1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
3 Written/copyright 1999-2001 by Donald Becker.
4 Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL. License for under other terms may be
13 available. Contact the original author for details.
15 The original author may be reached as becker@scyld.com, or at
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
20 Support information and updates available at
21 http://www.scyld.com/network/netsemi.html
24 Linux kernel modifications:
28 - Bug fixes and better intr performance (Tjeerd)
30 - Now reads correct MAC address from eeprom
32 - Eliminate redundant priv->tx_full flag
33 - Call netif_start_queue from dev->tx_timeout
34 - wmb() in start_tx() to flush data
36 - Clean up PCI enable (davej)
38 - Merge Donald Becker's natsemi.c version 1.07
42 * ethtool support (jgarzik)
43 * Proper initialization of the card (which sometimes
44 fails to occur and leaves the card in a non-functional
47 * Some documented register settings to optimize some
48 of the 100Mbit autodetection circuitry in rev C cards. (uzi)
50 * Polling of the PHY intr for stuff like link state
51 change and auto- negotiation to finally work properly. (uzi)
53 * One-liner removal of a duplicate declaration of
56 Version 1.0.7: (Manfred Spraul)
59 * full reset added into tx_timeout
60 * correct multicast hash generation (both big and little endian)
61 [copied from a natsemi driver version
62 from Myrio Corporation, Greg Smith]
65 version 1.0.8 (Tim Hockin <thockin@sun.com>)
67 * Wake on lan support (Erik Gilling)
68 * MXDMA fixes for serverworks
71 version 1.0.9 (Manfred Spraul)
72 * Main change: fix lack of synchronize
73 netif_close/netif_suspend against a last interrupt
75 * do not enable superflous interrupts (e.g. the
76 drivers relies on TxDone - TxIntr not needed)
77 * wait that the hardware has really stopped in close
79 * workaround for the (at least) gcc-2.95.1 compiler
80 problem. Also simplifies the code a bit.
81 * disable_irq() in tx_timeout - needed to protect
82 against rx interrupts.
83 * stop the nic before switching into silent rx mode
84 for wol (required according to docu).
87 * use long for ee_addr (various)
88 * print pointers properly (DaveM)
89 * include asm/irq.h (?)
92 * check and reset if PHY errors appear (Adrian Sun)
93 * WoL cleanup (Tim Hockin)
94 * Magic number cleanup (Tim Hockin)
95 * Don't reload EEPROM on every reset (Tim Hockin)
96 * Save and restore EEPROM state across reset (Tim Hockin)
97 * MDIO Cleanup (Tim Hockin)
98 * Reformat register offsets/bits (jgarzik)
101 * ETHTOOL_* further support (Tim Hockin)
104 * ETHTOOL_[G]EEPROM support (Tim Hockin)
107 * crc cleanup (Matt Domsch <Matt_Domsch@dell.com>)
110 * Cleanup some messages and autoneg in ethtool (Tim Hockin)
113 * Get rid of cable_magic flag
114 * use new (National provided) solution for cable magic issue
117 * call netdev_rx() for RxErrors (Manfred Spraul)
118 * formatting and cleanups
119 * change options and full_duplex arrays to be zero
121 * enable only the WoL and PHY interrupts in wol mode
124 * only do cable_magic on 83815 and early 83816 (Tim Hockin)
125 * create a function for rx refill (Manfred Spraul)
126 * combine drain_ring and init_ring (Manfred Spraul)
127 * oom handling (Manfred Spraul)
128 * hands_off instead of playing with netif_device_{de,a}ttach
130 * be sure to write the MAC back to the chip (Manfred Spraul)
131 * lengthen EEPROM timeout, and always warn about timeouts
133 * comments update (Manfred)
134 * do the right thing on a phy-reset (Manfred and Tim)
137 * big endian support with CFG:BEM instead of cpu_to_le32
138 * support for an external PHY
142 #include <linux/config.h>
143 #include <linux/module.h>
144 #include <linux/kernel.h>
145 #include <linux/string.h>
146 #include <linux/timer.h>
147 #include <linux/errno.h>
148 #include <linux/ioport.h>
149 #include <linux/slab.h>
150 #include <linux/interrupt.h>
151 #include <linux/pci.h>
152 #include <linux/netdevice.h>
153 #include <linux/etherdevice.h>
154 #include <linux/skbuff.h>
155 #include <linux/init.h>
156 #include <linux/spinlock.h>
157 #include <linux/ethtool.h>
158 #include <linux/delay.h>
159 #include <linux/rtnetlink.h>
160 #include <linux/mii.h>
161 #include <linux/crc32.h>
162 #include <linux/bitops.h>
163 #include <asm/processor.h> /* Processor type for cache alignment. */
166 #include <asm/uaccess.h>
168 #define DRV_NAME "natsemi"
169 #define DRV_VERSION "1.07+LK1.0.17"
170 #define DRV_RELDATE "Sep 27, 2002"
174 /* Updated to recommendations in pci-skeleton v2.03. */
176 /* The user-configurable values.
