1 /*****************************************************************************/
4 * stallion.c -- stallion multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /*****************************************************************************/
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/serial.h>
35 #include <linux/cd1400.h>
36 #include <linux/sc26198.h>
37 #include <linux/comstats.h>
38 #include <linux/stallion.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/smp_lock.h>
42 #include <linux/device.h>
43 #include <linux/delay.h>
46 #include <asm/uaccess.h>
49 #include <linux/pci.h>
52 /*****************************************************************************/
55 * Define different board types. Use the standard Stallion "assigned"
56 * board numbers. Boards supported in this driver are abbreviated as
57 * EIO = EasyIO and ECH = EasyConnection 8/32.
63 #define BRD_ECH64PCI 27
64 #define BRD_EASYIOPCI 28
67 * Define a configuration structure to hold the board configuration.
68 * Need to set this up in the code (for now) with the boards that are
69 * to be configured into the system. This is what needs to be modified
70 * when adding/removing/modifying boards. Each line entry in the
71 * stl_brdconf[] array is a board. Each line contains io/irq/memory
72 * ranges for that board (as well as what type of board it is).
74 * { BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },
75 * This line would configure an EasyIO board (4 or 8, no difference),
76 * at io address 2a0 and irq 10.
78 * { BRD_ECH, 0x2a8, 0x280, 0, 12, 0 },
79 * This line will configure an EasyConnection 8/32 board at primary io
80 * address 2a8, secondary io address 280 and irq 12.
81 * Enter as many lines into this array as you want (only the first 4
82 * will actually be used!). Any combination of EasyIO and EasyConnection
83 * boards can be specified. EasyConnection 8/32 boards can share their
84 * secondary io addresses between each other.
86 * NOTE: there is no need to put any entries in this table for PCI
87 * boards. They will be found automatically by the driver - provided
88 * PCI BIOS32 support is compiled into the kernel.
91 static struct stlconf {
95 unsigned long memaddr;
99 /*{ BRD_EASYIO, 0x2a0, 0, 0, 10, 0 },*/
102 static int stl_nrbrds = ARRAY_SIZE(stl_brdconf);
104 /*****************************************************************************/
107 * Define some important driver characteristics. Device major numbers
108 * allocated as per Linux Device Registry.
110 #ifndef STL_SIOMEMMAJOR
111 #define STL_SIOMEMMAJOR 28
113 #ifndef STL_SERIALMAJOR
114 #define STL_SERIALMAJOR 24
116 #ifndef STL_CALLOUTMAJOR
117 #define STL_CALLOUTMAJOR 25
121 * Set the TX buffer size. Bigger is better, but we don't want
122 * to chew too much memory with buffers!
124 #define STL_TXBUFLOW 512
125 #define STL_TXBUFSIZE 4096
127 /*****************************************************************************/
130 * Define our local driver identity first. Set up stuff to deal with
131 * all the local structures required by a serial tty driver.
133 static char *stl_drvtitle = "Stallion Multiport Serial Driver";
134 static char *stl_drvname = "stallion";
135 static char *stl_drvversion = "5.6.0";
137 static struct tty_driver *stl_serial;
140 * Define a local default termios struct. All ports will be created
141 * with this termios initially. Basically all it defines is a raw port
142 * at 9600, 8 data bits, 1 stop bit.
144 static struct ktermios stl_deftermios = {
145 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
152 * Define global stats structures. Not used often, and can be
153 * re-used for each stats call.
155 static comstats_t stl_comstats;
156 static combrd_t stl_brdstats;
157 static struct stlbrd stl_dummybrd;
158 static struct stlport stl_dummyport;
161 * Define global place to put buffer overflow characters.
163 static char stl_unwanted[SC26198_RXFIFOSIZE];
165 /*****************************************************************************/
167 static struct stlbrd *stl_brds[STL_MAXBRDS];
170 * Per board state flags. Used with the state field of the board struct.
171 * Not really much here!
173 #define BRD_FOUND 0x1
176 * Define the port structure istate flags. These set of flags are
177 * modified at interrupt time - so setting and reseting them needs
178 * to be atomic. Use the bit clear/setting routines for this.
180 #define ASYI_TXBUSY 1
182 #define ASYI_DCDCHANGE 3
183 #define ASYI_TXFLOWED 4
186 * Define an array of board names as printable strings. Handy for
187 * referencing boards when printing trace and stuff.
189 static char *stl_brdnames[] = {
221 /*****************************************************************************/
224 * Define some string labels for arguments passed from the module
225 * load line. These allow for easy board definitions, and easy
226 * modification of the io, memory and irq resoucres.
228 static int stl_nargs = 0;
229 static char *board0[4];
230 static char *board1[4];
231 static char *board2[4];
232 static char *board3[4];
234 static char **stl_brdsp[] = {
242 * Define a set of common board names, and types. This is used to
243 * parse any module arguments.
250 { "easyio", BRD_EASYIO },
251 { "eio", BRD_EASYIO },
252 { "20", BRD_EASYIO },
253 { "ec8/32", BRD_ECH },
254 { "ec8/32-at", BRD_ECH },
255 { "ec8/32-isa", BRD_ECH },
257 { "echat", BRD_ECH },
259 { "ec8/32-mc", BRD_ECHMC },
260 { "ec8/32-mca", BRD_ECHMC },
261 { "echmc", BRD_ECHMC },
262 { "echmca", BRD_ECHMC },
264 { "ec8/32-pc", BRD_ECHPCI },
265 { "ec8/32-pci", BRD_ECHPCI },
266 { "26", BRD_ECHPCI },
267 { "ec8/64-pc", BRD_ECH64PCI },
268 { "ec8/64-pci", BRD_ECH64PCI },
269 { "ech-pci", BRD_ECH64PCI },
270 { "echpci", BRD_ECH64PCI },
271 { "echpc", BRD_ECH64PCI },
272 { "27", BRD_ECH64PCI },
273 { "easyio-pc", BRD_EASYIOPCI },
274 { "easyio-pci", BRD_EASYIOPCI },
275 { "eio-pci", BRD_EASYIOPCI },
276 { "eiopci", BRD_EASYIOPCI },
277 { "28", BRD_EASYIOPCI },
281 * Define the module agruments.
284 module_param_array(board0, charp, &stl_nargs, 0);
285 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,ioaddr2][,irq]]");
286 module_param_array(board1, charp, &stl_nargs, 0);
287 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,ioaddr2][,irq]]");
288 module_param_array(board2, charp, &stl_nargs, 0);
289 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,ioaddr2][,irq]]");
290 module_param_array(board3, charp, &stl_nargs, 0);
291 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,ioaddr2][,irq]]");
293 /*****************************************************************************/
296 * Hardware ID bits for the EasyIO and ECH boards. These defines apply
297 * to the directly accessible io ports of these boards (not the uarts -
298 * they are in cd1400.h and sc26198.h).
300 #define EIO_8PORTRS 0x04
301 #define EIO_4PORTRS 0x05
302 #define EIO_8PORTDI 0x00
303 #define EIO_8PORTM 0x06
305 #define EIO_IDBITMASK 0x07
307 #define EIO_BRDMASK 0xf0
310 #define ID_BRD16 0x30
312 #define EIO_INTRPEND 0x08
313 #define EIO_INTEDGE 0x00
314 #define EIO_INTLEVEL 0x08
318 #define ECH_IDBITMASK 0xe0
319 #define ECH_BRDENABLE 0x08
320 #define ECH_BRDDISABLE 0x00
321 #define ECH_INTENABLE 0x01
322 #define ECH_INTDISABLE 0x00
323 #define ECH_INTLEVEL 0x02
324 #define ECH_INTEDGE 0x00
325 #define ECH_INTRPEND 0x01
326 #define ECH_BRDRESET 0x01
328 #define ECHMC_INTENABLE 0x01
329 #define ECHMC_BRDRESET 0x02
331 #define ECH_PNLSTATUS 2
332 #define ECH_PNL16PORT 0x20
333 #define ECH_PNLIDMASK 0x07
334 #define ECH_PNLXPID 0x40
335 #define ECH_PNLINTRPEND 0x80
337 #define ECH_ADDR2MASK 0x1e0
340 * Define the vector mapping bits for the programmable interrupt board
341 * hardware. These bits encode the interrupt for the board to use - it
342 * is software selectable (except the EIO-8M).
344 static unsigned char stl_vecmap[] = {
345 0xff, 0xff, 0xff, 0x04, 0x06, 0x05, 0xff, 0x07,
346 0xff, 0xff, 0x00, 0x02, 0x01, 0xff, 0xff, 0x03
350 * Lock ordering is that you may not take stallion_lock holding
354 static spinlock_t brd_lock; /* Guard the board mapping */
355 static spinlock_t stallion_lock; /* Guard the tty driver */
358 * Set up enable and disable macros for the ECH boards. They require
359 * the secondary io address space to be activated and deactivated.
360 * This way all ECH boards can share their secondary io region.
361 * If this is an ECH-PCI board then also need to set the page pointer
362 * to point to the correct page.
364 #define BRDENABLE(brdnr,pagenr) \
365 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
366 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDENABLE), \
367 stl_brds[(brdnr)]->ioctrl); \
368 else if (stl_brds[(brdnr)]->brdtype == BRD_ECHPCI) \
369 outb((pagenr), stl_brds[(brdnr)]->ioctrl);
371 #define BRDDISABLE(brdnr) \
372 if (stl_brds[(brdnr)]->brdtype == BRD_ECH) \
373 outb((stl_brds[(brdnr)]->ioctrlval | ECH_BRDDISABLE), \
374 stl_brds[(brdnr)]->ioctrl);
376 #define STL_CD1400MAXBAUD 230400
377 #define STL_SC26198MAXBAUD 460800
379 #define STL_BAUDBASE 115200
380 #define STL_CLOSEDELAY (5 * HZ / 10)
382 /*****************************************************************************/
387 * Define the Stallion PCI vendor and device IDs.
389 #ifndef PCI_VENDOR_ID_STALLION
390 #define PCI_VENDOR_ID_STALLION 0x124d
392 #ifndef PCI_DEVICE_ID_ECHPCI832
393 #define PCI_DEVICE_ID_ECHPCI832 0x0000
395 #ifndef PCI_DEVICE_ID_ECHPCI864
396 #define PCI_DEVICE_ID_ECHPCI864 0x0002
398 #ifndef PCI_DEVICE_ID_EIOPCI
399 #define PCI_DEVICE_ID_EIOPCI 0x0003
403 * Define structure to hold all Stallion PCI boards.
405 typedef struct stlpcibrd {
406 unsigned short vendid;
407 unsigned short devid;
411 static stlpcibrd_t stl_pcibrds[] = {
412 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI864, BRD_ECH64PCI },
413 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_EIOPCI, BRD_EASYIOPCI },
414 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECHPCI832, BRD_ECHPCI },
415 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_87410, BRD_ECHPCI },
418 static int stl_nrpcibrds = ARRAY_SIZE(stl_pcibrds);
422 /*****************************************************************************/
425 * Define macros to extract a brd/port number from a minor number.
427 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
428 #define MINOR2PORT(min) ((min) & 0x3f)
431 * Define a baud rate table that converts termios baud rate selector
432 * into the actual baud rate value. All baud rate calculations are
433 * based on the actual baud rate required.
435 static unsigned int stl_baudrates[] = {
436 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
437 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
441 * Define some handy local macros...
444 #define MIN(a,b) (((a) <= (b)) ? (a) : (b))
447 #define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
449 /*****************************************************************************/
452 * Declare all those functions in this driver!
455 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
456 static int stl_brdinit(struct stlbrd *brdp);
457 static int stl_getportstats(struct stlport *portp, comstats_t __user *cp);
458 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp);
459 static int stl_waitcarrier(struct stlport *portp, struct file *filp);
462 * CD1400 uart specific handling functions.
464 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value);
465 static int stl_cd1400getreg(struct stlport *portp, int regnr);
466 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value);
467 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
468 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
469 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp);
470 static int stl_cd1400getsignals(struct stlport *portp);
471 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts);
472 static void stl_cd1400ccrwait(struct stlport *portp);
473 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx);
474 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx);
475 static void stl_cd1400disableintrs(struct stlport *portp);
476 static void stl_cd1400sendbreak(struct stlport *portp, int len);
477 static void stl_cd1400flowctrl(struct stlport *portp, int state);
478 static void stl_cd1400sendflow(struct stlport *portp, int state);
479 static void stl_cd1400flush(struct stlport *portp);
480 static int stl_cd1400datastate(struct stlport *portp);
481 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase);
482 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase);
483 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr);
484 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr);
485 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr);
487 static inline int stl_cd1400breakisr(struct stlport *portp, int ioaddr);
490 * SC26198 uart specific handling functions.
492 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value);
493 static int stl_sc26198getreg(struct stlport *portp, int regnr);
494 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value);
495 static int stl_sc26198getglobreg(struct stlport *portp, int regnr);
496 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp);
497 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
498 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp);
499 static int stl_sc26198getsignals(struct stlport *portp);
500 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts);
501 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx);
502 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx);
503 static void stl_sc26198disableintrs(struct stlport *portp);
504 static void stl_sc26198sendbreak(struct stlport *portp, int len);
505 static void stl_sc26198flowctrl(struct stlport *portp, int state);
506 static void stl_sc26198sendflow(struct stlport *portp, int state);
507 static void stl_sc26198flush(struct stlport *portp);
508 static int stl_sc26198datastate(struct stlport *portp);
509 static void stl_sc26198wait(struct stlport *portp);
510 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty);
511 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase);
512 static void stl_sc26198txisr(struct stlport *port);
513 static void stl_sc26198rxisr(struct stlport *port, unsigned int iack);
514 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch);
515 static void stl_sc26198rxbadchars(struct stlport *portp);
516 static void stl_sc26198otherisr(struct stlport *port, unsigned int iack);
518 /*****************************************************************************/
521 * Generic UART support structure.
523 typedef struct uart {
524 int (*panelinit)(struct stlbrd *brdp, struct stlpanel *panelp);
525 void (*portinit)(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp);
526 void (*setport)(struct stlport *portp, struct ktermios *tiosp);
527 int (*getsignals)(struct stlport *portp);
528 void (*setsignals)(struct stlport *portp, int dtr, int rts);
529 void (*enablerxtx)(struct stlport *portp, int rx, int tx);
530 void (*startrxtx)(struct stlport *portp, int rx, int tx);
531 void (*disableintrs)(struct stlport *portp);
532 void (*sendbreak)(struct stlport *portp, int len);
533 void (*flowctrl)(struct stlport *portp, int state);
534 void (*sendflow)(struct stlport *portp, int state);
535 void (*flush)(struct stlport *portp);
536 int (*datastate)(struct stlport *portp);
537 void (*intr)(struct stlpanel *panelp, unsigned int iobase);
541 * Define some macros to make calling these functions nice and clean.
543 #define stl_panelinit (* ((uart_t *) panelp->uartp)->panelinit)
544 #define stl_portinit (* ((uart_t *) portp->uartp)->portinit)
545 #define stl_setport (* ((uart_t *) portp->uartp)->setport)
546 #define stl_getsignals (* ((uart_t *) portp->uartp)->getsignals)
547 #define stl_setsignals (* ((uart_t *) portp->uartp)->setsignals)
548 #define stl_enablerxtx (* ((uart_t *) portp->uartp)->enablerxtx)
549 #define stl_startrxtx (* ((uart_t *) portp->uartp)->startrxtx)
550 #define stl_disableintrs (* ((uart_t *) portp->uartp)->disableintrs)
551 #define stl_sendbreak (* ((uart_t *) portp->uartp)->sendbreak)
552 #define stl_flowctrl (* ((uart_t *) portp->uartp)->flowctrl)
553 #define stl_sendflow (* ((uart_t *) portp->uartp)->sendflow)
554 #define stl_flush (* ((uart_t *) portp->uartp)->flush)
555 #define stl_datastate (* ((uart_t *) portp->uartp)->datastate)
557 /*****************************************************************************/
560 * CD1400 UART specific data initialization.
562 static uart_t stl_cd1400uart = {
566 stl_cd1400getsignals,
567 stl_cd1400setsignals,
568 stl_cd1400enablerxtx,
570 stl_cd1400disableintrs,
580 * Define the offsets within the register bank of a cd1400 based panel.
581 * These io address offsets are common to the EasyIO board as well.
589 #define EREG_BANKSIZE 8
591 #define CD1400_CLK 25000000
592 #define CD1400_CLK8M 20000000
595 * Define the cd1400 baud rate clocks. These are used when calculating
596 * what clock and divisor to use for the required baud rate. Also
597 * define the maximum baud rate allowed, and the default base baud.
599 static int stl_cd1400clkdivs[] = {
600 CD1400_CLK0, CD1400_CLK1, CD1400_CLK2, CD1400_CLK3, CD1400_CLK4
603 /*****************************************************************************/
606 * SC26198 UART specific data initization.
