2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
41 #include <asm/processor.h>
44 #include <asm/uaccess.h>
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
53 static cpumask_t cpus_hardware_enabled;
55 struct kvm_arch_ops *kvm_arch_ops;
57 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
59 static struct kvm_stats_debugfs_item {
62 struct dentry *dentry;
63 } debugfs_entries[] = {
64 { "pf_fixed", STAT_OFFSET(pf_fixed) },
65 { "pf_guest", STAT_OFFSET(pf_guest) },
66 { "tlb_flush", STAT_OFFSET(tlb_flush) },
67 { "invlpg", STAT_OFFSET(invlpg) },
68 { "exits", STAT_OFFSET(exits) },
69 { "io_exits", STAT_OFFSET(io_exits) },
70 { "mmio_exits", STAT_OFFSET(mmio_exits) },
71 { "signal_exits", STAT_OFFSET(signal_exits) },
72 { "irq_window", STAT_OFFSET(irq_window_exits) },
73 { "halt_exits", STAT_OFFSET(halt_exits) },
74 { "request_irq", STAT_OFFSET(request_irq_exits) },
75 { "irq_exits", STAT_OFFSET(irq_exits) },
76 { "light_exits", STAT_OFFSET(light_exits) },
77 { "efer_reload", STAT_OFFSET(efer_reload) },
81 static struct dentry *debugfs_dir;
83 #define MAX_IO_MSRS 256
85 #define CR0_RESERVED_BITS \
86 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
87 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
88 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
89 #define CR4_RESERVED_BITS \
90 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
91 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
92 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
93 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
95 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
96 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
99 // LDT or TSS descriptor in the GDT. 16 bytes.
100 struct segment_descriptor_64 {
101 struct segment_descriptor s;
108 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
111 unsigned long segment_base(u16 selector)
113 struct descriptor_table gdt;
114 struct segment_descriptor *d;
115 unsigned long table_base;
116 typedef unsigned long ul;
122 asm ("sgdt %0" : "=m"(gdt));
123 table_base = gdt.base;
125 if (selector & 4) { /* from ldt */
128 asm ("sldt %0" : "=g"(ldt_selector));
129 table_base = segment_base(ldt_selector);
131 d = (struct segment_descriptor *)(table_base + (selector & ~7));
132 v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
135 && (d->type == 2 || d->type == 9 || d->type == 11))
136 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
140 EXPORT_SYMBOL_GPL(segment_base);
142 static inline int valid_vcpu(int n)
144 return likely(n >= 0 && n < KVM_MAX_VCPUS);
147 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
150 unsigned char *host_buf = dest;
151 unsigned long req_size = size;
159 paddr = gva_to_hpa(vcpu, addr);
161 if (is_error_hpa(paddr))
164 guest_buf = (hva_t)kmap_atomic(
165 pfn_to_page(paddr >> PAGE_SHIFT),
167 offset = addr & ~PAGE_MASK;
169 now = min(size, PAGE_SIZE - offset);
170 memcpy(host_buf, (void*)guest_buf, now);
174 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
176 return req_size - size;
178 EXPORT_SYMBOL_GPL(kvm_read_guest);
180 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
183 unsigned char *host_buf = data;
184 unsigned long req_size = size;
193 paddr = gva_to_hpa(vcpu, addr);
195 if (is_error_hpa(paddr))
198 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
199 mark_page_dirty(vcpu->kvm, gfn);
200 guest_buf = (hva_t)kmap_atomic(
201 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
202 offset = addr & ~PAGE_MASK;
204 now = min(size, PAGE_SIZE - offset);
205 memcpy((void*)guest_buf, host_buf, now);
209 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
211 return req_size - size;
213 EXPORT_SYMBOL_GPL(kvm_write_guest);
215 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
217 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
220 vcpu->guest_fpu_loaded = 1;
221 fx_save(vcpu->host_fx_image);
222 fx_restore(vcpu->guest_fx_image);
224 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
226 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
228 if (!vcpu->guest_fpu_loaded)
231 vcpu->guest_fpu_loaded = 0;
232 fx_save(vcpu->guest_fx_image);
233 fx_restore(vcpu->host_fx_image);
235 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
238 * Switches to specified vcpu, until a matching vcpu_put()
240 static void vcpu_load(struct kvm_vcpu *vcpu)
242 mutex_lock(&vcpu->mutex);
243 kvm_arch_ops->vcpu_load(vcpu);
246 static void vcpu_put(struct kvm_vcpu *vcpu)
248 kvm_arch_ops->vcpu_put(vcpu);
249 mutex_unlock(&vcpu->mutex);
252 static void ack_flush(void *_completed)
254 atomic_t *completed = _completed;
256 atomic_inc(completed);
259 void kvm_flush_remote_tlbs(struct kvm *kvm)
263 struct kvm_vcpu *vcpu;
266 atomic_set(&completed, 0);
269 for (i = 0; i < kvm->nvcpus; ++i) {
270 vcpu = &kvm->vcpus[i];
271 if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
274 if (cpu != -1 && cpu != raw_smp_processor_id())
275 if (!cpu_isset(cpu, cpus)) {
282 * We really want smp_call_function_mask() here. But that's not
283 * available, so ipi all cpus in parallel and wait for them
286 for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
287 smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
288 while (atomic_read(&completed) != needed) {
294 static struct kvm *kvm_create_vm(void)
296 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
300 return ERR_PTR(-ENOMEM);
302 kvm_io_bus_init(&kvm->pio_bus);
303 spin_lock_init(&kvm->lock);
304 INIT_LIST_HEAD(&kvm->active_mmu_pages);
305 kvm_io_bus_init(&kvm->mmio_bus);
306 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
307 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
309 mutex_init(&vcpu->mutex);
312 vcpu->mmu.root_hpa = INVALID_PAGE;
314 spin_lock(&kvm_lock);
315 list_add(&kvm->vm_list, &vm_list);
316 spin_unlock(&kvm_lock);
320 static int kvm_dev_open(struct inode *inode, struct file *filp)
326 * Free any memory in @free but not in @dont.
328 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
329 struct kvm_memory_slot *dont)
333 if (!dont || free->phys_mem != dont->phys_mem)
334 if (free->phys_mem) {
335 for (i = 0; i < free->npages; ++i)
336 if (free->phys_mem[i])
337 __free_page(free->phys_mem[i]);
338 vfree(free->phys_mem);
341 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
342 vfree(free->dirty_bitmap);
344 free->phys_mem = NULL;
346 free->dirty_bitmap = NULL;
349 static void kvm_free_physmem(struct kvm *kvm)
353 for (i = 0; i < kvm->nmemslots; ++i)
354 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
357 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
361 for (i = 0; i < 2; ++i)
362 if (vcpu->pio.guest_pages[i]) {
363 __free_page(vcpu->pio.guest_pages[i]);
364 vcpu->pio.guest_pages[i] = NULL;
368 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
374 kvm_mmu_unload(vcpu);
378 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
384 kvm_mmu_destroy(vcpu);
386 kvm_arch_ops->vcpu_free(vcpu);
387 free_page((unsigned long)vcpu->run);
389 free_page((unsigned long)vcpu->pio_data);
390 vcpu->pio_data = NULL;
391 free_pio_guest_pages(vcpu);
394 static void kvm_free_vcpus(struct kvm *kvm)
399 * Unpin any mmu pages first.
401 for (i = 0; i < KVM_MAX_VCPUS; ++i)
402 kvm_unload_vcpu_mmu(&kvm->vcpus[i]);
403 for (i = 0; i < KVM_MAX_VCPUS; ++i)
404 kvm_free_vcpu(&kvm->vcpus[i]);
407 static int kvm_dev_release(struct inode *inode, struct file *filp)
412 static void kvm_destroy_vm(struct kvm *kvm)
414 spin_lock(&kvm_lock);
415 list_del(&kvm->vm_list);
416 spin_unlock(&kvm_lock);
417 kvm_io_bus_destroy(&kvm->pio_bus);
418 kvm_io_bus_destroy(&kvm->mmio_bus);
420 kvm_free_physmem(kvm);
424 static int kvm_vm_release(struct inode *inode, struct file *filp)
426 struct kvm *kvm = filp->private_data;
432 static void inject_gp(struct kvm_vcpu *vcpu)
434 kvm_arch_ops->inject_gp(vcpu, 0);
438 * Load the pae pdptrs. Return true is they are all valid.