177 These may be modified when a driver module is loaded.*/
179 #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \
184 static int debug = -1;
186 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
187 static int max_interrupt_work = 20;
190 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
191 This chip uses a 512 element hash table based on the Ethernet CRC. */
192 static int multicast_filter_limit = 100;
194 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
195 Setting to > 1518 effectively disables this feature. */
196 static int rx_copybreak;
198 /* Used to pass the media type, etc.
199 Both 'options[]' and 'full_duplex[]' should exist for driver
201 The media type is usually passed in 'options[]'.
203 #define MAX_UNITS 8 /* More are supported, limit only on options */
204 static int options[MAX_UNITS];
205 static int full_duplex[MAX_UNITS];
207 /* Operational parameters that are set at compile time. */
209 /* Keep the ring sizes a power of two for compile efficiency.
210 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
211 Making the Tx ring too large decreases the effectiveness of channel
212 bonding and packet priority.
213 There are no ill effects from too-large receive rings. */
214 #define TX_RING_SIZE 16
215 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
216 #define RX_RING_SIZE 32
218 /* Operational parameters that usually are not changed. */
219 /* Time in jiffies before concluding the transmitter is hung. */
220 #define TX_TIMEOUT (2*HZ)
222 #define NATSEMI_HW_TIMEOUT 400
223 #define NATSEMI_TIMER_FREQ 3*HZ
224 #define NATSEMI_PG0_NREGS 64
225 #define NATSEMI_RFDR_NREGS 8
226 #define NATSEMI_PG1_NREGS 4
227 #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
229 #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */
230 #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32))
231 #define NATSEMI_EEPROM_SIZE 24 /* 12 16-bit values */
234 * The nic writes 32-bit values, even if the upper bytes of
235 * a 32-bit value are beyond the end of the buffer.
237 #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */
238 #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */
239 #define NATSEMI_LONGPKT 1518 /* limit for normal packets */
240 #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */
242 /* These identify the driver base version and may not be removed. */
243 static char version[] __devinitdata =
244 KERN_INFO DRV_NAME " dp8381x driver, version "
245 DRV_VERSION ", " DRV_RELDATE "\n"
246 KERN_INFO " originally by Donald Becker <becker@scyld.com>\n"
247 KERN_INFO " http://www.scyld.com/network/natsemi.html\n"
248 KERN_INFO " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
250 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
251 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
252 MODULE_LICENSE("GPL");
254 module_param(max_interrupt_work, int, 0);
255 module_param(mtu, int, 0);
256 module_param(debug, int, 0);
257 module_param(rx_copybreak, int, 0);
258 module_param_array(options, int, NULL, 0);
259 module_param_array(full_duplex, int, NULL, 0);
260 MODULE_PARM_DESC(max_interrupt_work,
261 "DP8381x maximum events handled per interrupt");
262 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
263 MODULE_PARM_DESC(debug, "DP8381x default debug level");
264 MODULE_PARM_DESC(rx_copybreak,
265 "DP8381x copy breakpoint for copy-only-tiny-frames");
266 MODULE_PARM_DESC(options,
267 "DP8381x: Bits 0-3: media type, bit 17: full duplex");
268 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
273 I. Board Compatibility
275 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
276 It also works with other chips in in the DP83810 series.
278 II. Board-specific settings
280 This driver requires the PCI interrupt line to be valid.
281 It honors the EEPROM-set values.
283 III. Driver operation
287 This driver uses two statically allocated fixed-size descriptor lists
288 formed into rings by a branch from the final descriptor to the beginning of
289 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
290 The NatSemi design uses a 'next descriptor' pointer that the driver forms
293 IIIb/c. Transmit/Receive Structure
295 This driver uses a zero-copy receive and transmit scheme.
296 The driver allocates full frame size skbuffs for the Rx ring buffers at
297 open() time and passes the skb->data field to the chip as receive data
298 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
299 a fresh skbuff is allocated and the frame is copied to the new skbuff.