608 static uart_t stl_sc26198uart = {
609 stl_sc26198panelinit,
612 stl_sc26198getsignals,
613 stl_sc26198setsignals,
614 stl_sc26198enablerxtx,
615 stl_sc26198startrxtx,
616 stl_sc26198disableintrs,
617 stl_sc26198sendbreak,
621 stl_sc26198datastate,
626 * Define the offsets within the register bank of a sc26198 based panel.
634 #define XP_BANKSIZE 4
637 * Define the sc26198 baud rate table. Offsets within the table
638 * represent the actual baud rate selector of sc26198 registers.
640 static unsigned int sc26198_baudtable[] = {
641 50, 75, 150, 200, 300, 450, 600, 900, 1200, 1800, 2400, 3600,
642 4800, 7200, 9600, 14400, 19200, 28800, 38400, 57600, 115200,
643 230400, 460800, 921600
646 #define SC26198_NRBAUDS ARRAY_SIZE(sc26198_baudtable)
648 /*****************************************************************************/
651 * Define the driver info for a user level control device. Used mainly
652 * to get at port stats - only not using the port device itself.
654 static const struct file_operations stl_fsiomem = {
655 .owner = THIS_MODULE,
656 .ioctl = stl_memioctl,
659 static struct class *stallion_class;
662 * Check for any arguments passed in on the module load command line.
665 /*****************************************************************************/
668 * Convert an ascii string number into an unsigned long.
671 static unsigned long stl_atol(char *str)
679 if ((*sp == '0') && (*(sp+1) == 'x')) {
682 } else if (*sp == '0') {
689 for (; (*sp != 0); sp++) {
690 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
691 if ((c < 0) || (c >= base)) {
692 printk("STALLION: invalid argument %s\n", str);
696 val = (val * base) + c;
701 /*****************************************************************************/
704 * Parse the supplied argument string, into the board conf struct.
707 static int __init stl_parsebrd(struct stlconf *confp, char **argp)
712 pr_debug("stl_parsebrd(confp=%p,argp=%p)\n", confp, argp);
714 if ((argp[0] == NULL) || (*argp[0] == 0))
717 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
720 for (i = 0; i < ARRAY_SIZE(stl_brdstr); i++) {
721 if (strcmp(stl_brdstr[i].name, argp[0]) == 0)
724 if (i == ARRAY_SIZE(stl_brdstr)) {
725 printk("STALLION: unknown board name, %s?\n", argp[0]);
729 confp->brdtype = stl_brdstr[i].type;
732 if ((argp[i] != NULL) && (*argp[i] != 0))
733 confp->ioaddr1 = stl_atol(argp[i]);
735 if (confp->brdtype == BRD_ECH) {
736 if ((argp[i] != NULL) && (*argp[i] != 0))
737 confp->ioaddr2 = stl_atol(argp[i]);
740 if ((argp[i] != NULL) && (*argp[i] != 0))
741 confp->irq = stl_atol(argp[i]);
745 /*****************************************************************************/
748 * Allocate a new board structure. Fill out the basic info in it.
751 static struct stlbrd *stl_allocbrd(void)
755 brdp = kzalloc(sizeof(struct stlbrd), GFP_KERNEL);
757 printk("STALLION: failed to allocate memory (size=%Zd)\n",
758 sizeof(struct stlbrd));
762 brdp->magic = STL_BOARDMAGIC;
766 static void __init stl_argbrds(void)
772 pr_debug("stl_argbrds()\n");
774 for (i = stl_nrbrds; (i < stl_nargs); i++) {
775 memset(&conf, 0, sizeof(conf));
776 if (stl_parsebrd(&conf, stl_brdsp[i]) == 0)
778 if ((brdp = stl_allocbrd()) == NULL)
782 brdp->brdtype = conf.brdtype;
783 brdp->ioaddr1 = conf.ioaddr1;
784 brdp->ioaddr2 = conf.ioaddr2;
785 brdp->irq = conf.irq;
786 brdp->irqtype = conf.irqtype;
791 /*****************************************************************************/
793 static int stl_open(struct tty_struct *tty, struct file *filp)
795 struct stlport *portp;
797 unsigned int minordev;
798 int brdnr, panelnr, portnr, rc;
800 pr_debug("stl_open(tty=%p,filp=%p): device=%s\n", tty, filp, tty->name);
802 minordev = tty->index;
803 brdnr = MINOR2BRD(minordev);
804 if (brdnr >= stl_nrbrds)
806 brdp = stl_brds[brdnr];
809 minordev = MINOR2PORT(minordev);
810 for (portnr = -1, panelnr = 0; (panelnr < STL_MAXPANELS); panelnr++) {
811 if (brdp->panels[panelnr] == NULL)
813 if (minordev < brdp->panels[panelnr]->nrports) {
817 minordev -= brdp->panels[panelnr]->nrports;
822 portp = brdp->panels[panelnr]->ports[portnr];
827 * On the first open of the device setup the port hardware, and
828 * initialize the per port data structure.
831 tty->driver_data = portp;
834 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
835 if (!portp->tx.buf) {
836 portp->tx.buf = kmalloc(STL_TXBUFSIZE, GFP_KERNEL);
839 portp->tx.head = portp->tx.buf;
840 portp->tx.tail = portp->tx.buf;
842 stl_setport(portp, tty->termios);
843 portp->sigs = stl_getsignals(portp);
844 stl_setsignals(portp, 1, 1);
845 stl_enablerxtx(portp, 1, 1);
846 stl_startrxtx(portp, 1, 0);
847 clear_bit(TTY_IO_ERROR, &tty->flags);
848 portp->flags |= ASYNC_INITIALIZED;
852 * Check if this port is in the middle of closing. If so then wait
853 * until it is closed then return error status, based on flag settings.
854 * The sleep here does not need interrupt protection since the wakeup
855 * for it is done with the same context.
857 if (portp->flags & ASYNC_CLOSING) {
858 interruptible_sleep_on(&portp->close_wait);
859 if (portp->flags & ASYNC_HUP_NOTIFY)
865 * Based on type of open being done check if it can overlap with any
866 * previous opens still in effect. If we are a normal serial device
867 * then also we might have to wait for carrier.
869 if (!(filp->f_flags & O_NONBLOCK)) {
870 if ((rc = stl_waitcarrier(portp, filp)) != 0)
873 portp->flags |= ASYNC_NORMAL_ACTIVE;
878 /*****************************************************************************/
881 * Possibly need to wait for carrier (DCD signal) to come high. Say
882 * maybe because if we are clocal then we don't need to wait...
885 static int stl_waitcarrier(struct stlport *portp, struct file *filp)
890 pr_debug("stl_waitcarrier(portp=%p,filp=%p)\n", portp, filp);
895 spin_lock_irqsave(&stallion_lock, flags);
897 if (portp->tty->termios->c_cflag & CLOCAL)
900 portp->openwaitcnt++;
901 if (! tty_hung_up_p(filp))
905 /* Takes brd_lock internally */
906 stl_setsignals(portp, 1, 1);
907 if (tty_hung_up_p(filp) ||
908 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
909 if (portp->flags & ASYNC_HUP_NOTIFY)
915 if (((portp->flags & ASYNC_CLOSING) == 0) &&
916 (doclocal || (portp->sigs & TIOCM_CD))) {
919 if (signal_pending(current)) {
924 interruptible_sleep_on(&portp->open_wait);
927 if (! tty_hung_up_p(filp))
929 portp->openwaitcnt--;
930 spin_unlock_irqrestore(&stallion_lock, flags);
935 /*****************************************************************************/
937 static void stl_flushbuffer(struct tty_struct *tty)
939 struct stlport *portp;
941 pr_debug("stl_flushbuffer(tty=%p)\n", tty);
945 portp = tty->driver_data;
953 /*****************************************************************************/
955 static void stl_waituntilsent(struct tty_struct *tty, int timeout)
957 struct stlport *portp;
960 pr_debug("stl_waituntilsent(tty=%p,timeout=%d)\n", tty, timeout);
964 portp = tty->driver_data;
970 tend = jiffies + timeout;
972 while (stl_datastate(portp)) {
973 if (signal_pending(current))
975 msleep_interruptible(20);
976 if (time_after_eq(jiffies, tend))
981 /*****************************************************************************/
983 static void stl_close(struct tty_struct *tty, struct file *filp)
985 struct stlport *portp;
988 pr_debug("stl_close(tty=%p,filp=%p)\n", tty, filp);
990 portp = tty->driver_data;
994 spin_lock_irqsave(&stallion_lock, flags);
995 if (tty_hung_up_p(filp)) {
996 spin_unlock_irqrestore(&stallion_lock, flags);
999 if ((tty->count == 1) && (portp->refcount != 1))
1000 portp->refcount = 1;
1001 if (portp->refcount-- > 1) {
1002 spin_unlock_irqrestore(&stallion_lock, flags);
1006 portp->refcount = 0;
1007 portp->flags |= ASYNC_CLOSING;
1010 * May want to wait for any data to drain before closing. The BUSY
1011 * flag keeps track of whether we are still sending or not - it is
1012 * very accurate for the cd1400, not quite so for the sc26198.
1013 * (The sc26198 has no "end-of-data" interrupt only empty FIFO)
1017 spin_unlock_irqrestore(&stallion_lock, flags);
1019 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1020 tty_wait_until_sent(tty, portp->closing_wait);
1021 stl_waituntilsent(tty, (HZ / 2));
1024 spin_lock_irqsave(&stallion_lock, flags);
1025 portp->flags &= ~ASYNC_INITIALIZED;
1026 spin_unlock_irqrestore(&stallion_lock, flags);
1028 stl_disableintrs(portp);
1029 if (tty->termios->c_cflag & HUPCL)
1030 stl_setsignals(portp, 0, 0);
1031 stl_enablerxtx(portp, 0, 0);
1032 stl_flushbuffer(tty);
1034 if (portp->tx.buf != NULL) {
1035 kfree(portp->tx.buf);
1036 portp->tx.buf = NULL;
1037 portp->tx.head = NULL;
1038 portp->tx.tail = NULL;
1040 set_bit(TTY_IO_ERROR, &tty->flags);
1041 tty_ldisc_flush(tty);
1046 if (portp->openwaitcnt) {
1047 if (portp->close_delay)
1048 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1049 wake_up_interruptible(&portp->open_wait);
1052 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1053 wake_up_interruptible(&portp->close_wait);
1056 /*****************************************************************************/
1059 * Write routine. Take data and stuff it in to the TX ring queue.
1060 * If transmit interrupts are not running then start them.
1063 static int stl_write(struct tty_struct *tty, const unsigned char *buf, int count)
1065 struct stlport *portp;
1066 unsigned int len, stlen;
1067 unsigned char *chbuf;
1070 pr_debug("stl_write(tty=%p,buf=%p,count=%d)\n", tty, buf, count);
1072 portp = tty->driver_data;
1075 if (portp->tx.buf == NULL)
1079 * If copying direct from user space we must cater for page faults,
1080 * causing us to "sleep" here for a while. To handle this copy in all
1081 * the data we need now, into a local buffer. Then when we got it all
1082 * copy it into the TX buffer.
1084 chbuf = (unsigned char *) buf;
1086 head = portp->tx.head;
1087 tail = portp->tx.tail;
1089 len = STL_TXBUFSIZE - (head - tail) - 1;
1090 stlen = STL_TXBUFSIZE - (head - portp->tx.buf);
1092 len = tail - head - 1;
1096 len = MIN(len, count);
1099 stlen = MIN(len, stlen);
1100 memcpy(head, chbuf, stlen);
1105 if (head >= (portp->tx.buf + STL_TXBUFSIZE)) {
1106 head = portp->tx.buf;
1107 stlen = tail - head;
1110 portp->tx.head = head;
1112 clear_bit(ASYI_TXLOW, &portp->istate);
1113 stl_startrxtx(portp, -1, 1);
1118 /*****************************************************************************/
1120 static void stl_putchar(struct tty_struct *tty, unsigned char ch)
1122 struct stlport *portp;
1126 pr_debug("stl_putchar(tty=%p,ch=%x)\n", tty, ch);
1130 portp = tty->driver_data;
1133 if (portp->tx.buf == NULL)
1136 head = portp->tx.head;
1137 tail = portp->tx.tail;
1139 len = (head >= tail) ? (STL_TXBUFSIZE - (head - tail)) : (tail - head);
1144 if (head >= (portp->tx.buf + STL_TXBUFSIZE))
1145 head = portp->tx.buf;
1147 portp->tx.head = head;
1150 /*****************************************************************************/
1153 * If there are any characters in the buffer then make sure that TX
1154 * interrupts are on and get'em out. Normally used after the putchar
1155 * routine has been called.
1158 static void stl_flushchars(struct tty_struct *tty)
1160 struct stlport *portp;
1162 pr_debug("stl_flushchars(tty=%p)\n", tty);
1166 portp = tty->driver_data;
1169 if (portp->tx.buf == NULL)
1172 stl_startrxtx(portp, -1, 1);
1175 /*****************************************************************************/
1177 static int stl_writeroom(struct tty_struct *tty)
1179 struct stlport *portp;
1182 pr_debug("stl_writeroom(tty=%p)\n", tty);
1186 portp = tty->driver_data;
1189 if (portp->tx.buf == NULL)
1192 head = portp->tx.head;
1193 tail = portp->tx.tail;
1194 return ((head >= tail) ? (STL_TXBUFSIZE - (head - tail) - 1) : (tail - head - 1));
1197 /*****************************************************************************/
1200 * Return number of chars in the TX buffer. Normally we would just
1201 * calculate the number of chars in the buffer and return that, but if
1202 * the buffer is empty and TX interrupts are still on then we return
1203 * that the buffer still has 1 char in it. This way whoever called us
1204 * will not think that ALL chars have drained - since the UART still
1205 * must have some chars in it (we are busy after all).
1208 static int stl_charsinbuffer(struct tty_struct *tty)
1210 struct stlport *portp;
1214 pr_debug("stl_charsinbuffer(tty=%p)\n", tty);
1218 portp = tty->driver_data;
1221 if (portp->tx.buf == NULL)
1224 head = portp->tx.head;
1225 tail = portp->tx.tail;
1226 size = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
1227 if ((size == 0) && test_bit(ASYI_TXBUSY, &portp->istate))
1232 /*****************************************************************************/
1235 * Generate the serial struct info.
1238 static int stl_getserial(struct stlport *portp, struct serial_struct __user *sp)
1240 struct serial_struct sio;
1241 struct stlbrd *brdp;
1243 pr_debug("stl_getserial(portp=%p,sp=%p)\n", portp, sp);
1245 memset(&sio, 0, sizeof(struct serial_struct));
1246 sio.line = portp->portnr;
1247 sio.port = portp->ioaddr;
1248 sio.flags = portp->flags;
1249 sio.baud_base = portp->baud_base;
1250 sio.close_delay = portp->close_delay;
1251 sio.closing_wait = portp->closing_wait;
1252 sio.custom_divisor = portp->custom_divisor;
1254 if (portp->uartp == &stl_cd1400uart) {
1255 sio.type = PORT_CIRRUS;
1256 sio.xmit_fifo_size = CD1400_TXFIFOSIZE;
1258 sio.type = PORT_UNKNOWN;
1259 sio.xmit_fifo_size = SC26198_TXFIFOSIZE;
1262 brdp = stl_brds[portp->brdnr];
1264 sio.irq = brdp->irq;
1266 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ? -EFAULT : 0;
1269 /*****************************************************************************/
1272 * Set port according to the serial struct info.
1273 * At this point we do not do any auto-configure stuff, so we will
1274 * just quietly ignore any requests to change irq, etc.
1277 static int stl_setserial(struct stlport *portp, struct serial_struct __user *sp)
1279 struct serial_struct sio;
1281 pr_debug("stl_setserial(portp=%p,sp=%p)\n", portp, sp);
1283 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1285 if (!capable(CAP_SYS_ADMIN)) {
1286 if ((sio.baud_base != portp->baud_base) ||
1287 (sio.close_delay != portp->close_delay) ||
1288 ((sio.flags & ~ASYNC_USR_MASK) !=
1289 (portp->flags & ~ASYNC_USR_MASK)))
1293 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1294 (sio.flags & ASYNC_USR_MASK);
1295 portp->baud_base = sio.baud_base;
1296 portp->close_delay = sio.close_delay;
1297 portp->closing_wait = sio.closing_wait;
1298 portp->custom_divisor = sio.custom_divisor;
1299 stl_setport(portp, portp->tty->termios);
1303 /*****************************************************************************/
1305 static int stl_tiocmget(struct tty_struct *tty, struct file *file)
1307 struct stlport *portp;
1311 portp = tty->driver_data;
1314 if (tty->flags & (1 << TTY_IO_ERROR))
1317 return stl_getsignals(portp);
1320 static int stl_tiocmset(struct tty_struct *tty, struct file *file,
1321 unsigned int set, unsigned int clear)
1323 struct stlport *portp;
1324 int rts = -1, dtr = -1;
1328 portp = tty->driver_data;
1331 if (tty->flags & (1 << TTY_IO_ERROR))
1334 if (set & TIOCM_RTS)
1336 if (set & TIOCM_DTR)
1338 if (clear & TIOCM_RTS)
1340 if (clear & TIOCM_DTR)
1343 stl_setsignals(portp, dtr, rts);
1347 static int stl_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1349 struct stlport *portp;
1352 void __user *argp = (void __user *)arg;
1354 pr_debug("stl_ioctl(tty=%p,file=%p,cmd=%x,arg=%lx)\n", tty, file, cmd,
1359 portp = tty->driver_data;
1363 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1364 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1365 if (tty->flags & (1 << TTY_IO_ERROR))
1373 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
1374 (unsigned __user *) argp);
1377 if (get_user(ival, (unsigned int __user *) arg))
1379 tty->termios->c_cflag =
1380 (tty->termios->c_cflag & ~CLOCAL) |
1381 (ival ? CLOCAL : 0);
1384 rc = stl_getserial(portp, argp);
1387 rc = stl_setserial(portp, argp);
1389 case COM_GETPORTSTATS:
1390 rc = stl_getportstats(portp, argp);
1392 case COM_CLRPORTSTATS:
1393 rc = stl_clrportstats(portp, argp);
1399 case TIOCSERGSTRUCT:
1400 case TIOCSERGETMULTI:
1401 case TIOCSERSETMULTI:
1410 /*****************************************************************************/
1413 * Start the transmitter again. Just turn TX interrupts back on.
