2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
27 #include <linux/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
62 NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66 static int debug = 0x00007fff; /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
79 /* required last entry */
83 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85 /* This hardware semaphore causes exclusive access to
86 * resources shared between the NIC driver, MPI firmware,
87 * FCOE firmware and the FC driver.
89 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
95 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
98 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
101 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103 case SEM_MAC_ADDR_MASK:
104 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
107 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
110 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112 case SEM_RT_IDX_MASK:
113 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115 case SEM_PROC_REG_MASK:
116 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
119 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
123 ql_write32(qdev, SEM, sem_bits | sem_mask);
124 return !(ql_read32(qdev, SEM) & sem_bits);
127 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129 unsigned int wait_count = 30;
131 if (!ql_sem_trylock(qdev, sem_mask))
134 } while (--wait_count);
138 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140 ql_write32(qdev, SEM, sem_mask);
141 ql_read32(qdev, SEM); /* flush */
144 /* This function waits for a specific bit to come ready
145 * in a given register. It is used mostly by the initialize
146 * process, but is also used in kernel thread API such as
147 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
152 int count = UDELAY_COUNT;
155 temp = ql_read32(qdev, reg);
157 /* check for errors */
158 if (temp & err_bit) {
159 QPRINTK(qdev, PROBE, ALERT,
160 "register 0x%.08x access error, value = 0x%.08x!.\n",
163 } else if (temp & bit)
165 udelay(UDELAY_DELAY);
168 QPRINTK(qdev, PROBE, ALERT,
169 "Timed out waiting for reg %x to come ready.\n", reg);
173 /* The CFG register is used to download TX and RX control blocks
174 * to the chip. This function waits for an operation to complete.
176 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178 int count = UDELAY_COUNT;
182 temp = ql_read32(qdev, CFG);
187 udelay(UDELAY_DELAY);
194 /* Used to issue init control blocks to hw. Maps control block,
195 * sets address, triggers download, waits for completion.
197 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
207 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
210 map = pci_map_single(qdev->pdev, ptr, size, direction);
211 if (pci_dma_mapping_error(qdev->pdev, map)) {
212 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
216 status = ql_wait_cfg(qdev, bit);
218 QPRINTK(qdev, IFUP, ERR,
219 "Timed out waiting for CFG to come ready.\n");
223 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
226 ql_write32(qdev, ICB_L, (u32) map);
227 ql_write32(qdev, ICB_H, (u32) (map >> 32));
228 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
230 mask = CFG_Q_MASK | (bit << 16);
231 value = bit | (q_id << CFG_Q_SHIFT);
232 ql_write32(qdev, CFG, (mask | value));
235 * Wait for the bit to clear after signaling hw.
237 status = ql_wait_cfg(qdev, bit);
239 pci_unmap_single(qdev->pdev, map, size, direction);
243 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
244 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
250 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
254 case MAC_ADDR_TYPE_MULTI_MAC:
255 case MAC_ADDR_TYPE_CAM_MAC:
258 ql_wait_reg_rdy(qdev,
259 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
262 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
263 (index << MAC_ADDR_IDX_SHIFT) | /* index */
264 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
266 ql_wait_reg_rdy(qdev,
267 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
270 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
272 ql_wait_reg_rdy(qdev,
273 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
277 (index << MAC_ADDR_IDX_SHIFT) | /* index */
278 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280 ql_wait_reg_rdy(qdev,
281 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
285 if (type == MAC_ADDR_TYPE_CAM_MAC) {
287 ql_wait_reg_rdy(qdev,
288 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
291 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
292 (index << MAC_ADDR_IDX_SHIFT) | /* index */
293 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
299 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
303 case MAC_ADDR_TYPE_VLAN:
304 case MAC_ADDR_TYPE_MULTI_FLTR:
306 QPRINTK(qdev, IFUP, CRIT,
307 "Address type %d not yet supported.\n", type);
311 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
315 /* Set up a MAC, multicast or VLAN address for the
316 * inbound frame matching.
318 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
324 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
328 case MAC_ADDR_TYPE_MULTI_MAC:
329 case MAC_ADDR_TYPE_CAM_MAC:
332 u32 upper = (addr[0] << 8) | addr[1];
334 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
337 QPRINTK(qdev, IFUP, INFO,
338 "Adding %s address %pM"
339 " at index %d in the CAM.\n",
341 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
342 "UNICAST"), addr, index);
345 ql_wait_reg_rdy(qdev,
346 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
350 (index << MAC_ADDR_IDX_SHIFT) | /* index */
352 ql_write32(qdev, MAC_ADDR_DATA, lower);
354 ql_wait_reg_rdy(qdev,
355 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
359 (index << MAC_ADDR_IDX_SHIFT) | /* index */
361 ql_write32(qdev, MAC_ADDR_DATA, upper);
363 ql_wait_reg_rdy(qdev,
364 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
367 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
368 (index << MAC_ADDR_IDX_SHIFT) | /* index */
370 /* This field should also include the queue id
371 and possibly the function id. Right now we hardcode
372 the route field to NIC core.
374 if (type == MAC_ADDR_TYPE_CAM_MAC) {
375 cam_output = (CAM_OUT_ROUTE_NIC |
377 func << CAM_OUT_FUNC_SHIFT) |
379 rss_ring_first_cq_id <<
380 CAM_OUT_CQ_ID_SHIFT));
382 cam_output |= CAM_OUT_RV;
383 /* route to NIC core */
384 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
388 case MAC_ADDR_TYPE_VLAN:
390 u32 enable_bit = *((u32 *) &addr[0]);
391 /* For VLAN, the addr actually holds a bit that
392 * either enables or disables the vlan id we are
393 * addressing. It's either MAC_ADDR_E on or off.
394 * That's bit-27 we're talking about.
396 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
397 (enable_bit ? "Adding" : "Removing"),
398 index, (enable_bit ? "to" : "from"));
401 ql_wait_reg_rdy(qdev,
402 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
405 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
406 (index << MAC_ADDR_IDX_SHIFT) | /* index */
408 enable_bit); /* enable/disable */
411 case MAC_ADDR_TYPE_MULTI_FLTR:
413 QPRINTK(qdev, IFUP, CRIT,
414 "Address type %d not yet supported.\n", type);
418 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
422 /* Get a specific frame routing value from the CAM.
423 * Used for debug and reg dump.
425 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
429 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
433 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
437 ql_write32(qdev, RT_IDX,
438 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
439 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
442 *value = ql_read32(qdev, RT_DATA);
444 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
448 /* The NIC function for this chip has 16 routing indexes. Each one can be used
449 * to route different frame types to various inbound queues. We send broadcast/
450 * multicast/error frames to the default queue for slow handling,
451 * and CAM hit/RSS frames to the fast handling queues.
453 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
459 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
463 QPRINTK(qdev, IFUP, DEBUG,
464 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
465 (enable ? "Adding" : "Removing"),
466 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
467 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
469 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
470 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
471 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
472 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
473 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
474 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
475 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
476 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
477 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
478 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
479 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
480 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
481 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
482 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
483 (enable ? "to" : "from"));
488 value = RT_IDX_DST_CAM_Q | /* dest */
489 RT_IDX_TYPE_NICQ | /* type */
490 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
493 case RT_IDX_VALID: /* Promiscuous Mode frames. */
495 value = RT_IDX_DST_DFLT_Q | /* dest */
496 RT_IDX_TYPE_NICQ | /* type */
497 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
500 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
502 value = RT_IDX_DST_DFLT_Q | /* dest */
503 RT_IDX_TYPE_NICQ | /* type */
504 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
507 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
509 value = RT_IDX_DST_DFLT_Q | /* dest */
510 RT_IDX_TYPE_NICQ | /* type */
511 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
514 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
516 value = RT_IDX_DST_CAM_Q | /* dest */
517 RT_IDX_TYPE_NICQ | /* type */
518 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
521 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
523 value = RT_IDX_DST_CAM_Q | /* dest */
524 RT_IDX_TYPE_NICQ | /* type */
525 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
528 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
530 value = RT_IDX_DST_RSS | /* dest */
531 RT_IDX_TYPE_NICQ | /* type */
532 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
535 case 0: /* Clear the E-bit on an entry. */
537 value = RT_IDX_DST_DFLT_Q | /* dest */
538 RT_IDX_TYPE_NICQ | /* type */
539 (index << RT_IDX_IDX_SHIFT);/* index */
543 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
550 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
553 value |= (enable ? RT_IDX_E : 0);
554 ql_write32(qdev, RT_IDX, value);
555 ql_write32(qdev, RT_DATA, enable ? mask : 0);
558 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
562 static void ql_enable_interrupts(struct ql_adapter *qdev)
564 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
567 static void ql_disable_interrupts(struct ql_adapter *qdev)
569 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
572 /* If we're running with multiple MSI-X vectors then we enable on the fly.
573 * Otherwise, we may have multiple outstanding workers and don't want to
574 * enable until the last one finishes. In this case, the irq_cnt gets
575 * incremented everytime we queue a worker and decremented everytime
576 * a worker finishes. Once it hits zero we enable the interrupt.
578 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
581 unsigned long hw_flags = 0;
582 struct intr_context *ctx = qdev->intr_context + intr;
584 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
585 /* Always enable if we're MSIX multi interrupts and
586 * it's not the default (zeroeth) interrupt.
588 ql_write32(qdev, INTR_EN,
590 var = ql_read32(qdev, STS);
594 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
595 if (atomic_dec_and_test(&ctx->irq_cnt)) {
596 ql_write32(qdev, INTR_EN,
598 var = ql_read32(qdev, STS);
600 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
604 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
607 unsigned long hw_flags;
608 struct intr_context *ctx;
610 /* HW disables for us if we're MSIX multi interrupts and
611 * it's not the default (zeroeth) interrupt.
613 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
616 ctx = qdev->intr_context + intr;
617 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
618 if (!atomic_read(&ctx->irq_cnt)) {
619 ql_write32(qdev, INTR_EN,
621 var = ql_read32(qdev, STS);
623 atomic_inc(&ctx->irq_cnt);
624 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
628 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
631 for (i = 0; i < qdev->intr_count; i++) {
632 /* The enable call does a atomic_dec_and_test
633 * and enables only if the result is zero.
634 * So we precharge it here.
636 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
638 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
639 ql_enable_completion_interrupt(qdev, i);
644 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
647 /* wait for reg to come ready */
648 status = ql_wait_reg_rdy(qdev,
649 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
652 /* set up for reg read */
653 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
654 /* wait for reg to come ready */
655 status = ql_wait_reg_rdy(qdev,
656 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
660 *data = ql_read32(qdev, FLASH_DATA);
665 static int ql_get_flash_params(struct ql_adapter *qdev)
669 u32 *p = (u32 *)&qdev->flash;
671 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
674 for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
675 status = ql_read_flash_word(qdev, i, p);
677 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
683 ql_sem_unlock(qdev, SEM_FLASH_MASK);
687 /* xgmac register are located behind the xgmac_addr and xgmac_data
688 * register pair. Each read/write requires us to wait for the ready
689 * bit before reading/writing the data.
