FIXME, put inode into FIXUP list */
1127 * take a single entry in a log directory item and replay it into
1130 * if a conflicting item exists in the subdirectory already,
1131 * the inode it points to is unlinked and put into the link count
1134 * If a name from the log points to a file or directory that does
1135 * not exist in the FS, it is skipped. fsyncs on directories
1136 * do not force down inodes inside that directory, just changes to the
1137 * names or unlinks in a directory.
1139 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1140 struct btrfs_root *root,
1141 struct btrfs_path *path,
1142 struct extent_buffer *eb,
1143 struct btrfs_dir_item *di,
1144 struct btrfs_key *key)
1148 struct btrfs_dir_item *dst_di;
1149 struct btrfs_key found_key;
1150 struct btrfs_key log_key;
1156 dir = read_one_inode(root, key->objectid);
1159 name_len = btrfs_dir_name_len(eb, di);
1160 name = kmalloc(name_len, GFP_NOFS);
1161 log_type = btrfs_dir_type(eb, di);
1162 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1165 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1166 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1171 btrfs_release_path(root, path);
1173 if (key->type == BTRFS_DIR_ITEM_KEY) {
1174 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1176 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1177 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1184 if (!dst_di || IS_ERR(dst_di)) {
1185 /* we need a sequence number to insert, so we only
1186 * do inserts for the BTRFS_DIR_INDEX_KEY types
1188 if (key->type != BTRFS_DIR_INDEX_KEY)
1193 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1194 /* the existing item matches the logged item */
1195 if (found_key.objectid == log_key.objectid &&
1196 found_key.type == log_key.type &&
1197 found_key.offset == log_key.offset &&
1198 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1203 * don't drop the conflicting directory entry if the inode
1204 * for the new entry doesn't exist
1209 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1212 if (key->type == BTRFS_DIR_INDEX_KEY)
1215 btrfs_release_path(root, path);
1221 btrfs_release_path(root, path);
1222 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1223 name, name_len, log_type, &log_key);
1225 BUG_ON(ret && ret != -ENOENT);
1230 * find all the names in a directory item and reconcile them into
1231 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1232 * one name in a directory item, but the same code gets used for
1233 * both directory index types
1235 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1236 struct btrfs_root *root,
1237 struct btrfs_path *path,
1238 struct extent_buffer *eb, int slot,
1239 struct btrfs_key *key)
1242 u32 item_size = btrfs_item_size_nr(eb, slot);
1243 struct btrfs_dir_item *di;
1246 unsigned long ptr_end;
1248 ptr = btrfs_item_ptr_offset(eb, slot);
1249 ptr_end = ptr + item_size;
1250 while (ptr < ptr_end) {
1251 di = (struct btrfs_dir_item *)ptr;
1252 name_len = btrfs_dir_name_len(eb, di);
1253 ret = replay_one_name(trans, root, path, eb, di, key);
1255 ptr = (unsigned long)(di + 1);
1262 * directory replay has two parts. There are the standard directory
1263 * items in the log copied from the subvolume, and range items
1264 * created in the log while the subvolume was logged.
1266 * The range items tell us which parts of the key space the log
1267 * is authoritative for. During replay, if a key in the subvolume
1268 * directory is in a logged range item, but not actually in the log
1269 * that means it was deleted from the directory before the fsync
1270 * and should be removed.
1272 static noinline int find_dir_range(struct btrfs_root *root,
1273 struct btrfs_path *path,
1274 u64 dirid, int key_type,
1275 u64 *start_ret, u64 *end_ret)
1277 struct btrfs_key key;
1279 struct btrfs_dir_log_item *item;
1283 if (*start_ret == (u64)-1)
1286 key.objectid = dirid;
1287 key.type = key_type;
1288 key.offset = *start_ret;
1290 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1294 if (path->slots[0] == 0)
1299 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1301 if (key.type != key_type || key.objectid != dirid) {
1305 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1306 struct btrfs_dir_log_item);
1307 found_end = btrfs_dir_log_end(path->nodes[0], item);
1309 if (*start_ret >= key.offset && *start_ret <= found_end) {
1311 *start_ret = key.offset;
1312 *end_ret = found_end;
1317 /* check the next slot in the tree to see if it is a valid item */
1318 nritems = btrfs_header_nritems(path->nodes[0]);
1319 if (path->slots[0] >= nritems) {
1320 ret = btrfs_next_leaf(root, path);
1327 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1329 if (key.type != key_type || key.objectid != dirid) {
1333 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1334 struct btrfs_dir_log_item);
1335 found_end = btrfs_dir_log_end(path->nodes[0], item);
1336 *start_ret = key.offset;
1337 *end_ret = found_end;
1340 btrfs_release_path(root, path);
1345 * this looks for a given directory item in the log. If the directory
1346 * item is not in the log, the item is removed and the inode it points
1349 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1350 struct btrfs_root *root,
1351 struct btrfs_root *log,
1352 struct btrfs_path *path,
1353 struct btrfs_path *log_path,
1355 struct btrfs_key *dir_key)
1358 struct extent_buffer *eb;
1361 struct btrfs_dir_item *di;
1362 struct btrfs_dir_item *log_di;
1365 unsigned long ptr_end;
1367 struct inode *inode;
1368 struct btrfs_key location;
1371 eb = path->nodes[0];
1372 slot = path->slots[0];
1373 item_size = btrfs_item_size_nr(eb, slot);
1374 ptr = btrfs_item_ptr_offset(eb, slot);
1375 ptr_end = ptr + item_size;
1376 while (ptr < ptr_end) {
1377 di = (struct btrfs_dir_item *)ptr;
1378 name_len = btrfs_dir_name_len(eb, di);
1379 name = kmalloc(name_len, GFP_NOFS);
1384 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1387 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1388 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1391 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1392 log_di = btrfs_lookup_dir_index_item(trans, log,
1398 if (!log_di || IS_ERR(log_di)) {
1399 btrfs_dir_item_key_to_cpu(eb, di, &location);
1400 btrfs_release_path(root, path);
1401 btrfs_release_path(log, log_path);
1402 inode = read_one_inode(root, location.objectid);
1405 ret = link_to_fixup_dir(trans, root,
1406 path, location.objectid);
1408 btrfs_inc_nlink(inode);
1409 ret = btrfs_unlink_inode(trans, root, dir, inode,
1415 /* there might still be more names under this key
1416 * check and repeat if required
1418 ret = btrfs_search_slot(NULL, root, dir_key, path,
1425 btrfs_release_path(log, log_path);
1428 ptr = (unsigned long)(di + 1);
1433 btrfs_release_path(root, path);
1434 btrfs_release_path(log, log_path);
1439 * deletion replay happens before we copy any new directory items
1440 * out of the log or out of backreferences from inodes. It
1441 * scans the log to find ranges of keys that log is authoritative for,
1442 * and then scans the directory to find items in those ranges that are
1443 * not present in the log.