1416 static void stl_start(struct tty_struct *tty)
1418 struct stlport *portp;
1420 pr_debug("stl_start(tty=%p)\n", tty);
1424 portp = tty->driver_data;
1427 stl_startrxtx(portp, -1, 1);
1430 /*****************************************************************************/
1432 static void stl_settermios(struct tty_struct *tty, struct ktermios *old)
1434 struct stlport *portp;
1435 struct ktermios *tiosp;
1437 pr_debug("stl_settermios(tty=%p,old=%p)\n", tty, old);
1441 portp = tty->driver_data;
1445 tiosp = tty->termios;
1446 if ((tiosp->c_cflag == old->c_cflag) &&
1447 (tiosp->c_iflag == old->c_iflag))
1450 stl_setport(portp, tiosp);
1451 stl_setsignals(portp, ((tiosp->c_cflag & (CBAUD & ~CBAUDEX)) ? 1 : 0),
1453 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0)) {
1454 tty->hw_stopped = 0;
1457 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1458 wake_up_interruptible(&portp->open_wait);
1461 /*****************************************************************************/
1464 * Attempt to flow control who ever is sending us data. Based on termios
1465 * settings use software or/and hardware flow control.
1468 static void stl_throttle(struct tty_struct *tty)
1470 struct stlport *portp;
1472 pr_debug("stl_throttle(tty=%p)\n", tty);
1476 portp = tty->driver_data;
1479 stl_flowctrl(portp, 0);
1482 /*****************************************************************************/
1485 * Unflow control the device sending us data...
1488 static void stl_unthrottle(struct tty_struct *tty)
1490 struct stlport *portp;
1492 pr_debug("stl_unthrottle(tty=%p)\n", tty);
1496 portp = tty->driver_data;
1499 stl_flowctrl(portp, 1);
1502 /*****************************************************************************/
1505 * Stop the transmitter. Basically to do this we will just turn TX
1509 static void stl_stop(struct tty_struct *tty)
1511 struct stlport *portp;
1513 pr_debug("stl_stop(tty=%p)\n", tty);
1517 portp = tty->driver_data;
1520 stl_startrxtx(portp, -1, 0);
1523 /*****************************************************************************/
1526 * Hangup this port. This is pretty much like closing the port, only
1527 * a little more brutal. No waiting for data to drain. Shutdown the
1528 * port and maybe drop signals.
1531 static void stl_hangup(struct tty_struct *tty)
1533 struct stlport *portp;
1535 pr_debug("stl_hangup(tty=%p)\n", tty);
1539 portp = tty->driver_data;
1543 portp->flags &= ~ASYNC_INITIALIZED;
1544 stl_disableintrs(portp);
1545 if (tty->termios->c_cflag & HUPCL)
1546 stl_setsignals(portp, 0, 0);
1547 stl_enablerxtx(portp, 0, 0);
1548 stl_flushbuffer(tty);
1550 set_bit(TTY_IO_ERROR, &tty->flags);
1551 if (portp->tx.buf != NULL) {
1552 kfree(portp->tx.buf);
1553 portp->tx.buf = NULL;
1554 portp->tx.head = NULL;
1555 portp->tx.tail = NULL;
1558 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
1559 portp->refcount = 0;
1560 wake_up_interruptible(&portp->open_wait);
1563 /*****************************************************************************/
1565 static void stl_breakctl(struct tty_struct *tty, int state)
1567 struct stlport *portp;
1569 pr_debug("stl_breakctl(tty=%p,state=%d)\n", tty, state);
1573 portp = tty->driver_data;
1577 stl_sendbreak(portp, ((state == -1) ? 1 : 2));
1580 /*****************************************************************************/
1582 static void stl_sendxchar(struct tty_struct *tty, char ch)
1584 struct stlport *portp;
1586 pr_debug("stl_sendxchar(tty=%p,ch=%x)\n", tty, ch);
1590 portp = tty->driver_data;
1594 if (ch == STOP_CHAR(tty))
1595 stl_sendflow(portp, 0);
1596 else if (ch == START_CHAR(tty))
1597 stl_sendflow(portp, 1);
1599 stl_putchar(tty, ch);
1602 /*****************************************************************************/
1607 * Format info for a specified port. The line is deliberately limited
1608 * to 80 characters. (If it is too long it will be truncated, if too
1609 * short then padded with spaces).
1612 static int stl_portinfo(struct stlport *portp, int portnr, char *pos)
1618 sp += sprintf(sp, "%d: uart:%s tx:%d rx:%d",
1619 portnr, (portp->hwid == 1) ? "SC26198" : "CD1400",
1620 (int) portp->stats.txtotal, (int) portp->stats.rxtotal);
1622 if (portp->stats.rxframing)
1623 sp += sprintf(sp, " fe:%d", (int) portp->stats.rxframing);
1624 if (portp->stats.rxparity)
1625 sp += sprintf(sp, " pe:%d", (int) portp->stats.rxparity);
1626 if (portp->stats.rxbreaks)
1627 sp += sprintf(sp, " brk:%d", (int) portp->stats.rxbreaks);
1628 if (portp->stats.rxoverrun)
1629 sp += sprintf(sp, " oe:%d", (int) portp->stats.rxoverrun);
1631 sigs = stl_getsignals(portp);
1632 cnt = sprintf(sp, "%s%s%s%s%s ",
1633 (sigs & TIOCM_RTS) ? "|RTS" : "",
1634 (sigs & TIOCM_CTS) ? "|CTS" : "",
1635 (sigs & TIOCM_DTR) ? "|DTR" : "",
1636 (sigs & TIOCM_CD) ? "|DCD" : "",
1637 (sigs & TIOCM_DSR) ? "|DSR" : "");
1641 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
1644 pos[(MAXLINE - 2)] = '+';
1645 pos[(MAXLINE - 1)] = '\n';
1650 /*****************************************************************************/
1653 * Port info, read from the /proc file system.
1656 static int stl_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
1658 struct stlbrd *brdp;
1659 struct stlpanel *panelp;
1660 struct stlport *portp;
1661 int brdnr, panelnr, portnr, totalport;
1665 pr_debug("stl_readproc(page=%p,start=%p,off=%lx,count=%d,eof=%p,"
1666 "data=%p\n", page, start, off, count, eof, data);
1673 pos += sprintf(pos, "%s: version %s", stl_drvtitle,
1675 while (pos < (page + MAXLINE - 1))
1682 * We scan through for each board, panel and port. The offset is
1683 * calculated on the fly, and irrelevant ports are skipped.
1685 for (brdnr = 0; (brdnr < stl_nrbrds); brdnr++) {
1686 brdp = stl_brds[brdnr];
1689 if (brdp->state == 0)
1692 maxoff = curoff + (brdp->nrports * MAXLINE);
1693 if (off >= maxoff) {
1698 totalport = brdnr * STL_MAXPORTS;
1699 for (panelnr = 0; (panelnr < brdp->nrpanels); panelnr++) {
1700 panelp = brdp->panels[panelnr];
1704 maxoff = curoff + (panelp->nrports * MAXLINE);
1705 if (off >= maxoff) {
1707 totalport += panelp->nrports;
1711 for (portnr = 0; (portnr < panelp->nrports); portnr++,
1713 portp = panelp->ports[portnr];
1716 if (off >= (curoff += MAXLINE))
1718 if ((pos - page + MAXLINE) > count)
1720 pos += stl_portinfo(portp, totalport, pos);
1729 return (pos - page);
1732 /*****************************************************************************/
1735 * All board interrupts are vectored through here first. This code then
1736 * calls off to the approrpriate board interrupt handlers.
1739 static irqreturn_t stl_intr(int irq, void *dev_id)
1741 struct stlbrd *brdp = dev_id;
1743 pr_debug("stl_intr(brdp=%p,irq=%d)\n", brdp, irq);
1745 return IRQ_RETVAL((* brdp->isr)(brdp));
1748 /*****************************************************************************/
1751 * Interrupt service routine for EasyIO board types.
1754 static int stl_eiointr(struct stlbrd *brdp)
1756 struct stlpanel *panelp;
1757 unsigned int iobase;
1760 spin_lock(&brd_lock);
1761 panelp = brdp->panels[0];
1762 iobase = panelp->iobase;
1763 while (inb(brdp->iostatus) & EIO_INTRPEND) {
1765 (* panelp->isr)(panelp, iobase);
1767 spin_unlock(&brd_lock);
1771 /*****************************************************************************/
1774 * Interrupt service routine for ECH-AT board types.
1777 static int stl_echatintr(struct stlbrd *brdp)
1779 struct stlpanel *panelp;
1780 unsigned int ioaddr;
1784 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
1786 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1788 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
1789 ioaddr = brdp->bnkstataddr[bnknr];
1790 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1791 panelp = brdp->bnk2panel[bnknr];
1792 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1797 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
1802 /*****************************************************************************/
1805 * Interrupt service routine for ECH-MCA board types.
1808 static int stl_echmcaintr(struct stlbrd *brdp)
1810 struct stlpanel *panelp;
1811 unsigned int ioaddr;
1815 while (inb(brdp->iostatus) & ECH_INTRPEND) {
1817 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
1818 ioaddr = brdp->bnkstataddr[bnknr];
1819 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1820 panelp = brdp->bnk2panel[bnknr];
1821 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1828 /*****************************************************************************/
1831 * Interrupt service routine for ECH-PCI board types.
1834 static int stl_echpciintr(struct stlbrd *brdp)
1836 struct stlpanel *panelp;
1837 unsigned int ioaddr;
1843 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
1844 outb(brdp->bnkpageaddr[bnknr], brdp->ioctrl);
1845 ioaddr = brdp->bnkstataddr[bnknr];
1846 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1847 panelp = brdp->bnk2panel[bnknr];
1848 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1859 /*****************************************************************************/
1862 * Interrupt service routine for ECH-8/64-PCI board types.
1865 static int stl_echpci64intr(struct stlbrd *brdp)
1867 struct stlpanel *panelp;
1868 unsigned int ioaddr;
1872 while (inb(brdp->ioctrl) & 0x1) {
1874 for (bnknr = 0; (bnknr < brdp->nrbnks); bnknr++) {
1875 ioaddr = brdp->bnkstataddr[bnknr];
1876 if (inb(ioaddr) & ECH_PNLINTRPEND) {
1877 panelp = brdp->bnk2panel[bnknr];
1878 (* panelp->isr)(panelp, (ioaddr & 0xfffc));
1886 /*****************************************************************************/
1889 * Service an off-level request for some channel.
1891 static void stl_offintr(struct work_struct *work)
1893 struct stlport *portp = container_of(work, struct stlport, tqueue);
1894 struct tty_struct *tty;
1895 unsigned int oldsigs;
1897 pr_debug("stl_offintr(portp=%p)\n", portp);
1907 if (test_bit(ASYI_TXLOW, &portp->istate)) {
1910 if (test_bit(ASYI_DCDCHANGE, &portp->istate)) {
1911 clear_bit(ASYI_DCDCHANGE, &portp->istate);
1912 oldsigs = portp->sigs;
1913 portp->sigs = stl_getsignals(portp);
1914 if ((portp->sigs & TIOCM_CD) && ((oldsigs & TIOCM_CD) == 0))
1915 wake_up_interruptible(&portp->open_wait);
1916 if ((oldsigs & TIOCM_CD) && ((portp->sigs & TIOCM_CD) == 0)) {
1917 if (portp->flags & ASYNC_CHECK_CD)
1918 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
1924 /*****************************************************************************/
1927 * Initialize all the ports on a panel.
1930 static int __init stl_initports(struct stlbrd *brdp, struct stlpanel *panelp)
1932 struct stlport *portp;
1935 pr_debug("stl_initports(brdp=%p,panelp=%p)\n", brdp, panelp);
1937 chipmask = stl_panelinit(brdp, panelp);
1940 * All UART's are initialized (if found!). Now go through and setup
1941 * each ports data structures.
1943 for (i = 0; (i < panelp->nrports); i++) {
1944 portp = kzalloc(sizeof(struct stlport), GFP_KERNEL);
1946 printk("STALLION: failed to allocate memory "
1947 "(size=%Zd)\n", sizeof(struct stlport));
1951 portp->magic = STL_PORTMAGIC;
1953 portp->brdnr = panelp->brdnr;
1954 portp->panelnr = panelp->panelnr;
1955 portp->uartp = panelp->uartp;
1956 portp->clk = brdp->clk;
1957 portp->baud_base = STL_BAUDBASE;
1958 portp->close_delay = STL_CLOSEDELAY;
1959 portp->closing_wait = 30 * HZ;
1960 INIT_WORK(&portp->tqueue, stl_offintr);
1961 init_waitqueue_head(&portp->open_wait);
1962 init_waitqueue_head(&portp->close_wait);
1963 portp->stats.brd = portp->brdnr;
1964 portp->stats.panel = portp->panelnr;
1965 portp->stats.port = portp->portnr;
1966 panelp->ports[i] = portp;
1967 stl_portinit(brdp, panelp, portp);
1973 /*****************************************************************************/
1976 * Try to find and initialize an EasyIO board.
1979 static int __init stl_initeio(struct stlbrd *brdp)
1981 struct stlpanel *panelp;
1982 unsigned int status;
1986 pr_debug("stl_initeio(brdp=%p)\n", brdp);
1988 brdp->ioctrl = brdp->ioaddr1 + 1;
1989 brdp->iostatus = brdp->ioaddr1 + 2;
1991 status = inb(brdp->iostatus);
1992 if ((status & EIO_IDBITMASK) == EIO_MK3)
1996 * Handle board specific stuff now. The real difference is PCI
1999 if (brdp->brdtype == BRD_EASYIOPCI) {
2000 brdp->iosize1 = 0x80;
2001 brdp->iosize2 = 0x80;
2002 name = "serial(EIO-PCI)";
2003 outb(0x41, (brdp->ioaddr2 + 0x4c));
2006 name = "serial(EIO)";
2007 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2008 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2009 printk("STALLION: invalid irq=%d for brd=%d\n",
2010 brdp->irq, brdp->brdnr);
2013 outb((stl_vecmap[brdp->irq] | EIO_0WS |
2014 ((brdp->irqtype) ? EIO_INTLEVEL : EIO_INTEDGE)),
2018 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2019 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2020 "%x conflicts with another device\n", brdp->brdnr,
2025 if (brdp->iosize2 > 0)
2026 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2027 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2028 "address %x conflicts with another device\n",
2029 brdp->brdnr, brdp->ioaddr2);
2030 printk(KERN_WARNING "STALLION: Warning, also "
2031 "releasing board %d I/O address %x \n",
2032 brdp->brdnr, brdp->ioaddr1);
2033 release_region(brdp->ioaddr1, brdp->iosize1);
2038 * Everything looks OK, so let's go ahead and probe for the hardware.
2040 brdp->clk = CD1400_CLK;
2041 brdp->isr = stl_eiointr;
2043 switch (status & EIO_IDBITMASK) {
2045 brdp->clk = CD1400_CLK8M;
2055 switch (status & EIO_BRDMASK) {
2074 * We have verified that the board is actually present, so now we
2075 * can complete the setup.
2078 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
2080 printk(KERN_WARNING "STALLION: failed to allocate memory "
2081 "(size=%Zd)\n", sizeof(struct stlpanel));
2085 panelp->magic = STL_PANELMAGIC;
2086 panelp->brdnr = brdp->brdnr;
2087 panelp->panelnr = 0;
2088 panelp->nrports = brdp->nrports;
2089 panelp->iobase = brdp->ioaddr1;
2090 panelp->hwid = status;
2091 if ((status & EIO_IDBITMASK) == EIO_MK3) {
2092 panelp->uartp = &stl_sc26198uart;
2093 panelp->isr = stl_sc26198intr;
2095 panelp->uartp = &stl_cd1400uart;
2096 panelp->isr = stl_cd1400eiointr;
2099 brdp->panels[0] = panelp;
2101 brdp->state |= BRD_FOUND;
2102 brdp->hwid = status;
2103 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2104 printk("STALLION: failed to register interrupt "
2105 "routine for %s irq=%d\n", name, brdp->irq);
2113 /*****************************************************************************/
2116 * Try to find an ECH board and initialize it. This code is capable of
2117 * dealing with all types of ECH board.