440 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
442 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
443 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
450 spin_lock(&vcpu->kvm->lock);
451 page = gfn_to_page(vcpu->kvm, pdpt_gfn);
452 /* FIXME: !page - emulate? 0xff? */
453 pdpt = kmap_atomic(page, KM_USER0);
456 for (i = 0; i < 4; ++i) {
457 pdpte = pdpt[offset + i];
458 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
464 for (i = 0; i < 4; ++i)
465 vcpu->pdptrs[i] = pdpt[offset + i];
468 kunmap_atomic(pdpt, KM_USER0);
469 spin_unlock(&vcpu->kvm->lock);
474 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
476 if (cr0 & CR0_RESERVED_BITS) {
477 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
483 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
484 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
489 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
490 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
491 "and a clear PE flag\n");
496 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
498 if ((vcpu->shadow_efer & EFER_LME)) {
502 printk(KERN_DEBUG "set_cr0: #GP, start paging "
503 "in long mode while PAE is disabled\n");
507 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
509 printk(KERN_DEBUG "set_cr0: #GP, start paging "
510 "in long mode while CS.L == 1\n");
517 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
518 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
526 kvm_arch_ops->set_cr0(vcpu, cr0);
529 spin_lock(&vcpu->kvm->lock);
530 kvm_mmu_reset_context(vcpu);
531 spin_unlock(&vcpu->kvm->lock);
534 EXPORT_SYMBOL_GPL(set_cr0);
536 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
538 set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
540 EXPORT_SYMBOL_GPL(lmsw);
542 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
544 if (cr4 & CR4_RESERVED_BITS) {
545 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
550 if (is_long_mode(vcpu)) {
551 if (!(cr4 & X86_CR4_PAE)) {
552 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
557 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
558 && !load_pdptrs(vcpu, vcpu->cr3)) {
559 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
564 if (cr4 & X86_CR4_VMXE) {
565 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
569 kvm_arch_ops->set_cr4(vcpu, cr4);
570 spin_lock(&vcpu->kvm->lock);
571 kvm_mmu_reset_context(vcpu);
572 spin_unlock(&vcpu->kvm->lock);
574 EXPORT_SYMBOL_GPL(set_cr4);
576 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
578 if (is_long_mode(vcpu)) {
579 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
580 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
586 if (cr3 & CR3_PAE_RESERVED_BITS) {
588 "set_cr3: #GP, reserved bits\n");
592 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
593 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
599 if (cr3 & CR3_NONPAE_RESERVED_BITS) {
601 "set_cr3: #GP, reserved bits\n");
609 spin_lock(&vcpu->kvm->lock);
611 * Does the new cr3 value map to physical memory? (Note, we
612 * catch an invalid cr3 even in real-mode, because it would
613 * cause trouble later on when we turn on paging anyway.)
615 * A real CPU would silently accept an invalid cr3 and would
616 * attempt to use it - with largely undefined (and often hard
617 * to debug) behavior on the guest side.
619 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
622 vcpu->mmu.new_cr3(vcpu);
623 spin_unlock(&vcpu->kvm->lock);
625 EXPORT_SYMBOL_GPL(set_cr3);
627 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
629 if (cr8 & CR8_RESERVED_BITS) {
630 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
636 EXPORT_SYMBOL_GPL(set_cr8);
638 void fx_init(struct kvm_vcpu *vcpu)
640 struct __attribute__ ((__packed__)) fx_image_s {
646 u64 operand;// fpu dp
652 fx_save(vcpu->host_fx_image);
654 fx_save(vcpu->guest_fx_image);
655 fx_restore(vcpu->host_fx_image);
657 fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
658 fx_image->mxcsr = 0x1f80;
659 memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
660 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
662 EXPORT_SYMBOL_GPL(fx_init);
665 * Allocate some memory and give it an address in the guest physical address
668 * Discontiguous memory is allowed, mostly for framebuffers.
670 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
671 struct kvm_memory_region *mem)
675 unsigned long npages;
677 struct kvm_memory_slot *memslot;
678 struct kvm_memory_slot old, new;
679 int memory_config_version;
682 /* General sanity checks */
683 if (mem->memory_size & (PAGE_SIZE - 1))
685 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
687 if (mem->slot >= KVM_MEMORY_SLOTS)
689 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
692 memslot = &kvm->memslots[mem->slot];
693 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
694 npages = mem->memory_size >> PAGE_SHIFT;
697 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
700 spin_lock(&kvm->lock);
702 memory_config_version = kvm->memory_config_version;
703 new = old = *memslot;
705 new.base_gfn = base_gfn;
707 new.flags = mem->flags;
709 /* Disallow changing a memory slot's size. */
711 if (npages && old.npages && npages != old.npages)
714 /* Check for overlaps */
716 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
717 struct kvm_memory_slot *s = &kvm->memslots[i];
721 if (!((base_gfn + npages <= s->base_gfn) ||
722 (base_gfn >= s->base_gfn + s->npages)))
726 * Do memory allocations outside lock. memory_config_version will
729 spin_unlock(&kvm->lock);
731 /* Deallocate if slot is being removed */
735 /* Free page dirty bitmap if unneeded */
736 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
737 new.dirty_bitmap = NULL;
741 /* Allocate if a slot is being created */
742 if (npages && !new.phys_mem) {
743 new.phys_mem = vmalloc(npages * sizeof(struct page *));
748 memset(new.phys_mem, 0, npages * sizeof(struct page *));
749 for (i = 0; i < npages; ++i) {
750 new.phys_mem[i] = alloc_page(GFP_HIGHUSER
752 if (!new.phys_mem[i])
754 set_page_private(new.phys_mem[i],0);
758 /* Allocate page dirty bitmap if needed */
759 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
760 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
762 new.dirty_bitmap = vmalloc(dirty_bytes);
763 if (!new.dirty_bitmap)
765 memset(new.dirty_bitmap, 0, dirty_bytes);
768 spin_lock(&kvm->lock);
770 if (memory_config_version != kvm->memory_config_version) {
771 spin_unlock(&kvm->lock);
772 kvm_free_physmem_slot(&new, &old);
780 if (mem->slot >= kvm->nmemslots)
781 kvm->nmemslots = mem->slot + 1;
784 ++kvm->memory_config_version;
786 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
787 kvm_flush_remote_tlbs(kvm);
789 spin_unlock(&kvm->lock);
791 kvm_free_physmem_slot(&old, &new);
795 spin_unlock(&kvm->lock);
797 kvm_free_physmem_slot(&new, &old);
803 * Get (and clear) the dirty memory log for a memory slot.