1445 * Anything we don't find in the log is unlinked and removed from the
1448 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1449 struct btrfs_root *root,
1450 struct btrfs_root *log,
1451 struct btrfs_path *path,
1452 u64 dirid, int del_all)
1456 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1458 struct btrfs_key dir_key;
1459 struct btrfs_key found_key;
1460 struct btrfs_path *log_path;
1463 dir_key.objectid = dirid;
1464 dir_key.type = BTRFS_DIR_ITEM_KEY;
1465 log_path = btrfs_alloc_path();
1469 dir = read_one_inode(root, dirid);
1470 /* it isn't an error if the inode isn't there, that can happen
1471 * because we replay the deletes before we copy in the inode item
1475 btrfs_free_path(log_path);
1483 range_end = (u64)-1;
1485 ret = find_dir_range(log, path, dirid, key_type,
1486 &range_start, &range_end);
1491 dir_key.offset = range_start;
1494 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1499 nritems = btrfs_header_nritems(path->nodes[0]);
1500 if (path->slots[0] >= nritems) {
1501 ret = btrfs_next_leaf(root, path);
1505 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1507 if (found_key.objectid != dirid ||
1508 found_key.type != dir_key.type)
1511 if (found_key.offset > range_end)
1514 ret = check_item_in_log(trans, root, log, path,
1518 if (found_key.offset == (u64)-1)
1520 dir_key.offset = found_key.offset + 1;
1522 btrfs_release_path(root, path);
1523 if (range_end == (u64)-1)
1525 range_start = range_end + 1;
1530 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1531 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1532 dir_key.type = BTRFS_DIR_INDEX_KEY;
1533 btrfs_release_path(root, path);
1537 btrfs_release_path(root, path);
1538 btrfs_free_path(log_path);
1544 * the process_func used to replay items from the log tree. This
1545 * gets called in two different stages. The first stage just looks
1546 * for inodes and makes sure they are all copied into the subvolume.
1548 * The second stage copies all the other item types from the log into
1549 * the subvolume. The two stage approach is slower, but gets rid of
1550 * lots of complexity around inodes referencing other inodes that exist
1551 * only in the log (references come from either directory items or inode
1554 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1555 struct walk_control *wc, u64 gen)
1558 struct btrfs_path *path;
1559 struct btrfs_root *root = wc->replay_dest;
1560 struct btrfs_key key;
1566 btrfs_read_buffer(eb, gen);
1568 level = btrfs_header_level(eb);
1573 path = btrfs_alloc_path();
1576 nritems = btrfs_header_nritems(eb);
1577 for (i = 0; i < nritems; i++) {
1578 btrfs_item_key_to_cpu(eb, &key, i);
1579 item_size = btrfs_item_size_nr(eb, i);
1581 /* inode keys are done during the first stage */
1582 if (key.type == BTRFS_INODE_ITEM_KEY &&
1583 wc->stage == LOG_WALK_REPLAY_INODES) {
1584 struct inode *inode;
1585 struct btrfs_inode_item *inode_item;
1588 inode_item = btrfs_item_ptr(eb, i,
1589 struct btrfs_inode_item);
1590 mode = btrfs_inode_mode(eb, inode_item);
1591 if (S_ISDIR(mode)) {
1592 ret = replay_dir_deletes(wc->trans,
1593 root, log, path, key.objectid, 0);
1596 ret = overwrite_item(wc->trans, root, path,
1600 /* for regular files, truncate away
1601 * extents past the new EOF
1603 if (S_ISREG(mode)) {
1604 inode = read_one_inode(root,
1608 ret = btrfs_truncate_inode_items(wc->trans,
1609 root, inode, inode->i_size,
1610 BTRFS_EXTENT_DATA_KEY);
1613 /* if the nlink count is zero here, the iput
1614 * will free the inode. We bump it to make
1615 * sure it doesn't get freed until the link
1616 * count fixup is done
1618 if (inode->i_nlink == 0) {
1619 btrfs_inc_nlink(inode);
1620 btrfs_update_inode(wc->trans,
1625 ret = link_to_fixup_dir(wc->trans, root,
1626 path, key.objectid);
1629 if (wc->stage < LOG_WALK_REPLAY_ALL)
1632 /* these keys are simply copied */
1633 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1634 ret = overwrite_item(wc->trans, root, path,
1637 } else if (key.type == BTRFS_INODE_REF_KEY) {
1638 ret = add_inode_ref(wc->trans, root, log, path,
1640 BUG_ON(ret && ret != -ENOENT);
1641 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1642 ret = replay_one_extent(wc->trans, root, path,
1645 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1646 key.type == BTRFS_DIR_INDEX_KEY) {
1647 ret = replay_one_dir_item(wc->trans, root, path,
1652 btrfs_free_path(path);
1656 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1657 struct btrfs_root *root,
1658 struct btrfs_path *path, int *level,
1659 struct walk_control *wc)
1665 struct extent_buffer *next;
1666 struct extent_buffer *cur;
1667 struct extent_buffer *parent;
1671 WARN_ON(*level < 0);
1672 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1674 while (*level > 0) {
1675 WARN_ON(*level < 0);
1676 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1677 cur = path->nodes[*level];
1679 if (btrfs_header_level(cur) != *level)
1682 if (path->slots[*level] >=
1683 btrfs_header_nritems(cur))
1686 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1687 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1688 blocksize = btrfs_level_size(root, *level - 1);