2120 static int __init stl_initech(struct stlbrd *brdp)
2122 struct stlpanel *panelp;
2123 unsigned int status, nxtid, ioaddr, conflict;
2124 int panelnr, banknr, i;
2127 pr_debug("stl_initech(brdp=%p)\n", brdp);
2133 * Set up the initial board register contents for boards. This varies a
2134 * bit between the different board types. So we need to handle each
2135 * separately. Also do a check that the supplied IRQ is good.
2137 switch (brdp->brdtype) {
2140 brdp->isr = stl_echatintr;
2141 brdp->ioctrl = brdp->ioaddr1 + 1;
2142 brdp->iostatus = brdp->ioaddr1 + 1;
2143 status = inb(brdp->iostatus);
2144 if ((status & ECH_IDBITMASK) != ECH_ID)
2146 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2147 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2148 printk("STALLION: invalid irq=%d for brd=%d\n",
2149 brdp->irq, brdp->brdnr);
2152 status = ((brdp->ioaddr2 & ECH_ADDR2MASK) >> 1);
2153 status |= (stl_vecmap[brdp->irq] << 1);
2154 outb((status | ECH_BRDRESET), brdp->ioaddr1);
2155 brdp->ioctrlval = ECH_INTENABLE |
2156 ((brdp->irqtype) ? ECH_INTLEVEL : ECH_INTEDGE);
2157 for (i = 0; (i < 10); i++)
2158 outb((brdp->ioctrlval | ECH_BRDENABLE), brdp->ioctrl);
2161 name = "serial(EC8/32)";
2162 outb(status, brdp->ioaddr1);
2166 brdp->isr = stl_echmcaintr;
2167 brdp->ioctrl = brdp->ioaddr1 + 0x20;
2168 brdp->iostatus = brdp->ioctrl;
2169 status = inb(brdp->iostatus);
2170 if ((status & ECH_IDBITMASK) != ECH_ID)
2172 if ((brdp->irq < 0) || (brdp->irq > 15) ||
2173 (stl_vecmap[brdp->irq] == (unsigned char) 0xff)) {
2174 printk("STALLION: invalid irq=%d for brd=%d\n",
2175 brdp->irq, brdp->brdnr);
2178 outb(ECHMC_BRDRESET, brdp->ioctrl);
2179 outb(ECHMC_INTENABLE, brdp->ioctrl);
2181 name = "serial(EC8/32-MC)";
2185 brdp->isr = stl_echpciintr;
2186 brdp->ioctrl = brdp->ioaddr1 + 2;
2189 name = "serial(EC8/32-PCI)";
2193 brdp->isr = stl_echpci64intr;
2194 brdp->ioctrl = brdp->ioaddr2 + 0x40;
2195 outb(0x43, (brdp->ioaddr1 + 0x4c));
2196 brdp->iosize1 = 0x80;
2197 brdp->iosize2 = 0x80;
2198 name = "serial(EC8/64-PCI)";
2202 printk("STALLION: unknown board type=%d\n", brdp->brdtype);
2208 * Check boards for possible IO address conflicts and return fail status
2209 * if an IO conflict found.
2211 if (!request_region(brdp->ioaddr1, brdp->iosize1, name)) {
2212 printk(KERN_WARNING "STALLION: Warning, board %d I/O address "
2213 "%x conflicts with another device\n", brdp->brdnr,
2218 if (brdp->iosize2 > 0)
2219 if (!request_region(brdp->ioaddr2, brdp->iosize2, name)) {
2220 printk(KERN_WARNING "STALLION: Warning, board %d I/O "
2221 "address %x conflicts with another device\n",
2222 brdp->brdnr, brdp->ioaddr2);
2223 printk(KERN_WARNING "STALLION: Warning, also "
2224 "releasing board %d I/O address %x \n",
2225 brdp->brdnr, brdp->ioaddr1);
2226 release_region(brdp->ioaddr1, brdp->iosize1);
2231 * Scan through the secondary io address space looking for panels.
2232 * As we find'em allocate and initialize panel structures for each.
2234 brdp->clk = CD1400_CLK;
2235 brdp->hwid = status;
2237 ioaddr = brdp->ioaddr2;
2242 for (i = 0; (i < STL_MAXPANELS); i++) {
2243 if (brdp->brdtype == BRD_ECHPCI) {
2244 outb(nxtid, brdp->ioctrl);
2245 ioaddr = brdp->ioaddr2;
2247 status = inb(ioaddr + ECH_PNLSTATUS);
2248 if ((status & ECH_PNLIDMASK) != nxtid)
2250 panelp = kzalloc(sizeof(struct stlpanel), GFP_KERNEL);
2252 printk("STALLION: failed to allocate memory "
2253 "(size=%Zd)\n", sizeof(struct stlpanel));
2256 panelp->magic = STL_PANELMAGIC;
2257 panelp->brdnr = brdp->brdnr;
2258 panelp->panelnr = panelnr;
2259 panelp->iobase = ioaddr;
2260 panelp->pagenr = nxtid;
2261 panelp->hwid = status;
2262 brdp->bnk2panel[banknr] = panelp;
2263 brdp->bnkpageaddr[banknr] = nxtid;
2264 brdp->bnkstataddr[banknr++] = ioaddr + ECH_PNLSTATUS;
2266 if (status & ECH_PNLXPID) {
2267 panelp->uartp = &stl_sc26198uart;
2268 panelp->isr = stl_sc26198intr;
2269 if (status & ECH_PNL16PORT) {
2270 panelp->nrports = 16;
2271 brdp->bnk2panel[banknr] = panelp;
2272 brdp->bnkpageaddr[banknr] = nxtid;
2273 brdp->bnkstataddr[banknr++] = ioaddr + 4 +
2276 panelp->nrports = 8;
2279 panelp->uartp = &stl_cd1400uart;
2280 panelp->isr = stl_cd1400echintr;
2281 if (status & ECH_PNL16PORT) {
2282 panelp->nrports = 16;
2283 panelp->ackmask = 0x80;
2284 if (brdp->brdtype != BRD_ECHPCI)
2285 ioaddr += EREG_BANKSIZE;
2286 brdp->bnk2panel[banknr] = panelp;
2287 brdp->bnkpageaddr[banknr] = ++nxtid;
2288 brdp->bnkstataddr[banknr++] = ioaddr +
2291 panelp->nrports = 8;
2292 panelp->ackmask = 0xc0;
2297 ioaddr += EREG_BANKSIZE;
2298 brdp->nrports += panelp->nrports;
2299 brdp->panels[panelnr++] = panelp;
2300 if ((brdp->brdtype != BRD_ECHPCI) &&
2301 (ioaddr >= (brdp->ioaddr2 + brdp->iosize2)))
2305 brdp->nrpanels = panelnr;
2306 brdp->nrbnks = banknr;
2307 if (brdp->brdtype == BRD_ECH)
2308 outb((brdp->ioctrlval | ECH_BRDDISABLE), brdp->ioctrl);
2310 brdp->state |= BRD_FOUND;
2311 if (request_irq(brdp->irq, stl_intr, IRQF_SHARED, name, brdp) != 0) {
2312 printk("STALLION: failed to register interrupt "
2313 "routine for %s irq=%d\n", name, brdp->irq);
2322 /*****************************************************************************/
2325 * Initialize and configure the specified board.
2326 * Scan through all the boards in the configuration and see what we
2327 * can find. Handle EIO and the ECH boards a little differently here
2328 * since the initial search and setup is very different.
2331 static int __init stl_brdinit(struct stlbrd *brdp)
2335 pr_debug("stl_brdinit(brdp=%p)\n", brdp);
2337 switch (brdp->brdtype) {
2349 printk("STALLION: board=%d is unknown board type=%d\n",
2350 brdp->brdnr, brdp->brdtype);
2354 stl_brds[brdp->brdnr] = brdp;
2355 if ((brdp->state & BRD_FOUND) == 0) {
2356 printk("STALLION: %s board not found, board=%d io=%x irq=%d\n",
2357 stl_brdnames[brdp->brdtype], brdp->brdnr,
2358 brdp->ioaddr1, brdp->irq);
2362 for (i = 0; (i < STL_MAXPANELS); i++)
2363 if (brdp->panels[i] != NULL)
2364 stl_initports(brdp, brdp->panels[i]);
2366 printk("STALLION: %s found, board=%d io=%x irq=%d "
2367 "nrpanels=%d nrports=%d\n", stl_brdnames[brdp->brdtype],
2368 brdp->brdnr, brdp->ioaddr1, brdp->irq, brdp->nrpanels,
2373 /*****************************************************************************/
2376 * Find the next available board number that is free.
2379 static int __init stl_getbrdnr(void)
2383 for (i = 0; (i < STL_MAXBRDS); i++) {
2384 if (stl_brds[i] == NULL) {
2385 if (i >= stl_nrbrds)
2393 /*****************************************************************************/
2398 * We have a Stallion board. Allocate a board structure and
2399 * initialize it. Read its IO and IRQ resources from PCI
2400 * configuration space.
2403 static int __init stl_initpcibrd(int brdtype, struct pci_dev *devp)
2405 struct stlbrd *brdp;
2407 pr_debug("stl_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n", brdtype,
2408 devp->bus->number, devp->devfn);
2410 if (pci_enable_device(devp))
2412 if ((brdp = stl_allocbrd()) == NULL)
2414 if ((brdp->brdnr = stl_getbrdnr()) < 0) {
2415 printk("STALLION: too many boards found, "
2416 "maximum supported %d\n", STL_MAXBRDS);
2419 brdp->brdtype = brdtype;
2422 * Different Stallion boards use the BAR registers in different ways,
2423 * so set up io addresses based on board type.
2425 pr_debug("%s(%d): BAR[]=%Lx,%Lx,%Lx,%Lx IRQ=%x\n", __FILE__, __LINE__,
2426 pci_resource_start(devp, 0), pci_resource_start(devp, 1),
2427 pci_resource_start(devp, 2), pci_resource_start(devp, 3), devp->irq);
2430 * We have all resources from the board, so let's setup the actual
2431 * board structure now.
2435 brdp->ioaddr2 = pci_resource_start(devp, 0);
2436 brdp->ioaddr1 = pci_resource_start(devp, 1);
2439 brdp->ioaddr2 = pci_resource_start(devp, 2);
2440 brdp->ioaddr1 = pci_resource_start(devp, 1);
2443 brdp->ioaddr1 = pci_resource_start(devp, 2);
2444 brdp->ioaddr2 = pci_resource_start(devp, 1);
2447 printk("STALLION: unknown PCI board type=%d\n", brdtype);
2451 brdp->irq = devp->irq;
2457 /*****************************************************************************/
2460 * Find all Stallion PCI boards that might be installed. Initialize each
2461 * one as it is found.
2465 static int __init stl_findpcibrds(void)
2467 struct pci_dev *dev = NULL;
2470 pr_debug("stl_findpcibrds()\n");
2472 for (i = 0; (i < stl_nrpcibrds); i++)
2473 while ((dev = pci_get_device(stl_pcibrds[i].vendid,
2474 stl_pcibrds[i].devid, dev))) {
2477 * Found a device on the PCI bus that has our vendor and
2478 * device ID. Need to check now that it is really us.
2480 if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
2483 rc = stl_initpcibrd(stl_pcibrds[i].brdtype, dev);
2493 /*****************************************************************************/
2496 * Scan through all the boards in the configuration and see what we
2497 * can find. Handle EIO and the ECH boards a little differently here
2498 * since the initial search and setup is too different.
2501 static int __init stl_initbrds(void)
2503 struct stlbrd *brdp;
2504 struct stlconf *confp;
2507 pr_debug("stl_initbrds()\n");
2509 if (stl_nrbrds > STL_MAXBRDS) {
2510 printk("STALLION: too many boards in configuration table, "
2511 "truncating to %d\n", STL_MAXBRDS);
2512 stl_nrbrds = STL_MAXBRDS;
2516 * Firstly scan the list of static boards configured. Allocate
2517 * resources and initialize the boards as found.
2519 for (i = 0; (i < stl_nrbrds); i++) {
2520 confp = &stl_brdconf[i];
2521 stl_parsebrd(confp, stl_brdsp[i]);
2522 if ((brdp = stl_allocbrd()) == NULL)
2525 brdp->brdtype = confp->brdtype;
2526 brdp->ioaddr1 = confp->ioaddr1;
2527 brdp->ioaddr2 = confp->ioaddr2;
2528 brdp->irq = confp->irq;
2529 brdp->irqtype = confp->irqtype;
2534 * Find any dynamically supported boards. That is via module load
2535 * line options or auto-detected on the PCI bus.
2545 /*****************************************************************************/
2548 * Return the board stats structure to user app.
2551 static int stl_getbrdstats(combrd_t __user *bp)
2553 struct stlbrd *brdp;
2554 struct stlpanel *panelp;
2557 if (copy_from_user(&stl_brdstats, bp, sizeof(combrd_t)))
2559 if (stl_brdstats.brd >= STL_MAXBRDS)
2561 brdp = stl_brds[stl_brdstats.brd];
2565 memset(&stl_brdstats, 0, sizeof(combrd_t));
2566 stl_brdstats.brd = brdp->brdnr;
2567 stl_brdstats.type = brdp->brdtype;
2568 stl_brdstats.hwid = brdp->hwid;
2569 stl_brdstats.state = brdp->state;
2570 stl_brdstats.ioaddr = brdp->ioaddr1;
2571 stl_brdstats.ioaddr2 = brdp->ioaddr2;
2572 stl_brdstats.irq = brdp->irq;
2573 stl_brdstats.nrpanels = brdp->nrpanels;
2574 stl_brdstats.nrports = brdp->nrports;
2575 for (i = 0; (i < brdp->nrpanels); i++) {
2576 panelp = brdp->panels[i];
2577 stl_brdstats.panels[i].panel = i;
2578 stl_brdstats.panels[i].hwid = panelp->hwid;
2579 stl_brdstats.panels[i].nrports = panelp->nrports;
2582 return copy_to_user(bp, &stl_brdstats, sizeof(combrd_t)) ? -EFAULT : 0;
2585 /*****************************************************************************/
2588 * Resolve the referenced port number into a port struct pointer.
2591 static struct stlport *stl_getport(int brdnr, int panelnr, int portnr)
2593 struct stlbrd *brdp;
2594 struct stlpanel *panelp;
2596 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
2598 brdp = stl_brds[brdnr];
2601 if ((panelnr < 0) || (panelnr >= brdp->nrpanels))
2603 panelp = brdp->panels[panelnr];
2606 if ((portnr < 0) || (portnr >= panelp->nrports))
2608 return(panelp->ports[portnr]);
2611 /*****************************************************************************/
2614 * Return the port stats structure to user app. A NULL port struct
2615 * pointer passed in means that we need to find out from the app
2616 * what port to get stats for (used through board control device).
2619 static int stl_getportstats(struct stlport *portp, comstats_t __user *cp)
2621 unsigned char *head, *tail;
2622 unsigned long flags;
2625 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2627 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2633 portp->stats.state = portp->istate;
2634 portp->stats.flags = portp->flags;
2635 portp->stats.hwid = portp->hwid;
2637 portp->stats.ttystate = 0;
2638 portp->stats.cflags = 0;
2639 portp->stats.iflags = 0;
2640 portp->stats.oflags = 0;
2641 portp->stats.lflags = 0;
2642 portp->stats.rxbuffered = 0;
2644 spin_lock_irqsave(&stallion_lock, flags);
2645 if (portp->tty != NULL) {
2646 if (portp->tty->driver_data == portp) {
2647 portp->stats.ttystate = portp->tty->flags;
2648 /* No longer available as a statistic */
2649 portp->stats.rxbuffered = 1; /*portp->tty->flip.count; */
2650 if (portp->tty->termios != NULL) {
2651 portp->stats.cflags = portp->tty->termios->c_cflag;
2652 portp->stats.iflags = portp->tty->termios->c_iflag;
2653 portp->stats.oflags = portp->tty->termios->c_oflag;
2654 portp->stats.lflags = portp->tty->termios->c_lflag;
2658 spin_unlock_irqrestore(&stallion_lock, flags);
2660 head = portp->tx.head;
2661 tail = portp->tx.tail;
2662 portp->stats.txbuffered = ((head >= tail) ? (head - tail) :
2663 (STL_TXBUFSIZE - (tail - head)));
2665 portp->stats.signals = (unsigned long) stl_getsignals(portp);
2667 return copy_to_user(cp, &portp->stats,
2668 sizeof(comstats_t)) ? -EFAULT : 0;
2671 /*****************************************************************************/
2674 * Clear the port stats structure. We also return it zeroed out...