805 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
806 struct kvm_dirty_log *log)
808 struct kvm_memory_slot *memslot;
811 unsigned long any = 0;
813 spin_lock(&kvm->lock);
816 * Prevent changes to guest memory configuration even while the lock
820 spin_unlock(&kvm->lock);
822 if (log->slot >= KVM_MEMORY_SLOTS)
825 memslot = &kvm->memslots[log->slot];
827 if (!memslot->dirty_bitmap)
830 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
832 for (i = 0; !any && i < n/sizeof(long); ++i)
833 any = memslot->dirty_bitmap[i];
836 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
839 spin_lock(&kvm->lock);
840 kvm_mmu_slot_remove_write_access(kvm, log->slot);
841 kvm_flush_remote_tlbs(kvm);
842 memset(memslot->dirty_bitmap, 0, n);
843 spin_unlock(&kvm->lock);
848 spin_lock(&kvm->lock);
850 spin_unlock(&kvm->lock);
855 * Set a new alias region. Aliases map a portion of physical memory into
856 * another portion. This is useful for memory windows, for example the PC
859 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
860 struct kvm_memory_alias *alias)
863 struct kvm_mem_alias *p;
866 /* General sanity checks */
867 if (alias->memory_size & (PAGE_SIZE - 1))
869 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
871 if (alias->slot >= KVM_ALIAS_SLOTS)
873 if (alias->guest_phys_addr + alias->memory_size
874 < alias->guest_phys_addr)
876 if (alias->target_phys_addr + alias->memory_size
877 < alias->target_phys_addr)
880 spin_lock(&kvm->lock);
882 p = &kvm->aliases[alias->slot];
883 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
884 p->npages = alias->memory_size >> PAGE_SHIFT;
885 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
887 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
888 if (kvm->aliases[n - 1].npages)
892 kvm_mmu_zap_all(kvm);
894 spin_unlock(&kvm->lock);
902 static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
905 struct kvm_mem_alias *alias;
907 for (i = 0; i < kvm->naliases; ++i) {
908 alias = &kvm->aliases[i];
909 if (gfn >= alias->base_gfn
910 && gfn < alias->base_gfn + alias->npages)
911 return alias->target_gfn + gfn - alias->base_gfn;
916 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
920 for (i = 0; i < kvm->nmemslots; ++i) {
921 struct kvm_memory_slot *memslot = &kvm->memslots[i];
923 if (gfn >= memslot->base_gfn
924 && gfn < memslot->base_gfn + memslot->npages)
930 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
932 gfn = unalias_gfn(kvm, gfn);
933 return __gfn_to_memslot(kvm, gfn);
936 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
938 struct kvm_memory_slot *slot;
940 gfn = unalias_gfn(kvm, gfn);
941 slot = __gfn_to_memslot(kvm, gfn);
944 return slot->phys_mem[gfn - slot->base_gfn];
946 EXPORT_SYMBOL_GPL(gfn_to_page);
948 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
951 struct kvm_memory_slot *memslot;
952 unsigned long rel_gfn;
954 for (i = 0; i < kvm->nmemslots; ++i) {
955 memslot = &kvm->memslots[i];
957 if (gfn >= memslot->base_gfn
958 && gfn < memslot->base_gfn + memslot->npages) {
960 if (!memslot->dirty_bitmap)
963 rel_gfn = gfn - memslot->base_gfn;
966 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
967 set_bit(rel_gfn, memslot->dirty_bitmap);
973 static int emulator_read_std(unsigned long addr,
976 struct x86_emulate_ctxt *ctxt)
978 struct kvm_vcpu *vcpu = ctxt->vcpu;
982 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
983 unsigned offset = addr & (PAGE_SIZE-1);
984 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
989 if (gpa == UNMAPPED_GVA)
990 return X86EMUL_PROPAGATE_FAULT;
991 pfn = gpa >> PAGE_SHIFT;
992 page = gfn_to_page(vcpu->kvm, pfn);
994 return X86EMUL_UNHANDLEABLE;
995 page_virt = kmap_atomic(page, KM_USER0);
997 memcpy(data, page_virt + offset, tocopy);
999 kunmap_atomic(page_virt, KM_USER0);
1006 return X86EMUL_CONTINUE;
1009 static int emulator_write_std(unsigned long addr,
1012 struct x86_emulate_ctxt *ctxt)
1014 printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
1016 return X86EMUL_UNHANDLEABLE;
1019 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1023 * Note that its important to have this wrapper function because
1024 * in the very near future we will be checking for MMIOs against
1025 * the LAPIC as well as the general MMIO bus
1027 return kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
1030 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
1033 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
1036 static int emulator_read_emulated(unsigned long addr,
1039 struct x86_emulate_ctxt *ctxt)
1041 struct kvm_vcpu *vcpu = ctxt->vcpu;
1042 struct kvm_io_device *mmio_dev;
1045 if (vcpu->mmio_read_completed) {
1046 memcpy(val, vcpu->mmio_data, bytes);
1047 vcpu->mmio_read_completed = 0;
1048 return X86EMUL_CONTINUE;
1049 } else if (emulator_read_std(addr, val, bytes, ctxt)
1050 == X86EMUL_CONTINUE)
1051 return X86EMUL_CONTINUE;
1053 gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1054 if (gpa == UNMAPPED_GVA)
1055 return X86EMUL_PROPAGATE_FAULT;
1058 * Is this MMIO handled locally?
1060 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1062 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
1063 return X86EMUL_CONTINUE;
1066 vcpu->mmio_needed = 1;
1067 vcpu->mmio_phys_addr = gpa;
1068 vcpu->mmio_size = bytes;
1069 vcpu->mmio_is_write = 0;
1071 return X86EMUL_UNHANDLEABLE;
1074 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1075 const void *val, int bytes)
1079 unsigned offset = offset_in_page(gpa);
1081 if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
1083 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1086 mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
1087 virt = kmap_atomic(page, KM_USER0);
1088 kvm_mmu_pte_write(vcpu, gpa, virt + offset, val, bytes);
1089 memcpy(virt + offset_in_page(gpa), val, bytes);
1090 kunmap_atomic(virt, KM_USER0);
1094 static int emulator_write_emulated_onepage(unsigned long addr,
1097 struct x86_emulate_ctxt *ctxt)
1099 struct kvm_vcpu *vcpu = ctxt->vcpu;
1100 struct kvm_io_device *mmio_dev;
1101 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
1103 if (gpa == UNMAPPED_GVA) {
1104 kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
1105 return X86EMUL_PROPAGATE_FAULT;
1108 if (emulator_write_phys(vcpu, gpa, val, bytes))
1109 return X86EMUL_CONTINUE;
1112 * Is this MMIO handled locally?
1114 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
1116 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
1117 return X86EMUL_CONTINUE;
1120 vcpu->mmio_needed = 1;
1121 vcpu->mmio_phys_addr = gpa;
1122 vcpu->mmio_size = bytes;
1123 vcpu->mmio_is_write = 1;
1124 memcpy(vcpu->mmio_data, val, bytes);
1126 return X86EMUL_CONTINUE;
1129 static int emulator_write_emulated(unsigned long addr,
1132 struct x86_emulate_ctxt *ctxt)
1134 /* Crossing a page boundary? */
1135 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
1138 now = -addr & ~PAGE_MASK;
1139 rc = emulator_write_emulated_onepage(addr, val, now, ctxt);
1140 if (rc != X86EMUL_CONTINUE)
1146 return emulator_write_emulated_onepage(addr, val, bytes, ctxt);
1149 static int emulator_cmpxchg_emulated(unsigned long addr,
1153 struct x86_emulate_ctxt *ctxt)
1155 static int reported;
1159 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1161 return emulator_write_emulated(addr, new, bytes, ctxt);
1164 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1166 return kvm_arch_ops->get_segment_base(vcpu, seg);
1169 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1171 return X86EMUL_CONTINUE;
1174 int emulate_clts(struct kvm_vcpu *vcpu)
1178 cr0 = vcpu->cr0 & ~X86_CR0_TS;
1179 kvm_arch_ops->set_cr0(vcpu, cr0);
1180 return X86EMUL_CONTINUE;
1183 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1185 struct kvm_vcpu *vcpu = ctxt->vcpu;
1189 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1190 return X86EMUL_CONTINUE;
1192 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1194 return X86EMUL_UNHANDLEABLE;
1198 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1200 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1203 kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1205 /* FIXME: better handling */
1206 return X86EMUL_UNHANDLEABLE;
1208 return X86EMUL_CONTINUE;
1211 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1213 static int reported;
1215 unsigned long rip = ctxt->vcpu->rip;
1216 unsigned long rip_linear;
1218 rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1223 emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1225 printk(KERN_ERR "emulation failed but !mmio_needed?"