300 When the incoming frame is larger, the skbuff is passed directly up the
301 protocol stack. Buffers consumed this way are replaced by newly allocated
302 skbuffs in a later phase of receives.
304 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
305 using a full-sized skbuff for small frames vs. the copying costs of larger
306 frames. New boards are typically used in generously configured machines
307 and the underfilled buffers have negligible impact compared to the benefit of
308 a single allocation size, so the default value of zero results in never
309 copying packets. When copying is done, the cost is usually mitigated by using
310 a combined copy/checksum routine. Copying also preloads the cache, which is
311 most useful with small frames.
313 A subtle aspect of the operation is that unaligned buffers are not permitted
314 by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
315 longword aligned for further processing. On copies frames are put into the
316 skbuff at an offset of "+2", 16-byte aligning the IP header.
318 IIId. Synchronization
320 Most operations are synchronized on the np->lock irq spinlock, except the
321 performance critical codepaths:
323 The rx process only runs in the interrupt handler. Access from outside
324 the interrupt handler is only permitted after disable_irq().
326 The rx process usually runs under the dev->xmit_lock. If np->intr_tx_reap
327 is set, then access is permitted under spin_lock_irq(&np->lock).
329 Thus configuration functions that want to access everything must call
330 disable_irq(dev->irq);
331 spin_lock_bh(dev->xmit_lock);
332 spin_lock_irq(&np->lock);
336 NatSemi PCI network controllers are very uncommon.
340 http://www.scyld.com/expert/100mbps.html
341 http://www.scyld.com/expert/NWay.html
342 Datasheet is available from:
343 http://www.national.com/pf/DP/DP83815.html
355 PCI_USES_MASTER = 0x04,
360 /* MMIO operations required */
361 #define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_MEM | PCI_ADDR1)
365 * Support for fibre connections on Am79C874:
366 * This phy needs a special setup when connected to a fibre cable.
367 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
369 #define PHYID_AM79C874 0x0022561b
371 #define MII_MCTRL 0x15 /* mode control register */
372 #define MII_FX_SEL 0x0001 /* 100BASE-FX (fiber) */
373 #define MII_EN_SCRM 0x0004 /* enable scrambler (tp) */
376 /* array of board data directly indexed by pci_tbl[x].driver_data */
380 } natsemi_pci_info[] __devinitdata = {
381 { "NatSemi DP8381[56]", PCI_IOTYPE },
384 static struct pci_device_id natsemi_pci_tbl[] = {
385 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_83815, PCI_ANY_ID, PCI_ANY_ID, },
388 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
390 /* Offsets to the device registers.
391 Unlike software-only systems, device drivers interact with complex hardware.
392 It's not useful to define symbolic names for every register bit in the
395 enum register_offsets {
403 IntrHoldoff = 0x1C, /* DP83816 only */
430 /* These are from the spec, around page 78... on a separate table.
431 * The meaning of these registers depend on the value of PGSEL. */
438 /* the values for the 'magic' registers above (PGSEL=1) */
439 #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */
440 #define TSTDAT_VAL 0x0
441 #define DSPCFG_VAL 0x5040
442 #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */
443 #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */
444 #define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */
445 #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */
447 /* misc PCI space registers */
448 enum pci_register_offsets {
462 enum ChipConfig_bits {
466 CfgAnegEnable = 0x2000,
468 CfgAnegFull = 0x8000,
469 CfgAnegDone = 0x8000000,
470 CfgFullDuplex = 0x20000000,
471 CfgSpeed100 = 0x40000000,
472 CfgLink = 0x80000000,
478 EE_ChipSelect = 0x08,
485 enum PCIBusCfg_bits {
489 /* Bits in the interrupt status/mask registers. */
490 enum IntrStatus_bits {
494 IntrRxEarly = 0x0008,
496 IntrRxOverrun = 0x0020,
501 IntrTxUnderrun = 0x0400,
506 IntrHighBits = 0x8000,
507 RxStatusFIFOOver = 0x10000,
508 IntrPCIErr = 0xf00000,
509 RxResetDone = 0x1000000,
510 TxResetDone = 0x2000000,
511 IntrAbnormalSummary = 0xCD20,
515 * Default Interrupts:
516 * Rx OK, Rx Packet Error, Rx Overrun,
517 * Tx OK, Tx Packet Error, Tx Underrun,
518 * MIB Service, Phy Interrupt, High Bits,
519 * Rx Status FIFO overrun,
520 * Received Target Abort, Received Master Abort,
521 * Signalled System Error, Received Parity Error
523 #define DEFAULT_INTR 0x00f1cd65
528 TxMxdmaMask = 0x700000,
530 TxMxdma_4 = 0x100000,
531 TxMxdma_8 = 0x200000,
532 TxMxdma_16 = 0x300000,
533 TxMxdma_32 = 0x400000,
534 TxMxdma_64 = 0x500000,
535 TxMxdma_128 = 0x600000,
536 TxMxdma_256 = 0x700000,
537 TxCollRetry = 0x800000,
538 TxAutoPad = 0x10000000,
539 TxMacLoop = 0x20000000,
540 TxHeartIgn = 0x40000000,
541 TxCarrierIgn = 0x80000000
546 * - 256 byte DMA burst length
547 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
548 * - 64 bytes initial drain threshold (i.e. begin actual transmission
549 * when 64 byte are in the fifo)
550 * - on tx underruns, increase drain threshold by 64.