2677 static int stl_clrportstats(struct stlport *portp, comstats_t __user *cp)
2680 if (copy_from_user(&stl_comstats, cp, sizeof(comstats_t)))
2682 portp = stl_getport(stl_comstats.brd, stl_comstats.panel,
2688 memset(&portp->stats, 0, sizeof(comstats_t));
2689 portp->stats.brd = portp->brdnr;
2690 portp->stats.panel = portp->panelnr;
2691 portp->stats.port = portp->portnr;
2692 return copy_to_user(cp, &portp->stats,
2693 sizeof(comstats_t)) ? -EFAULT : 0;
2696 /*****************************************************************************/
2699 * Return the entire driver ports structure to a user app.
2702 static int stl_getportstruct(struct stlport __user *arg)
2704 struct stlport *portp;
2706 if (copy_from_user(&stl_dummyport, arg, sizeof(struct stlport)))
2708 portp = stl_getport(stl_dummyport.brdnr, stl_dummyport.panelnr,
2709 stl_dummyport.portnr);
2712 return copy_to_user(arg, portp, sizeof(struct stlport)) ? -EFAULT : 0;
2715 /*****************************************************************************/
2718 * Return the entire driver board structure to a user app.
2721 static int stl_getbrdstruct(struct stlbrd __user *arg)
2723 struct stlbrd *brdp;
2725 if (copy_from_user(&stl_dummybrd, arg, sizeof(struct stlbrd)))
2727 if ((stl_dummybrd.brdnr < 0) || (stl_dummybrd.brdnr >= STL_MAXBRDS))
2729 brdp = stl_brds[stl_dummybrd.brdnr];
2732 return copy_to_user(arg, brdp, sizeof(struct stlbrd)) ? -EFAULT : 0;
2735 /*****************************************************************************/
2738 * The "staliomem" device is also required to do some special operations
2739 * on the board and/or ports. In this driver it is mostly used for stats
2743 static int stl_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
2746 void __user *argp = (void __user *)arg;
2748 pr_debug("stl_memioctl(ip=%p,fp=%p,cmd=%x,arg=%lx)\n", ip, fp, cmd,arg);
2751 if (brdnr >= STL_MAXBRDS)
2756 case COM_GETPORTSTATS:
2757 rc = stl_getportstats(NULL, argp);
2759 case COM_CLRPORTSTATS:
2760 rc = stl_clrportstats(NULL, argp);
2762 case COM_GETBRDSTATS:
2763 rc = stl_getbrdstats(argp);
2766 rc = stl_getportstruct(argp);
2769 rc = stl_getbrdstruct(argp);
2779 static const struct tty_operations stl_ops = {
2783 .put_char = stl_putchar,
2784 .flush_chars = stl_flushchars,
2785 .write_room = stl_writeroom,
2786 .chars_in_buffer = stl_charsinbuffer,
2788 .set_termios = stl_settermios,
2789 .throttle = stl_throttle,
2790 .unthrottle = stl_unthrottle,
2793 .hangup = stl_hangup,
2794 .flush_buffer = stl_flushbuffer,
2795 .break_ctl = stl_breakctl,
2796 .wait_until_sent = stl_waituntilsent,
2797 .send_xchar = stl_sendxchar,
2798 .read_proc = stl_readproc,
2799 .tiocmget = stl_tiocmget,
2800 .tiocmset = stl_tiocmset,
2803 /*****************************************************************************/
2804 /* CD1400 HARDWARE FUNCTIONS */
2805 /*****************************************************************************/
2808 * These functions get/set/update the registers of the cd1400 UARTs.
2809 * Access to the cd1400 registers is via an address/data io port pair.
2810 * (Maybe should make this inline...)
2813 static int stl_cd1400getreg(struct stlport *portp, int regnr)
2815 outb((regnr + portp->uartaddr), portp->ioaddr);
2816 return inb(portp->ioaddr + EREG_DATA);
2819 static void stl_cd1400setreg(struct stlport *portp, int regnr, int value)
2821 outb((regnr + portp->uartaddr), portp->ioaddr);
2822 outb(value, portp->ioaddr + EREG_DATA);
2825 static int stl_cd1400updatereg(struct stlport *portp, int regnr, int value)
2827 outb((regnr + portp->uartaddr), portp->ioaddr);
2828 if (inb(portp->ioaddr + EREG_DATA) != value) {
2829 outb(value, portp->ioaddr + EREG_DATA);
2835 /*****************************************************************************/
2838 * Inbitialize the UARTs in a panel. We don't care what sort of board
2839 * these ports are on - since the port io registers are almost
2840 * identical when dealing with ports.
2843 static int stl_cd1400panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
2847 int nrchips, uartaddr, ioaddr;
2848 unsigned long flags;
2850 pr_debug("stl_panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
2852 spin_lock_irqsave(&brd_lock, flags);
2853 BRDENABLE(panelp->brdnr, panelp->pagenr);
2856 * Check that each chip is present and started up OK.
2859 nrchips = panelp->nrports / CD1400_PORTS;
2860 for (i = 0; (i < nrchips); i++) {
2861 if (brdp->brdtype == BRD_ECHPCI) {
2862 outb((panelp->pagenr + (i >> 1)), brdp->ioctrl);
2863 ioaddr = panelp->iobase;
2865 ioaddr = panelp->iobase + (EREG_BANKSIZE * (i >> 1));
2867 uartaddr = (i & 0x01) ? 0x080 : 0;
2868 outb((GFRCR + uartaddr), ioaddr);
2869 outb(0, (ioaddr + EREG_DATA));
2870 outb((CCR + uartaddr), ioaddr);
2871 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2872 outb(CCR_RESETFULL, (ioaddr + EREG_DATA));
2873 outb((GFRCR + uartaddr), ioaddr);
2874 for (j = 0; (j < CCR_MAXWAIT); j++) {
2875 if ((gfrcr = inb(ioaddr + EREG_DATA)) != 0)
2878 if ((j >= CCR_MAXWAIT) || (gfrcr < 0x40) || (gfrcr > 0x60)) {
2879 printk("STALLION: cd1400 not responding, "
2880 "brd=%d panel=%d chip=%d\n",
2881 panelp->brdnr, panelp->panelnr, i);
2884 chipmask |= (0x1 << i);
2885 outb((PPR + uartaddr), ioaddr);
2886 outb(PPR_SCALAR, (ioaddr + EREG_DATA));
2889 BRDDISABLE(panelp->brdnr);
2890 spin_unlock_irqrestore(&brd_lock, flags);
2894 /*****************************************************************************/
2897 * Initialize hardware specific port registers.
2900 static void stl_cd1400portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
2902 unsigned long flags;
2903 pr_debug("stl_cd1400portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
2906 if ((brdp == NULL) || (panelp == NULL) ||
2910 spin_lock_irqsave(&brd_lock, flags);
2911 portp->ioaddr = panelp->iobase + (((brdp->brdtype == BRD_ECHPCI) ||
2912 (portp->portnr < 8)) ? 0 : EREG_BANKSIZE);
2913 portp->uartaddr = (portp->portnr & 0x04) << 5;
2914 portp->pagenr = panelp->pagenr + (portp->portnr >> 3);
2916 BRDENABLE(portp->brdnr, portp->pagenr);
2917 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
2918 stl_cd1400setreg(portp, LIVR, (portp->portnr << 3));
2919 portp->hwid = stl_cd1400getreg(portp, GFRCR);
2920 BRDDISABLE(portp->brdnr);
2921 spin_unlock_irqrestore(&brd_lock, flags);
2924 /*****************************************************************************/
2927 * Wait for the command register to be ready. We will poll this,
2928 * since it won't usually take too long to be ready.
2931 static void stl_cd1400ccrwait(struct stlport *portp)
2935 for (i = 0; (i < CCR_MAXWAIT); i++) {
2936 if (stl_cd1400getreg(portp, CCR) == 0) {
2941 printk("STALLION: cd1400 not responding, port=%d panel=%d brd=%d\n",
2942 portp->portnr, portp->panelnr, portp->brdnr);
2945 /*****************************************************************************/
2948 * Set up the cd1400 registers for a port based on the termios port
2952 static void stl_cd1400setport(struct stlport *portp, struct ktermios *tiosp)
2954 struct stlbrd *brdp;
2955 unsigned long flags;
2956 unsigned int clkdiv, baudrate;
2957 unsigned char cor1, cor2, cor3;
2958 unsigned char cor4, cor5, ccr;
2959 unsigned char srer, sreron, sreroff;
2960 unsigned char mcor1, mcor2, rtpr;
2961 unsigned char clk, div;
2977 brdp = stl_brds[portp->brdnr];
2982 * Set up the RX char ignore mask with those RX error types we
2983 * can ignore. We can get the cd1400 to help us out a little here,
2984 * it will ignore parity errors and breaks for us.
2986 portp->rxignoremsk = 0;
2987 if (tiosp->c_iflag & IGNPAR) {
2988 portp->rxignoremsk |= (ST_PARITY | ST_FRAMING | ST_OVERRUN);
2989 cor1 |= COR1_PARIGNORE;
2991 if (tiosp->c_iflag & IGNBRK) {
2992 portp->rxignoremsk |= ST_BREAK;
2993 cor4 |= COR4_IGNBRK;
2996 portp->rxmarkmsk = ST_OVERRUN;
2997 if (tiosp->c_iflag & (INPCK | PARMRK))
2998 portp->rxmarkmsk |= (ST_PARITY | ST_FRAMING);
2999 if (tiosp->c_iflag & BRKINT)
3000 portp->rxmarkmsk |= ST_BREAK;
3003 * Go through the char size, parity and stop bits and set all the
3004 * option register appropriately.
3006 switch (tiosp->c_cflag & CSIZE) {
3021 if (tiosp->c_cflag & CSTOPB)
3026 if (tiosp->c_cflag & PARENB) {
3027 if (tiosp->c_cflag & PARODD)
3028 cor1 |= (COR1_PARENB | COR1_PARODD);
3030 cor1 |= (COR1_PARENB | COR1_PAREVEN);
3032 cor1 |= COR1_PARNONE;
3036 * Set the RX FIFO threshold at 6 chars. This gives a bit of breathing
3037 * space for hardware flow control and the like. This should be set to
3038 * VMIN. Also here we will set the RX data timeout to 10ms - this should
3039 * really be based on VTIME.
3041 cor3 |= FIFO_RXTHRESHOLD;
3045 * Calculate the baud rate timers. For now we will just assume that
3046 * the input and output baud are the same. Could have used a baud
3047 * table here, but this way we can generate virtually any baud rate
3050 baudrate = tiosp->c_cflag & CBAUD;
3051 if (baudrate & CBAUDEX) {
3052 baudrate &= ~CBAUDEX;
3053 if ((baudrate < 1) || (baudrate > 4))
3054 tiosp->c_cflag &= ~CBAUDEX;
3058 baudrate = stl_baudrates[baudrate];
3059 if ((tiosp->c_cflag & CBAUD) == B38400) {
3060 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3062 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3064 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3066 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3068 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3069 baudrate = (portp->baud_base / portp->custom_divisor);
3071 if (baudrate > STL_CD1400MAXBAUD)
3072 baudrate = STL_CD1400MAXBAUD;
3075 for (clk = 0; (clk < CD1400_NUMCLKS); clk++) {
3076 clkdiv = ((portp->clk / stl_cd1400clkdivs[clk]) / baudrate);
3080 div = (unsigned char) clkdiv;
3084 * Check what form of modem signaling is required and set it up.
3086 if ((tiosp->c_cflag & CLOCAL) == 0) {
3089 sreron |= SRER_MODEM;
3090 portp->flags |= ASYNC_CHECK_CD;
3092 portp->flags &= ~ASYNC_CHECK_CD;
3096 * Setup cd1400 enhanced modes if we can. In particular we want to
3097 * handle as much of the flow control as possible automatically. As
3098 * well as saving a few CPU cycles it will also greatly improve flow
3099 * control reliability.
3101 if (tiosp->c_iflag & IXON) {
3104 if (tiosp->c_iflag & IXANY)
3108 if (tiosp->c_cflag & CRTSCTS) {
3110 mcor1 |= FIFO_RTSTHRESHOLD;
3114 * All cd1400 register values calculated so go through and set
3118 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
3119 portp->portnr, portp->panelnr, portp->brdnr);
3120 pr_debug(" cor1=%x cor2=%x cor3=%x cor4=%x cor5=%x\n",
3121 cor1, cor2, cor3, cor4, cor5);
3122 pr_debug(" mcor1=%x mcor2=%x rtpr=%x sreron=%x sreroff=%x\n",
3123 mcor1, mcor2, rtpr, sreron, sreroff);
3124 pr_debug(" tcor=%x tbpr=%x rcor=%x rbpr=%x\n", clk, div, clk, div);
3125 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
3126 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
3127 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
3129 spin_lock_irqsave(&brd_lock, flags);
3130 BRDENABLE(portp->brdnr, portp->pagenr);
3131 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x3));
3132 srer = stl_cd1400getreg(portp, SRER);
3133 stl_cd1400setreg(portp, SRER, 0);
3134 if (stl_cd1400updatereg(portp, COR1, cor1))
3136 if (stl_cd1400updatereg(portp, COR2, cor2))
3138 if (stl_cd1400updatereg(portp, COR3, cor3))
3141 stl_cd1400ccrwait(portp);
3142 stl_cd1400setreg(portp, CCR, CCR_CORCHANGE);
3144 stl_cd1400setreg(portp, COR4, cor4);
3145 stl_cd1400setreg(portp, COR5, cor5);
3146 stl_cd1400setreg(portp, MCOR1, mcor1);
3147 stl_cd1400setreg(portp, MCOR2, mcor2);
3149 stl_cd1400setreg(portp, TCOR, clk);
3150 stl_cd1400setreg(portp, TBPR, div);
3151 stl_cd1400setreg(portp, RCOR, clk);
3152 stl_cd1400setreg(portp, RBPR, div);
3154 stl_cd1400setreg(portp, SCHR1, tiosp->c_cc[VSTART]);
3155 stl_cd1400setreg(portp, SCHR2, tiosp->c_cc[VSTOP]);
3156 stl_cd1400setreg(portp, SCHR3, tiosp->c_cc[VSTART]);
3157 stl_cd1400setreg(portp, SCHR4, tiosp->c_cc[VSTOP]);
3158 stl_cd1400setreg(portp, RTPR, rtpr);
3159 mcor1 = stl_cd1400getreg(portp, MSVR1);
3160 if (mcor1 & MSVR1_DCD)
3161 portp->sigs |= TIOCM_CD;
3163 portp->sigs &= ~TIOCM_CD;
3164 stl_cd1400setreg(portp, SRER, ((srer & ~sreroff) | sreron));
3165 BRDDISABLE(portp->brdnr);
3166 spin_unlock_irqrestore(&brd_lock, flags);
3169 /*****************************************************************************/
3172 * Set the state of the DTR and RTS signals.
3175 static void stl_cd1400setsignals(struct stlport *portp, int dtr, int rts)
3177 unsigned char msvr1, msvr2;
3178 unsigned long flags;
3180 pr_debug("stl_cd1400setsignals(portp=%p,dtr=%d,rts=%d)\n",
3190 spin_lock_irqsave(&brd_lock, flags);
3191 BRDENABLE(portp->brdnr, portp->pagenr);
3192 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3194 stl_cd1400setreg(portp, MSVR2, msvr2);
3196 stl_cd1400setreg(portp, MSVR1, msvr1);
3197 BRDDISABLE(portp->brdnr);
3198 spin_unlock_irqrestore(&brd_lock, flags);
3201 /*****************************************************************************/
3204 * Return the state of the signals.
3207 static int stl_cd1400getsignals(struct stlport *portp)
3209 unsigned char msvr1, msvr2;
3210 unsigned long flags;
3213 pr_debug("stl_cd1400getsignals(portp=%p)\n", portp);
3215 spin_lock_irqsave(&brd_lock, flags);
3216 BRDENABLE(portp->brdnr, portp->pagenr);
3217 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3218 msvr1 = stl_cd1400getreg(portp, MSVR1);
3219 msvr2 = stl_cd1400getreg(portp, MSVR2);
3220 BRDDISABLE(portp->brdnr);
3221 spin_unlock_irqrestore(&brd_lock, flags);
3224 sigs |= (msvr1 & MSVR1_DCD) ? TIOCM_CD : 0;
3225 sigs |= (msvr1 & MSVR1_CTS) ? TIOCM_CTS : 0;
3226 sigs |= (msvr1 & MSVR1_DTR) ? TIOCM_DTR : 0;
3227 sigs |= (msvr2 & MSVR2_RTS) ? TIOCM_RTS : 0;
3229 sigs |= (msvr1 & MSVR1_RI) ? TIOCM_RI : 0;
3230 sigs |= (msvr1 & MSVR1_DSR) ? TIOCM_DSR : 0;
3237 /*****************************************************************************/
3240 * Enable/Disable the Transmitter and/or Receiver.