691 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
694 /* wait for reg to come ready */
695 status = ql_wait_reg_rdy(qdev,
696 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
699 /* write the data to the data reg */
700 ql_write32(qdev, XGMAC_DATA, data);
701 /* trigger the write */
702 ql_write32(qdev, XGMAC_ADDR, reg);
706 /* xgmac register are located behind the xgmac_addr and xgmac_data
707 * register pair. Each read/write requires us to wait for the ready
708 * bit before reading/writing the data.
710 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
713 /* wait for reg to come ready */
714 status = ql_wait_reg_rdy(qdev,
715 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
718 /* set up for reg read */
719 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
720 /* wait for reg to come ready */
721 status = ql_wait_reg_rdy(qdev,
722 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
726 *data = ql_read32(qdev, XGMAC_DATA);
731 /* This is used for reading the 64-bit statistics regs. */
732 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
738 status = ql_read_xgmac_reg(qdev, reg, &lo);
742 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
746 *data = (u64) lo | ((u64) hi << 32);
752 /* Take the MAC Core out of reset.
753 * Enable statistics counting.
754 * Take the transmitter/receiver out of reset.
755 * This functionality may be done in the MPI firmware at a
758 static int ql_port_initialize(struct ql_adapter *qdev)
763 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
764 /* Another function has the semaphore, so
765 * wait for the port init bit to come ready.
767 QPRINTK(qdev, LINK, INFO,
768 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
769 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
771 QPRINTK(qdev, LINK, CRIT,
772 "Port initialize timed out.\n");
777 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
778 /* Set the core reset. */
779 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
782 data |= GLOBAL_CFG_RESET;
783 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
787 /* Clear the core reset and turn on jumbo for receiver. */
788 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
789 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
790 data |= GLOBAL_CFG_TX_STAT_EN;
791 data |= GLOBAL_CFG_RX_STAT_EN;
792 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
796 /* Enable transmitter, and clear it's reset. */
797 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
800 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
801 data |= TX_CFG_EN; /* Enable the transmitter. */
802 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
806 /* Enable receiver and clear it's reset. */
807 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
810 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
811 data |= RX_CFG_EN; /* Enable the receiver. */
812 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
818 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
822 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
826 /* Signal to the world that the port is enabled. */
827 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
829 ql_sem_unlock(qdev, qdev->xg_sem_mask);
833 /* Get the next large buffer. */
834 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
836 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
837 rx_ring->lbq_curr_idx++;
838 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
839 rx_ring->lbq_curr_idx = 0;
840 rx_ring->lbq_free_cnt++;
844 /* Get the next small buffer. */
845 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
847 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
848 rx_ring->sbq_curr_idx++;
849 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
850 rx_ring->sbq_curr_idx = 0;
851 rx_ring->sbq_free_cnt++;
855 /* Update an rx ring index. */
856 static void ql_update_cq(struct rx_ring *rx_ring)
858 rx_ring->cnsmr_idx++;
859 rx_ring->curr_entry++;
860 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
861 rx_ring->cnsmr_idx = 0;
862 rx_ring->curr_entry = rx_ring->cq_base;
866 static void ql_write_cq_idx(struct rx_ring *rx_ring)
868 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
871 /* Process (refill) a large buffer queue. */
872 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
874 int clean_idx = rx_ring->lbq_clean_idx;
875 struct bq_desc *lbq_desc;
879 while (rx_ring->lbq_free_cnt > 16) {
880 for (i = 0; i < 16; i++) {
881 QPRINTK(qdev, RX_STATUS, DEBUG,
882 "lbq: try cleaning clean_idx = %d.\n",
884 lbq_desc = &rx_ring->lbq[clean_idx];
885 if (lbq_desc->p.lbq_page == NULL) {
886 QPRINTK(qdev, RX_STATUS, DEBUG,
887 "lbq: getting new page for index %d.\n",
889 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
890 if (lbq_desc->p.lbq_page == NULL) {
891 QPRINTK(qdev, RX_STATUS, ERR,
892 "Couldn't get a page.\n");
895 map = pci_map_page(qdev->pdev,
896 lbq_desc->p.lbq_page,
899 if (pci_dma_mapping_error(qdev->pdev, map)) {
900 QPRINTK(qdev, RX_STATUS, ERR,
901 "PCI mapping failed.\n");
904 pci_unmap_addr_set(lbq_desc, mapaddr, map);
905 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
906 *lbq_desc->addr = cpu_to_le64(map);
909 if (clean_idx == rx_ring->lbq_len)
913 rx_ring->lbq_clean_idx = clean_idx;
914 rx_ring->lbq_prod_idx += 16;
915 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
916 rx_ring->lbq_prod_idx = 0;
917 QPRINTK(qdev, RX_STATUS, DEBUG,
918 "lbq: updating prod idx = %d.\n",
919 rx_ring->lbq_prod_idx);
920 ql_write_db_reg(rx_ring->lbq_prod_idx,
921 rx_ring->lbq_prod_idx_db_reg);
922 rx_ring->lbq_free_cnt -= 16;
926 /* Process (refill) a small buffer queue. */
927 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
929 int clean_idx = rx_ring->sbq_clean_idx;
930 struct bq_desc *sbq_desc;
934 while (rx_ring->sbq_free_cnt > 16) {
935 for (i = 0; i < 16; i++) {
936 sbq_desc = &rx_ring->sbq[clean_idx];
937 QPRINTK(qdev, RX_STATUS, DEBUG,
938 "sbq: try cleaning clean_idx = %d.\n",
940 if (sbq_desc->p.skb == NULL) {
941 QPRINTK(qdev, RX_STATUS, DEBUG,
942 "sbq: getting new skb for index %d.\n",
945 netdev_alloc_skb(qdev->ndev,
946 rx_ring->sbq_buf_size);
947 if (sbq_desc->p.skb == NULL) {
948 QPRINTK(qdev, PROBE, ERR,
949 "Couldn't get an skb.\n");
950 rx_ring->sbq_clean_idx = clean_idx;
953 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
954 map = pci_map_single(qdev->pdev,
955 sbq_desc->p.skb->data,
956 rx_ring->sbq_buf_size /
957 2, PCI_DMA_FROMDEVICE);
958 if (pci_dma_mapping_error(qdev->pdev, map)) {
959 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
960 rx_ring->sbq_clean_idx = clean_idx;
963 pci_unmap_addr_set(sbq_desc, mapaddr, map);
964 pci_unmap_len_set(sbq_desc, maplen,
965 rx_ring->sbq_buf_size / 2);
966 *sbq_desc->addr = cpu_to_le64(map);
970 if (clean_idx == rx_ring->sbq_len)
973 rx_ring->sbq_clean_idx = clean_idx;
974 rx_ring->sbq_prod_idx += 16;
975 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
976 rx_ring->sbq_prod_idx = 0;
977 QPRINTK(qdev, RX_STATUS, DEBUG,
978 "sbq: updating prod idx = %d.\n",
979 rx_ring->sbq_prod_idx);
980 ql_write_db_reg(rx_ring->sbq_prod_idx,
981 rx_ring->sbq_prod_idx_db_reg);
983 rx_ring->sbq_free_cnt -= 16;
987 static void ql_update_buffer_queues(struct ql_adapter *qdev,
988 struct rx_ring *rx_ring)
990 ql_update_sbq(qdev, rx_ring);
991 ql_update_lbq(qdev, rx_ring);
994 /* Unmaps tx buffers. Can be called from send() if a pci mapping
995 * fails at some stage, or from the interrupt when a tx completes.
997 static void ql_unmap_send(struct ql_adapter *qdev,
998 struct tx_ring_desc *tx_ring_desc, int mapped)
1001 for (i = 0; i < mapped; i++) {
1002 if (i == 0 || (i == 7 && mapped > 7)) {
1004 * Unmap the skb->data area, or the
1005 * external sglist (AKA the Outbound
1006 * Address List (OAL)).
1007 * If its the zeroeth element, then it's
1008 * the skb->data area. If it's the 7th
1009 * element and there is more than 6 frags,
1013 QPRINTK(qdev, TX_DONE, DEBUG,
1014 "unmapping OAL area.\n");
1016 pci_unmap_single(qdev->pdev,
1017 pci_unmap_addr(&tx_ring_desc->map[i],
1019 pci_unmap_len(&tx_ring_desc->map[i],
1023 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1025 pci_unmap_page(qdev->pdev,
1026 pci_unmap_addr(&tx_ring_desc->map[i],
1028 pci_unmap_len(&tx_ring_desc->map[i],
1029 maplen), PCI_DMA_TODEVICE);
1035 /* Map the buffers for this transmit. This will return
1036 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1038 static int ql_map_send(struct ql_adapter *qdev,
1039 struct ob_mac_iocb_req *mac_iocb_ptr,
1040 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1042 int len = skb_headlen(skb);
1044 int frag_idx, err, map_idx = 0;
1045 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1046 int frag_cnt = skb_shinfo(skb)->nr_frags;
1049 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1052 * Map the skb buffer first.
1054 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1056 err = pci_dma_mapping_error(qdev->pdev, map);
1058 QPRINTK(qdev, TX_QUEUED, ERR,
1059 "PCI mapping failed with error: %d\n", err);
1061 return NETDEV_TX_BUSY;
1064 tbd->len = cpu_to_le32(len);
1065 tbd->addr = cpu_to_le64(map);
1066 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1067 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1071 * This loop fills the remainder of the 8 address descriptors
1072 * in the IOCB. If there are more than 7 fragments, then the
1073 * eighth address desc will point to an external list (OAL).
1074 * When this happens, the remainder of the frags will be stored
1077 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1078 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1080 if (frag_idx == 6 && frag_cnt > 7) {
1081 /* Let's tack on an sglist.
1082 * Our control block will now
1084 * iocb->seg[0] = skb->data
1085 * iocb->seg[1] = frag[0]
1086 * iocb->seg[2] = frag[1]
1087 * iocb->seg[3] = frag[2]
1088 * iocb->seg[4] = frag[3]
1089 * iocb->seg[5] = frag[4]
1090 * iocb->seg[6] = frag[5]
1091 * iocb->seg[7] = ptr to OAL (external sglist)
1092 * oal->seg[0] = frag[6]
1093 * oal->seg[1] = frag[7]
1094 * oal->seg[2] = frag[8]
1095 * oal->seg[3] = frag[9]
1096 * oal->seg[4] = frag[10]
1099 /* Tack on the OAL in the eighth segment of IOCB. */
1100 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1103 err = pci_dma_mapping_error(qdev->pdev, map);
1105 QPRINTK(qdev, TX_QUEUED, ERR,
1106 "PCI mapping outbound address list with error: %d\n",
1111 tbd->addr = cpu_to_le64(map);
1113 * The length is the number of fragments
1114 * that remain to be mapped times the length
1115 * of our sglist (OAL).
1118 cpu_to_le32((sizeof(struct tx_buf_desc) *
1119 (frag_cnt - frag_idx)) | TX_DESC_C);
1120 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1122 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1123 sizeof(struct oal));
1124 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1129 pci_map_page(qdev->pdev, frag->page,
1130 frag->page_offset, frag->size,
1133 err = pci_dma_mapping_error(qdev->pdev, map);
1135 QPRINTK(qdev, TX_QUEUED, ERR,
1136 "PCI mapping frags failed with error: %d.\n",
1141 tbd->addr = cpu_to_le64(map);
1142 tbd->len = cpu_to_le32(frag->size);
1143 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1144 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1148 /* Save the number of segments we've mapped. */
1149 tx_ring_desc->map_cnt = map_idx;
1150 /* Terminate the last segment. */
1151 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1152 return NETDEV_TX_OK;
1156 * If the first frag mapping failed, then i will be zero.