551 * - at most use a drain threshold of 1472 bytes: The sum of the fill
552 * threshold and the drain threshold must be less than 2016 bytes.
555 #define TX_FLTH_VAL ((512/32) << 8)
556 #define TX_DRTH_VAL_START (64/32)
557 #define TX_DRTH_VAL_INC 2
558 #define TX_DRTH_VAL_LIMIT (1472/32)
562 RxMxdmaMask = 0x700000,
564 RxMxdma_4 = 0x100000,
565 RxMxdma_8 = 0x200000,
566 RxMxdma_16 = 0x300000,
567 RxMxdma_32 = 0x400000,
568 RxMxdma_64 = 0x500000,
569 RxMxdma_128 = 0x600000,
570 RxMxdma_256 = 0x700000,
571 RxAcceptLong = 0x8000000,
572 RxAcceptTx = 0x10000000,
573 RxAcceptRunt = 0x40000000,
574 RxAcceptErr = 0x80000000
576 #define RX_DRTH_VAL (128/8)
594 WakeMagicSecure = 0x400,
595 SecureHack = 0x100000,
597 WokeUnicast = 0x800000,
598 WokeMulticast = 0x1000000,
599 WokeBroadcast = 0x2000000,
601 WokePMatch0 = 0x8000000,
602 WokePMatch1 = 0x10000000,
603 WokePMatch2 = 0x20000000,
604 WokePMatch3 = 0x40000000,
605 WokeMagic = 0x80000000,
606 WakeOptsSummary = 0x7ff
609 enum RxFilterAddr_bits {
610 RFCRAddressMask = 0x3ff,
611 AcceptMulticast = 0x00200000,
612 AcceptMyPhys = 0x08000000,
613 AcceptAllPhys = 0x10000000,
614 AcceptAllMulticast = 0x20000000,
615 AcceptBroadcast = 0x40000000,
616 RxFilterEnable = 0x80000000
619 enum StatsCtrl_bits {
626 enum MIntrCtrl_bits {
634 #define PHY_ADDR_NONE 32
635 #define PHY_ADDR_INTERNAL 1
637 /* values we might find in the silicon revision register */
638 #define SRR_DP83815_C 0x0302
639 #define SRR_DP83815_D 0x0403
640 #define SRR_DP83816_A4 0x0504
641 #define SRR_DP83816_A5 0x0505
643 /* The Rx and Tx buffer descriptors. */
644 /* Note that using only 32 bit fields simplifies conversion to big-endian
653 /* Bits in network_desc.status */
654 enum desc_status_bits {
655 DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
656 DescNoCRC=0x10000000, DescPktOK=0x08000000,
659 DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
660 DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
661 DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
662 DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
664 DescRxAbort=0x04000000, DescRxOver=0x02000000,
665 DescRxDest=0x01800000, DescRxLong=0x00400000,
666 DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
667 DescRxCRC=0x00080000, DescRxAlign=0x00040000,
668 DescRxLoop=0x00020000, DesRxColl=0x00010000,
671 struct netdev_private {
672 /* Descriptor rings first for alignment */
674 struct netdev_desc *rx_ring;
675 struct netdev_desc *tx_ring;
676 /* The addresses of receive-in-place skbuffs */
677 struct sk_buff *rx_skbuff[RX_RING_SIZE];
678 dma_addr_t rx_dma[RX_RING_SIZE];
679 /* address of a sent-in-place packet/buffer, for later free() */
680 struct sk_buff *tx_skbuff[TX_RING_SIZE];
681 dma_addr_t tx_dma[TX_RING_SIZE];
682 struct net_device_stats stats;
683 /* Media monitoring timer */
684 struct timer_list timer;
685 /* Frequently used values: keep some adjacent for cache effect */
686 struct pci_dev *pci_dev;
687 struct netdev_desc *rx_head_desc;
688 /* Producer/consumer ring indices */
689 unsigned int cur_rx, dirty_rx;
690 unsigned int cur_tx, dirty_tx;
691 /* Based on MTU+slack. */
692 unsigned int rx_buf_sz;
694 /* Do not touch the nic registers */
696 /* external phy that is used: only valid if dev->if_port != PORT_TP */
698 int phy_addr_external;
699 unsigned int full_duplex;
703 /* FIFO and PCI burst thresholds */
704 u32 tx_config, rx_config;
705 /* original contents of ClkRun register */
707 /* silicon revision */
709 /* expected DSPCFG value */
711 /* parms saved in ethtool format */
712 u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */
713 u8 duplex; /* Duplex, half or full */