1226 " rip %lx %02x %02x %02x %02x\n",
1227 rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1231 struct x86_emulate_ops emulate_ops = {
1232 .read_std = emulator_read_std,
1233 .write_std = emulator_write_std,
1234 .read_emulated = emulator_read_emulated,
1235 .write_emulated = emulator_write_emulated,
1236 .cmpxchg_emulated = emulator_cmpxchg_emulated,
1239 int emulate_instruction(struct kvm_vcpu *vcpu,
1240 struct kvm_run *run,
1244 struct x86_emulate_ctxt emulate_ctxt;
1248 vcpu->mmio_fault_cr2 = cr2;
1249 kvm_arch_ops->cache_regs(vcpu);
1251 kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1253 emulate_ctxt.vcpu = vcpu;
1254 emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1255 emulate_ctxt.cr2 = cr2;
1256 emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1257 ? X86EMUL_MODE_REAL : cs_l
1258 ? X86EMUL_MODE_PROT64 : cs_db
1259 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1261 if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1262 emulate_ctxt.cs_base = 0;
1263 emulate_ctxt.ds_base = 0;
1264 emulate_ctxt.es_base = 0;
1265 emulate_ctxt.ss_base = 0;
1267 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1268 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1269 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1270 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1273 emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1274 emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1276 vcpu->mmio_is_write = 0;
1277 r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1279 if ((r || vcpu->mmio_is_write) && run) {
1280 run->exit_reason = KVM_EXIT_MMIO;
1281 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1282 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1283 run->mmio.len = vcpu->mmio_size;
1284 run->mmio.is_write = vcpu->mmio_is_write;
1288 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1289 return EMULATE_DONE;
1290 if (!vcpu->mmio_needed) {
1291 report_emulation_failure(&emulate_ctxt);
1292 return EMULATE_FAIL;
1294 return EMULATE_DO_MMIO;
1297 kvm_arch_ops->decache_regs(vcpu);
1298 kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1300 if (vcpu->mmio_is_write) {
1301 vcpu->mmio_needed = 0;
1302 return EMULATE_DO_MMIO;
1305 return EMULATE_DONE;
1307 EXPORT_SYMBOL_GPL(emulate_instruction);
1309 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
1311 if (vcpu->irq_summary)
1314 vcpu->run->exit_reason = KVM_EXIT_HLT;
1315 ++vcpu->stat.halt_exits;
1318 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
1320 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1322 unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1324 kvm_arch_ops->cache_regs(vcpu);
1326 #ifdef CONFIG_X86_64
1327 if (is_long_mode(vcpu)) {
1328 nr = vcpu->regs[VCPU_REGS_RAX];
1329 a0 = vcpu->regs[VCPU_REGS_RDI];
1330 a1 = vcpu->regs[VCPU_REGS_RSI];
1331 a2 = vcpu->regs[VCPU_REGS_RDX];
1332 a3 = vcpu->regs[VCPU_REGS_RCX];
1333 a4 = vcpu->regs[VCPU_REGS_R8];
1334 a5 = vcpu->regs[VCPU_REGS_R9];
1338 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1339 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1340 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1341 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1342 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1343 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1344 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1348 run->hypercall.args[0] = a0;
1349 run->hypercall.args[1] = a1;
1350 run->hypercall.args[2] = a2;
1351 run->hypercall.args[3] = a3;
1352 run->hypercall.args[4] = a4;
1353 run->hypercall.args[5] = a5;
1354 run->hypercall.ret = ret;
1355 run->hypercall.longmode = is_long_mode(vcpu);
1356 kvm_arch_ops->decache_regs(vcpu);
1359 vcpu->regs[VCPU_REGS_RAX] = ret;
1360 kvm_arch_ops->decache_regs(vcpu);
1363 EXPORT_SYMBOL_GPL(kvm_hypercall);
1365 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1367 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1370 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1372 struct descriptor_table dt = { limit, base };
1374 kvm_arch_ops->set_gdt(vcpu, &dt);
1377 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1379 struct descriptor_table dt = { limit, base };
1381 kvm_arch_ops->set_idt(vcpu, &dt);
1384 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1385 unsigned long *rflags)
1388 *rflags = kvm_arch_ops->get_rflags(vcpu);
1391 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1393 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
1404 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1409 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1410 unsigned long *rflags)
1414 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1415 *rflags = kvm_arch_ops->get_rflags(vcpu);
1424 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1427 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1432 * Register the para guest with the host:
1434 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1436 struct kvm_vcpu_para_state *para_state;
1437 hpa_t para_state_hpa, hypercall_hpa;
1438 struct page *para_state_page;
1439 unsigned char *hypercall;
1440 gpa_t hypercall_gpa;
1442 printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1443 printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1446 * Needs to be page aligned:
1448 if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1451 para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1452 printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1453 if (is_error_hpa(para_state_hpa))
1456 mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1457 para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1458 para_state = kmap_atomic(para_state_page, KM_USER0);
1460 printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
1461 printk(KERN_DEBUG ".... size: %d\n", para_state->size);
1463 para_state->host_version = KVM_PARA_API_VERSION;
1465 * We cannot support guests that try to register themselves
1466 * with a newer API version than the host supports:
1468 if (para_state->guest_version > KVM_PARA_API_VERSION) {
1469 para_state->ret = -KVM_EINVAL;
1470 goto err_kunmap_skip;
1473 hypercall_gpa = para_state->hypercall_gpa;
1474 hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1475 printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1476 if (is_error_hpa(hypercall_hpa)) {
1477 para_state->ret = -KVM_EINVAL;
1478 goto err_kunmap_skip;
1481 printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1482 vcpu->para_state_page = para_state_page;
1483 vcpu->para_state_gpa = para_state_gpa;
1484 vcpu->hypercall_gpa = hypercall_gpa;
1486 mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1487 hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1488 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1489 kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1490 kunmap_atomic(hypercall, KM_USER1);
1492 para_state->ret = 0;
1494 kunmap_atomic(para_state, KM_USER0);
1500 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1505 case 0xc0010010: /* SYSCFG */
1506 case 0xc0010015: /* HWCR */
1507 case MSR_IA32_PLATFORM_ID:
1508 case MSR_IA32_P5_MC_ADDR:
1509 case MSR_IA32_P5_MC_TYPE:
1510 case MSR_IA32_MC0_CTL:
1511 case MSR_IA32_MCG_STATUS:
1512 case MSR_IA32_MCG_CAP:
1513 case MSR_IA32_MC0_MISC:
1514 case MSR_IA32_MC0_MISC+4:
1515 case MSR_IA32_MC0_MISC+8:
1516 case MSR_IA32_MC0_MISC+12:
1517 case MSR_IA32_MC0_MISC+16:
1518 case MSR_IA32_UCODE_REV:
1519 case MSR_IA32_PERF_STATUS:
1520 case MSR_IA32_EBL_CR_POWERON:
1521 /* MTRR registers */
1523 case 0x200 ... 0x2ff:
1526 case 0xcd: /* fsb frequency */
1529 case MSR_IA32_APICBASE:
1530 data = vcpu->apic_base;
1532 case MSR_IA32_MISC_ENABLE:
1533 data = vcpu->ia32_misc_enable_msr;
1535 #ifdef CONFIG_X86_64
1537 data = vcpu->shadow_efer;
1541 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1547 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1550 * Reads an msr value (of 'msr_index') into 'pdata'.
1551 * Returns 0 on success, non-0 otherwise.
1552 * Assumes vcpu_load() was already called.
1554 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1556 return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1559 #ifdef CONFIG_X86_64
1561 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1563 if (efer & EFER_RESERVED_BITS) {
1564 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1571 && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1572 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1577 kvm_arch_ops->set_efer(vcpu, efer);
1580 efer |= vcpu->shadow_efer & EFER_LMA;
1582 vcpu->shadow_efer = efer;
1587 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1590 #ifdef CONFIG_X86_64
1592 set_efer(vcpu, data);
1595 case MSR_IA32_MC0_STATUS:
1596 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1597 __FUNCTION__, data);
1599 case MSR_IA32_MCG_STATUS:
1600 printk(KERN_WARNING "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1601 __FUNCTION__, data);
1603 case MSR_IA32_UCODE_REV:
1604 case MSR_IA32_UCODE_WRITE:
1605 case 0x200 ... 0x2ff: /* MTRRs */
1607 case MSR_IA32_APICBASE:
1608 vcpu->apic_base = data;
1610 case MSR_IA32_MISC_ENABLE:
1611 vcpu->ia32_misc_enable_msr = data;
1614 * This is the 'probe whether the host is KVM' logic:
1616 case MSR_KVM_API_MAGIC:
1617 return vcpu_register_para(vcpu, data);
1620 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1625 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1628 * Writes msr value into into the appropriate "register".