1157 * This causes the unmap of the skb->data area. Otherwise
1158 * we pass in the number of frags that mapped successfully
1159 * so they can be umapped.
1161 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1162 return NETDEV_TX_BUSY;
1165 static void ql_realign_skb(struct sk_buff *skb, int len)
1167 void *temp_addr = skb->data;
1169 /* Undo the skb_reserve(skb,32) we did before
1170 * giving to hardware, and realign data on
1171 * a 2-byte boundary.
1173 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1174 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1175 skb_copy_to_linear_data(skb, temp_addr,
1180 * This function builds an skb for the given inbound
1181 * completion. It will be rewritten for readability in the near
1182 * future, but for not it works well.
1184 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1185 struct rx_ring *rx_ring,
1186 struct ib_mac_iocb_rsp *ib_mac_rsp)
1188 struct bq_desc *lbq_desc;
1189 struct bq_desc *sbq_desc;
1190 struct sk_buff *skb = NULL;
1191 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1192 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1195 * Handle the header buffer if present.
1197 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1198 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1199 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1201 * Headers fit nicely into a small buffer.
1203 sbq_desc = ql_get_curr_sbuf(rx_ring);
1204 pci_unmap_single(qdev->pdev,
1205 pci_unmap_addr(sbq_desc, mapaddr),
1206 pci_unmap_len(sbq_desc, maplen),
1207 PCI_DMA_FROMDEVICE);
1208 skb = sbq_desc->p.skb;
1209 ql_realign_skb(skb, hdr_len);
1210 skb_put(skb, hdr_len);
1211 sbq_desc->p.skb = NULL;
1215 * Handle the data buffer(s).
1217 if (unlikely(!length)) { /* Is there data too? */
1218 QPRINTK(qdev, RX_STATUS, DEBUG,
1219 "No Data buffer in this packet.\n");
1223 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1224 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1225 QPRINTK(qdev, RX_STATUS, DEBUG,
1226 "Headers in small, data of %d bytes in small, combine them.\n", length);
1228 * Data is less than small buffer size so it's
1229 * stuffed in a small buffer.
1230 * For this case we append the data
1231 * from the "data" small buffer to the "header" small
1234 sbq_desc = ql_get_curr_sbuf(rx_ring);
1235 pci_dma_sync_single_for_cpu(qdev->pdev,
1237 (sbq_desc, mapaddr),
1240 PCI_DMA_FROMDEVICE);
1241 memcpy(skb_put(skb, length),
1242 sbq_desc->p.skb->data, length);
1243 pci_dma_sync_single_for_device(qdev->pdev,
1250 PCI_DMA_FROMDEVICE);
1252 QPRINTK(qdev, RX_STATUS, DEBUG,
1253 "%d bytes in a single small buffer.\n", length);
1254 sbq_desc = ql_get_curr_sbuf(rx_ring);
1255 skb = sbq_desc->p.skb;
1256 ql_realign_skb(skb, length);
1257 skb_put(skb, length);
1258 pci_unmap_single(qdev->pdev,
1259 pci_unmap_addr(sbq_desc,
1261 pci_unmap_len(sbq_desc,
1263 PCI_DMA_FROMDEVICE);
1264 sbq_desc->p.skb = NULL;
1266 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1267 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1268 QPRINTK(qdev, RX_STATUS, DEBUG,
1269 "Header in small, %d bytes in large. Chain large to small!\n", length);
1271 * The data is in a single large buffer. We
1272 * chain it to the header buffer's skb and let
1275 lbq_desc = ql_get_curr_lbuf(rx_ring);
1276 pci_unmap_page(qdev->pdev,
1277 pci_unmap_addr(lbq_desc,
1279 pci_unmap_len(lbq_desc, maplen),
1280 PCI_DMA_FROMDEVICE);
1281 QPRINTK(qdev, RX_STATUS, DEBUG,
1282 "Chaining page to skb.\n");
1283 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1286 skb->data_len += length;
1287 skb->truesize += length;
1288 lbq_desc->p.lbq_page = NULL;
1291 * The headers and data are in a single large buffer. We
1292 * copy it to a new skb and let it go. This can happen with
1293 * jumbo mtu on a non-TCP/UDP frame.
1295 lbq_desc = ql_get_curr_lbuf(rx_ring);
1296 skb = netdev_alloc_skb(qdev->ndev, length);
1298 QPRINTK(qdev, PROBE, DEBUG,
1299 "No skb available, drop the packet.\n");
1302 pci_unmap_page(qdev->pdev,
1303 pci_unmap_addr(lbq_desc,
1305 pci_unmap_len(lbq_desc, maplen),
1306 PCI_DMA_FROMDEVICE);
1307 skb_reserve(skb, NET_IP_ALIGN);
1308 QPRINTK(qdev, RX_STATUS, DEBUG,
1309 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1310 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1313 skb->data_len += length;
1314 skb->truesize += length;
1316 lbq_desc->p.lbq_page = NULL;
1317 __pskb_pull_tail(skb,
1318 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1319 VLAN_ETH_HLEN : ETH_HLEN);
1323 * The data is in a chain of large buffers
1324 * pointed to by a small buffer. We loop
1325 * thru and chain them to the our small header
1327 * frags: There are 18 max frags and our small
1328 * buffer will hold 32 of them. The thing is,
1329 * we'll use 3 max for our 9000 byte jumbo
1330 * frames. If the MTU goes up we could
1331 * eventually be in trouble.
1333 int size, offset, i = 0;
1334 __le64 *bq, bq_array[8];
1335 sbq_desc = ql_get_curr_sbuf(rx_ring);
1336 pci_unmap_single(qdev->pdev,
1337 pci_unmap_addr(sbq_desc, mapaddr),
1338 pci_unmap_len(sbq_desc, maplen),
1339 PCI_DMA_FROMDEVICE);
1340 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1342 * This is an non TCP/UDP IP frame, so
1343 * the headers aren't split into a small
1344 * buffer. We have to use the small buffer
1345 * that contains our sg list as our skb to
1346 * send upstairs. Copy the sg list here to
1347 * a local buffer and use it to find the
1350 QPRINTK(qdev, RX_STATUS, DEBUG,
1351 "%d bytes of headers & data in chain of large.\n", length);
1352 skb = sbq_desc->p.skb;
1354 memcpy(bq, skb->data, sizeof(bq_array));
1355 sbq_desc->p.skb = NULL;
1356 skb_reserve(skb, NET_IP_ALIGN);
1358 QPRINTK(qdev, RX_STATUS, DEBUG,
1359 "Headers in small, %d bytes of data in chain of large.\n", length);
1360 bq = (__le64 *)sbq_desc->p.skb->data;
1362 while (length > 0) {
1363 lbq_desc = ql_get_curr_lbuf(rx_ring);
1364 pci_unmap_page(qdev->pdev,
1365 pci_unmap_addr(lbq_desc,
1367 pci_unmap_len(lbq_desc,
1369 PCI_DMA_FROMDEVICE);
1370 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1373 QPRINTK(qdev, RX_STATUS, DEBUG,
1374 "Adding page %d to skb for %d bytes.\n",
1376 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1379 skb->data_len += size;
1380 skb->truesize += size;
1382 lbq_desc->p.lbq_page = NULL;
1386 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1387 VLAN_ETH_HLEN : ETH_HLEN);
1392 /* Process an inbound completion from an rx ring. */
1393 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1394 struct rx_ring *rx_ring,
1395 struct ib_mac_iocb_rsp *ib_mac_rsp)
1397 struct net_device *ndev = qdev->ndev;
1398 struct sk_buff *skb = NULL;
1400 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1402 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1403 if (unlikely(!skb)) {
1404 QPRINTK(qdev, RX_STATUS, DEBUG,
1405 "No skb available, drop packet.\n");
1409 prefetch(skb->data);
1411 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1412 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1413 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1414 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1415 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1416 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1417 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1418 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1420 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1421 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1423 if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1424 QPRINTK(qdev, RX_STATUS, ERR,
1425 "Bad checksum for this %s packet.\n",
1427 flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1428 skb->ip_summed = CHECKSUM_NONE;
1429 } else if (qdev->rx_csum &&
1430 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1431 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1432 !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1433 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1434 skb->ip_summed = CHECKSUM_UNNECESSARY;
1436 qdev->stats.rx_packets++;
1437 qdev->stats.rx_bytes += skb->len;
1438 skb->protocol = eth_type_trans(skb, ndev);
1439 if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1440 QPRINTK(qdev, RX_STATUS, DEBUG,
1441 "Passing a VLAN packet upstream.\n");
1442 vlan_hwaccel_rx(skb, qdev->vlgrp,
1443 le16_to_cpu(ib_mac_rsp->vlan_id));
1445 QPRINTK(qdev, RX_STATUS, DEBUG,
1446 "Passing a normal packet upstream.\n");
1451 /* Process an outbound completion from an rx ring. */
1452 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1453 struct ob_mac_iocb_rsp *mac_rsp)
1455 struct tx_ring *tx_ring;
1456 struct tx_ring_desc *tx_ring_desc;
1458 QL_DUMP_OB_MAC_RSP(mac_rsp);
1459 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1460 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1461 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1462 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1463 qdev->stats.tx_packets++;
1464 dev_kfree_skb(tx_ring_desc->skb);
1465 tx_ring_desc->skb = NULL;
1467 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1470 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1471 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1472 QPRINTK(qdev, TX_DONE, WARNING,
1473 "Total descriptor length did not match transfer length.\n");
1475 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1476 QPRINTK(qdev, TX_DONE, WARNING,
1477 "Frame too short to be legal, not sent.\n");
1479 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1480 QPRINTK(qdev, TX_DONE, WARNING,
1481 "Frame too long, but sent anyway.\n");
1483 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1484 QPRINTK(qdev, TX_DONE, WARNING,
1485 "PCI backplane error. Frame not sent.\n");
1488 atomic_inc(&tx_ring->tx_count);
1491 /* Fire up a handler to reset the MPI processor. */
1492 void ql_queue_fw_error(struct ql_adapter *qdev)
1494 netif_stop_queue(qdev->ndev);
1495 netif_carrier_off(qdev->ndev);
1496 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1499 void ql_queue_asic_error(struct ql_adapter *qdev)
1501 netif_stop_queue(qdev->ndev);
1502 netif_carrier_off(qdev->ndev);
1503 ql_disable_interrupts(qdev);
1504 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1507 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1508 struct ib_ae_iocb_rsp *ib_ae_rsp)
1510 switch (ib_ae_rsp->event) {
1511 case MGMT_ERR_EVENT:
1512 QPRINTK(qdev, RX_ERR, ERR,
1513 "Management Processor Fatal Error.\n");
1514 ql_queue_fw_error(qdev);
1517 case CAM_LOOKUP_ERR_EVENT:
1518 QPRINTK(qdev, LINK, ERR,
1519 "Multiple CAM hits lookup occurred.\n");
1520 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1521 ql_queue_asic_error(qdev);
1524 case SOFT_ECC_ERROR_EVENT:
1525 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1526 ql_queue_asic_error(qdev);
1529 case PCI_ERR_ANON_BUF_RD:
1530 QPRINTK(qdev, RX_ERR, ERR,
1531 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1533 ql_queue_asic_error(qdev);
1537 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1539 ql_queue_asic_error(qdev);
1544 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1546 struct ql_adapter *qdev = rx_ring->qdev;
1547 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1548 struct ob_mac_iocb_rsp *net_rsp = NULL;
1551 /* While there are entries in the completion queue. */
1552 while (prod != rx_ring->cnsmr_idx) {
1554 QPRINTK(qdev, RX_STATUS, DEBUG,
1555 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1556 prod, rx_ring->cnsmr_idx);
1558 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1560 switch (net_rsp->opcode) {
1562 case OPCODE_OB_MAC_TSO_IOCB:
1563 case OPCODE_OB_MAC_IOCB:
1564 ql_process_mac_tx_intr(qdev, net_rsp);
1567 QPRINTK(qdev, RX_STATUS, DEBUG,
1568 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1572 ql_update_cq(rx_ring);
1573 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1575 ql_write_cq_idx(rx_ring);
1576 if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1577 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1578 if (atomic_read(&tx_ring->queue_stopped) &&
1579 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1581 * The queue got stopped because the tx_ring was full.