714 u8 autoneg; /* Autonegotiation enabled */
715 /* MII transceiver section */
722 static void move_int_phy(struct net_device *dev, int addr);
723 static int eeprom_read(void __iomem *ioaddr, int location);
724 static int mdio_read(struct net_device *dev, int reg);
725 static void mdio_write(struct net_device *dev, int reg, u16 data);
726 static void init_phy_fixup(struct net_device *dev);
727 static int miiport_read(struct net_device *dev, int phy_id, int reg);
728 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
729 static int find_mii(struct net_device *dev);
730 static void natsemi_reset(struct net_device *dev);
731 static void natsemi_reload_eeprom(struct net_device *dev);
732 static void natsemi_stop_rxtx(struct net_device *dev);
733 static int netdev_open(struct net_device *dev);
734 static void do_cable_magic(struct net_device *dev);
735 static void undo_cable_magic(struct net_device *dev);
736 static void check_link(struct net_device *dev);
737 static void netdev_timer(unsigned long data);
738 static void dump_ring(struct net_device *dev);
739 static void tx_timeout(struct net_device *dev);
740 static int alloc_ring(struct net_device *dev);
741 static void refill_rx(struct net_device *dev);
742 static void init_ring(struct net_device *dev);
743 static void drain_tx(struct net_device *dev);
744 static void drain_ring(struct net_device *dev);
745 static void free_ring(struct net_device *dev);
746 static void reinit_ring(struct net_device *dev);
747 static void init_registers(struct net_device *dev);
748 static int start_tx(struct sk_buff *skb, struct net_device *dev);
749 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
750 static void netdev_error(struct net_device *dev, int intr_status);
751 static void netdev_rx(struct net_device *dev);
752 static void netdev_tx_done(struct net_device *dev);
753 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
754 #ifdef CONFIG_NET_POLL_CONTROLLER
755 static void natsemi_poll_controller(struct net_device *dev);
757 static void __set_rx_mode(struct net_device *dev);
758 static void set_rx_mode(struct net_device *dev);
759 static void __get_stats(struct net_device *dev);
760 static struct net_device_stats *get_stats(struct net_device *dev);
761 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
762 static int netdev_set_wol(struct net_device *dev, u32 newval);
763 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
764 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
765 static int netdev_get_sopass(struct net_device *dev, u8 *data);
766 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
767 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
768 static void enable_wol_mode(struct net_device *dev, int enable_intr);
769 static int netdev_close(struct net_device *dev);
770 static int netdev_get_regs(struct net_device *dev, u8 *buf);
771 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
772 static struct ethtool_ops ethtool_ops;
774 static inline void __iomem *ns_ioaddr(struct net_device *dev)
776 return (void __iomem *) dev->base_addr;
779 static void move_int_phy(struct net_device *dev, int addr)
781 struct netdev_private *np = netdev_priv(dev);
782 void __iomem *ioaddr = ns_ioaddr(dev);
786 * The internal phy is visible on the external mii bus. Therefore we must
787 * move it away before we can send commands to an external phy.
788 * There are two addresses we must avoid:
789 * - the address on the external phy that is used for transmission.
790 * - the address that we want to access. User space can access phys
791 * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the
792 * phy that is used for transmission.