1629 * Returns 0 on success, non-0 otherwise.
1630 * Assumes vcpu_load() was already called.
1632 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1634 return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1637 void kvm_resched(struct kvm_vcpu *vcpu)
1639 if (!need_resched())
1645 EXPORT_SYMBOL_GPL(kvm_resched);
1647 void load_msrs(struct vmx_msr_entry *e, int n)
1651 for (i = 0; i < n; ++i)
1652 wrmsrl(e[i].index, e[i].data);
1654 EXPORT_SYMBOL_GPL(load_msrs);
1656 void save_msrs(struct vmx_msr_entry *e, int n)
1660 for (i = 0; i < n; ++i)
1661 rdmsrl(e[i].index, e[i].data);
1663 EXPORT_SYMBOL_GPL(save_msrs);
1665 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1669 struct kvm_cpuid_entry *e, *best;
1671 kvm_arch_ops->cache_regs(vcpu);
1672 function = vcpu->regs[VCPU_REGS_RAX];
1673 vcpu->regs[VCPU_REGS_RAX] = 0;
1674 vcpu->regs[VCPU_REGS_RBX] = 0;
1675 vcpu->regs[VCPU_REGS_RCX] = 0;
1676 vcpu->regs[VCPU_REGS_RDX] = 0;
1678 for (i = 0; i < vcpu->cpuid_nent; ++i) {
1679 e = &vcpu->cpuid_entries[i];
1680 if (e->function == function) {
1685 * Both basic or both extended?
1687 if (((e->function ^ function) & 0x80000000) == 0)
1688 if (!best || e->function > best->function)
1692 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1693 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1694 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1695 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1697 kvm_arch_ops->decache_regs(vcpu);
1698 kvm_arch_ops->skip_emulated_instruction(vcpu);
1700 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1702 static int pio_copy_data(struct kvm_vcpu *vcpu)
1704 void *p = vcpu->pio_data;
1707 int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1709 kvm_arch_ops->vcpu_put(vcpu);
1710 q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1713 kvm_arch_ops->vcpu_load(vcpu);
1714 free_pio_guest_pages(vcpu);
1717 q += vcpu->pio.guest_page_offset;
1718 bytes = vcpu->pio.size * vcpu->pio.cur_count;
1720 memcpy(q, p, bytes);
1722 memcpy(p, q, bytes);
1723 q -= vcpu->pio.guest_page_offset;
1725 kvm_arch_ops->vcpu_load(vcpu);
1726 free_pio_guest_pages(vcpu);
1730 static int complete_pio(struct kvm_vcpu *vcpu)
1732 struct kvm_pio_request *io = &vcpu->pio;
1736 kvm_arch_ops->cache_regs(vcpu);
1740 memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1744 r = pio_copy_data(vcpu);
1746 kvm_arch_ops->cache_regs(vcpu);
1753 delta *= io->cur_count;
1755 * The size of the register should really depend on
1756 * current address size.
1758 vcpu->regs[VCPU_REGS_RCX] -= delta;
1764 vcpu->regs[VCPU_REGS_RDI] += delta;
1766 vcpu->regs[VCPU_REGS_RSI] += delta;
1769 kvm_arch_ops->decache_regs(vcpu);
1771 io->count -= io->cur_count;
1775 kvm_arch_ops->skip_emulated_instruction(vcpu);
1779 static void kernel_pio(struct kvm_io_device *pio_dev,
1780 struct kvm_vcpu *vcpu,
1783 /* TODO: String I/O for in kernel device */
1786 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1790 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1795 static void pio_string_write(struct kvm_io_device *pio_dev,
1796 struct kvm_vcpu *vcpu)
1798 struct kvm_pio_request *io = &vcpu->pio;
1799 void *pd = vcpu->pio_data;
1802 for (i = 0; i < io->cur_count; i++) {
1803 kvm_iodevice_write(pio_dev, io->port,
1810 int kvm_setup_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1811 int size, unsigned long count, int string, int down,
1812 gva_t address, int rep, unsigned port)
1814 unsigned now, in_page;
1818 struct kvm_io_device *pio_dev;
1820 vcpu->run->exit_reason = KVM_EXIT_IO;
1821 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1822 vcpu->run->io.size = size;
1823 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1824 vcpu->run->io.count = count;
1825 vcpu->run->io.port = port;
1826 vcpu->pio.count = count;
1827 vcpu->pio.cur_count = count;
1828 vcpu->pio.size = size;
1830 vcpu->pio.port = port;
1831 vcpu->pio.string = string;
1832 vcpu->pio.down = down;
1833 vcpu->pio.guest_page_offset = offset_in_page(address);
1834 vcpu->pio.rep = rep;
1836 pio_dev = vcpu_find_pio_dev(vcpu, port);
1838 kvm_arch_ops->cache_regs(vcpu);
1839 memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1840 kvm_arch_ops->decache_regs(vcpu);
1842 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1850 kvm_arch_ops->skip_emulated_instruction(vcpu);
1854 now = min(count, PAGE_SIZE / size);
1857 in_page = PAGE_SIZE - offset_in_page(address);
1859 in_page = offset_in_page(address) + size;
1860 now = min(count, (unsigned long)in_page / size);
1863 * String I/O straddles page boundary. Pin two guest pages
1864 * so that we satisfy atomicity constraints. Do just one
1865 * transaction to avoid complexity.
1872 * String I/O in reverse. Yuck. Kill the guest, fix later.
1874 printk(KERN_ERR "kvm: guest string pio down\n");
1878 vcpu->run->io.count = now;
1879 vcpu->pio.cur_count = now;
1881 for (i = 0; i < nr_pages; ++i) {
1882 spin_lock(&vcpu->kvm->lock);
1883 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1886 vcpu->pio.guest_pages[i] = page;
1887 spin_unlock(&vcpu->kvm->lock);
1890 free_pio_guest_pages(vcpu);
1895 if (!vcpu->pio.in) {
1896 /* string PIO write */
1897 ret = pio_copy_data(vcpu);
1898 if (ret >= 0 && pio_dev) {
1899 pio_string_write(pio_dev, vcpu);
1901 if (vcpu->pio.count == 0)
1905 printk(KERN_ERR "no string pio read support yet, "
1906 "port %x size %d count %ld\n",
1911 EXPORT_SYMBOL_GPL(kvm_setup_pio);
1913 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1920 if (vcpu->sigset_active)
1921 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1923 /* re-sync apic's tpr */
1924 vcpu->cr8 = kvm_run->cr8;
1926 if (vcpu->pio.cur_count) {
1927 r = complete_pio(vcpu);
1932 if (vcpu->mmio_needed) {
1933 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1934 vcpu->mmio_read_completed = 1;
1935 vcpu->mmio_needed = 0;
1936 r = emulate_instruction(vcpu, kvm_run,
1937 vcpu->mmio_fault_cr2, 0);
1938 if (r == EMULATE_DO_MMIO) {
1940 * Read-modify-write. Back to userspace.