1690 parent = path->nodes[*level];
1691 root_owner = btrfs_header_owner(parent);
1692 root_gen = btrfs_header_generation(parent);
1694 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1696 wc->process_func(root, next, wc, ptr_gen);
1699 path->slots[*level]++;
1701 btrfs_read_buffer(next, ptr_gen);
1703 btrfs_tree_lock(next);
1704 clean_tree_block(trans, root, next);
1705 btrfs_set_lock_blocking(next);
1706 btrfs_wait_tree_block_writeback(next);
1707 btrfs_tree_unlock(next);
1709 ret = btrfs_drop_leaf_ref(trans, root, next);
1712 WARN_ON(root_owner !=
1713 BTRFS_TREE_LOG_OBJECTID);
1714 ret = btrfs_free_reserved_extent(root,
1718 free_extent_buffer(next);
1721 btrfs_read_buffer(next, ptr_gen);
1723 WARN_ON(*level <= 0);
1724 if (path->nodes[*level-1])
1725 free_extent_buffer(path->nodes[*level-1]);
1726 path->nodes[*level-1] = next;
1727 *level = btrfs_header_level(next);
1728 path->slots[*level] = 0;
1731 WARN_ON(*level < 0);
1732 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1734 if (path->nodes[*level] == root->node)
1735 parent = path->nodes[*level];
1737 parent = path->nodes[*level + 1];
1739 bytenr = path->nodes[*level]->start;
1741 blocksize = btrfs_level_size(root, *level);
1742 root_owner = btrfs_header_owner(parent);
1743 root_gen = btrfs_header_generation(parent);
1745 wc->process_func(root, path->nodes[*level], wc,
1746 btrfs_header_generation(path->nodes[*level]));
1749 next = path->nodes[*level];
1750 btrfs_tree_lock(next);
1751 clean_tree_block(trans, root, next);
1752 btrfs_set_lock_blocking(next);
1753 btrfs_wait_tree_block_writeback(next);
1754 btrfs_tree_unlock(next);
1757 ret = btrfs_drop_leaf_ref(trans, root, next);
1760 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1761 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1764 free_extent_buffer(path->nodes[*level]);
1765 path->nodes[*level] = NULL;
1772 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1773 struct btrfs_root *root,
1774 struct btrfs_path *path, int *level,
1775 struct walk_control *wc)
1783 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1784 slot = path->slots[i];
1785 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1786 struct extent_buffer *node;
1787 node = path->nodes[i];
1790 WARN_ON(*level == 0);
1793 struct extent_buffer *parent;
1794 if (path->nodes[*level] == root->node)
1795 parent = path->nodes[*level];
1797 parent = path->nodes[*level + 1];
1799 root_owner = btrfs_header_owner(parent);
1800 root_gen = btrfs_header_generation(parent);
1801 wc->process_func(root, path->nodes[*level], wc,
1802 btrfs_header_generation(path->nodes[*level]));
1804 struct extent_buffer *next;
1806 next = path->nodes[*level];
1808 btrfs_tree_lock(next);
1809 clean_tree_block(trans, root, next);
1810 btrfs_set_lock_blocking(next);
1811 btrfs_wait_tree_block_writeback(next);
1812 btrfs_tree_unlock(next);
1815 ret = btrfs_drop_leaf_ref(trans, root,
1820 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1821 ret = btrfs_free_reserved_extent(root,
1822 path->nodes[*level]->start,
1823 path->nodes[*level]->len);
1826 free_extent_buffer(path->nodes[*level]);
1827 path->nodes[*level] = NULL;
1835 * drop the reference count on the tree rooted at 'snap'. This traverses
1836 * the tree freeing any blocks that have a ref count of zero after being
1839 static int walk_log_tree(struct btrfs_trans_handle *trans,
1840 struct btrfs_root *log, struct walk_control *wc)
1845 struct btrfs_path *path;
1849 path = btrfs_alloc_path();
1852 level = btrfs_header_level(log->node);
1854 path->nodes[level] = log->node;
1855 extent_buffer_get(log->node);
1856 path->slots[level] = 0;
1859 wret = walk_down_log_tree(trans, log, path, &level, wc);
1865 wret = walk_up_log_tree(trans, log, path, &level, wc);
1872 /* was the root node processed? if not, catch it here */
1873 if (path->nodes[orig_level]) {
1874 wc->process_func(log, path->nodes[orig_level], wc,
1875 btrfs_header_generation(path->nodes[orig_level]));
1877 struct extent_buffer *next;
1879 next = path->nodes[orig_level];
1881 btrfs_tree_lock(next);
1882 clean_tree_block(trans, log, next);
1883 btrfs_set_lock_blocking(next);
1884 btrfs_wait_tree_block_writeback(next);
1885 btrfs_tree_unlock(next);
1887 if (orig_level == 0) {
1888 ret = btrfs_drop_leaf_ref(trans, log,
1892 WARN_ON(log->root_key.objectid !=
1893 BTRFS_TREE_LOG_OBJECTID);
1894 ret = btrfs_free_reserved_extent(log, next->start,
1900 for (i = 0; i <= orig_level; i++) {
1901 if (path->nodes[i]) {
1902 free_extent_buffer(path->nodes[i]);
1903 path->nodes[i] = NULL;
1906 btrfs_free_path(path);
1911 * helper function to update the item for a given subvolumes log root
1912 * in the tree of log roots
1914 static int update_log_root(struct btrfs_trans_handle *trans,
1915 struct btrfs_root *log)
1919 if (log->log_transid == 1) {
1920 /* insert root item on the first sync */
1921 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1922 &log->root_key, &log->root_item);
1924 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1925 &log->root_key, &log->root_item);