797 if (target == np->phy_addr_external)
799 writew(target, ioaddr + PhyCtrl);
800 readw(ioaddr + PhyCtrl);
804 static int __devinit natsemi_probe1 (struct pci_dev *pdev,
805 const struct pci_device_id *ent)
807 struct net_device *dev;
808 struct netdev_private *np;
809 int i, option, irq, chip_idx = ent->driver_data;
810 static int find_cnt = -1;
811 unsigned long iostart, iosize;
812 void __iomem *ioaddr;
813 const int pcibar = 1; /* PCI base address register */
817 /* when built into the kernel, we only print version if device is found */
819 static int printed_version;
820 if (!printed_version++)
824 i = pci_enable_device(pdev);
827 /* natsemi has a non-standard PM control register
828 * in PCI config space. Some boards apparently need
829 * to be brought to D0 in this manner.
831 pci_read_config_dword(pdev, PCIPM, &tmp);
832 if (tmp & PCI_PM_CTRL_STATE_MASK) {
833 /* D0 state, disable PME assertion */
834 u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
835 pci_write_config_dword(pdev, PCIPM, newtmp);
839 iostart = pci_resource_start(pdev, pcibar);
840 iosize = pci_resource_len(pdev, pcibar);
843 if (natsemi_pci_info[chip_idx].flags & PCI_USES_MASTER)
844 pci_set_master(pdev);
846 dev = alloc_etherdev(sizeof (struct netdev_private));
849 SET_MODULE_OWNER(dev);
850 SET_NETDEV_DEV(dev, &pdev->dev);
852 i = pci_request_regions(pdev, DRV_NAME);
854 goto err_pci_request_regions;
856 ioaddr = ioremap(iostart, iosize);
862 /* Work around the dropped serial bit. */
863 prev_eedata = eeprom_read(ioaddr, 6);
864 for (i = 0; i < 3; i++) {
865 int eedata = eeprom_read(ioaddr, i + 7);
866 dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
867 dev->dev_addr[i*2+1] = eedata >> 7;
868 prev_eedata = eedata;
871 dev->base_addr = (unsigned long __force) ioaddr;
874 np = netdev_priv(dev);
877 pci_set_drvdata(pdev, dev);
879 spin_lock_init(&np->lock);
880 np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
884 * - If the nic was configured to use an external phy and if find_mii
885 * finds a phy: use external port, first phy that replies.
886 * - Otherwise: internal port.
887 * Note that the phy address for the internal phy doesn't matter:
888 * The address would be used to access a phy over the mii bus, but
889 * the internal phy is accessed through mapped registers.
891 if (readl(ioaddr + ChipConfig) & CfgExtPhy)
892 dev->if_port = PORT_MII;
894 dev->if_port = PORT_TP;
895 /* Reset the chip to erase previous misconfiguration. */
896 natsemi_reload_eeprom(dev);
899 if (dev->if_port != PORT_TP) {
900 np->phy_addr_external = find_mii(dev);
901 if (np->phy_addr_external == PHY_ADDR_NONE) {
902 dev->if_port = PORT_TP;
903 np->phy_addr_external = PHY_ADDR_INTERNAL;
906 np->phy_addr_external = PHY_ADDR_INTERNAL;
909 option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
911 option = dev->mem_start;
913 /* The lower four bits are the media type. */
919 "natsemi %s: ignoring user supplied media type %d",
920 pci_name(np->pci_dev), option & 15);
922 if (find_cnt < MAX_UNITS && full_duplex[find_cnt])
925 /* The chip-specific entries in the device structure. */
926 dev->open = &netdev_open;
927 dev->hard_start_xmit = &start_tx;
928 dev->stop = &netdev_close;
929 dev->get_stats = &get_stats;
930 dev->set_multicast_list = &set_rx_mode;
931 dev->change_mtu = &natsemi_change_mtu;
932 dev->do_ioctl = &netdev_ioctl;
933 dev->tx_timeout = &tx_timeout;
934 dev->watchdog_timeo = TX_TIMEOUT;
935 #ifdef CONFIG_NET_POLL_CONTROLLER
936 dev->poll_controller = &natsemi_poll_controller;
938 SET_ETHTOOL_OPS(dev, ðtool_ops);
943 netif_carrier_off(dev);
945 /* get the initial settings from hardware */
946 tmp = mdio_read(dev, MII_BMCR);
947 np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10;
948 np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF;
949 np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
950 np->advertising= mdio_read(dev, MII_ADVERTISE);
952 if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL
953 && netif_msg_probe(np)) {
954 printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
956 pci_name(np->pci_dev),
957 (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
958 "enabled, advertise" : "disabled, force",
960 (ADVERTISE_100FULL|ADVERTISE_100HALF))?