1947 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1948 kvm_arch_ops->cache_regs(vcpu);
1949 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1950 kvm_arch_ops->decache_regs(vcpu);
1953 r = kvm_arch_ops->run(vcpu, kvm_run);
1956 if (vcpu->sigset_active)
1957 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1963 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1964 struct kvm_regs *regs)
1968 kvm_arch_ops->cache_regs(vcpu);
1970 regs->rax = vcpu->regs[VCPU_REGS_RAX];
1971 regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1972 regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1973 regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1974 regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1975 regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1976 regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1977 regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1978 #ifdef CONFIG_X86_64
1979 regs->r8 = vcpu->regs[VCPU_REGS_R8];
1980 regs->r9 = vcpu->regs[VCPU_REGS_R9];
1981 regs->r10 = vcpu->regs[VCPU_REGS_R10];
1982 regs->r11 = vcpu->regs[VCPU_REGS_R11];
1983 regs->r12 = vcpu->regs[VCPU_REGS_R12];
1984 regs->r13 = vcpu->regs[VCPU_REGS_R13];
1985 regs->r14 = vcpu->regs[VCPU_REGS_R14];
1986 regs->r15 = vcpu->regs[VCPU_REGS_R15];
1989 regs->rip = vcpu->rip;
1990 regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1993 * Don't leak debug flags in case they were set for guest debugging
1995 if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1996 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2003 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
2004 struct kvm_regs *regs)
2008 vcpu->regs[VCPU_REGS_RAX] = regs->rax;
2009 vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
2010 vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
2011 vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
2012 vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
2013 vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
2014 vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
2015 vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
2016 #ifdef CONFIG_X86_64
2017 vcpu->regs[VCPU_REGS_R8] = regs->r8;
2018 vcpu->regs[VCPU_REGS_R9] = regs->r9;
2019 vcpu->regs[VCPU_REGS_R10] = regs->r10;
2020 vcpu->regs[VCPU_REGS_R11] = regs->r11;
2021 vcpu->regs[VCPU_REGS_R12] = regs->r12;
2022 vcpu->regs[VCPU_REGS_R13] = regs->r13;
2023 vcpu->regs[VCPU_REGS_R14] = regs->r14;
2024 vcpu->regs[VCPU_REGS_R15] = regs->r15;
2027 vcpu->rip = regs->rip;
2028 kvm_arch_ops->set_rflags(vcpu, regs->rflags);
2030 kvm_arch_ops->decache_regs(vcpu);
2037 static void get_segment(struct kvm_vcpu *vcpu,
2038 struct kvm_segment *var, int seg)
2040 return kvm_arch_ops->get_segment(vcpu, var, seg);
2043 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2044 struct kvm_sregs *sregs)
2046 struct descriptor_table dt;
2050 get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2051 get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2052 get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2053 get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2054 get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2055 get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2057 get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2058 get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2060 kvm_arch_ops->get_idt(vcpu, &dt);
2061 sregs->idt.limit = dt.limit;
2062 sregs->idt.base = dt.base;
2063 kvm_arch_ops->get_gdt(vcpu, &dt);
2064 sregs->gdt.limit = dt.limit;
2065 sregs->gdt.base = dt.base;
2067 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2068 sregs->cr0 = vcpu->cr0;
2069 sregs->cr2 = vcpu->cr2;
2070 sregs->cr3 = vcpu->cr3;
2071 sregs->cr4 = vcpu->cr4;
2072 sregs->cr8 = vcpu->cr8;
2073 sregs->efer = vcpu->shadow_efer;
2074 sregs->apic_base = vcpu->apic_base;
2076 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
2077 sizeof sregs->interrupt_bitmap);
2084 static void set_segment(struct kvm_vcpu *vcpu,
2085 struct kvm_segment *var, int seg)
2087 return kvm_arch_ops->set_segment(vcpu, var, seg);
2090 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2091 struct kvm_sregs *sregs)
2093 int mmu_reset_needed = 0;
2095 struct descriptor_table dt;
2099 dt.limit = sregs->idt.limit;
2100 dt.base = sregs->idt.base;
2101 kvm_arch_ops->set_idt(vcpu, &dt);
2102 dt.limit = sregs->gdt.limit;
2103 dt.base = sregs->gdt.base;
2104 kvm_arch_ops->set_gdt(vcpu, &dt);
2106 vcpu->cr2 = sregs->cr2;
2107 mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
2108 vcpu->cr3 = sregs->cr3;
2110 vcpu->cr8 = sregs->cr8;
2112 mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
2113 #ifdef CONFIG_X86_64
2114 kvm_arch_ops->set_efer(vcpu, sregs->efer);
2116 vcpu->apic_base = sregs->apic_base;
2118 kvm_arch_ops->decache_cr4_guest_bits(vcpu);
2120 mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
2121 kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
2123 mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
2124 kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
2125 if (!is_long_mode(vcpu) && is_pae(vcpu))
2126 load_pdptrs(vcpu, vcpu->cr3);
2128 if (mmu_reset_needed)
2129 kvm_mmu_reset_context(vcpu);
2131 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
2132 sizeof vcpu->irq_pending);
2133 vcpu->irq_summary = 0;
2134 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
2135 if (vcpu->irq_pending[i])
2136 __set_bit(i, &vcpu->irq_summary);
2138 set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
2139 set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
2140 set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
2141 set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
2142 set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
2143 set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
2145 set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
2146 set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
2154 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2155 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2157 * This list is modified at module load time to reflect the
2158 * capabilities of the host cpu.
2160 static u32 msrs_to_save[] = {
2161 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
2163 #ifdef CONFIG_X86_64
2164 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
2166 MSR_IA32_TIME_STAMP_COUNTER,
2169 static unsigned num_msrs_to_save;
2171 static u32 emulated_msrs[] = {
2172 MSR_IA32_MISC_ENABLE,
2175 static __init void kvm_init_msr_list(void)
2180 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2181 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2184 msrs_to_save[j] = msrs_to_save[i];
2187 num_msrs_to_save = j;
2191 * Adapt set_msr() to msr_io()'s calling convention
2193 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2195 return kvm_set_msr(vcpu, index, *data);
2199 * Read or write a bunch of msrs. All parameters are kernel addresses.
2201 * @return number of msrs set successfully.
2203 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2204 struct kvm_msr_entry *entries,
2205 int (*do_msr)(struct kvm_vcpu *vcpu,
2206 unsigned index, u64 *data))
2212 for (i = 0; i < msrs->nmsrs; ++i)
2213 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2222 * Read or write a bunch of msrs. Parameters are user addresses.
2224 * @return number of msrs set successfully.
2226 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2227 int (*do_msr)(struct kvm_vcpu *vcpu,
2228 unsigned index, u64 *data),
2231 struct kvm_msrs msrs;
2232 struct kvm_msr_entry *entries;
2237 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2241 if (msrs.nmsrs >= MAX_IO_MSRS)
2245 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2246 entries = vmalloc(size);
2251 if (copy_from_user(entries, user_msrs->entries, size))
2254 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2259 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2271 * Translate a guest virtual address to a guest physical address.
2273 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2274 struct kvm_translation *tr)
2276 unsigned long vaddr = tr->linear_address;
2280 spin_lock(&vcpu->kvm->lock);
2281 gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
2282 tr->physical_address = gpa;
2283 tr->valid = gpa != UNMAPPED_GVA;
2286 spin_unlock(&vcpu->kvm->lock);
2292 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2293 struct kvm_interrupt *irq)
2295 if (irq->irq < 0 || irq->irq >= 256)
2299 set_bit(irq->irq, vcpu->irq_pending);
2300 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
2307 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
2308 struct kvm_debug_guest *dbg)
2314 r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
2321 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
2322 unsigned long address,
2325 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2326 unsigned long pgoff;
2329 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2331 page = virt_to_page(vcpu->run);
2332 else if (pgoff == KVM_PIO_PAGE_OFFSET)
2333 page = virt_to_page(vcpu->pio_data);
2335 return NOPAGE_SIGBUS;
2338 *type = VM_FAULT_MINOR;
2343 static struct vm_operations_struct kvm_vcpu_vm_ops = {
2344 .nopage = kvm_vcpu_nopage,
2347 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2349 vma->vm_ops = &kvm_vcpu_vm_ops;
2353 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2355 struct kvm_vcpu *vcpu = filp->private_data;
2357 fput(vcpu->kvm->filp);
2361 static struct file_operations kvm_vcpu_fops = {
2362 .release = kvm_vcpu_release,
2363 .unlocked_ioctl = kvm_vcpu_ioctl,
2364 .compat_ioctl = kvm_vcpu_ioctl,
2365 .mmap = kvm_vcpu_mmap,
2369 * Allocates an inode for the vcpu.