3243 static void stl_cd1400enablerxtx(struct stlport *portp, int rx, int tx)
3246 unsigned long flags;
3248 pr_debug("stl_cd1400enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3253 ccr |= CCR_TXDISABLE;
3255 ccr |= CCR_TXENABLE;
3257 ccr |= CCR_RXDISABLE;
3259 ccr |= CCR_RXENABLE;
3261 spin_lock_irqsave(&brd_lock, flags);
3262 BRDENABLE(portp->brdnr, portp->pagenr);
3263 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3264 stl_cd1400ccrwait(portp);
3265 stl_cd1400setreg(portp, CCR, ccr);
3266 stl_cd1400ccrwait(portp);
3267 BRDDISABLE(portp->brdnr);
3268 spin_unlock_irqrestore(&brd_lock, flags);
3271 /*****************************************************************************/
3274 * Start/stop the Transmitter and/or Receiver.
3277 static void stl_cd1400startrxtx(struct stlport *portp, int rx, int tx)
3279 unsigned char sreron, sreroff;
3280 unsigned long flags;
3282 pr_debug("stl_cd1400startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
3287 sreroff |= (SRER_TXDATA | SRER_TXEMPTY);
3289 sreron |= SRER_TXDATA;
3291 sreron |= SRER_TXEMPTY;
3293 sreroff |= SRER_RXDATA;
3295 sreron |= SRER_RXDATA;
3297 spin_lock_irqsave(&brd_lock, flags);
3298 BRDENABLE(portp->brdnr, portp->pagenr);
3299 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3300 stl_cd1400setreg(portp, SRER,
3301 ((stl_cd1400getreg(portp, SRER) & ~sreroff) | sreron));
3302 BRDDISABLE(portp->brdnr);
3304 set_bit(ASYI_TXBUSY, &portp->istate);
3305 spin_unlock_irqrestore(&brd_lock, flags);
3308 /*****************************************************************************/
3311 * Disable all interrupts from this port.
3314 static void stl_cd1400disableintrs(struct stlport *portp)
3316 unsigned long flags;
3318 pr_debug("stl_cd1400disableintrs(portp=%p)\n", portp);
3320 spin_lock_irqsave(&brd_lock, flags);
3321 BRDENABLE(portp->brdnr, portp->pagenr);
3322 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3323 stl_cd1400setreg(portp, SRER, 0);
3324 BRDDISABLE(portp->brdnr);
3325 spin_unlock_irqrestore(&brd_lock, flags);
3328 /*****************************************************************************/
3330 static void stl_cd1400sendbreak(struct stlport *portp, int len)
3332 unsigned long flags;
3334 pr_debug("stl_cd1400sendbreak(portp=%p,len=%d)\n", portp, len);
3336 spin_lock_irqsave(&brd_lock, flags);
3337 BRDENABLE(portp->brdnr, portp->pagenr);
3338 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3339 stl_cd1400setreg(portp, SRER,
3340 ((stl_cd1400getreg(portp, SRER) & ~SRER_TXDATA) |
3342 BRDDISABLE(portp->brdnr);
3343 portp->brklen = len;
3345 portp->stats.txbreaks++;
3346 spin_unlock_irqrestore(&brd_lock, flags);
3349 /*****************************************************************************/
3352 * Take flow control actions...
3355 static void stl_cd1400flowctrl(struct stlport *portp, int state)
3357 struct tty_struct *tty;
3358 unsigned long flags;
3360 pr_debug("stl_cd1400flowctrl(portp=%p,state=%x)\n", portp, state);
3368 spin_lock_irqsave(&brd_lock, flags);
3369 BRDENABLE(portp->brdnr, portp->pagenr);
3370 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3373 if (tty->termios->c_iflag & IXOFF) {
3374 stl_cd1400ccrwait(portp);
3375 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3376 portp->stats.rxxon++;
3377 stl_cd1400ccrwait(portp);
3380 * Question: should we return RTS to what it was before? It may
3381 * have been set by an ioctl... Suppose not, since if you have
3382 * hardware flow control set then it is pretty silly to go and
3383 * set the RTS line by hand.
3385 if (tty->termios->c_cflag & CRTSCTS) {
3386 stl_cd1400setreg(portp, MCOR1,
3387 (stl_cd1400getreg(portp, MCOR1) |
3388 FIFO_RTSTHRESHOLD));
3389 stl_cd1400setreg(portp, MSVR2, MSVR2_RTS);
3390 portp->stats.rxrtson++;
3393 if (tty->termios->c_iflag & IXOFF) {
3394 stl_cd1400ccrwait(portp);
3395 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3396 portp->stats.rxxoff++;
3397 stl_cd1400ccrwait(portp);
3399 if (tty->termios->c_cflag & CRTSCTS) {
3400 stl_cd1400setreg(portp, MCOR1,
3401 (stl_cd1400getreg(portp, MCOR1) & 0xf0));
3402 stl_cd1400setreg(portp, MSVR2, 0);
3403 portp->stats.rxrtsoff++;
3407 BRDDISABLE(portp->brdnr);
3408 spin_unlock_irqrestore(&brd_lock, flags);
3411 /*****************************************************************************/
3414 * Send a flow control character...
3417 static void stl_cd1400sendflow(struct stlport *portp, int state)
3419 struct tty_struct *tty;
3420 unsigned long flags;
3422 pr_debug("stl_cd1400sendflow(portp=%p,state=%x)\n", portp, state);
3430 spin_lock_irqsave(&brd_lock, flags);
3431 BRDENABLE(portp->brdnr, portp->pagenr);
3432 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3434 stl_cd1400ccrwait(portp);
3435 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR1);
3436 portp->stats.rxxon++;
3437 stl_cd1400ccrwait(portp);
3439 stl_cd1400ccrwait(portp);
3440 stl_cd1400setreg(portp, CCR, CCR_SENDSCHR2);
3441 portp->stats.rxxoff++;
3442 stl_cd1400ccrwait(portp);
3444 BRDDISABLE(portp->brdnr);
3445 spin_unlock_irqrestore(&brd_lock, flags);
3448 /*****************************************************************************/
3450 static void stl_cd1400flush(struct stlport *portp)
3452 unsigned long flags;
3454 pr_debug("stl_cd1400flush(portp=%p)\n", portp);
3459 spin_lock_irqsave(&brd_lock, flags);
3460 BRDENABLE(portp->brdnr, portp->pagenr);
3461 stl_cd1400setreg(portp, CAR, (portp->portnr & 0x03));
3462 stl_cd1400ccrwait(portp);
3463 stl_cd1400setreg(portp, CCR, CCR_TXFLUSHFIFO);
3464 stl_cd1400ccrwait(portp);
3465 portp->tx.tail = portp->tx.head;
3466 BRDDISABLE(portp->brdnr);
3467 spin_unlock_irqrestore(&brd_lock, flags);
3470 /*****************************************************************************/
3473 * Return the current state of data flow on this port. This is only
3474 * really interresting when determining if data has fully completed
3475 * transmission or not... This is easy for the cd1400, it accurately
3476 * maintains the busy port flag.
3479 static int stl_cd1400datastate(struct stlport *portp)
3481 pr_debug("stl_cd1400datastate(portp=%p)\n", portp);
3486 return test_bit(ASYI_TXBUSY, &portp->istate) ? 1 : 0;
3489 /*****************************************************************************/
3492 * Interrupt service routine for cd1400 EasyIO boards.
3495 static void stl_cd1400eiointr(struct stlpanel *panelp, unsigned int iobase)
3497 unsigned char svrtype;
3499 pr_debug("stl_cd1400eiointr(panelp=%p,iobase=%x)\n", panelp, iobase);
3501 spin_lock(&brd_lock);
3503 svrtype = inb(iobase + EREG_DATA);
3504 if (panelp->nrports > 4) {
3505 outb((SVRR + 0x80), iobase);
3506 svrtype |= inb(iobase + EREG_DATA);
3509 if (svrtype & SVRR_RX)
3510 stl_cd1400rxisr(panelp, iobase);
3511 else if (svrtype & SVRR_TX)
3512 stl_cd1400txisr(panelp, iobase);
3513 else if (svrtype & SVRR_MDM)
3514 stl_cd1400mdmisr(panelp, iobase);
3516 spin_unlock(&brd_lock);
3519 /*****************************************************************************/
3522 * Interrupt service routine for cd1400 panels.
3525 static void stl_cd1400echintr(struct stlpanel *panelp, unsigned int iobase)
3527 unsigned char svrtype;
3529 pr_debug("stl_cd1400echintr(panelp=%p,iobase=%x)\n", panelp, iobase);
3532 svrtype = inb(iobase + EREG_DATA);
3533 outb((SVRR + 0x80), iobase);
3534 svrtype |= inb(iobase + EREG_DATA);
3535 if (svrtype & SVRR_RX)
3536 stl_cd1400rxisr(panelp, iobase);
3537 else if (svrtype & SVRR_TX)
3538 stl_cd1400txisr(panelp, iobase);
3539 else if (svrtype & SVRR_MDM)
3540 stl_cd1400mdmisr(panelp, iobase);
3544 /*****************************************************************************/
3547 * Unfortunately we need to handle breaks in the TX data stream, since
3548 * this is the only way to generate them on the cd1400.
3551 static int stl_cd1400breakisr(struct stlport *portp, int ioaddr)
3553 if (portp->brklen == 1) {
3554 outb((COR2 + portp->uartaddr), ioaddr);
3555 outb((inb(ioaddr + EREG_DATA) | COR2_ETC),
3556 (ioaddr + EREG_DATA));
3557 outb((TDR + portp->uartaddr), ioaddr);
3558 outb(ETC_CMD, (ioaddr + EREG_DATA));
3559 outb(ETC_STARTBREAK, (ioaddr + EREG_DATA));
3560 outb((SRER + portp->uartaddr), ioaddr);
3561 outb((inb(ioaddr + EREG_DATA) & ~(SRER_TXDATA | SRER_TXEMPTY)),
3562 (ioaddr + EREG_DATA));
3564 } else if (portp->brklen > 1) {
3565 outb((TDR + portp->uartaddr), ioaddr);
3566 outb(ETC_CMD, (ioaddr + EREG_DATA));
3567 outb(ETC_STOPBREAK, (ioaddr + EREG_DATA));
3571 outb((COR2 + portp->uartaddr), ioaddr);
3572 outb((inb(ioaddr + EREG_DATA) & ~COR2_ETC),
3573 (ioaddr + EREG_DATA));
3579 /*****************************************************************************/
3582 * Transmit interrupt handler. This has gotta be fast! Handling TX
3583 * chars is pretty simple, stuff as many as possible from the TX buffer
3584 * into the cd1400 FIFO. Must also handle TX breaks here, since they
3585 * are embedded as commands in the data stream. Oh no, had to use a goto!
3586 * This could be optimized more, will do when I get time...
3587 * In practice it is possible that interrupts are enabled but that the
3588 * port has been hung up. Need to handle not having any TX buffer here,
3589 * this is done by using the side effect that head and tail will also
3590 * be NULL if the buffer has been freed.
3593 static void stl_cd1400txisr(struct stlpanel *panelp, int ioaddr)
3595 struct stlport *portp;
3598 unsigned char ioack, srer;
3600 pr_debug("stl_cd1400txisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3602 ioack = inb(ioaddr + EREG_TXACK);
3603 if (((ioack & panelp->ackmask) != 0) ||
3604 ((ioack & ACK_TYPMASK) != ACK_TYPTX)) {
3605 printk("STALLION: bad TX interrupt ack value=%x\n", ioack);
3608 portp = panelp->ports[(ioack >> 3)];
3611 * Unfortunately we need to handle breaks in the data stream, since
3612 * this is the only way to generate them on the cd1400. Do it now if
3613 * a break is to be sent.
3615 if (portp->brklen != 0)
3616 if (stl_cd1400breakisr(portp, ioaddr))
3619 head = portp->tx.head;
3620 tail = portp->tx.tail;
3621 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
3622 if ((len == 0) || ((len < STL_TXBUFLOW) &&
3623 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
3624 set_bit(ASYI_TXLOW, &portp->istate);
3625 schedule_work(&portp->tqueue);
3629 outb((SRER + portp->uartaddr), ioaddr);
3630 srer = inb(ioaddr + EREG_DATA);
3631 if (srer & SRER_TXDATA) {
3632 srer = (srer & ~SRER_TXDATA) | SRER_TXEMPTY;
3634 srer &= ~(SRER_TXDATA | SRER_TXEMPTY);
3635 clear_bit(ASYI_TXBUSY, &portp->istate);
3637 outb(srer, (ioaddr + EREG_DATA));
3639 len = MIN(len, CD1400_TXFIFOSIZE);
3640 portp->stats.txtotal += len;
3641 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
3642 outb((TDR + portp->uartaddr), ioaddr);
3643 outsb((ioaddr + EREG_DATA), tail, stlen);
3646 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
3647 tail = portp->tx.buf;
3649 outsb((ioaddr + EREG_DATA), tail, len);
3652 portp->tx.tail = tail;
3656 outb((EOSRR + portp->uartaddr), ioaddr);
3657 outb(0, (ioaddr + EREG_DATA));
3660 /*****************************************************************************/
3663 * Receive character interrupt handler. Determine if we have good chars
3664 * or bad chars and then process appropriately. Good chars are easy
3665 * just shove the lot into the RX buffer and set all status byte to 0.
3666 * If a bad RX char then process as required. This routine needs to be
3667 * fast! In practice it is possible that we get an interrupt on a port
3668 * that is closed. This can happen on hangups - since they completely
3669 * shutdown a port not in user context. Need to handle this case.
3672 static void stl_cd1400rxisr(struct stlpanel *panelp, int ioaddr)
3674 struct stlport *portp;
3675 struct tty_struct *tty;
3676 unsigned int ioack, len, buflen;
3677 unsigned char status;
3680 pr_debug("stl_cd1400rxisr(panelp=%p,ioaddr=%x)\n", panelp, ioaddr);
3682 ioack = inb(ioaddr + EREG_RXACK);
3683 if ((ioack & panelp->ackmask) != 0) {
3684 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3687 portp = panelp->ports[(ioack >> 3)];
3690 if ((ioack & ACK_TYPMASK) == ACK_TYPRXGOOD) {
3691 outb((RDCR + portp->uartaddr), ioaddr);
3692 len = inb(ioaddr + EREG_DATA);
3693 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
3694 len = MIN(len, sizeof(stl_unwanted));
3695 outb((RDSR + portp->uartaddr), ioaddr);
3696 insb((ioaddr + EREG_DATA), &stl_unwanted[0], len);
3697 portp->stats.rxlost += len;
3698 portp->stats.rxtotal += len;
3700 len = MIN(len, buflen);
3703 outb((RDSR + portp->uartaddr), ioaddr);
3704 tty_prepare_flip_string(tty, &ptr, len);
3705 insb((ioaddr + EREG_DATA), ptr, len);
3706 tty_schedule_flip(tty);
3707 portp->stats.rxtotal += len;
3710 } else if ((ioack & ACK_TYPMASK) == ACK_TYPRXBAD) {
3711 outb((RDSR + portp->uartaddr), ioaddr);
3712 status = inb(ioaddr + EREG_DATA);
3713 ch = inb(ioaddr + EREG_DATA);
3714 if (status & ST_PARITY)
3715 portp->stats.rxparity++;
3716 if (status & ST_FRAMING)
3717 portp->stats.rxframing++;
3718 if (status & ST_OVERRUN)
3719 portp->stats.rxoverrun++;
3720 if (status & ST_BREAK)
3721 portp->stats.rxbreaks++;
3722 if (status & ST_SCHARMASK) {
3723 if ((status & ST_SCHARMASK) == ST_SCHAR1)
3724 portp->stats.txxon++;
3725 if ((status & ST_SCHARMASK) == ST_SCHAR2)
3726 portp->stats.txxoff++;
3729 if (tty != NULL && (portp->rxignoremsk & status) == 0) {
3730 if (portp->rxmarkmsk & status) {
3731 if (status & ST_BREAK) {
3733 if (portp->flags & ASYNC_SAK) {
3735 BRDENABLE(portp->brdnr, portp->pagenr);
3737 } else if (status & ST_PARITY) {
3738 status = TTY_PARITY;
3739 } else if (status & ST_FRAMING) {
3741 } else if(status & ST_OVERRUN) {
3742 status = TTY_OVERRUN;
3749 tty_insert_flip_char(tty, ch, status);
3750 tty_schedule_flip(tty);
3753 printk("STALLION: bad RX interrupt ack value=%x\n", ioack);
3758 outb((EOSRR + portp->uartaddr), ioaddr);
3759 outb(0, (ioaddr + EREG_DATA));
3762 /*****************************************************************************/
3765 * Modem interrupt handler. The is called when the modem signal line
3766 * (DCD) has changed state. Leave most of the work to the off-level
3767 * processing routine.