963 (ADVERTISE_100FULL|ADVERTISE_10FULL))?
966 if (netif_msg_probe(np))
968 "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
969 pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
972 /* save the silicon revision for later querying */
973 np->srr = readl(ioaddr + SiliconRev);
974 if (netif_msg_hw(np))
975 printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
976 pci_name(np->pci_dev), np->srr);
978 i = register_netdev(dev);
980 goto err_register_netdev;
982 if (netif_msg_drv(np)) {
983 printk(KERN_INFO "natsemi %s: %s at %#08lx (%s), ",
984 dev->name, natsemi_pci_info[chip_idx].name, iostart,
985 pci_name(np->pci_dev));
986 for (i = 0; i < ETH_ALEN-1; i++)
987 printk("%02x:", dev->dev_addr[i]);
988 printk("%02x, IRQ %d", dev->dev_addr[i], irq);
989 if (dev->if_port == PORT_TP)
990 printk(", port TP.\n");
992 printk(", port MII, phy ad %d.\n", np->phy_addr_external);
1000 pci_release_regions(pdev);
1001 pci_set_drvdata(pdev, NULL);
1003 err_pci_request_regions:
1009 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
1010 The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
1012 /* Delay between EEPROM clock transitions.
1013 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
1014 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that
1015 made udelay() unreliable.
1016 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
1019 #define eeprom_delay(ee_addr) readl(ee_addr)
1021 #define EE_Write0 (EE_ChipSelect)
1022 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
1024 /* The EEPROM commands include the alway-set leading bit. */
1026 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1029 static int eeprom_read(void __iomem *addr, int location)
1033 void __iomem *ee_addr = addr + EECtrl;
1034 int read_cmd = location | EE_ReadCmd;
1036 writel(EE_Write0, ee_addr);
1038 /* Shift the read command bits out. */
1039 for (i = 10; i >= 0; i--) {
1040 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1041 writel(dataval, ee_addr);
1042 eeprom_delay(ee_addr);
1043 writel(dataval | EE_ShiftClk, ee_addr);
1044 eeprom_delay(ee_addr);
1046 writel(EE_ChipSelect, ee_addr);
1047 eeprom_delay(ee_addr);
1049 for (i = 0; i < 16; i++) {
1050 writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1051 eeprom_delay(ee_addr);
1052 retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1053 writel(EE_ChipSelect, ee_addr);
1054 eeprom_delay(ee_addr);
1057 /* Terminate the EEPROM access. */
1058 writel(EE_Write0, ee_addr);
1063 /* MII transceiver control section.
1064 * The 83815 series has an internal transceiver, and we present the
1065 * internal management registers as if they were MII connected.
1066 * External Phy registers are referenced through the MII interface.
1069 /* clock transitions >= 20ns (25MHz)
1070 * One readl should be good to PCI @ 100MHz
1072 #define mii_delay(ioaddr) readl(ioaddr + EECtrl)
1074 static int mii_getbit (struct net_device *dev)
1077 void __iomem *ioaddr = ns_ioaddr(dev);
1079 writel(MII_ShiftClk, ioaddr + EECtrl);
1080 data = readl(ioaddr + EECtrl);
1081 writel(0, ioaddr + EECtrl);
1083 return (data & MII_Data)? 1 : 0;
1086 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1089 void __iomem *ioaddr = ns_ioaddr(dev);
1091 for (i = (1 << (len-1)); i; i >>= 1)
1093 u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1094 writel(mdio_val, ioaddr + EECtrl);
1096 writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1099 writel(0, ioaddr + EECtrl);
1103 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1110 mii_send_bits (dev, 0xffffffff, 32);
1111 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1112 /* ST,OP = 0110'b for read operation */
1113 cmd = (0x06 << 10) | (phy_id << 5) | reg;
1114 mii_send_bits (dev, cmd, 14);
1116 if (mii_getbit (dev))
1119 for (i = 0; i < 16; i++) {
1121 retval |= mii_getbit (dev);
1128 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1133 mii_send_bits (dev, 0xffffffff, 32);