1930 static int wait_log_commit(struct btrfs_trans_handle *trans,
1931 struct btrfs_root *root, unsigned long transid)
1934 int index = transid % 2;
1937 * we only allow two pending log transactions at a time,
1938 * so we know that if ours is more than 2 older than the
1939 * current transaction, we're done
1942 prepare_to_wait(&root->log_commit_wait[index],
1943 &wait, TASK_UNINTERRUPTIBLE);
1944 mutex_unlock(&root->log_mutex);
1946 if (root->fs_info->last_trans_log_full_commit !=
1947 trans->transid && root->log_transid < transid + 2 &&
1948 atomic_read(&root->log_commit[index]))
1951 finish_wait(&root->log_commit_wait[index], &wait);
1952 mutex_lock(&root->log_mutex);
1953 } while (root->log_transid < transid + 2 &&
1954 atomic_read(&root->log_commit[index]));
1958 static int wait_for_writer(struct btrfs_trans_handle *trans,
1959 struct btrfs_root *root)
1962 while (atomic_read(&root->log_writers)) {
1963 prepare_to_wait(&root->log_writer_wait,
1964 &wait, TASK_UNINTERRUPTIBLE);
1965 mutex_unlock(&root->log_mutex);
1966 if (root->fs_info->last_trans_log_full_commit !=
1967 trans->transid && atomic_read(&root->log_writers))
1969 mutex_lock(&root->log_mutex);
1970 finish_wait(&root->log_writer_wait, &wait);
1976 * btrfs_sync_log does sends a given tree log down to the disk and
1977 * updates the super blocks to record it. When this call is done,
1978 * you know that any inodes previously logged are safely on disk only
1981 * Any other return value means you need to call btrfs_commit_transaction.
1982 * Some of the edge cases for fsyncing directories that have had unlinks
1983 * or renames done in the past mean that sometimes the only safe
1984 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1985 * that has happened.
1987 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1988 struct btrfs_root *root)
1993 struct btrfs_root *log = root->log_root;
1994 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1996 mutex_lock(&root->log_mutex);
1997 index1 = root->log_transid % 2;
1998 if (atomic_read(&root->log_commit[index1])) {
1999 wait_log_commit(trans, root, root->log_transid);
2000 mutex_unlock(&root->log_mutex);
2003 atomic_set(&root->log_commit[index1], 1);
2005 /* wait for previous tree log sync to complete */
2006 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2007 wait_log_commit(trans, root, root->log_transid - 1);
2010 unsigned long batch = root->log_batch;
2011 mutex_unlock(&root->log_mutex);
2012 schedule_timeout_uninterruptible(1);
2013 mutex_lock(&root->log_mutex);
2015 wait_for_writer(trans, root);
2016 if (batch == root->log_batch)
2020 /* bail out if we need to do a full commit */
2021 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2023 mutex_unlock(&root->log_mutex);
2027 ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
2030 btrfs_set_root_bytenr(&log->root_item, log->node->start);
2031 btrfs_set_root_generation(&log->root_item, trans->transid);
2032 btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
2034 root->log_batch = 0;
2035 root->log_transid++;
2036 log->log_transid = root->log_transid;
2039 * log tree has been flushed to disk, new modifications of
2040 * the log will be written to new positions. so it's safe to
2041 * allow log writers to go in.
2043 mutex_unlock(&root->log_mutex);
2045 mutex_lock(&log_root_tree->log_mutex);
2046 log_root_tree->log_batch++;
2047 atomic_inc(&log_root_tree->log_writers);
2048 mutex_unlock(&log_root_tree->log_mutex);
2050 ret = update_log_root(trans, log);
2053 mutex_lock(&log_root_tree->log_mutex);
2054 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2056 if (waitqueue_active(&log_root_tree->log_writer_wait))
2057 wake_up(&log_root_tree->log_writer_wait);
2060 index2 = log_root_tree->log_transid % 2;
2061 if (atomic_read(&log_root_tree->log_commit[index2])) {
2062 wait_log_commit(trans, log_root_tree,
2063 log_root_tree->log_transid);
2064 mutex_unlock(&log_root_tree->log_mutex);
2067 atomic_set(&log_root_tree->log_commit[index2], 1);
2069 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2070 wait_log_commit(trans, log_root_tree,
2071 log_root_tree->log_transid - 1);
2074 wait_for_writer(trans, log_root_tree);
2077 * now that we've moved on to the tree of log tree roots,
2078 * check the full commit flag again
2080 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2081 mutex_unlock(&log_root_tree->log_mutex);
2083 goto out_wake_log_root;
2086 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2087 &log_root_tree->dirty_log_pages);
2090 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2091 log_root_tree->node->start);
2092 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2093 btrfs_header_level(log_root_tree->node));
2095 log_root_tree->log_batch = 0;
2096 log_root_tree->log_transid++;
2099 mutex_unlock(&log_root_tree->log_mutex);
2102 * nobody else is going to jump in and write the the ctree
2103 * super here because the log_commit atomic below is protecting
2104 * us. We must be called with a transaction handle pinning
2105 * the running transaction open, so a full commit can't hop
2106 * in and cause problems either.