2371 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2374 struct inode *inode;
2377 r = anon_inode_getfd(&fd, &inode, &file,
2378 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
2381 atomic_inc(&vcpu->kvm->filp->f_count);
2386 * Creates some virtual cpus. Good luck creating more than one.
2388 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
2391 struct kvm_vcpu *vcpu;
2398 vcpu = &kvm->vcpus[n];
2401 mutex_lock(&vcpu->mutex);
2404 mutex_unlock(&vcpu->mutex);
2408 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2412 vcpu->run = page_address(page);
2414 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2418 vcpu->pio_data = page_address(page);
2420 vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
2422 vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
2425 r = kvm_arch_ops->vcpu_create(vcpu);
2427 goto out_free_vcpus;
2429 r = kvm_mmu_create(vcpu);
2431 goto out_free_vcpus;
2433 kvm_arch_ops->vcpu_load(vcpu);
2434 r = kvm_mmu_setup(vcpu);
2436 r = kvm_arch_ops->vcpu_setup(vcpu);
2440 goto out_free_vcpus;
2442 r = create_vcpu_fd(vcpu);
2444 goto out_free_vcpus;
2446 spin_lock(&kvm_lock);
2447 if (n >= kvm->nvcpus)
2448 kvm->nvcpus = n + 1;
2449 spin_unlock(&kvm_lock);
2454 kvm_free_vcpu(vcpu);
2456 free_page((unsigned long)vcpu->run);
2459 mutex_unlock(&vcpu->mutex);
2464 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2468 struct kvm_cpuid_entry *e, *entry;
2470 rdmsrl(MSR_EFER, efer);
2472 for (i = 0; i < vcpu->cpuid_nent; ++i) {
2473 e = &vcpu->cpuid_entries[i];
2474 if (e->function == 0x80000001) {
2479 if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
2480 entry->edx &= ~(1 << 20);
2481 printk(KERN_INFO "kvm: guest NX capability removed\n");
2485 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2486 struct kvm_cpuid *cpuid,
2487 struct kvm_cpuid_entry __user *entries)
2492 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2495 if (copy_from_user(&vcpu->cpuid_entries, entries,
2496 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2498 vcpu->cpuid_nent = cpuid->nent;
2499 cpuid_fix_nx_cap(vcpu);
2506 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2509 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2510 vcpu->sigset_active = 1;
2511 vcpu->sigset = *sigset;
2513 vcpu->sigset_active = 0;
2518 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2519 * we have asm/x86/processor.h
2530 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2531 #ifdef CONFIG_X86_64
2532 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2534 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2538 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2540 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2544 memcpy(fpu->fpr, fxsave->st_space, 128);
2545 fpu->fcw = fxsave->cwd;
2546 fpu->fsw = fxsave->swd;
2547 fpu->ftwx = fxsave->twd;
2548 fpu->last_opcode = fxsave->fop;
2549 fpu->last_ip = fxsave->rip;
2550 fpu->last_dp = fxsave->rdp;
2551 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
2558 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2560 struct fxsave *fxsave = (struct fxsave *)vcpu->guest_fx_image;
2564 memcpy(fxsave->st_space, fpu->fpr, 128);
2565 fxsave->cwd = fpu->fcw;
2566 fxsave->swd = fpu->fsw;
2567 fxsave->twd = fpu->ftwx;
2568 fxsave->fop = fpu->last_opcode;
2569 fxsave->rip = fpu->last_ip;
2570 fxsave->rdp = fpu->last_dp;
2571 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
2578 static long kvm_vcpu_ioctl(struct file *filp,
2579 unsigned int ioctl, unsigned long arg)
2581 struct kvm_vcpu *vcpu = filp->private_data;
2582 void __user *argp = (void __user *)arg;
2590 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2592 case KVM_GET_REGS: {
2593 struct kvm_regs kvm_regs;
2595 memset(&kvm_regs, 0, sizeof kvm_regs);
2596 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2600 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2605 case KVM_SET_REGS: {
2606 struct kvm_regs kvm_regs;
2609 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2611 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2617 case KVM_GET_SREGS: {
2618 struct kvm_sregs kvm_sregs;
2620 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2621 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2625 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2630 case KVM_SET_SREGS: {
2631 struct kvm_sregs kvm_sregs;
2634 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2636 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2642 case KVM_TRANSLATE: {
2643 struct kvm_translation tr;
2646 if (copy_from_user(&tr, argp, sizeof tr))
2648 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2652 if (copy_to_user(argp, &tr, sizeof tr))
2657 case KVM_INTERRUPT: {
2658 struct kvm_interrupt irq;
2661 if (copy_from_user(&irq, argp, sizeof irq))
2663 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2669 case KVM_DEBUG_GUEST: {
2670 struct kvm_debug_guest dbg;
2673 if (copy_from_user(&dbg, argp, sizeof dbg))
2675 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2682 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2685 r = msr_io(vcpu, argp, do_set_msr, 0);
2687 case KVM_SET_CPUID: {
2688 struct kvm_cpuid __user *cpuid_arg = argp;
2689 struct kvm_cpuid cpuid;
2692 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2694 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2699 case KVM_SET_SIGNAL_MASK: {
2700 struct kvm_signal_mask __user *sigmask_arg = argp;
2701 struct kvm_signal_mask kvm_sigmask;
2702 sigset_t sigset, *p;
2707 if (copy_from_user(&kvm_sigmask, argp,
2708 sizeof kvm_sigmask))
2711 if (kvm_sigmask.len != sizeof sigset)
2714 if (copy_from_user(&sigset, sigmask_arg->sigset,
2719 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2725 memset(&fpu, 0, sizeof fpu);
2726 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2730 if (copy_to_user(argp, &fpu, sizeof fpu))
2739 if (copy_from_user(&fpu, argp, sizeof fpu))
2741 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2754 static long kvm_vm_ioctl(struct file *filp,
2755 unsigned int ioctl, unsigned long arg)
2757 struct kvm *kvm = filp->private_data;
2758 void __user *argp = (void __user *)arg;
2762 case KVM_CREATE_VCPU:
2763 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2767 case KVM_SET_MEMORY_REGION: {
2768 struct kvm_memory_region kvm_mem;
2771 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2773 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2778 case KVM_GET_DIRTY_LOG: {
2779 struct kvm_dirty_log log;
2782 if (copy_from_user(&log, argp, sizeof log))
2784 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2789 case KVM_SET_MEMORY_ALIAS: {
2790 struct kvm_memory_alias alias;
2793 if (copy_from_user(&alias, argp, sizeof alias))
2795 r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
2807 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2808 unsigned long address,
2811 struct kvm *kvm = vma->vm_file->private_data;
2812 unsigned long pgoff;
2815 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2816 page = gfn_to_page(kvm, pgoff);
2818 return NOPAGE_SIGBUS;
2821 *type = VM_FAULT_MINOR;
2826 static struct vm_operations_struct kvm_vm_vm_ops = {
2827 .nopage = kvm_vm_nopage,
2830 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2832 vma->vm_ops = &kvm_vm_vm_ops;
2836 static struct file_operations kvm_vm_fops = {
2837 .release = kvm_vm_release,
2838 .unlocked_ioctl = kvm_vm_ioctl,
2839 .compat_ioctl = kvm_vm_ioctl,
2840 .mmap = kvm_vm_mmap,
2843 static int kvm_dev_ioctl_create_vm(void)
2846 struct inode *inode;
2850 kvm = kvm_create_vm();
2852 return PTR_ERR(kvm);
2853 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2855 kvm_destroy_vm(kvm);
2864 static long kvm_dev_ioctl(struct file *filp,
2865 unsigned int ioctl, unsigned long arg)
2867 void __user *argp = (void __user *)arg;
2871 case KVM_GET_API_VERSION:
2875 r = KVM_API_VERSION;
2881 r = kvm_dev_ioctl_create_vm();
2883 case KVM_GET_MSR_INDEX_LIST: {
2884 struct kvm_msr_list __user *user_msr_list = argp;
2885 struct kvm_msr_list msr_list;
2889 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2892 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2893 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2896 if (n < num_msrs_to_save)
2899 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2900 num_msrs_to_save * sizeof(u32)))
2902 if (copy_to_user(user_msr_list->indices
2903 + num_msrs_to_save * sizeof(u32),
2905 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2910 case KVM_CHECK_EXTENSION:
2912 * No extensions defined at present.