3770 static void stl_cd1400mdmisr(struct stlpanel *panelp, int ioaddr)
3772 struct stlport *portp;
3776 pr_debug("stl_cd1400mdmisr(panelp=%p)\n", panelp);
3778 ioack = inb(ioaddr + EREG_MDACK);
3779 if (((ioack & panelp->ackmask) != 0) ||
3780 ((ioack & ACK_TYPMASK) != ACK_TYPMDM)) {
3781 printk("STALLION: bad MODEM interrupt ack value=%x\n", ioack);
3784 portp = panelp->ports[(ioack >> 3)];
3786 outb((MISR + portp->uartaddr), ioaddr);
3787 misr = inb(ioaddr + EREG_DATA);
3788 if (misr & MISR_DCD) {
3789 set_bit(ASYI_DCDCHANGE, &portp->istate);
3790 schedule_work(&portp->tqueue);
3791 portp->stats.modem++;
3794 outb((EOSRR + portp->uartaddr), ioaddr);
3795 outb(0, (ioaddr + EREG_DATA));
3798 /*****************************************************************************/
3799 /* SC26198 HARDWARE FUNCTIONS */
3800 /*****************************************************************************/
3803 * These functions get/set/update the registers of the sc26198 UARTs.
3804 * Access to the sc26198 registers is via an address/data io port pair.
3805 * (Maybe should make this inline...)
3808 static int stl_sc26198getreg(struct stlport *portp, int regnr)
3810 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3811 return inb(portp->ioaddr + XP_DATA);
3814 static void stl_sc26198setreg(struct stlport *portp, int regnr, int value)
3816 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3817 outb(value, (portp->ioaddr + XP_DATA));
3820 static int stl_sc26198updatereg(struct stlport *portp, int regnr, int value)
3822 outb((regnr | portp->uartaddr), (portp->ioaddr + XP_ADDR));
3823 if (inb(portp->ioaddr + XP_DATA) != value) {
3824 outb(value, (portp->ioaddr + XP_DATA));
3830 /*****************************************************************************/
3833 * Functions to get and set the sc26198 global registers.
3836 static int stl_sc26198getglobreg(struct stlport *portp, int regnr)
3838 outb(regnr, (portp->ioaddr + XP_ADDR));
3839 return inb(portp->ioaddr + XP_DATA);
3843 static void stl_sc26198setglobreg(struct stlport *portp, int regnr, int value)
3845 outb(regnr, (portp->ioaddr + XP_ADDR));
3846 outb(value, (portp->ioaddr + XP_DATA));
3850 /*****************************************************************************/
3853 * Inbitialize the UARTs in a panel. We don't care what sort of board
3854 * these ports are on - since the port io registers are almost
3855 * identical when dealing with ports.
3858 static int stl_sc26198panelinit(struct stlbrd *brdp, struct stlpanel *panelp)
3861 int nrchips, ioaddr;
3863 pr_debug("stl_sc26198panelinit(brdp=%p,panelp=%p)\n", brdp, panelp);
3865 BRDENABLE(panelp->brdnr, panelp->pagenr);
3868 * Check that each chip is present and started up OK.
3871 nrchips = (panelp->nrports + 4) / SC26198_PORTS;
3872 if (brdp->brdtype == BRD_ECHPCI)
3873 outb(panelp->pagenr, brdp->ioctrl);
3875 for (i = 0; (i < nrchips); i++) {
3876 ioaddr = panelp->iobase + (i * 4);
3877 outb(SCCR, (ioaddr + XP_ADDR));
3878 outb(CR_RESETALL, (ioaddr + XP_DATA));
3879 outb(TSTR, (ioaddr + XP_ADDR));
3880 if (inb(ioaddr + XP_DATA) != 0) {
3881 printk("STALLION: sc26198 not responding, "
3882 "brd=%d panel=%d chip=%d\n",
3883 panelp->brdnr, panelp->panelnr, i);
3886 chipmask |= (0x1 << i);
3887 outb(GCCR, (ioaddr + XP_ADDR));
3888 outb(GCCR_IVRTYPCHANACK, (ioaddr + XP_DATA));
3889 outb(WDTRCR, (ioaddr + XP_ADDR));
3890 outb(0xff, (ioaddr + XP_DATA));
3893 BRDDISABLE(panelp->brdnr);
3897 /*****************************************************************************/
3900 * Initialize hardware specific port registers.
3903 static void stl_sc26198portinit(struct stlbrd *brdp, struct stlpanel *panelp, struct stlport *portp)
3905 pr_debug("stl_sc26198portinit(brdp=%p,panelp=%p,portp=%p)\n", brdp,
3908 if ((brdp == NULL) || (panelp == NULL) ||
3912 portp->ioaddr = panelp->iobase + ((portp->portnr < 8) ? 0 : 4);
3913 portp->uartaddr = (portp->portnr & 0x07) << 4;
3914 portp->pagenr = panelp->pagenr;
3917 BRDENABLE(portp->brdnr, portp->pagenr);
3918 stl_sc26198setreg(portp, IOPCR, IOPCR_SETSIGS);
3919 BRDDISABLE(portp->brdnr);
3922 /*****************************************************************************/
3925 * Set up the sc26198 registers for a port based on the termios port
3929 static void stl_sc26198setport(struct stlport *portp, struct ktermios *tiosp)
3931 struct stlbrd *brdp;
3932 unsigned long flags;
3933 unsigned int baudrate;
3934 unsigned char mr0, mr1, mr2, clk;
3935 unsigned char imron, imroff, iopr, ipr;
3945 brdp = stl_brds[portp->brdnr];
3950 * Set up the RX char ignore mask with those RX error types we
3953 portp->rxignoremsk = 0;
3954 if (tiosp->c_iflag & IGNPAR)
3955 portp->rxignoremsk |= (SR_RXPARITY | SR_RXFRAMING |
3957 if (tiosp->c_iflag & IGNBRK)
3958 portp->rxignoremsk |= SR_RXBREAK;
3960 portp->rxmarkmsk = SR_RXOVERRUN;
3961 if (tiosp->c_iflag & (INPCK | PARMRK))
3962 portp->rxmarkmsk |= (SR_RXPARITY | SR_RXFRAMING);
3963 if (tiosp->c_iflag & BRKINT)
3964 portp->rxmarkmsk |= SR_RXBREAK;
3967 * Go through the char size, parity and stop bits and set all the
3968 * option register appropriately.
3970 switch (tiosp->c_cflag & CSIZE) {
3985 if (tiosp->c_cflag & CSTOPB)
3990 if (tiosp->c_cflag & PARENB) {
3991 if (tiosp->c_cflag & PARODD)
3992 mr1 |= (MR1_PARENB | MR1_PARODD);
3994 mr1 |= (MR1_PARENB | MR1_PAREVEN);
3999 mr1 |= MR1_ERRBLOCK;
4002 * Set the RX FIFO threshold at 8 chars. This gives a bit of breathing
4003 * space for hardware flow control and the like. This should be set to
4006 mr2 |= MR2_RXFIFOHALF;
4009 * Calculate the baud rate timers. For now we will just assume that
4010 * the input and output baud are the same. The sc26198 has a fixed
4011 * baud rate table, so only discrete baud rates possible.
4013 baudrate = tiosp->c_cflag & CBAUD;
4014 if (baudrate & CBAUDEX) {
4015 baudrate &= ~CBAUDEX;
4016 if ((baudrate < 1) || (baudrate > 4))
4017 tiosp->c_cflag &= ~CBAUDEX;
4021 baudrate = stl_baudrates[baudrate];
4022 if ((tiosp->c_cflag & CBAUD) == B38400) {
4023 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
4025 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
4027 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
4029 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
4031 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
4032 baudrate = (portp->baud_base / portp->custom_divisor);
4034 if (baudrate > STL_SC26198MAXBAUD)
4035 baudrate = STL_SC26198MAXBAUD;
4038 for (clk = 0; (clk < SC26198_NRBAUDS); clk++) {
4039 if (baudrate <= sc26198_baudtable[clk])
4045 * Check what form of modem signaling is required and set it up.
4047 if (tiosp->c_cflag & CLOCAL) {
4048 portp->flags &= ~ASYNC_CHECK_CD;
4050 iopr |= IOPR_DCDCOS;
4052 portp->flags |= ASYNC_CHECK_CD;
4056 * Setup sc26198 enhanced modes if we can. In particular we want to
4057 * handle as much of the flow control as possible automatically. As
4058 * well as saving a few CPU cycles it will also greatly improve flow
4059 * control reliability.
4061 if (tiosp->c_iflag & IXON) {
4062 mr0 |= MR0_SWFTX | MR0_SWFT;
4063 imron |= IR_XONXOFF;
4065 imroff |= IR_XONXOFF;
4067 if (tiosp->c_iflag & IXOFF)
4070 if (tiosp->c_cflag & CRTSCTS) {
4076 * All sc26198 register values calculated so go through and set
4080 pr_debug("SETPORT: portnr=%d panelnr=%d brdnr=%d\n",
4081 portp->portnr, portp->panelnr, portp->brdnr);
4082 pr_debug(" mr0=%x mr1=%x mr2=%x clk=%x\n", mr0, mr1, mr2, clk);
4083 pr_debug(" iopr=%x imron=%x imroff=%x\n", iopr, imron, imroff);
4084 pr_debug(" schr1=%x schr2=%x schr3=%x schr4=%x\n",
4085 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP],
4086 tiosp->c_cc[VSTART], tiosp->c_cc[VSTOP]);
4088 spin_lock_irqsave(&brd_lock, flags);
4089 BRDENABLE(portp->brdnr, portp->pagenr);
4090 stl_sc26198setreg(portp, IMR, 0);
4091 stl_sc26198updatereg(portp, MR0, mr0);
4092 stl_sc26198updatereg(portp, MR1, mr1);
4093 stl_sc26198setreg(portp, SCCR, CR_RXERRBLOCK);
4094 stl_sc26198updatereg(portp, MR2, mr2);
4095 stl_sc26198updatereg(portp, IOPIOR,
4096 ((stl_sc26198getreg(portp, IOPIOR) & ~IPR_CHANGEMASK) | iopr));
4099 stl_sc26198setreg(portp, TXCSR, clk);
4100 stl_sc26198setreg(portp, RXCSR, clk);
4103 stl_sc26198setreg(portp, XONCR, tiosp->c_cc[VSTART]);
4104 stl_sc26198setreg(portp, XOFFCR, tiosp->c_cc[VSTOP]);
4106 ipr = stl_sc26198getreg(portp, IPR);
4108 portp->sigs &= ~TIOCM_CD;
4110 portp->sigs |= TIOCM_CD;
4112 portp->imr = (portp->imr & ~imroff) | imron;
4113 stl_sc26198setreg(portp, IMR, portp->imr);
4114 BRDDISABLE(portp->brdnr);
4115 spin_unlock_irqrestore(&brd_lock, flags);
4118 /*****************************************************************************/
4121 * Set the state of the DTR and RTS signals.
4124 static void stl_sc26198setsignals(struct stlport *portp, int dtr, int rts)
4126 unsigned char iopioron, iopioroff;
4127 unsigned long flags;
4129 pr_debug("stl_sc26198setsignals(portp=%p,dtr=%d,rts=%d)\n", portp,
4135 iopioroff |= IPR_DTR;
4137 iopioron |= IPR_DTR;
4139 iopioroff |= IPR_RTS;
4141 iopioron |= IPR_RTS;
4143 spin_lock_irqsave(&brd_lock, flags);
4144 BRDENABLE(portp->brdnr, portp->pagenr);
4145 stl_sc26198setreg(portp, IOPIOR,
4146 ((stl_sc26198getreg(portp, IOPIOR) & ~iopioroff) | iopioron));
4147 BRDDISABLE(portp->brdnr);
4148 spin_unlock_irqrestore(&brd_lock, flags);
4151 /*****************************************************************************/
4154 * Return the state of the signals.
4157 static int stl_sc26198getsignals(struct stlport *portp)
4160 unsigned long flags;
4163 pr_debug("stl_sc26198getsignals(portp=%p)\n", portp);
4165 spin_lock_irqsave(&brd_lock, flags);
4166 BRDENABLE(portp->brdnr, portp->pagenr);
4167 ipr = stl_sc26198getreg(portp, IPR);
4168 BRDDISABLE(portp->brdnr);
4169 spin_unlock_irqrestore(&brd_lock, flags);
4172 sigs |= (ipr & IPR_DCD) ? 0 : TIOCM_CD;
4173 sigs |= (ipr & IPR_CTS) ? 0 : TIOCM_CTS;
4174 sigs |= (ipr & IPR_DTR) ? 0: TIOCM_DTR;
4175 sigs |= (ipr & IPR_RTS) ? 0: TIOCM_RTS;
4180 /*****************************************************************************/
4183 * Enable/Disable the Transmitter and/or Receiver.
4186 static void stl_sc26198enablerxtx(struct stlport *portp, int rx, int tx)
4189 unsigned long flags;
4191 pr_debug("stl_sc26198enablerxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx,tx);
4193 ccr = portp->crenable;
4195 ccr &= ~CR_TXENABLE;
4199 ccr &= ~CR_RXENABLE;
4203 spin_lock_irqsave(&brd_lock, flags);
4204 BRDENABLE(portp->brdnr, portp->pagenr);
4205 stl_sc26198setreg(portp, SCCR, ccr);
4206 BRDDISABLE(portp->brdnr);
4207 portp->crenable = ccr;
4208 spin_unlock_irqrestore(&brd_lock, flags);
4211 /*****************************************************************************/
4214 * Start/stop the Transmitter and/or Receiver.
4217 static void stl_sc26198startrxtx(struct stlport *portp, int rx, int tx)
4220 unsigned long flags;
4222 pr_debug("stl_sc26198startrxtx(portp=%p,rx=%d,tx=%d)\n", portp, rx, tx);
4230 imr &= ~(IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG);
4232 imr |= IR_RXRDY | IR_RXBREAK | IR_RXWATCHDOG;
4234 spin_lock_irqsave(&brd_lock, flags);
4235 BRDENABLE(portp->brdnr, portp->pagenr);
4236 stl_sc26198setreg(portp, IMR, imr);
4237 BRDDISABLE(portp->brdnr);
4240 set_bit(ASYI_TXBUSY, &portp->istate);
4241 spin_unlock_irqrestore(&brd_lock, flags);
4244 /*****************************************************************************/
4247 * Disable all interrupts from this port.
4250 static void stl_sc26198disableintrs(struct stlport *portp)
4252 unsigned long flags;
4254 pr_debug("stl_sc26198disableintrs(portp=%p)\n", portp);
4256 spin_lock_irqsave(&brd_lock, flags);
4257 BRDENABLE(portp->brdnr, portp->pagenr);
4259 stl_sc26198setreg(portp, IMR, 0);
4260 BRDDISABLE(portp->brdnr);
4261 spin_unlock_irqrestore(&brd_lock, flags);
4264 /*****************************************************************************/
4266 static void stl_sc26198sendbreak(struct stlport *portp, int len)
4268 unsigned long flags;
4270 pr_debug("stl_sc26198sendbreak(portp=%p,len=%d)\n", portp, len);
4272 spin_lock_irqsave(&brd_lock, flags);
4273 BRDENABLE(portp->brdnr, portp->pagenr);
4275 stl_sc26198setreg(portp, SCCR, CR_TXSTARTBREAK);
4276 portp->stats.txbreaks++;
4278 stl_sc26198setreg(portp, SCCR, CR_TXSTOPBREAK);
4280 BRDDISABLE(portp->brdnr);
4281 spin_unlock_irqrestore(&brd_lock, flags);
4284 /*****************************************************************************/
4287 * Take flow control actions...
4290 static void stl_sc26198flowctrl(struct stlport *portp, int state)
4292 struct tty_struct *tty;
4293 unsigned long flags;
4296 pr_debug("stl_sc26198flowctrl(portp=%p,state=%x)\n", portp, state);
4304 spin_lock_irqsave(&brd_lock, flags);
4305 BRDENABLE(portp->brdnr, portp->pagenr);
4308 if (tty->termios->c_iflag & IXOFF) {
4309 mr0 = stl_sc26198getreg(portp, MR0);
4310 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4311 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4313 portp->stats.rxxon++;
4314 stl_sc26198wait(portp);
4315 stl_sc26198setreg(portp, MR0, mr0);
4318 * Question: should we return RTS to what it was before? It may
4319 * have been set by an ioctl... Suppose not, since if you have
4320 * hardware flow control set then it is pretty silly to go and
4321 * set the RTS line by hand.
4323 if (tty->termios->c_cflag & CRTSCTS) {
4324 stl_sc26198setreg(portp, MR1,
4325 (stl_sc26198getreg(portp, MR1) | MR1_AUTORTS));
4326 stl_sc26198setreg(portp, IOPIOR,
4327 (stl_sc26198getreg(portp, IOPIOR) | IOPR_RTS));
4328 portp->stats.rxrtson++;
4331 if (tty->termios->c_iflag & IXOFF) {
4332 mr0 = stl_sc26198getreg(portp, MR0);
4333 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4334 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4336 portp->stats.rxxoff++;
4337 stl_sc26198wait(portp);
4338 stl_sc26198setreg(portp, MR0, mr0);
4340 if (tty->termios->c_cflag & CRTSCTS) {
4341 stl_sc26198setreg(portp, MR1,
4342 (stl_sc26198getreg(portp, MR1) & ~MR1_AUTORTS));
4343 stl_sc26198setreg(portp, IOPIOR,
4344 (stl_sc26198getreg(portp, IOPIOR) & ~IOPR_RTS));
4345 portp->stats.rxrtsoff++;
4349 BRDDISABLE(portp->brdnr);
4350 spin_unlock_irqrestore(&brd_lock, flags);
4353 /*****************************************************************************/
4356 * Send a flow control character.