2108 write_ctree_super(trans, root->fs_info->tree_root, 2);
2112 atomic_set(&log_root_tree->log_commit[index2], 0);
2114 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2115 wake_up(&log_root_tree->log_commit_wait[index2]);
2117 atomic_set(&root->log_commit[index1], 0);
2119 if (waitqueue_active(&root->log_commit_wait[index1]))
2120 wake_up(&root->log_commit_wait[index1]);
2125 * free all the extents used by the tree log. This should be called
2126 * at commit time of the full transaction
2128 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2131 struct btrfs_root *log;
2135 struct walk_control wc = {
2137 .process_func = process_one_buffer
2140 if (!root->log_root || root->fs_info->log_root_recovering)
2143 log = root->log_root;
2144 ret = walk_log_tree(trans, log, &wc);
2148 ret = find_first_extent_bit(&log->dirty_log_pages,
2149 0, &start, &end, EXTENT_DIRTY);
2153 clear_extent_dirty(&log->dirty_log_pages,
2154 start, end, GFP_NOFS);
2157 if (log->log_transid > 0) {
2158 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2162 root->log_root = NULL;
2163 free_extent_buffer(log->node);
2169 * If both a file and directory are logged, and unlinks or renames are
2170 * mixed in, we have a few interesting corners:
2172 * create file X in dir Y
2173 * link file X to X.link in dir Y
2175 * unlink file X but leave X.link
2178 * After a crash we would expect only X.link to exist. But file X
2179 * didn't get fsync'd again so the log has back refs for X and X.link.
2181 * We solve this by removing directory entries and inode backrefs from the
2182 * log when a file that was logged in the current transaction is
2183 * unlinked. Any later fsync will include the updated log entries, and
2184 * we'll be able to reconstruct the proper directory items from backrefs.
2186 * This optimizations allows us to avoid relogging the entire inode
2187 * or the entire directory.
2189 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2190 struct btrfs_root *root,
2191 const char *name, int name_len,
2192 struct inode *dir, u64 index)
2194 struct btrfs_root *log;
2195 struct btrfs_dir_item *di;
2196 struct btrfs_path *path;
2200 if (BTRFS_I(dir)->logged_trans < trans->transid)
2203 ret = join_running_log_trans(root);
2207 mutex_lock(&BTRFS_I(dir)->log_mutex);
2209 log = root->log_root;
2210 path = btrfs_alloc_path();
2211 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2212 name, name_len, -1);
2213 if (di && !IS_ERR(di)) {
2214 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2215 bytes_del += name_len;
2218 btrfs_release_path(log, path);
2219 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2220 index, name, name_len, -1);
2221 if (di && !IS_ERR(di)) {
2222 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2223 bytes_del += name_len;
2227 /* update the directory size in the log to reflect the names
2231 struct btrfs_key key;
2233 key.objectid = dir->i_ino;
2235 key.type = BTRFS_INODE_ITEM_KEY;
2236 btrfs_release_path(log, path);
2238 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2240 struct btrfs_inode_item *item;
2243 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2244 struct btrfs_inode_item);
2245 i_size = btrfs_inode_size(path->nodes[0], item);
2246 if (i_size > bytes_del)
2247 i_size -= bytes_del;
2250 btrfs_set_inode_size(path->nodes[0], item, i_size);
2251 btrfs_mark_buffer_dirty(path->nodes[0]);
2254 btrfs_release_path(log, path);
2257 btrfs_free_path(path);
2258 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2259 btrfs_end_log_trans(root);
2264 /* see comments for btrfs_del_dir_entries_in_log */
2265 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2266 struct btrfs_root *root,
2267 const char *name, int name_len,
2268 struct inode *inode, u64 dirid)
2270 struct btrfs_root *log;
2274 if (BTRFS_I(inode)->logged_trans < trans->transid)
2277 ret = join_running_log_trans(root);
2280 log = root->log_root;
2281 mutex_lock(&BTRFS_I(inode)->log_mutex);
2283 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2285 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2286 btrfs_end_log_trans(root);
2292 * creates a range item in the log for 'dirid'. first_offset and
2293 * last_offset tell us which parts of the key space the log should
2294 * be considered authoritative for.
2296 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2297 struct btrfs_root *log,
2298 struct btrfs_path *path,
2299 int key_type, u64 dirid,
2300 u64 first_offset, u64 last_offset)
2303 struct btrfs_key key;
2304 struct btrfs_dir_log_item *item;
2306 key.objectid = dirid;
2307 key.offset = first_offset;
2308 if (key_type == BTRFS_DIR_ITEM_KEY)
2309 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2311 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2312 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2315 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2316 struct btrfs_dir_log_item);
2317 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2318 btrfs_mark_buffer_dirty(path->nodes[0]);
2319 btrfs_release_path(log, path);
2324 * log all the items included in the current transaction for a given
2325 * directory. This also creates the range items in the log tree required
2326 * to replay anything deleted before the fsync
2328 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2329 struct btrfs_root *root, struct inode *inode,
2330 struct btrfs_path *path,
2331 struct btrfs_path *dst_path, int key_type,
2332 u64 min_offset, u64 *last_offset_ret)
2334 struct btrfs_key min_key;
2335 struct btrfs_key max_key;
2336 struct btrfs_root *log = root->log_root;
2337 struct extent_buffer *src;
2341 u64 first_offset = min_offset;
2342 u64 last_offset = (u64)-1;
2344 log = root->log_root;
2345 max_key.objectid = inode->i_ino;
2346 max_key.offset = (u64)-1;
2347 max_key.type = key_type;
2349 min_key.objectid = inode->i_ino;
2350 min_key.type = key_type;
2351 min_key.offset = min_offset;
2353 path->keep_locks = 1;
2355 ret = btrfs_search_forward(root, &min_key, &max_key,
2356 path, 0, trans->transid);
2359 * we didn't find anything from this transaction, see if there
2360 * is anything at all
2362 if (ret != 0 || min_key.objectid != inode->i_ino ||
2363 min_key.type != key_type) {
2364 min_key.objectid = inode->i_ino;
2365 min_key.type = key_type;
2366 min_key.offset = (u64)-1;
2367 btrfs_release_path(root, path);
2368 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2370 btrfs_release_path(root, path);
2373 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2375 /* if ret == 0 there are items for this type,
2376 * create a range to tell us the last key of this type.