1582 * Wake it up, because it's now at least 25% empty.
1584 netif_wake_queue(qdev->ndev);
1590 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1592 struct ql_adapter *qdev = rx_ring->qdev;
1593 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1594 struct ql_net_rsp_iocb *net_rsp;
1597 /* While there are entries in the completion queue. */
1598 while (prod != rx_ring->cnsmr_idx) {
1600 QPRINTK(qdev, RX_STATUS, DEBUG,
1601 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1602 prod, rx_ring->cnsmr_idx);
1604 net_rsp = rx_ring->curr_entry;
1606 switch (net_rsp->opcode) {
1607 case OPCODE_IB_MAC_IOCB:
1608 ql_process_mac_rx_intr(qdev, rx_ring,
1609 (struct ib_mac_iocb_rsp *)
1613 case OPCODE_IB_AE_IOCB:
1614 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1619 QPRINTK(qdev, RX_STATUS, DEBUG,
1620 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1625 ql_update_cq(rx_ring);
1626 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1627 if (count == budget)
1630 ql_update_buffer_queues(qdev, rx_ring);
1631 ql_write_cq_idx(rx_ring);
1635 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1637 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1638 struct ql_adapter *qdev = rx_ring->qdev;
1639 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1641 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1644 if (work_done < budget) {
1645 __netif_rx_complete(napi);
1646 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1651 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1653 struct ql_adapter *qdev = netdev_priv(ndev);
1657 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1658 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1659 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1661 QPRINTK(qdev, IFUP, DEBUG,
1662 "Turning off VLAN in NIC_RCV_CFG.\n");
1663 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1667 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1669 struct ql_adapter *qdev = netdev_priv(ndev);
1670 u32 enable_bit = MAC_ADDR_E;
1672 spin_lock(&qdev->hw_lock);
1673 if (ql_set_mac_addr_reg
1674 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1675 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1677 spin_unlock(&qdev->hw_lock);
1680 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1682 struct ql_adapter *qdev = netdev_priv(ndev);
1685 spin_lock(&qdev->hw_lock);
1686 if (ql_set_mac_addr_reg
1687 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1688 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1690 spin_unlock(&qdev->hw_lock);
1694 /* Worker thread to process a given rx_ring that is dedicated
1695 * to outbound completions.
1697 static void ql_tx_clean(struct work_struct *work)
1699 struct rx_ring *rx_ring =
1700 container_of(work, struct rx_ring, rx_work.work);
1701 ql_clean_outbound_rx_ring(rx_ring);
1702 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1706 /* Worker thread to process a given rx_ring that is dedicated
1707 * to inbound completions.
1709 static void ql_rx_clean(struct work_struct *work)
1711 struct rx_ring *rx_ring =
1712 container_of(work, struct rx_ring, rx_work.work);
1713 ql_clean_inbound_rx_ring(rx_ring, 64);
1714 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1717 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1718 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1720 struct rx_ring *rx_ring = dev_id;
1721 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1722 &rx_ring->rx_work, 0);
1726 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1727 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1729 struct rx_ring *rx_ring = dev_id;
1730 netif_rx_schedule(&rx_ring->napi);
1734 /* This handles a fatal error, MPI activity, and the default
1735 * rx_ring in an MSI-X multiple vector environment.
1736 * In MSI/Legacy environment it also process the rest of
1739 static irqreturn_t qlge_isr(int irq, void *dev_id)
1741 struct rx_ring *rx_ring = dev_id;
1742 struct ql_adapter *qdev = rx_ring->qdev;
1743 struct intr_context *intr_context = &qdev->intr_context[0];
1748 spin_lock(&qdev->hw_lock);
1749 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1750 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1751 spin_unlock(&qdev->hw_lock);
1754 spin_unlock(&qdev->hw_lock);
1756 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1759 * Check for fatal error.
1762 ql_queue_asic_error(qdev);
1763 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1764 var = ql_read32(qdev, ERR_STS);
1765 QPRINTK(qdev, INTR, ERR,
1766 "Resetting chip. Error Status Register = 0x%x\n", var);
1771 * Check MPI processor activity.
1775 * We've got an async event or mailbox completion.
1776 * Handle it and clear the source of the interrupt.
1778 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1779 ql_disable_completion_interrupt(qdev, intr_context->intr);
1780 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1781 &qdev->mpi_work, 0);
1786 * Check the default queue and wake handler if active.
1788 rx_ring = &qdev->rx_ring[0];
1789 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1790 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1791 ql_disable_completion_interrupt(qdev, intr_context->intr);
1792 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1793 &rx_ring->rx_work, 0);
1797 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1799 * Start the DPC for each active queue.
1801 for (i = 1; i < qdev->rx_ring_count; i++) {
1802 rx_ring = &qdev->rx_ring[i];
1803 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1804 rx_ring->cnsmr_idx) {
1805 QPRINTK(qdev, INTR, INFO,
1806 "Waking handler for rx_ring[%d].\n", i);
1807 ql_disable_completion_interrupt(qdev,
1810 if (i < qdev->rss_ring_first_cq_id)
1811 queue_delayed_work_on(rx_ring->cpu,
1816 netif_rx_schedule(&rx_ring->napi);
1821 ql_enable_completion_interrupt(qdev, intr_context->intr);
1822 return work_done ? IRQ_HANDLED : IRQ_NONE;
1825 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1828 if (skb_is_gso(skb)) {
1830 if (skb_header_cloned(skb)) {
1831 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1836 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1837 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1838 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1839 mac_iocb_ptr->total_hdrs_len =
1840 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1841 mac_iocb_ptr->net_trans_offset =
1842 cpu_to_le16(skb_network_offset(skb) |
1843 skb_transport_offset(skb)
1844 << OB_MAC_TRANSPORT_HDR_SHIFT);
1845 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1846 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1847 if (likely(skb->protocol == htons(ETH_P_IP))) {
1848 struct iphdr *iph = ip_hdr(skb);
1850 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1851 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1855 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1856 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1857 tcp_hdr(skb)->check =
1858 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1859 &ipv6_hdr(skb)->daddr,
1867 static void ql_hw_csum_setup(struct sk_buff *skb,
1868 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1871 struct iphdr *iph = ip_hdr(skb);
1873 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1874 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1875 mac_iocb_ptr->net_trans_offset =
1876 cpu_to_le16(skb_network_offset(skb) |
1877 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1879 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1880 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1881 if (likely(iph->protocol == IPPROTO_TCP)) {
1882 check = &(tcp_hdr(skb)->check);
1883 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1884 mac_iocb_ptr->total_hdrs_len =
1885 cpu_to_le16(skb_transport_offset(skb) +
1886 (tcp_hdr(skb)->doff << 2));
1888 check = &(udp_hdr(skb)->check);
1889 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1890 mac_iocb_ptr->total_hdrs_len =
1891 cpu_to_le16(skb_transport_offset(skb) +
1892 sizeof(struct udphdr));
1894 *check = ~csum_tcpudp_magic(iph->saddr,
1895 iph->daddr, len, iph->protocol, 0);
1898 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1900 struct tx_ring_desc *tx_ring_desc;
1901 struct ob_mac_iocb_req *mac_iocb_ptr;
1902 struct ql_adapter *qdev = netdev_priv(ndev);
1904 struct tx_ring *tx_ring;
1905 u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1907 tx_ring = &qdev->tx_ring[tx_ring_idx];
1909 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1910 QPRINTK(qdev, TX_QUEUED, INFO,
1911 "%s: shutting down tx queue %d du to lack of resources.\n",
1912 __func__, tx_ring_idx);
1913 netif_stop_queue(ndev);
1914 atomic_inc(&tx_ring->queue_stopped);
1915 return NETDEV_TX_BUSY;
1917 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1918 mac_iocb_ptr = tx_ring_desc->queue_entry;
1919 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1920 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
1921 QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
1922 return NETDEV_TX_BUSY;
1925 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1926 mac_iocb_ptr->tid = tx_ring_desc->index;
1927 /* We use the upper 32-bits to store the tx queue for this IO.
1928 * When we get the completion we can use it to establish the context.
1930 mac_iocb_ptr->txq_idx = tx_ring_idx;
1931 tx_ring_desc->skb = skb;
1933 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1935 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1936 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1937 vlan_tx_tag_get(skb));
1938 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1939 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1941 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1943 dev_kfree_skb_any(skb);
1944 return NETDEV_TX_OK;
1945 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1946 ql_hw_csum_setup(skb,
1947 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1949 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1950 tx_ring->prod_idx++;
1951 if (tx_ring->prod_idx == tx_ring->wq_len)
1952 tx_ring->prod_idx = 0;
1955 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1956 ndev->trans_start = jiffies;
1957 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1958 tx_ring->prod_idx, skb->len);
1960 atomic_dec(&tx_ring->tx_count);
1961 return NETDEV_TX_OK;
1964 static void ql_free_shadow_space(struct ql_adapter *qdev)
1966 if (qdev->rx_ring_shadow_reg_area) {
1967 pci_free_consistent(qdev->pdev,
1969 qdev->rx_ring_shadow_reg_area,
1970 qdev->rx_ring_shadow_reg_dma);
1971 qdev->rx_ring_shadow_reg_area = NULL;
1973 if (qdev->tx_ring_shadow_reg_area) {
1974 pci_free_consistent(qdev->pdev,
1976 qdev->tx_ring_shadow_reg_area,
1977 qdev->tx_ring_shadow_reg_dma);
1978 qdev->tx_ring_shadow_reg_area = NULL;
1982 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
1984 qdev->rx_ring_shadow_reg_area =
1985 pci_alloc_consistent(qdev->pdev,
1986 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
1987 if (qdev->rx_ring_shadow_reg_area == NULL) {
1988 QPRINTK(qdev, IFUP, ERR,
1989 "Allocation of RX shadow space failed.\n");
1992 qdev->tx_ring_shadow_reg_area =
1993 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
1994 &qdev->tx_ring_shadow_reg_dma);
1995 if (qdev->tx_ring_shadow_reg_area == NULL) {
1996 QPRINTK(qdev, IFUP, ERR,
1997 "Allocation of TX shadow space failed.\n");
1998 goto err_wqp_sh_area;
2003 pci_free_consistent(qdev->pdev,
2005 qdev->rx_ring_shadow_reg_area,
2006 qdev->rx_ring_shadow_reg_dma);
2010 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2012 struct tx_ring_desc *tx_ring_desc;
2014 struct ob_mac_iocb_req *mac_iocb_ptr;
2016 mac_iocb_ptr = tx_ring->wq_base;
2017 tx_ring_desc = tx_ring->q;
2018 for (i = 0; i < tx_ring->wq_len; i++) {
2019 tx_ring_desc->index = i;
2020 tx_ring_desc->skb = NULL;
2021 tx_ring_desc->queue_entry = mac_iocb_ptr;
2025 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2026 atomic_set(&tx_ring->queue_stopped, 0);
2029 static void ql_free_tx_resources(struct ql_adapter *qdev,
2030 struct tx_ring *tx_ring)
2032 if (tx_ring->wq_base) {
2033 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2034 tx_ring->wq_base, tx_ring->wq_base_dma);
2035 tx_ring->wq_base = NULL;
2041 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2042 struct tx_ring *tx_ring)
2045 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2046 &tx_ring->wq_base_dma);
2048 if ((tx_ring->wq_base == NULL)
2049 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2050 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2054 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2055 if (tx_ring->q == NULL)
2060 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2061 tx_ring->wq_base, tx_ring->wq_base_dma);
2065 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2068 struct bq_desc *lbq_desc;
2070 for (i = 0; i < rx_ring->lbq_len; i++) {
2071 lbq_desc = &rx_ring->lbq[i];
2072 if (lbq_desc->p.lbq_page) {
2073 pci_unmap_page(qdev->pdev,
2074 pci_unmap_addr(lbq_desc, mapaddr),
2075 pci_unmap_len(lbq_desc, maplen),
2076 PCI_DMA_FROMDEVICE);
2078 put_page(lbq_desc->p.lbq_page);
2079 lbq_desc->p.lbq_page = NULL;
2085 * Allocate and map a page for each element of the lbq.