2916 case KVM_GET_VCPU_MMAP_SIZE:
2929 static struct file_operations kvm_chardev_ops = {
2930 .open = kvm_dev_open,
2931 .release = kvm_dev_release,
2932 .unlocked_ioctl = kvm_dev_ioctl,
2933 .compat_ioctl = kvm_dev_ioctl,
2936 static struct miscdevice kvm_dev = {
2943 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2946 static void decache_vcpus_on_cpu(int cpu)
2949 struct kvm_vcpu *vcpu;
2952 spin_lock(&kvm_lock);
2953 list_for_each_entry(vm, &vm_list, vm_list)
2954 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2955 vcpu = &vm->vcpus[i];
2957 * If the vcpu is locked, then it is running on some
2958 * other cpu and therefore it is not cached on the
2961 * If it's not locked, check the last cpu it executed
2964 if (mutex_trylock(&vcpu->mutex)) {
2965 if (vcpu->cpu == cpu) {
2966 kvm_arch_ops->vcpu_decache(vcpu);
2969 mutex_unlock(&vcpu->mutex);
2972 spin_unlock(&kvm_lock);
2975 static void hardware_enable(void *junk)
2977 int cpu = raw_smp_processor_id();
2979 if (cpu_isset(cpu, cpus_hardware_enabled))
2981 cpu_set(cpu, cpus_hardware_enabled);
2982 kvm_arch_ops->hardware_enable(NULL);
2985 static void hardware_disable(void *junk)
2987 int cpu = raw_smp_processor_id();
2989 if (!cpu_isset(cpu, cpus_hardware_enabled))
2991 cpu_clear(cpu, cpus_hardware_enabled);
2992 decache_vcpus_on_cpu(cpu);
2993 kvm_arch_ops->hardware_disable(NULL);
2996 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3003 case CPU_DYING_FROZEN:
3004 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3006 hardware_disable(NULL);
3008 case CPU_UP_CANCELED:
3009 case CPU_UP_CANCELED_FROZEN:
3010 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
3012 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
3015 case CPU_ONLINE_FROZEN:
3016 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
3018 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
3024 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3027 if (val == SYS_RESTART) {
3029 * Some (well, at least mine) BIOSes hang on reboot if
3032 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
3033 on_each_cpu(hardware_disable, NULL, 0, 1);
3038 static struct notifier_block kvm_reboot_notifier = {
3039 .notifier_call = kvm_reboot,
3043 void kvm_io_bus_init(struct kvm_io_bus *bus)
3045 memset(bus, 0, sizeof(*bus));
3048 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3052 for (i = 0; i < bus->dev_count; i++) {
3053 struct kvm_io_device *pos = bus->devs[i];
3055 kvm_iodevice_destructor(pos);
3059 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
3063 for (i = 0; i < bus->dev_count; i++) {
3064 struct kvm_io_device *pos = bus->devs[i];
3066 if (pos->in_range(pos, addr))
3073 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
3075 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
3077 bus->devs[bus->dev_count++] = dev;
3080 static struct notifier_block kvm_cpu_notifier = {
3081 .notifier_call = kvm_cpu_hotplug,
3082 .priority = 20, /* must be > scheduler priority */
3085 static u64 stat_get(void *_offset)
3087 unsigned offset = (long)_offset;
3090 struct kvm_vcpu *vcpu;
3093 spin_lock(&kvm_lock);
3094 list_for_each_entry(kvm, &vm_list, vm_list)
3095 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
3096 vcpu = &kvm->vcpus[i];
3097 total += *(u32 *)((void *)vcpu + offset);
3099 spin_unlock(&kvm_lock);
3103 static void stat_set(void *offset, u64 val)
3107 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, stat_set, "%llu\n");
3109 static __init void kvm_init_debug(void)
3111 struct kvm_stats_debugfs_item *p;
3113 debugfs_dir = debugfs_create_dir("kvm", NULL);
3114 for (p = debugfs_entries; p->name; ++p)
3115 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
3116 (void *)(long)p->offset,
3120 static void kvm_exit_debug(void)
3122 struct kvm_stats_debugfs_item *p;
3124 for (p = debugfs_entries; p->name; ++p)
3125 debugfs_remove(p->dentry);
3126 debugfs_remove(debugfs_dir);
3129 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
3131 hardware_disable(NULL);
3135 static int kvm_resume(struct sys_device *dev)
3137 hardware_enable(NULL);
3141 static struct sysdev_class kvm_sysdev_class = {
3142 set_kset_name("kvm"),
3143 .suspend = kvm_suspend,
3144 .resume = kvm_resume,
3147 static struct sys_device kvm_sysdev = {
3149 .cls = &kvm_sysdev_class,
3152 hpa_t bad_page_address;
3154 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
3159 printk(KERN_ERR "kvm: already loaded the other module\n");
3163 if (!ops->cpu_has_kvm_support()) {
3164 printk(KERN_ERR "kvm: no hardware support\n");
3167 if (ops->disabled_by_bios()) {
3168 printk(KERN_ERR "kvm: disabled by bios\n");
3174 r = kvm_arch_ops->hardware_setup();
3178 on_each_cpu(hardware_enable, NULL, 0, 1);
3179 r = register_cpu_notifier(&kvm_cpu_notifier);
3182 register_reboot_notifier(&kvm_reboot_notifier);
3184 r = sysdev_class_register(&kvm_sysdev_class);
3188 r = sysdev_register(&kvm_sysdev);
3192 kvm_chardev_ops.owner = module;
3194 r = misc_register(&kvm_dev);
3196 printk (KERN_ERR "kvm: misc device register failed\n");
3203 sysdev_unregister(&kvm_sysdev);
3205 sysdev_class_unregister(&kvm_sysdev_class);
3207 unregister_reboot_notifier(&kvm_reboot_notifier);
3208 unregister_cpu_notifier(&kvm_cpu_notifier);
3210 on_each_cpu(hardware_disable, NULL, 0, 1);
3211 kvm_arch_ops->hardware_unsetup();
3213 kvm_arch_ops = NULL;
3217 void kvm_exit_arch(void)
3219 misc_deregister(&kvm_dev);
3220 sysdev_unregister(&kvm_sysdev);
3221 sysdev_class_unregister(&kvm_sysdev_class);
3222 unregister_reboot_notifier(&kvm_reboot_notifier);
3223 unregister_cpu_notifier(&kvm_cpu_notifier);
3224 on_each_cpu(hardware_disable, NULL, 0, 1);
3225 kvm_arch_ops->hardware_unsetup();
3226 kvm_arch_ops = NULL;
3229 static __init int kvm_init(void)
3231 static struct page *bad_page;
3234 r = kvm_mmu_module_init();
3240 kvm_init_msr_list();
3242 if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
3247 bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
3248 memset(__va(bad_page_address), 0, PAGE_SIZE);
3254 kvm_mmu_module_exit();
3259 static __exit void kvm_exit(void)
3262 __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
3263 kvm_mmu_module_exit();
3266 module_init(kvm_init)
3267 module_exit(kvm_exit)
3269 EXPORT_SYMBOL_GPL(kvm_init_arch);
3270 EXPORT_SYMBOL_GPL(kvm_exit_arch);