2377 * otherwise, there are no items in this directory after
2378 * *min_offset, and we create a range to indicate that.
2381 struct btrfs_key tmp;
2382 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2384 if (key_type == tmp.type)
2385 first_offset = max(min_offset, tmp.offset) + 1;
2390 /* go backward to find any previous key */
2391 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2393 struct btrfs_key tmp;
2394 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2395 if (key_type == tmp.type) {
2396 first_offset = tmp.offset;
2397 ret = overwrite_item(trans, log, dst_path,
2398 path->nodes[0], path->slots[0],
2402 btrfs_release_path(root, path);
2404 /* find the first key from this transaction again */
2405 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2412 * we have a block from this transaction, log every item in it
2413 * from our directory
2416 struct btrfs_key tmp;
2417 src = path->nodes[0];
2418 nritems = btrfs_header_nritems(src);
2419 for (i = path->slots[0]; i < nritems; i++) {
2420 btrfs_item_key_to_cpu(src, &min_key, i);
2422 if (min_key.objectid != inode->i_ino ||
2423 min_key.type != key_type)
2425 ret = overwrite_item(trans, log, dst_path, src, i,
2429 path->slots[0] = nritems;
2432 * look ahead to the next item and see if it is also
2433 * from this directory and from this transaction
2435 ret = btrfs_next_leaf(root, path);
2437 last_offset = (u64)-1;
2440 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2441 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2442 last_offset = (u64)-1;
2445 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2446 ret = overwrite_item(trans, log, dst_path,
2447 path->nodes[0], path->slots[0],
2451 last_offset = tmp.offset;
2456 *last_offset_ret = last_offset;
2457 btrfs_release_path(root, path);
2458 btrfs_release_path(log, dst_path);
2460 /* insert the log range keys to indicate where the log is valid */
2461 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2462 first_offset, last_offset);
2468 * logging directories is very similar to logging inodes, We find all the items
2469 * from the current transaction and write them to the log.
2471 * The recovery code scans the directory in the subvolume, and if it finds a
2472 * key in the range logged that is not present in the log tree, then it means
2473 * that dir entry was unlinked during the transaction.
2475 * In order for that scan to work, we must include one key smaller than
2476 * the smallest logged by this transaction and one key larger than the largest
2477 * key logged by this transaction.
2479 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2480 struct btrfs_root *root, struct inode *inode,
2481 struct btrfs_path *path,
2482 struct btrfs_path *dst_path)
2487 int key_type = BTRFS_DIR_ITEM_KEY;
2493 ret = log_dir_items(trans, root, inode, path,
2494 dst_path, key_type, min_key,
2497 if (max_key == (u64)-1)
2499 min_key = max_key + 1;
2502 if (key_type == BTRFS_DIR_ITEM_KEY) {
2503 key_type = BTRFS_DIR_INDEX_KEY;
2510 * a helper function to drop items from the log before we relog an
2511 * inode. max_key_type indicates the highest item type to remove.
2512 * This cannot be run for file data extents because it does not
2513 * free the extents they point to.
2515 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2516 struct btrfs_root *log,
2517 struct btrfs_path *path,
2518 u64 objectid, int max_key_type)
2521 struct btrfs_key key;
2522 struct btrfs_key found_key;
2524 key.objectid = objectid;
2525 key.type = max_key_type;
2526 key.offset = (u64)-1;
2529 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2534 if (path->slots[0] == 0)
2538 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2541 if (found_key.objectid != objectid)
2544 ret = btrfs_del_item(trans, log, path);
2546 btrfs_release_path(log, path);
2548 btrfs_release_path(log, path);
2552 static noinline int copy_items(struct btrfs_trans_handle *trans,
2553 struct btrfs_root *log,
2554 struct btrfs_path *dst_path,
2555 struct extent_buffer *src,
2556 int start_slot, int nr, int inode_only)
2558 unsigned long src_offset;
2559 unsigned long dst_offset;
2560 struct btrfs_file_extent_item *extent;
2561 struct btrfs_inode_item *inode_item;
2563 struct btrfs_key *ins_keys;
2567 struct list_head ordered_sums;
2569 INIT_LIST_HEAD(&ordered_sums);
2571 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2572 nr * sizeof(u32), GFP_NOFS);
2573 ins_sizes = (u32 *)ins_data;
2574 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2576 for (i = 0; i < nr; i++) {
2577 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2578 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2580 ret = btrfs_insert_empty_items(trans, log, dst_path,
2581 ins_keys, ins_sizes, nr);
2584 for (i = 0; i < nr; i++) {
2585 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2586 dst_path->slots[0]);
2588 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2590 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2591 src_offset, ins_sizes[i]);
2593 if (inode_only == LOG_INODE_EXISTS &&
2594 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2595 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2597 struct btrfs_inode_item);
2598 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2600 /* set the generation to zero so the recover code
2601 * can tell the difference between an logging
2602 * just to say 'this inode exists' and a logging
2603 * to say 'update this inode with these values'
2605 btrfs_set_inode_generation(dst_path->nodes[0],
2608 /* take a reference on file data extents so that truncates
2609 * or deletes of this inode don't have to relog the inode
2612 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2614 extent = btrfs_item_ptr(src, start_slot + i,
2615 struct btrfs_file_extent_item);
2617 found_type = btrfs_file_extent_type(src, extent);
2618 if (found_type == BTRFS_FILE_EXTENT_REG ||
2619 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2620 u64 ds = btrfs_file_extent_disk_bytenr(src,
2622 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2624 u64 cs = btrfs_file_extent_offset(src, extent);
2625 u64 cl = btrfs_file_extent_num_bytes(src,
2627 if (btrfs_file_extent_compression(src,
2632 /* ds == 0 is a hole */
2634 ret = btrfs_inc_extent_ref(trans, log,
2636 dst_path->nodes[0]->start,
2637 BTRFS_TREE_LOG_OBJECTID,
2639 ins_keys[i].objectid);
2641 ret = btrfs_lookup_csums_range(
2642 log->fs_info->csum_root,
2643 ds + cs, ds + cs + cl - 1,
2649 dst_path->slots[0]++;
2652 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2653 btrfs_release_path(log, dst_path);
2657 * we have to do this after the loop above to avoid changing the
2658 * log tree while trying to change the log tree.