2087 static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2088 struct rx_ring *rx_ring)
2091 struct bq_desc *lbq_desc;
2093 __le64 *bq = rx_ring->lbq_base;
2095 for (i = 0; i < rx_ring->lbq_len; i++) {
2096 lbq_desc = &rx_ring->lbq[i];
2097 memset(lbq_desc, 0, sizeof(lbq_desc));
2098 lbq_desc->addr = bq;
2099 lbq_desc->index = i;
2100 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2101 if (unlikely(!lbq_desc->p.lbq_page)) {
2102 QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2105 map = pci_map_page(qdev->pdev,
2106 lbq_desc->p.lbq_page,
2107 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2108 if (pci_dma_mapping_error(qdev->pdev, map)) {
2109 QPRINTK(qdev, IFUP, ERR,
2110 "PCI mapping failed.\n");
2113 pci_unmap_addr_set(lbq_desc, mapaddr, map);
2114 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2115 *lbq_desc->addr = cpu_to_le64(map);
2121 ql_free_lbq_buffers(qdev, rx_ring);
2125 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2128 struct bq_desc *sbq_desc;
2130 for (i = 0; i < rx_ring->sbq_len; i++) {
2131 sbq_desc = &rx_ring->sbq[i];
2132 if (sbq_desc == NULL) {
2133 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2136 if (sbq_desc->p.skb) {
2137 pci_unmap_single(qdev->pdev,
2138 pci_unmap_addr(sbq_desc, mapaddr),
2139 pci_unmap_len(sbq_desc, maplen),
2140 PCI_DMA_FROMDEVICE);
2141 dev_kfree_skb(sbq_desc->p.skb);
2142 sbq_desc->p.skb = NULL;
2147 /* Allocate and map an skb for each element of the sbq. */
2148 static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2149 struct rx_ring *rx_ring)
2152 struct bq_desc *sbq_desc;
2153 struct sk_buff *skb;
2155 __le64 *bq = rx_ring->sbq_base;
2157 for (i = 0; i < rx_ring->sbq_len; i++) {
2158 sbq_desc = &rx_ring->sbq[i];
2159 memset(sbq_desc, 0, sizeof(sbq_desc));
2160 sbq_desc->index = i;
2161 sbq_desc->addr = bq;
2162 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2163 if (unlikely(!skb)) {
2164 /* Better luck next round */
2165 QPRINTK(qdev, IFUP, ERR,
2166 "small buff alloc failed for %d bytes at index %d.\n",
2167 rx_ring->sbq_buf_size, i);
2170 skb_reserve(skb, QLGE_SB_PAD);
2171 sbq_desc->p.skb = skb;
2173 * Map only half the buffer. Because the
2174 * other half may get some data copied to it
2175 * when the completion arrives.
2177 map = pci_map_single(qdev->pdev,
2179 rx_ring->sbq_buf_size / 2,
2180 PCI_DMA_FROMDEVICE);
2181 if (pci_dma_mapping_error(qdev->pdev, map)) {
2182 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2185 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2186 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2187 *sbq_desc->addr = cpu_to_le64(map);
2192 ql_free_sbq_buffers(qdev, rx_ring);
2196 static void ql_free_rx_resources(struct ql_adapter *qdev,
2197 struct rx_ring *rx_ring)
2199 if (rx_ring->sbq_len)
2200 ql_free_sbq_buffers(qdev, rx_ring);
2201 if (rx_ring->lbq_len)
2202 ql_free_lbq_buffers(qdev, rx_ring);
2204 /* Free the small buffer queue. */
2205 if (rx_ring->sbq_base) {
2206 pci_free_consistent(qdev->pdev,
2208 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2209 rx_ring->sbq_base = NULL;
2212 /* Free the small buffer queue control blocks. */
2213 kfree(rx_ring->sbq);
2214 rx_ring->sbq = NULL;
2216 /* Free the large buffer queue. */
2217 if (rx_ring->lbq_base) {
2218 pci_free_consistent(qdev->pdev,
2220 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2221 rx_ring->lbq_base = NULL;
2224 /* Free the large buffer queue control blocks. */
2225 kfree(rx_ring->lbq);
2226 rx_ring->lbq = NULL;
2228 /* Free the rx queue. */
2229 if (rx_ring->cq_base) {
2230 pci_free_consistent(qdev->pdev,
2232 rx_ring->cq_base, rx_ring->cq_base_dma);
2233 rx_ring->cq_base = NULL;
2237 /* Allocate queues and buffers for this completions queue based
2238 * on the values in the parameter structure. */
2239 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2240 struct rx_ring *rx_ring)
2244 * Allocate the completion queue for this rx_ring.
2247 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2248 &rx_ring->cq_base_dma);
2250 if (rx_ring->cq_base == NULL) {
2251 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2255 if (rx_ring->sbq_len) {
2257 * Allocate small buffer queue.
2260 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2261 &rx_ring->sbq_base_dma);
2263 if (rx_ring->sbq_base == NULL) {
2264 QPRINTK(qdev, IFUP, ERR,
2265 "Small buffer queue allocation failed.\n");
2270 * Allocate small buffer queue control blocks.
2273 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2275 if (rx_ring->sbq == NULL) {
2276 QPRINTK(qdev, IFUP, ERR,
2277 "Small buffer queue control block allocation failed.\n");
2281 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2282 QPRINTK(qdev, IFUP, ERR,
2283 "Small buffer allocation failed.\n");
2288 if (rx_ring->lbq_len) {
2290 * Allocate large buffer queue.
2293 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2294 &rx_ring->lbq_base_dma);
2296 if (rx_ring->lbq_base == NULL) {
2297 QPRINTK(qdev, IFUP, ERR,
2298 "Large buffer queue allocation failed.\n");
2302 * Allocate large buffer queue control blocks.
2305 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2307 if (rx_ring->lbq == NULL) {
2308 QPRINTK(qdev, IFUP, ERR,
2309 "Large buffer queue control block allocation failed.\n");
2314 * Allocate the buffers.
2316 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2317 QPRINTK(qdev, IFUP, ERR,
2318 "Large buffer allocation failed.\n");
2326 ql_free_rx_resources(qdev, rx_ring);
2330 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2332 struct tx_ring *tx_ring;
2333 struct tx_ring_desc *tx_ring_desc;
2337 * Loop through all queues and free
2340 for (j = 0; j < qdev->tx_ring_count; j++) {
2341 tx_ring = &qdev->tx_ring[j];
2342 for (i = 0; i < tx_ring->wq_len; i++) {
2343 tx_ring_desc = &tx_ring->q[i];
2344 if (tx_ring_desc && tx_ring_desc->skb) {
2345 QPRINTK(qdev, IFDOWN, ERR,
2346 "Freeing lost SKB %p, from queue %d, index %d.\n",
2347 tx_ring_desc->skb, j,
2348 tx_ring_desc->index);
2349 ql_unmap_send(qdev, tx_ring_desc,
2350 tx_ring_desc->map_cnt);
2351 dev_kfree_skb(tx_ring_desc->skb);
2352 tx_ring_desc->skb = NULL;
2358 static void ql_free_mem_resources(struct ql_adapter *qdev)
2362 for (i = 0; i < qdev->tx_ring_count; i++)
2363 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2364 for (i = 0; i < qdev->rx_ring_count; i++)
2365 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2366 ql_free_shadow_space(qdev);
2369 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2373 /* Allocate space for our shadow registers and such. */
2374 if (ql_alloc_shadow_space(qdev))
2377 for (i = 0; i < qdev->rx_ring_count; i++) {
2378 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2379 QPRINTK(qdev, IFUP, ERR,
2380 "RX resource allocation failed.\n");
2384 /* Allocate tx queue resources */
2385 for (i = 0; i < qdev->tx_ring_count; i++) {
2386 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2387 QPRINTK(qdev, IFUP, ERR,
2388 "TX resource allocation failed.\n");
2395 ql_free_mem_resources(qdev);
2399 /* Set up the rx ring control block and pass it to the chip.
2400 * The control block is defined as
2401 * "Completion Queue Initialization Control Block", or cqicb.
2403 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2405 struct cqicb *cqicb = &rx_ring->cqicb;
2406 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2407 (rx_ring->cq_id * sizeof(u64) * 4);
2408 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2409 (rx_ring->cq_id * sizeof(u64) * 4);
2410 void __iomem *doorbell_area =
2411 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2415 /* Set up the shadow registers for this ring. */
2416 rx_ring->prod_idx_sh_reg = shadow_reg;
2417 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2418 shadow_reg += sizeof(u64);
2419 shadow_reg_dma += sizeof(u64);
2420 rx_ring->lbq_base_indirect = shadow_reg;
2421 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2422 shadow_reg += sizeof(u64);
2423 shadow_reg_dma += sizeof(u64);
2424 rx_ring->sbq_base_indirect = shadow_reg;
2425 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2427 /* PCI doorbell mem area + 0x00 for consumer index register */
2428 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2429 rx_ring->cnsmr_idx = 0;
2430 rx_ring->curr_entry = rx_ring->cq_base;
2432 /* PCI doorbell mem area + 0x04 for valid register */
2433 rx_ring->valid_db_reg = doorbell_area + 0x04;
2435 /* PCI doorbell mem area + 0x18 for large buffer consumer */
2436 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2438 /* PCI doorbell mem area + 0x1c */
2439 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2441 memset((void *)cqicb, 0, sizeof(struct cqicb));
2442 cqicb->msix_vect = rx_ring->irq;
2444 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2445 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2447 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2449 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2452 * Set up the control block load flags.