4359 static void stl_sc26198sendflow(struct stlport *portp, int state)
4361 struct tty_struct *tty;
4362 unsigned long flags;
4365 pr_debug("stl_sc26198sendflow(portp=%p,state=%x)\n", portp, state);
4373 spin_lock_irqsave(&brd_lock, flags);
4374 BRDENABLE(portp->brdnr, portp->pagenr);
4376 mr0 = stl_sc26198getreg(portp, MR0);
4377 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4378 stl_sc26198setreg(portp, SCCR, CR_TXSENDXON);
4380 portp->stats.rxxon++;
4381 stl_sc26198wait(portp);
4382 stl_sc26198setreg(portp, MR0, mr0);
4384 mr0 = stl_sc26198getreg(portp, MR0);
4385 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4386 stl_sc26198setreg(portp, SCCR, CR_TXSENDXOFF);
4388 portp->stats.rxxoff++;
4389 stl_sc26198wait(portp);
4390 stl_sc26198setreg(portp, MR0, mr0);
4392 BRDDISABLE(portp->brdnr);
4393 spin_unlock_irqrestore(&brd_lock, flags);
4396 /*****************************************************************************/
4398 static void stl_sc26198flush(struct stlport *portp)
4400 unsigned long flags;
4402 pr_debug("stl_sc26198flush(portp=%p)\n", portp);
4407 spin_lock_irqsave(&brd_lock, flags);
4408 BRDENABLE(portp->brdnr, portp->pagenr);
4409 stl_sc26198setreg(portp, SCCR, CR_TXRESET);
4410 stl_sc26198setreg(portp, SCCR, portp->crenable);
4411 BRDDISABLE(portp->brdnr);
4412 portp->tx.tail = portp->tx.head;
4413 spin_unlock_irqrestore(&brd_lock, flags);
4416 /*****************************************************************************/
4419 * Return the current state of data flow on this port. This is only
4420 * really interresting when determining if data has fully completed
4421 * transmission or not... The sc26198 interrupt scheme cannot
4422 * determine when all data has actually drained, so we need to
4423 * check the port statusy register to be sure.
4426 static int stl_sc26198datastate(struct stlport *portp)
4428 unsigned long flags;
4431 pr_debug("stl_sc26198datastate(portp=%p)\n", portp);
4435 if (test_bit(ASYI_TXBUSY, &portp->istate))
4438 spin_lock_irqsave(&brd_lock, flags);
4439 BRDENABLE(portp->brdnr, portp->pagenr);
4440 sr = stl_sc26198getreg(portp, SR);
4441 BRDDISABLE(portp->brdnr);
4442 spin_unlock_irqrestore(&brd_lock, flags);
4444 return (sr & SR_TXEMPTY) ? 0 : 1;
4447 /*****************************************************************************/
4450 * Delay for a small amount of time, to give the sc26198 a chance
4451 * to process a command...
4454 static void stl_sc26198wait(struct stlport *portp)
4458 pr_debug("stl_sc26198wait(portp=%p)\n", portp);
4463 for (i = 0; (i < 20); i++)
4464 stl_sc26198getglobreg(portp, TSTR);
4467 /*****************************************************************************/
4470 * If we are TX flow controlled and in IXANY mode then we may
4471 * need to unflow control here. We gotta do this because of the
4472 * automatic flow control modes of the sc26198.
4475 static void stl_sc26198txunflow(struct stlport *portp, struct tty_struct *tty)
4479 mr0 = stl_sc26198getreg(portp, MR0);
4480 stl_sc26198setreg(portp, MR0, (mr0 & ~MR0_SWFRXTX));
4481 stl_sc26198setreg(portp, SCCR, CR_HOSTXON);
4482 stl_sc26198wait(portp);
4483 stl_sc26198setreg(portp, MR0, mr0);
4484 clear_bit(ASYI_TXFLOWED, &portp->istate);
4487 /*****************************************************************************/
4490 * Interrupt service routine for sc26198 panels.
4493 static void stl_sc26198intr(struct stlpanel *panelp, unsigned int iobase)
4495 struct stlport *portp;
4498 spin_lock(&brd_lock);
4501 * Work around bug in sc26198 chip... Cannot have A6 address
4502 * line of UART high, else iack will be returned as 0.
4504 outb(0, (iobase + 1));
4506 iack = inb(iobase + XP_IACK);
4507 portp = panelp->ports[(iack & IVR_CHANMASK) + ((iobase & 0x4) << 1)];
4509 if (iack & IVR_RXDATA)
4510 stl_sc26198rxisr(portp, iack);
4511 else if (iack & IVR_TXDATA)
4512 stl_sc26198txisr(portp);
4514 stl_sc26198otherisr(portp, iack);
4516 spin_unlock(&brd_lock);
4519 /*****************************************************************************/
4522 * Transmit interrupt handler. This has gotta be fast! Handling TX
4523 * chars is pretty simple, stuff as many as possible from the TX buffer
4524 * into the sc26198 FIFO.
4525 * In practice it is possible that interrupts are enabled but that the
4526 * port has been hung up. Need to handle not having any TX buffer here,
4527 * this is done by using the side effect that head and tail will also
4528 * be NULL if the buffer has been freed.
4531 static void stl_sc26198txisr(struct stlport *portp)
4533 unsigned int ioaddr;
4538 pr_debug("stl_sc26198txisr(portp=%p)\n", portp);
4540 ioaddr = portp->ioaddr;
4541 head = portp->tx.head;
4542 tail = portp->tx.tail;
4543 len = (head >= tail) ? (head - tail) : (STL_TXBUFSIZE - (tail - head));
4544 if ((len == 0) || ((len < STL_TXBUFLOW) &&
4545 (test_bit(ASYI_TXLOW, &portp->istate) == 0))) {
4546 set_bit(ASYI_TXLOW, &portp->istate);
4547 schedule_work(&portp->tqueue);
4551 outb((MR0 | portp->uartaddr), (ioaddr + XP_ADDR));
4552 mr0 = inb(ioaddr + XP_DATA);
4553 if ((mr0 & MR0_TXMASK) == MR0_TXEMPTY) {
4554 portp->imr &= ~IR_TXRDY;
4555 outb((IMR | portp->uartaddr), (ioaddr + XP_ADDR));
4556 outb(portp->imr, (ioaddr + XP_DATA));
4557 clear_bit(ASYI_TXBUSY, &portp->istate);
4559 mr0 |= ((mr0 & ~MR0_TXMASK) | MR0_TXEMPTY);
4560 outb(mr0, (ioaddr + XP_DATA));
4563 len = MIN(len, SC26198_TXFIFOSIZE);
4564 portp->stats.txtotal += len;
4565 stlen = MIN(len, ((portp->tx.buf + STL_TXBUFSIZE) - tail));
4566 outb(GTXFIFO, (ioaddr + XP_ADDR));
4567 outsb((ioaddr + XP_DATA), tail, stlen);
4570 if (tail >= (portp->tx.buf + STL_TXBUFSIZE))
4571 tail = portp->tx.buf;
4573 outsb((ioaddr + XP_DATA), tail, len);
4576 portp->tx.tail = tail;
4580 /*****************************************************************************/
4583 * Receive character interrupt handler. Determine if we have good chars
4584 * or bad chars and then process appropriately. Good chars are easy
4585 * just shove the lot into the RX buffer and set all status byte to 0.
4586 * If a bad RX char then process as required. This routine needs to be
4587 * fast! In practice it is possible that we get an interrupt on a port
4588 * that is closed. This can happen on hangups - since they completely
4589 * shutdown a port not in user context. Need to handle this case.
4592 static void stl_sc26198rxisr(struct stlport *portp, unsigned int iack)
4594 struct tty_struct *tty;
4595 unsigned int len, buflen, ioaddr;
4597 pr_debug("stl_sc26198rxisr(portp=%p,iack=%x)\n", portp, iack);
4600 ioaddr = portp->ioaddr;
4601 outb(GIBCR, (ioaddr + XP_ADDR));
4602 len = inb(ioaddr + XP_DATA) + 1;
4604 if ((iack & IVR_TYPEMASK) == IVR_RXDATA) {
4605 if (tty == NULL || (buflen = tty_buffer_request_room(tty, len)) == 0) {
4606 len = MIN(len, sizeof(stl_unwanted));
4607 outb(GRXFIFO, (ioaddr + XP_ADDR));
4608 insb((ioaddr + XP_DATA), &stl_unwanted[0], len);
4609 portp->stats.rxlost += len;
4610 portp->stats.rxtotal += len;
4612 len = MIN(len, buflen);
4615 outb(GRXFIFO, (ioaddr + XP_ADDR));
4616 tty_prepare_flip_string(tty, &ptr, len);
4617 insb((ioaddr + XP_DATA), ptr, len);
4618 tty_schedule_flip(tty);
4619 portp->stats.rxtotal += len;
4623 stl_sc26198rxbadchars(portp);
4627 * If we are TX flow controlled and in IXANY mode then we may need
4628 * to unflow control here. We gotta do this because of the automatic
4629 * flow control modes of the sc26198.
4631 if (test_bit(ASYI_TXFLOWED, &portp->istate)) {
4632 if ((tty != NULL) &&
4633 (tty->termios != NULL) &&
4634 (tty->termios->c_iflag & IXANY)) {
4635 stl_sc26198txunflow(portp, tty);
4640 /*****************************************************************************/
4643 * Process an RX bad character.
4646 static void stl_sc26198rxbadch(struct stlport *portp, unsigned char status, char ch)
4648 struct tty_struct *tty;
4649 unsigned int ioaddr;
4652 ioaddr = portp->ioaddr;
4654 if (status & SR_RXPARITY)
4655 portp->stats.rxparity++;
4656 if (status & SR_RXFRAMING)
4657 portp->stats.rxframing++;
4658 if (status & SR_RXOVERRUN)
4659 portp->stats.rxoverrun++;
4660 if (status & SR_RXBREAK)
4661 portp->stats.rxbreaks++;
4663 if ((tty != NULL) &&
4664 ((portp->rxignoremsk & status) == 0)) {
4665 if (portp->rxmarkmsk & status) {
4666 if (status & SR_RXBREAK) {
4668 if (portp->flags & ASYNC_SAK) {
4670 BRDENABLE(portp->brdnr, portp->pagenr);
4672 } else if (status & SR_RXPARITY) {
4673 status = TTY_PARITY;
4674 } else if (status & SR_RXFRAMING) {
4676 } else if(status & SR_RXOVERRUN) {
4677 status = TTY_OVERRUN;
4685 tty_insert_flip_char(tty, ch, status);
4686 tty_schedule_flip(tty);
4689 portp->stats.rxtotal++;
4693 /*****************************************************************************/
4696 * Process all characters in the RX FIFO of the UART. Check all char
4697 * status bytes as well, and process as required. We need to check
4698 * all bytes in the FIFO, in case some more enter the FIFO while we
4699 * are here. To get the exact character error type we need to switch
4700 * into CHAR error mode (that is why we need to make sure we empty
4704 static void stl_sc26198rxbadchars(struct stlport *portp)
4706 unsigned char status, mr1;
4710 * To get the precise error type for each character we must switch
4711 * back into CHAR error mode.
4713 mr1 = stl_sc26198getreg(portp, MR1);
4714 stl_sc26198setreg(portp, MR1, (mr1 & ~MR1_ERRBLOCK));
4716 while ((status = stl_sc26198getreg(portp, SR)) & SR_RXRDY) {
4717 stl_sc26198setreg(portp, SCCR, CR_CLEARRXERR);
4718 ch = stl_sc26198getreg(portp, RXFIFO);
4719 stl_sc26198rxbadch(portp, status, ch);
4723 * To get correct interrupt class we must switch back into BLOCK
4726 stl_sc26198setreg(portp, MR1, mr1);
4729 /*****************************************************************************/
4732 * Other interrupt handler. This includes modem signals, flow
4733 * control actions, etc. Most stuff is left to off-level interrupt
4737 static void stl_sc26198otherisr(struct stlport *portp, unsigned int iack)
4739 unsigned char cir, ipr, xisr;
4741 pr_debug("stl_sc26198otherisr(portp=%p,iack=%x)\n", portp, iack);
4743 cir = stl_sc26198getglobreg(portp, CIR);
4745 switch (cir & CIR_SUBTYPEMASK) {
4747 ipr = stl_sc26198getreg(portp, IPR);
4748 if (ipr & IPR_DCDCHANGE) {
4749 set_bit(ASYI_DCDCHANGE, &portp->istate);
4750 schedule_work(&portp->tqueue);
4751 portp->stats.modem++;
4754 case CIR_SUBXONXOFF:
4755 xisr = stl_sc26198getreg(portp, XISR);
4756 if (xisr & XISR_RXXONGOT) {
4757 set_bit(ASYI_TXFLOWED, &portp->istate);
4758 portp->stats.txxoff++;
4760 if (xisr & XISR_RXXOFFGOT) {
4761 clear_bit(ASYI_TXFLOWED, &portp->istate);
4762 portp->stats.txxon++;
4766 stl_sc26198setreg(portp, SCCR, CR_BREAKRESET);
4767 stl_sc26198rxbadchars(portp);
4775 * Loadable module initialization stuff.
4777 static int __init stallion_module_init(void)
4781 printk(KERN_INFO "%s: version %s\n", stl_drvtitle, stl_drvversion);
4783 spin_lock_init(&stallion_lock);
4784 spin_lock_init(&brd_lock);
4788 stl_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4793 * Set up a character driver for per board stuff. This is mainly used
4794 * to do stats ioctls on the ports.
4796 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stl_fsiomem))
4797 printk("STALLION: failed to register serial board device\n");
4799 stallion_class = class_create(THIS_MODULE, "staliomem");
4800 for (i = 0; i < 4; i++)
4801 class_device_create(stallion_class, NULL,
4802 MKDEV(STL_SIOMEMMAJOR, i), NULL,
4805 stl_serial->owner = THIS_MODULE;
4806 stl_serial->driver_name = stl_drvname;
4807 stl_serial->name = "ttyE";
4808 stl_serial->major = STL_SERIALMAJOR;
4809 stl_serial->minor_start = 0;
4810 stl_serial->type = TTY_DRIVER_TYPE_SERIAL;
4811 stl_serial->subtype = SERIAL_TYPE_NORMAL;
4812 stl_serial->init_termios = stl_deftermios;
4813 stl_serial->flags = TTY_DRIVER_REAL_RAW;
4814 tty_set_operations(stl_serial, &stl_ops);
4816 if (tty_register_driver(stl_serial)) {
4817 put_tty_driver(stl_serial);
4818 printk("STALLION: failed to register serial driver\n");
4825 static void __exit stallion_module_exit(void)
4827 struct stlbrd *brdp;
4828 struct stlpanel *panelp;
4829 struct stlport *portp;
4832 pr_debug("cleanup_module()\n");
4834 printk(KERN_INFO "Unloading %s: version %s\n", stl_drvtitle,
4838 * Free up all allocated resources used by the ports. This includes
4839 * memory and interrupts. As part of this process we will also do
4840 * a hangup on every open port - to try to flush out any processes
4841 * hanging onto ports.
4843 i = tty_unregister_driver(stl_serial);
4844 put_tty_driver(stl_serial);
4846 printk("STALLION: failed to un-register tty driver, "
4850 for (i = 0; i < 4; i++)
4851 class_device_destroy(stallion_class, MKDEV(STL_SIOMEMMAJOR, i));
4852 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
4853 printk("STALLION: failed to un-register serial memory device, "
4855 class_destroy(stallion_class);
4857 for (i = 0; (i < stl_nrbrds); i++) {
4858 if ((brdp = stl_brds[i]) == NULL)
4861 free_irq(brdp->irq, brdp);
4863 for (j = 0; (j < STL_MAXPANELS); j++) {
4864 panelp = brdp->panels[j];
4867 for (k = 0; (k < STL_PORTSPERPANEL); k++) {
4868 portp = panelp->ports[k];
4871 if (portp->tty != NULL)
4872 stl_hangup(portp->tty);
4873 kfree(portp->tx.buf);
4879 release_region(brdp->ioaddr1, brdp->iosize1);
4880 if (brdp->iosize2 > 0)
4881 release_region(brdp->ioaddr2, brdp->iosize2);
4888 module_init(stallion_module_init);
4889 module_exit(stallion_module_exit);
4891 MODULE_AUTHOR("Greg Ungerer");
4892 MODULE_DESCRIPTION("Stallion Multiport Serial Driver");
4893 MODULE_LICENSE("GPL");