2660 while (!list_empty(&ordered_sums)) {
2661 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2662 struct btrfs_ordered_sum,
2664 ret = btrfs_csum_file_blocks(trans, log, sums);
2666 list_del(&sums->list);
2672 /* log a single inode in the tree log.
2673 * At least one parent directory for this inode must exist in the tree
2674 * or be logged already.
2676 * Any items from this inode changed by the current transaction are copied
2677 * to the log tree. An extra reference is taken on any extents in this
2678 * file, allowing us to avoid a whole pile of corner cases around logging
2679 * blocks that have been removed from the tree.
2681 * See LOG_INODE_ALL and related defines for a description of what inode_only
2684 * This handles both files and directories.
2686 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2687 struct btrfs_root *root, struct inode *inode,
2690 struct btrfs_path *path;
2691 struct btrfs_path *dst_path;
2692 struct btrfs_key min_key;
2693 struct btrfs_key max_key;
2694 struct btrfs_root *log = root->log_root;
2695 struct extent_buffer *src = NULL;
2699 int ins_start_slot = 0;
2702 log = root->log_root;
2704 path = btrfs_alloc_path();
2705 dst_path = btrfs_alloc_path();
2707 min_key.objectid = inode->i_ino;
2708 min_key.type = BTRFS_INODE_ITEM_KEY;
2711 max_key.objectid = inode->i_ino;
2713 /* today the code can only do partial logging of directories */
2714 if (!S_ISDIR(inode->i_mode))
2715 inode_only = LOG_INODE_ALL;
2717 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2718 max_key.type = BTRFS_XATTR_ITEM_KEY;
2720 max_key.type = (u8)-1;
2721 max_key.offset = (u64)-1;
2723 mutex_lock(&BTRFS_I(inode)->log_mutex);
2726 * a brute force approach to making sure we get the most uptodate
2727 * copies of everything.
2729 if (S_ISDIR(inode->i_mode)) {
2730 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2732 if (inode_only == LOG_INODE_EXISTS)
2733 max_key_type = BTRFS_XATTR_ITEM_KEY;
2734 ret = drop_objectid_items(trans, log, path,
2735 inode->i_ino, max_key_type);
2737 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2740 path->keep_locks = 1;
2744 ret = btrfs_search_forward(root, &min_key, &max_key,
2745 path, 0, trans->transid);
2749 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2750 if (min_key.objectid != inode->i_ino)
2752 if (min_key.type > max_key.type)
2755 src = path->nodes[0];
2756 size = btrfs_item_size_nr(src, path->slots[0]);
2757 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2760 } else if (!ins_nr) {
2761 ins_start_slot = path->slots[0];
2766 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2767 ins_nr, inode_only);
2770 ins_start_slot = path->slots[0];
2773 nritems = btrfs_header_nritems(path->nodes[0]);
2775 if (path->slots[0] < nritems) {
2776 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2781 ret = copy_items(trans, log, dst_path, src,
2783 ins_nr, inode_only);
2787 btrfs_release_path(root, path);
2789 if (min_key.offset < (u64)-1)
2791 else if (min_key.type < (u8)-1)
2793 else if (min_key.objectid < (u64)-1)
2799 ret = copy_items(trans, log, dst_path, src,
2801 ins_nr, inode_only);
2806 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2807 btrfs_release_path(root, path);
2808 btrfs_release_path(log, dst_path);
2809 ret = log_directory_changes(trans, root, inode, path, dst_path);
2812 BTRFS_I(inode)->logged_trans = trans->transid;
2813 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2815 btrfs_free_path(path);
2816 btrfs_free_path(dst_path);
2821 * follow the dentry parent pointers up the chain and see if any
2822 * of the directories in it require a full commit before they can
2823 * be logged. Returns zero if nothing special needs to be done or 1 if
2824 * a full commit is required.
2826 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2827 struct inode *inode,
2828 struct dentry *parent,
2829 struct super_block *sb,
2833 struct btrfs_root *root;
2836 * for regular files, if its inode is already on disk, we don't
2837 * have to worry about the parents at all. This is because
2838 * we can use the last_unlink_trans field to record renames
2839 * and other fun in this file.
2841 if (S_ISREG(inode->i_mode) &&
2842 BTRFS_I(inode)->generation <= last_committed &&
2843 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2846 if (!S_ISDIR(inode->i_mode)) {
2847 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2849 inode = parent->d_inode;
2853 BTRFS_I(inode)->logged_trans = trans->transid;
2856 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2857 root = BTRFS_I(inode)->root;
2860 * make sure any commits to the log are forced
2861 * to be full commits
2863 root->fs_info->last_trans_log_full_commit =
2869 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2872 if (parent == sb->s_root)
2875 parent = parent->d_parent;
2876 inode = parent->d_inode;
2884 * helper function around btrfs_log_inode to make sure newly created
2885 * parent directories also end up in the log. A minimal inode and backref
2886 * only logging is done of any parent directories that are older than
2887 * the last committed transaction
2889 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2890 struct btrfs_root *root, struct inode *inode,
2891 struct dentry *parent, int exists_only)
2893 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2894 struct super_block *sb;
2896 u64 last_committed = root->fs_info->last_trans_committed;
2900 if (btrfs_test_opt(root, NOTREELOG)) {
2905 if (root->fs_info->last_trans_log_full_commit >
2906 root->fs_info->last_trans_committed) {
2911 ret = check_parent_dirs_for_sync(trans, inode, parent,
2912 sb, last_committed);
2916 start_log_trans(trans, root);
2918 ret = btrfs_log_inode(trans, root, inode, inode_only);
2922 * for regular files, if its inode is already on disk, we don't
2923 * have to worry about the parents at all. This is because
2924 * we can use the last_unlink_trans field to record renames
2925 * and other fun in this file.