2454 cqicb->flags = FLAGS_LC | /* Load queue base address */
2455 FLAGS_LV | /* Load MSI-X vector */
2456 FLAGS_LI; /* Load irq delay values */
2457 if (rx_ring->lbq_len) {
2458 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2459 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2461 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2462 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2463 (u16) rx_ring->lbq_buf_size;
2464 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2465 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2466 (u16) rx_ring->lbq_len;
2467 cqicb->lbq_len = cpu_to_le16(bq_len);
2468 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2469 rx_ring->lbq_curr_idx = 0;
2470 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2471 rx_ring->lbq_free_cnt = 16;
2473 if (rx_ring->sbq_len) {
2474 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2475 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2477 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2478 cqicb->sbq_buf_size =
2479 cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2480 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2481 (u16) rx_ring->sbq_len;
2482 cqicb->sbq_len = cpu_to_le16(bq_len);
2483 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2484 rx_ring->sbq_curr_idx = 0;
2485 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2486 rx_ring->sbq_free_cnt = 16;
2488 switch (rx_ring->type) {
2490 /* If there's only one interrupt, then we use
2491 * worker threads to process the outbound
2492 * completion handling rx_rings. We do this so
2493 * they can be run on multiple CPUs. There is
2494 * room to play with this more where we would only
2495 * run in a worker if there are more than x number
2496 * of outbound completions on the queue and more
2497 * than one queue active. Some threshold that
2498 * would indicate a benefit in spite of the cost
2499 * of a context switch.
2500 * If there's more than one interrupt, then the
2501 * outbound completions are processed in the ISR.
2503 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2504 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2506 /* With all debug warnings on we see a WARN_ON message
2507 * when we free the skb in the interrupt context.
2509 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2511 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2512 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2515 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2516 cqicb->irq_delay = 0;
2517 cqicb->pkt_delay = 0;
2520 /* Inbound completion handling rx_rings run in
2521 * separate NAPI contexts.
2523 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2525 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2526 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2529 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2532 QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2533 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2534 CFG_LCQ, rx_ring->cq_id);
2536 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2539 QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2541 * Advance the producer index for the buffer queues.
2544 if (rx_ring->lbq_len)
2545 ql_write_db_reg(rx_ring->lbq_prod_idx,
2546 rx_ring->lbq_prod_idx_db_reg);
2547 if (rx_ring->sbq_len)
2548 ql_write_db_reg(rx_ring->sbq_prod_idx,
2549 rx_ring->sbq_prod_idx_db_reg);
2553 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2555 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2556 void __iomem *doorbell_area =
2557 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2558 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2559 (tx_ring->wq_id * sizeof(u64));
2560 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2561 (tx_ring->wq_id * sizeof(u64));
2565 * Assign doorbell registers for this tx_ring.
2567 /* TX PCI doorbell mem area for tx producer index */
2568 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2569 tx_ring->prod_idx = 0;
2570 /* TX PCI doorbell mem area + 0x04 */
2571 tx_ring->valid_db_reg = doorbell_area + 0x04;
2574 * Assign shadow registers for this tx_ring.
2576 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2577 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2579 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2580 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2581 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2582 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2584 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2586 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2588 ql_init_tx_ring(qdev, tx_ring);
2590 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2591 (u16) tx_ring->wq_id);
2593 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2596 QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2600 static void ql_disable_msix(struct ql_adapter *qdev)
2602 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2603 pci_disable_msix(qdev->pdev);
2604 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2605 kfree(qdev->msi_x_entry);
2606 qdev->msi_x_entry = NULL;
2607 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2608 pci_disable_msi(qdev->pdev);
2609 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2613 static void ql_enable_msix(struct ql_adapter *qdev)
2617 qdev->intr_count = 1;
2618 /* Get the MSIX vectors. */
2619 if (irq_type == MSIX_IRQ) {
2620 /* Try to alloc space for the msix struct,
2621 * if it fails then go to MSI/legacy.
2623 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2624 sizeof(struct msix_entry),
2626 if (!qdev->msi_x_entry) {
2631 for (i = 0; i < qdev->rx_ring_count; i++)
2632 qdev->msi_x_entry[i].entry = i;
2634 if (!pci_enable_msix
2635 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2636 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2637 qdev->intr_count = qdev->rx_ring_count;
2638 QPRINTK(qdev, IFUP, INFO,
2639 "MSI-X Enabled, got %d vectors.\n",
2643 kfree(qdev->msi_x_entry);
2644 qdev->msi_x_entry = NULL;
2645 QPRINTK(qdev, IFUP, WARNING,
2646 "MSI-X Enable failed, trying MSI.\n");
2651 if (irq_type == MSI_IRQ) {
2652 if (!pci_enable_msi(qdev->pdev)) {
2653 set_bit(QL_MSI_ENABLED, &qdev->flags);
2654 QPRINTK(qdev, IFUP, INFO,
2655 "Running with MSI interrupts.\n");
2660 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2664 * Here we build the intr_context structures based on
2665 * our rx_ring count and intr vector count.
2666 * The intr_context structure is used to hook each vector
2667 * to possibly different handlers.
2669 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2672 struct intr_context *intr_context = &qdev->intr_context[0];
2674 ql_enable_msix(qdev);
2676 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2677 /* Each rx_ring has it's
2678 * own intr_context since we have separate
2679 * vectors for each queue.
2680 * This only true when MSI-X is enabled.
2682 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2683 qdev->rx_ring[i].irq = i;
2684 intr_context->intr = i;
2685 intr_context->qdev = qdev;
2687 * We set up each vectors enable/disable/read bits so
2688 * there's no bit/mask calculations in the critical path.
2690 intr_context->intr_en_mask =
2691 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2692 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2694 intr_context->intr_dis_mask =
2695 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2696 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2698 intr_context->intr_read_mask =
2699 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2700 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2705 * Default queue handles bcast/mcast plus
2706 * async events. Needs buffers.
2708 intr_context->handler = qlge_isr;
2709 sprintf(intr_context->name, "%s-default-queue",
2711 } else if (i < qdev->rss_ring_first_cq_id) {
2713 * Outbound queue is for outbound completions only.
2715 intr_context->handler = qlge_msix_tx_isr;
2716 sprintf(intr_context->name, "%s-tx-%d",
2717 qdev->ndev->name, i);
2720 * Inbound queues handle unicast frames only.
2722 intr_context->handler = qlge_msix_rx_isr;
2723 sprintf(intr_context->name, "%s-rx-%d",
2724 qdev->ndev->name, i);
2729 * All rx_rings use the same intr_context since
2730 * there is only one vector.
2732 intr_context->intr = 0;
2733 intr_context->qdev = qdev;
2735 * We set up each vectors enable/disable/read bits so
2736 * there's no bit/mask calculations in the critical path.
2738 intr_context->intr_en_mask =
2739 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2740 intr_context->intr_dis_mask =
2741 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2742 INTR_EN_TYPE_DISABLE;
2743 intr_context->intr_read_mask =
2744 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2746 * Single interrupt means one handler for all rings.
2748 intr_context->handler = qlge_isr;
2749 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2750 for (i = 0; i < qdev->rx_ring_count; i++)
2751 qdev->rx_ring[i].irq = 0;
2755 static void ql_free_irq(struct ql_adapter *qdev)
2758 struct intr_context *intr_context = &qdev->intr_context[0];
2760 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2761 if (intr_context->hooked) {
2762 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2763 free_irq(qdev->msi_x_entry[i].vector,
2765 QPRINTK(qdev, IFDOWN, ERR,
2766 "freeing msix interrupt %d.\n", i);
2768 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2769 QPRINTK(qdev, IFDOWN, ERR,
2770 "freeing msi interrupt %d.\n", i);
2774 ql_disable_msix(qdev);
2777 static int ql_request_irq(struct ql_adapter *qdev)
2781 struct pci_dev *pdev = qdev->pdev;
2782 struct intr_context *intr_context = &qdev->intr_context[0];
2784 ql_resolve_queues_to_irqs(qdev);
2786 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2787 atomic_set(&intr_context->irq_cnt, 0);
2788 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2789 status = request_irq(qdev->msi_x_entry[i].vector,
2790 intr_context->handler,
2795 QPRINTK(qdev, IFUP, ERR,
2796 "Failed request for MSIX interrupt %d.\n",
2800 QPRINTK(qdev, IFUP, INFO,
2801 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2803 qdev->rx_ring[i].type ==
2804 DEFAULT_Q ? "DEFAULT_Q" : "",
2805 qdev->rx_ring[i].type ==
2807 qdev->rx_ring[i].type ==
2808 RX_Q ? "RX_Q" : "", intr_context->name);
2811 QPRINTK(qdev, IFUP, DEBUG,
2812 "trying msi or legacy interrupts.\n");
2813 QPRINTK(qdev, IFUP, DEBUG,
2814 "%s: irq = %d.\n", __func__, pdev->irq);
2815 QPRINTK(qdev, IFUP, DEBUG,
2816 "%s: context->name = %s.\n", __func__,
2817 intr_context->name);
2818 QPRINTK(qdev, IFUP, DEBUG,
2819 "%s: dev_id = 0x%p.\n", __func__,
2822 request_irq(pdev->irq, qlge_isr,
2823 test_bit(QL_MSI_ENABLED,
2825 flags) ? 0 : IRQF_SHARED,
2826 intr_context->name, &qdev->rx_ring[0]);
2830 QPRINTK(qdev, IFUP, ERR,
2831 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2833 qdev->rx_ring[0].type ==
2834 DEFAULT_Q ? "DEFAULT_Q" : "",
2835 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2836 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2837 intr_context->name);
2839 intr_context->hooked = 1;
2843 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2848 static int ql_start_rss(struct ql_adapter *qdev)
2850 struct ricb *ricb = &qdev->ricb;
2853 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2855 memset((void *)ricb, 0, sizeof(ricb));
2857 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2859 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2861 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2864 * Fill out the Indirection Table.
2866 for (i = 0; i < 32; i++)
2870 * Random values for the IPv6 and IPv4 Hash Keys.
2872 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2873 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2875 QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2877 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2879 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2882 QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2886 /* Initialize the frame-to-queue routing. */
2887 static int ql_route_initialize(struct ql_adapter *qdev)
2892 /* Clear all the entries in the routing table. */
2893 for (i = 0; i < 16; i++) {
2894 status = ql_set_routing_reg(qdev, i, 0, 0);
2896 QPRINTK(qdev, IFUP, ERR,
2897 "Failed to init routing register for CAM packets.\n");
2902 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2904 QPRINTK(qdev, IFUP, ERR,
2905 "Failed to init routing register for error packets.\n");
2908 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2910 QPRINTK(qdev, IFUP, ERR,
2911 "Failed to init routing register for broadcast packets.\n");
2914 /* If we have more than one inbound queue, then turn on RSS in the
2917 if (qdev->rss_ring_count > 1) {
2918 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2919 RT_IDX_RSS_MATCH, 1);
2921 QPRINTK(qdev, IFUP, ERR,
2922 "Failed to init routing register for MATCH RSS packets.\n");
2927 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2930 QPRINTK(qdev, IFUP, ERR,
2931 "Failed to init routing register for CAM packets.\n");
2937 static int ql_adapter_initialize(struct ql_adapter *qdev)
2944 * Set up the System register to halt on errors.
2946 value = SYS_EFE | SYS_FAE;
2948 ql_write32(qdev, SYS, mask | value);
2950 /* Set the default queue. */
2951 value = NIC_RCV_CFG_DFQ;
2952 mask = NIC_RCV_CFG_DFQ_MASK;
2953 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
2955 /* Set the MPI interrupt to enabled. */
2956 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
2958 /* Enable the function, set pagesize, enable error checking. */
2959 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
2960 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
2962 /* Set/clear header splitting. */
2963 mask = FSC_VM_PAGESIZE_MASK |
2964 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
2965 ql_write32(qdev, FSC, mask | value);
2967 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
2968 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
2970 /* Start up the rx queues. */
2971 for (i = 0; i < qdev->rx_ring_count; i++) {
2972 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
2974 QPRINTK(qdev, IFUP, ERR,
2975 "Failed to start rx ring[%d].\n", i);
2980 /* If there is more than one inbound completion queue
2981 * then download a RICB to configure RSS.
2983 if (qdev->rss_ring_count > 1) {
2984 status = ql_start_rss(qdev);
2986 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
2991 /* Start up the tx queues. */
2992 for (i = 0; i < qdev->tx_ring_count; i++) {
2993 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
2995 QPRINTK(qdev, IFUP, ERR,
2996 "Failed to start tx ring[%d].\n", i);
3001 status = ql_port_initialize(qdev);
3003 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3007 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3008 MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3010 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3014 status = ql_route_initialize(qdev);
3016 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3020 /* Start NAPI for the RSS queues. */
3021 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3022 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3024 napi_enable(&qdev->rx_ring[i].napi);
3030 /* Issue soft reset to chip. */
3031 static int ql_adapter_reset(struct ql_adapter *qdev)
3038 #define MAX_RESET_CNT 1
3041 QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3042 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3043 /* Wait for reset to complete. */
3045 QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3048 value = ql_read32(qdev, RST_FO);
3049 if ((value & RST_FO_FR) == 0)
3053 } while ((--max_wait_time));
3054 if (value & RST_FO_FR) {
3055 QPRINTK(qdev, IFDOWN, ERR,
3056 "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
3057 if (resetCnt < MAX_RESET_CNT)
3060 if (max_wait_time == 0) {
3061 status = -ETIMEDOUT;
3062 QPRINTK(qdev, IFDOWN, ERR,
3063 "ETIMEOUT!!! errored out of resetting the chip!\n");
3069 static void ql_display_dev_info(struct net_device *ndev)
3071 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3073 QPRINTK(qdev, PROBE, INFO,
3074 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3075 "XG Roll = %d, XG Rev = %d.\n",
3077 qdev->chip_rev_id & 0x0000000f,
3078 qdev->chip_rev_id >> 4 & 0x0000000f,
3079 qdev->chip_rev_id >> 8 & 0x0000000f,
3080 qdev->chip_rev_id >> 12 & 0x0000000f);
3081 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3084 static int ql_adapter_down(struct ql_adapter *qdev)
3086 struct net_device *ndev = qdev->ndev;
3088 struct rx_ring *rx_ring;
3090 netif_stop_queue(ndev);
3091 netif_carrier_off(ndev);
3093 cancel_delayed_work_sync(&qdev->asic_reset_work);
3094 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3095 cancel_delayed_work_sync(&qdev->mpi_work);
3097 /* The default queue at index 0 is always processed in
3100 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3102 /* The rest of the rx_rings are processed in
3103 * a workqueue only if it's a single interrupt
3104 * environment (MSI/Legacy).
3106 for (i = 1; i < qdev->rx_ring_count; i++) {
3107 rx_ring = &qdev->rx_ring[i];
3108 /* Only the RSS rings use NAPI on multi irq
3109 * environment. Outbound completion processing
3110 * is done in interrupt context.
3112 if (i >= qdev->rss_ring_first_cq_id) {
3113 napi_disable(&rx_ring->napi);
3115 cancel_delayed_work_sync(&rx_ring->rx_work);
3119 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3121 ql_disable_interrupts(qdev);
3123 ql_tx_ring_clean(qdev);
3125 spin_lock(&qdev->hw_lock);
3126 status = ql_adapter_reset(qdev);
3128 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3130 spin_unlock(&qdev->hw_lock);
3134 static int ql_adapter_up(struct ql_adapter *qdev)
3138 spin_lock(&qdev->hw_lock);
3139 err = ql_adapter_initialize(qdev);
3141 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3142 spin_unlock(&qdev->hw_lock);
3145 spin_unlock(&qdev->hw_lock);
3146 set_bit(QL_ADAPTER_UP, &qdev->flags);
3147 ql_enable_interrupts(qdev);
3148 ql_enable_all_completion_interrupts(qdev);
3149 if ((ql_read32(qdev, STS) & qdev->port_init)) {
3150 netif_carrier_on(qdev->ndev);
3151 netif_start_queue(qdev->ndev);
3156 ql_adapter_reset(qdev);
3160 static int ql_cycle_adapter(struct ql_adapter *qdev)
3164 status = ql_adapter_down(qdev);
3168 status = ql_adapter_up(qdev);
3174 QPRINTK(qdev, IFUP, ALERT,
3175 "Driver up/down cycle failed, closing device\n");
3177 dev_close(qdev->ndev);
3182 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3184 ql_free_mem_resources(qdev);
3188 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3192 if (ql_alloc_mem_resources(qdev)) {
3193 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3196 status = ql_request_irq(qdev);
3201 ql_free_mem_resources(qdev);
3205 static int qlge_close(struct net_device *ndev)
3207 struct ql_adapter *qdev = netdev_priv(ndev);
3210 * Wait for device to recover from a reset.
3211 * (Rarely happens, but possible.)
3213 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3215 ql_adapter_down(qdev);
3216 ql_release_adapter_resources(qdev);
3220 static int ql_configure_rings(struct ql_adapter *qdev)
3223 struct rx_ring *rx_ring;
3224 struct tx_ring *tx_ring;
3225 int cpu_cnt = num_online_cpus();
3228 * For each processor present we allocate one
3229 * rx_ring for outbound completions, and one
3230 * rx_ring for inbound completions. Plus there is
3231 * always the one default queue. For the CPU
3232 * counts we end up with the following rx_rings:
3234 * one default queue +
3235 * (CPU count * outbound completion rx_ring) +
3236 * (CPU count * inbound (RSS) completion rx_ring)
3237 * To keep it simple we limit the total number of
3238 * queues to < 32, so we truncate CPU to 8.
3239 * This limitation can be removed when requested.
3242 if (cpu_cnt > MAX_CPUS)
3246 * rx_ring[0] is always the default queue.
3248 /* Allocate outbound completion ring for each CPU. */
3249 qdev->tx_ring_count = cpu_cnt;
3250 /* Allocate inbound completion (RSS) ring for each CPU. */
3251 qdev->rss_ring_count = cpu_cnt;
3252 /* cq_id for the first inbound ring handler. */
3253 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3255 * qdev->rx_ring_count:
3256 * Total number of rx_rings. This includes the one
3257 * default queue, a number of outbound completion
3258 * handler rx_rings, and the number of inbound
3259 * completion handler rx_rings.
3261 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3263 for (i = 0; i < qdev->tx_ring_count; i++) {
3264 tx_ring = &qdev->tx_ring[i];
3265 memset((void *)tx_ring, 0, sizeof(tx_ring));
3266 tx_ring->qdev = qdev;
3268 tx_ring->wq_len = qdev->tx_ring_size;
3270 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3273 * The completion queue ID for the tx rings start
3274 * immediately after the default Q ID, which is zero.
3276 tx_ring->cq_id = i + 1;
3279 for (i = 0; i < qdev->rx_ring_count; i++) {
3280 rx_ring = &qdev->rx_ring[i];
3281 memset((void *)rx_ring, 0, sizeof(rx_ring));
3282 rx_ring->qdev = qdev;
3284 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3285 if (i == 0) { /* Default queue at index 0. */
3287 * Default queue handles bcast/mcast plus
3288 * async events. Needs buffers.
3290 rx_ring->cq_len = qdev->rx_ring_size;
3292 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3293 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3295 rx_ring->lbq_len * sizeof(__le64);
3296 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3297 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3299 rx_ring->sbq_len * sizeof(__le64);
3300 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3301 rx_ring->type = DEFAULT_Q;
3302 } else if (i < qdev->rss_ring_first_cq_id) {
3304 * Outbound queue handles outbound completions only.
3306 /* outbound cq is same size as tx_ring it services. */
3307 rx_ring->cq_len = qdev->tx_ring_size;
3309 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3310 rx_ring->lbq_len = 0;
3311 rx_ring->lbq_size = 0;
3312 rx_ring->lbq_buf_size = 0;
3313 rx_ring->sbq_len = 0;
3314 rx_ring->sbq_size = 0;
3315 rx_ring->sbq_buf_size = 0;
3316 rx_ring->type = TX_Q;
3317 } else { /* Inbound completions (RSS) queues */
3319 * Inbound queues handle unicast frames only.
3321 rx_ring->cq_len = qdev->rx_ring_size;
3323 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3324 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3326 rx_ring->lbq_len * sizeof(__le64);
3327 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3328 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3330 rx_ring->sbq_len * sizeof(__le64);
3331 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3332 rx_ring->type = RX_Q;
3338 static int qlge_open(struct net_device *ndev)
3341 struct ql_adapter *qdev = netdev_priv(ndev);
3343 err = ql_configure_rings(qdev);
3347 err = ql_get_adapter_resources(qdev);
3351 err = ql_adapter_up(qdev);
3358 ql_release_adapter_resources(qdev);
3362 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3364 struct ql_adapter *qdev = netdev_priv(ndev);
3366 if (ndev->mtu == 1500 && new_mtu == 9000) {
3367 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3368 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3369 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3370 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3371 (ndev->mtu == 9000 && new_mtu == 9000)) {
3375 ndev->mtu = new_mtu;
3379 static struct net_device_stats *qlge_get_stats(struct net_device
3382 struct ql_adapter *qdev = netdev_priv(ndev);
3383 return &qdev->stats;
3386 static void qlge_set_multicast_list(struct net_device *ndev)
3388 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3389 struct dev_mc_list *mc_ptr;
3392 spin_lock(&qdev->hw_lock);
3394 * Set or clear promiscuous mode if a
3395 * transition is taking place.
3397 if (ndev->flags & IFF_PROMISC) {
3398 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3399 if (ql_set_routing_reg
3400 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3401 QPRINTK(qdev, HW, ERR,
3402 "Failed to set promiscous mode.\n");
3404 set_bit(QL_PROMISCUOUS, &qdev->flags);
3408 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3409 if (ql_set_routing_reg
3410 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3411 QPRINTK(qdev, HW, ERR,
3412 "Failed to clear promiscous mode.\n");
3414 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3420 * Set or clear all multicast mode if a
3421 * transition is taking place.