2927 if (S_ISREG(inode->i_mode) &&
2928 BTRFS_I(inode)->generation <= last_committed &&
2929 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2932 inode_only = LOG_INODE_EXISTS;
2934 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2937 inode = parent->d_inode;
2938 if (BTRFS_I(inode)->generation >
2939 root->fs_info->last_trans_committed) {
2940 ret = btrfs_log_inode(trans, root, inode, inode_only);
2943 if (parent == sb->s_root)
2946 parent = parent->d_parent;
2950 btrfs_end_log_trans(root);
2956 * it is not safe to log dentry if the chunk root has added new
2957 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2958 * If this returns 1, you must commit the transaction to safely get your
2961 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2962 struct btrfs_root *root, struct dentry *dentry)
2964 return btrfs_log_inode_parent(trans, root, dentry->d_inode,
2965 dentry->d_parent, 0);
2969 * should be called during mount to recover any replay any log trees
2972 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2975 struct btrfs_path *path;
2976 struct btrfs_trans_handle *trans;
2977 struct btrfs_key key;
2978 struct btrfs_key found_key;
2979 struct btrfs_key tmp_key;
2980 struct btrfs_root *log;
2981 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
2983 struct walk_control wc = {
2984 .process_func = process_one_buffer,
2988 fs_info->log_root_recovering = 1;
2989 path = btrfs_alloc_path();
2992 trans = btrfs_start_transaction(fs_info->tree_root, 1);
2997 walk_log_tree(trans, log_root_tree, &wc);
3000 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3001 key.offset = (u64)-1;
3002 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3005 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3009 if (path->slots[0] == 0)
3013 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3015 btrfs_release_path(log_root_tree, path);
3016 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3019 log = btrfs_read_fs_root_no_radix(log_root_tree,
3024 tmp_key.objectid = found_key.offset;
3025 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3026 tmp_key.offset = (u64)-1;
3028 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3029 BUG_ON(!wc.replay_dest);
3031 wc.replay_dest->log_root = log;
3032 mutex_lock(&fs_info->trans_mutex);
3033 btrfs_record_root_in_trans(wc.replay_dest);
3034 mutex_unlock(&fs_info->trans_mutex);
3035 ret = walk_log_tree(trans, log, &wc);
3038 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3039 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3043 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
3045 wc.replay_dest->highest_inode = highest_inode;
3046 wc.replay_dest->last_inode_alloc = highest_inode;
3049 key.offset = found_key.offset - 1;
3050 wc.replay_dest->log_root = NULL;
3051 free_extent_buffer(log->node);
3054 if (found_key.offset == 0)
3057 btrfs_release_path(log_root_tree, path);
3059 /* step one is to pin it all, step two is to replay just inodes */
3062 wc.process_func = replay_one_buffer;
3063 wc.stage = LOG_WALK_REPLAY_INODES;
3066 /* step three is to replay everything */
3067 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3072 btrfs_free_path(path);
3074 free_extent_buffer(log_root_tree->node);
3075 log_root_tree->log_root = NULL;
3076 fs_info->log_root_recovering = 0;
3078 /* step 4: commit the transaction, which also unpins the blocks */
3079 btrfs_commit_transaction(trans, fs_info->tree_root);
3081 kfree(log_root_tree);
3086 * there are some corner cases where we want to force a full
3087 * commit instead of allowing a directory to be logged.
3089 * They revolve around files there were unlinked from the directory, and
3090 * this function updates the parent directory so that a full commit is
3091 * properly done if it is fsync'd later after the unlinks are done.
3093 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3094 struct inode *dir, struct inode *inode,
3098 * when we're logging a file, if it hasn't been renamed
3099 * or unlinked, and its inode is fully committed on disk,
3100 * we don't have to worry about walking up the directory chain
3101 * to log its parents.
3103 * So, we use the last_unlink_trans field to put this transid
3104 * into the file. When the file is logged we check it and
3105 * don't log the parents if the file is fully on disk.
3107 if (S_ISREG(inode->i_mode))
3108 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3111 * if this directory was already logged any new
3112 * names for this file/dir will get recorded
3115 if (BTRFS_I(dir)->logged_trans == trans->transid)
3119 * if the inode we're about to unlink was logged,
3120 * the log will be properly updated for any new names
3122 if (BTRFS_I(inode)->logged_trans == trans->transid)
3126 * when renaming files across directories, if the directory
3127 * there we're unlinking from gets fsync'd later on, there's
3128 * no way to find the destination directory later and fsync it
3129 * properly. So, we have to be conservative and force commits
3130 * so the new name gets discovered.
3135 /* we can safely do the unlink without any special recording */
3139 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3143 * Call this after adding a new name for a file and it will properly
3144 * update the log to reflect the new name.
3146 * It will return zero if all goes well, and it will return 1 if a
3147 * full transaction commit is required.
3149 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3150 struct inode *inode, struct inode *old_dir,
3151 struct dentry *parent)
3153 struct btrfs_root * root = BTRFS_I(inode)->root;
3156 * this will force the logging code to walk the dentry chain
3159 if (S_ISREG(inode->i_mode))
3160 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3163 * if this inode hasn't been logged and directory we're renaming it
3164 * from hasn't been logged, we don't need to log it
3166 if (BTRFS_I(inode)->logged_trans <=
3167 root->fs_info->last_trans_committed &&
3168 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3169 root->fs_info->last_trans_committed))
3172 return btrfs_log_inode_parent(trans, root, inode, parent, 1);