3423 if ((ndev->flags & IFF_ALLMULTI) ||
3424 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3425 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3426 if (ql_set_routing_reg
3427 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3428 QPRINTK(qdev, HW, ERR,
3429 "Failed to set all-multi mode.\n");
3431 set_bit(QL_ALLMULTI, &qdev->flags);
3435 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3436 if (ql_set_routing_reg
3437 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3438 QPRINTK(qdev, HW, ERR,
3439 "Failed to clear all-multi mode.\n");
3441 clear_bit(QL_ALLMULTI, &qdev->flags);
3446 if (ndev->mc_count) {
3447 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3448 i++, mc_ptr = mc_ptr->next)
3449 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3450 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3451 QPRINTK(qdev, HW, ERR,
3452 "Failed to loadmulticast address.\n");
3455 if (ql_set_routing_reg
3456 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3457 QPRINTK(qdev, HW, ERR,
3458 "Failed to set multicast match mode.\n");
3460 set_bit(QL_ALLMULTI, &qdev->flags);
3464 spin_unlock(&qdev->hw_lock);
3467 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3469 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3470 struct sockaddr *addr = p;
3473 if (netif_running(ndev))
3476 if (!is_valid_ether_addr(addr->sa_data))
3477 return -EADDRNOTAVAIL;
3478 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3480 spin_lock(&qdev->hw_lock);
3481 if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3482 MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3483 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3486 spin_unlock(&qdev->hw_lock);
3491 static void qlge_tx_timeout(struct net_device *ndev)
3493 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3494 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
3497 static void ql_asic_reset_work(struct work_struct *work)
3499 struct ql_adapter *qdev =
3500 container_of(work, struct ql_adapter, asic_reset_work.work);
3501 ql_cycle_adapter(qdev);
3504 static void ql_get_board_info(struct ql_adapter *qdev)
3507 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3509 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3510 qdev->port_link_up = STS_PL1;
3511 qdev->port_init = STS_PI1;
3512 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3513 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3515 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3516 qdev->port_link_up = STS_PL0;
3517 qdev->port_init = STS_PI0;
3518 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3519 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3521 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3524 static void ql_release_all(struct pci_dev *pdev)
3526 struct net_device *ndev = pci_get_drvdata(pdev);
3527 struct ql_adapter *qdev = netdev_priv(ndev);
3529 if (qdev->workqueue) {
3530 destroy_workqueue(qdev->workqueue);
3531 qdev->workqueue = NULL;
3533 if (qdev->q_workqueue) {
3534 destroy_workqueue(qdev->q_workqueue);
3535 qdev->q_workqueue = NULL;
3538 iounmap(qdev->reg_base);
3539 if (qdev->doorbell_area)
3540 iounmap(qdev->doorbell_area);
3541 pci_release_regions(pdev);
3542 pci_set_drvdata(pdev, NULL);
3545 static int __devinit ql_init_device(struct pci_dev *pdev,
3546 struct net_device *ndev, int cards_found)
3548 struct ql_adapter *qdev = netdev_priv(ndev);
3552 memset((void *)qdev, 0, sizeof(qdev));
3553 err = pci_enable_device(pdev);
3555 dev_err(&pdev->dev, "PCI device enable failed.\n");
3559 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3561 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3565 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3566 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3567 val16 |= (PCI_EXP_DEVCTL_CERE |
3568 PCI_EXP_DEVCTL_NFERE |
3569 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3570 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3573 err = pci_request_regions(pdev, DRV_NAME);
3575 dev_err(&pdev->dev, "PCI region request failed.\n");
3579 pci_set_master(pdev);
3580 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3581 set_bit(QL_DMA64, &qdev->flags);
3582 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3584 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3586 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3590 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3594 pci_set_drvdata(pdev, ndev);
3596 ioremap_nocache(pci_resource_start(pdev, 1),
3597 pci_resource_len(pdev, 1));
3598 if (!qdev->reg_base) {
3599 dev_err(&pdev->dev, "Register mapping failed.\n");
3604 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3605 qdev->doorbell_area =
3606 ioremap_nocache(pci_resource_start(pdev, 3),
3607 pci_resource_len(pdev, 3));
3608 if (!qdev->doorbell_area) {
3609 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3614 ql_get_board_info(qdev);
3617 qdev->msg_enable = netif_msg_init(debug, default_msg);
3618 spin_lock_init(&qdev->hw_lock);
3619 spin_lock_init(&qdev->stats_lock);
3621 /* make sure the EEPROM is good */
3622 err = ql_get_flash_params(qdev);
3624 dev_err(&pdev->dev, "Invalid FLASH.\n");
3628 if (!is_valid_ether_addr(qdev->flash.mac_addr))
3631 memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3632 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3634 /* Set up the default ring sizes. */
3635 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3636 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3638 /* Set up the coalescing parameters. */
3639 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3640 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3641 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3642 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3645 * Set up the operating parameters.
3649 qdev->q_workqueue = create_workqueue(ndev->name);
3650 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3651 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3652 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3653 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3656 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3657 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3658 DRV_NAME, DRV_VERSION);
3662 ql_release_all(pdev);
3663 pci_disable_device(pdev);
3668 static const struct net_device_ops qlge_netdev_ops = {
3669 .ndo_open = qlge_open,
3670 .ndo_stop = qlge_close,
3671 .ndo_start_xmit = qlge_send,
3672 .ndo_change_mtu = qlge_change_mtu,
3673 .ndo_get_stats = qlge_get_stats,
3674 .ndo_set_multicast_list = qlge_set_multicast_list,
3675 .ndo_set_mac_address = qlge_set_mac_address,
3676 .ndo_validate_addr = eth_validate_addr,
3677 .ndo_tx_timeout = qlge_tx_timeout,
3678 .ndo_vlan_rx_register = ql_vlan_rx_register,
3679 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3680 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3683 static int __devinit qlge_probe(struct pci_dev *pdev,
3684 const struct pci_device_id *pci_entry)
3686 struct net_device *ndev = NULL;
3687 struct ql_adapter *qdev = NULL;
3688 static int cards_found = 0;
3691 ndev = alloc_etherdev(sizeof(struct ql_adapter));
3695 err = ql_init_device(pdev, ndev, cards_found);
3701 qdev = netdev_priv(ndev);
3702 SET_NETDEV_DEV(ndev, &pdev->dev);
3709 | NETIF_F_HW_VLAN_TX
3710 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3712 if (test_bit(QL_DMA64, &qdev->flags))
3713 ndev->features |= NETIF_F_HIGHDMA;
3716 * Set up net_device structure.
3718 ndev->tx_queue_len = qdev->tx_ring_size;
3719 ndev->irq = pdev->irq;
3721 ndev->netdev_ops = &qlge_netdev_ops;
3722 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3723 ndev->watchdog_timeo = 10 * HZ;
3725 err = register_netdev(ndev);
3727 dev_err(&pdev->dev, "net device registration failed.\n");
3728 ql_release_all(pdev);
3729 pci_disable_device(pdev);
3732 netif_carrier_off(ndev);
3733 netif_stop_queue(ndev);
3734 ql_display_dev_info(ndev);
3739 static void __devexit qlge_remove(struct pci_dev *pdev)
3741 struct net_device *ndev = pci_get_drvdata(pdev);
3742 unregister_netdev(ndev);
3743 ql_release_all(pdev);
3744 pci_disable_device(pdev);
3749 * This callback is called by the PCI subsystem whenever
3750 * a PCI bus error is detected.
3752 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3753 enum pci_channel_state state)
3755 struct net_device *ndev = pci_get_drvdata(pdev);
3756 struct ql_adapter *qdev = netdev_priv(ndev);
3758 if (netif_running(ndev))
3759 ql_adapter_down(qdev);
3761 pci_disable_device(pdev);
3763 /* Request a slot reset. */
3764 return PCI_ERS_RESULT_NEED_RESET;
3768 * This callback is called after the PCI buss has been reset.
3769 * Basically, this tries to restart the card from scratch.
3770 * This is a shortened version of the device probe/discovery code,
3771 * it resembles the first-half of the () routine.
3773 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3775 struct net_device *ndev = pci_get_drvdata(pdev);
3776 struct ql_adapter *qdev = netdev_priv(ndev);
3778 if (pci_enable_device(pdev)) {
3779 QPRINTK(qdev, IFUP, ERR,
3780 "Cannot re-enable PCI device after reset.\n");
3781 return PCI_ERS_RESULT_DISCONNECT;
3784 pci_set_master(pdev);
3786 netif_carrier_off(ndev);
3787 netif_stop_queue(ndev);
3788 ql_adapter_reset(qdev);
3790 /* Make sure the EEPROM is good */
3791 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3793 if (!is_valid_ether_addr(ndev->perm_addr)) {
3794 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3795 return PCI_ERS_RESULT_DISCONNECT;
3798 return PCI_ERS_RESULT_RECOVERED;
3801 static void qlge_io_resume(struct pci_dev *pdev)
3803 struct net_device *ndev = pci_get_drvdata(pdev);
3804 struct ql_adapter *qdev = netdev_priv(ndev);
3806 pci_set_master(pdev);
3808 if (netif_running(ndev)) {
3809 if (ql_adapter_up(qdev)) {
3810 QPRINTK(qdev, IFUP, ERR,
3811 "Device initialization failed after reset.\n");
3816 netif_device_attach(ndev);
3819 static struct pci_error_handlers qlge_err_handler = {
3820 .error_detected = qlge_io_error_detected,
3821 .slot_reset = qlge_io_slot_reset,
3822 .resume = qlge_io_resume,
3825 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3827 struct net_device *ndev = pci_get_drvdata(pdev);
3828 struct ql_adapter *qdev = netdev_priv(ndev);
3831 netif_device_detach(ndev);
3833 if (netif_running(ndev)) {
3834 err = ql_adapter_down(qdev);
3839 err = pci_save_state(pdev);
3843 pci_disable_device(pdev);
3845 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3851 static int qlge_resume(struct pci_dev *pdev)
3853 struct net_device *ndev = pci_get_drvdata(pdev);
3854 struct ql_adapter *qdev = netdev_priv(ndev);
3857 pci_set_power_state(pdev, PCI_D0);
3858 pci_restore_state(pdev);
3859 err = pci_enable_device(pdev);
3861 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3864 pci_set_master(pdev);
3866 pci_enable_wake(pdev, PCI_D3hot, 0);
3867 pci_enable_wake(pdev, PCI_D3cold, 0);
3869 if (netif_running(ndev)) {
3870 err = ql_adapter_up(qdev);
3875 netif_device_attach(ndev);
3879 #endif /* CONFIG_PM */
3881 static void qlge_shutdown(struct pci_dev *pdev)
3883 qlge_suspend(pdev, PMSG_SUSPEND);
3886 static struct pci_driver qlge_driver = {
3888 .id_table = qlge_pci_tbl,
3889 .probe = qlge_probe,
3890 .remove = __devexit_p(qlge_remove),
3892 .suspend = qlge_suspend,
3893 .resume = qlge_resume,
3895 .shutdown = qlge_shutdown,
3896 .err_handler = &qlge_err_handler
3899 static int __init qlge_init_module(void)
3901 return pci_register_driver(&qlge_driver);
3904 static void __exit qlge_exit(void)
3906 pci_unregister_driver(&qlge_driver);
3909 module_init(qlge_init_module);
3910 module_exit(qlge_exit);