1134 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1135 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1136 cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1137 mii_send_bits (dev, cmd, 32);
1142 static int mdio_read(struct net_device *dev, int reg)
1144 struct netdev_private *np = netdev_priv(dev);
1145 void __iomem *ioaddr = ns_ioaddr(dev);
1147 /* The 83815 series has two ports:
1148 * - an internal transceiver
1149 * - an external mii bus
1151 if (dev->if_port == PORT_TP)
1152 return readw(ioaddr+BasicControl+(reg<<2));
1154 return miiport_read(dev, np->phy_addr_external, reg);
1157 static void mdio_write(struct net_device *dev, int reg, u16 data)
1159 struct netdev_private *np = netdev_priv(dev);
1160 void __iomem *ioaddr = ns_ioaddr(dev);
1162 /* The 83815 series has an internal transceiver; handle separately */
1163 if (dev->if_port == PORT_TP)
1164 writew(data, ioaddr+BasicControl+(reg<<2));
1166 miiport_write(dev, np->phy_addr_external, reg, data);
1169 static void init_phy_fixup(struct net_device *dev)
1171 struct netdev_private *np = netdev_priv(dev);
1172 void __iomem *ioaddr = ns_ioaddr(dev);
1177 /* restore stuff lost when power was out */
1178 tmp = mdio_read(dev, MII_BMCR);
1179 if (np->autoneg == AUTONEG_ENABLE) {
1180 /* renegotiate if something changed */
1181 if ((tmp & BMCR_ANENABLE) == 0
1182 || np->advertising != mdio_read(dev, MII_ADVERTISE))
1184 /* turn on autonegotiation and force negotiation */
1185 tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1186 mdio_write(dev, MII_ADVERTISE, np->advertising);
1189 /* turn off auto negotiation, set speed and duplexity */
1190 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1191 if (np->speed == SPEED_100)
1192 tmp |= BMCR_SPEED100;
1193 if (np->duplex == DUPLEX_FULL)
1194 tmp |= BMCR_FULLDPLX;
1196 * Note: there is no good way to inform the link partner
1197 * that our capabilities changed. The user has to unplug
1198 * and replug the network cable after some changes, e.g.
1199 * after switching from 10HD, autoneg off to 100 HD,
1203 mdio_write(dev, MII_BMCR, tmp);
1204 readl(ioaddr + ChipConfig);
1207 /* find out what phy this is */
1208 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1209 + mdio_read(dev, MII_PHYSID2);
1211 /* handle external phys here */
1213 case PHYID_AM79C874:
1214 /* phy specific configuration for fibre/tp operation */
1215 tmp = mdio_read(dev, MII_MCTRL);
1216 tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1217 if (dev->if_port == PORT_FIBRE)
1221 mdio_write(dev, MII_MCTRL, tmp);
1226 cfg = readl(ioaddr + ChipConfig);
1227 if (cfg & CfgExtPhy)
1230 /* On page 78 of the spec, they recommend some settings for "optimum
1231 performance" to be done in sequence. These settings optimize some
1232 of the 100Mbit autodetection circuitry. They say we only want to
1233 do this for rev C of the chip, but engineers at NSC (Bradley
1234 Kennedy) recommends always setting them. If you don't, you get
1235 errors on some autonegotiations that make the device unusable.
1237 It seems that the DSP needs a few usec to reinitialize after
1238 the start of the phy. Just retry writing these values until they
1241 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1244 writew(1, ioaddr + PGSEL);
1245 writew(PMDCSR_VAL, ioaddr + PMDCSR);
1246 writew(TSTDAT_VAL, ioaddr + TSTDAT);
1247 np->dspcfg = (np->srr <= SRR_DP83815_C)?
1248 DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1249 writew(np->dspcfg, ioaddr + DSPCFG);
1250 writew(SDCFG_VAL, ioaddr + SDCFG);
1251 writew(0, ioaddr + PGSEL);
1252 readl(ioaddr + ChipConfig);
1255 writew(1, ioaddr + PGSEL);
1256 dspcfg = readw(ioaddr + DSPCFG);
1257 writew(0, ioaddr + PGSEL);
1258 if (np->dspcfg == dspcfg)
1262 if (netif_msg_link(np)) {
1263 if (i==NATSEMI_HW_TIMEOUT) {
1265 "%s: DSPCFG mismatch after retrying for %d usec.\n",
1269 "%s: DSPCFG accepted after %d usec.\n",
1274 * Enable PHY Specific event based interrupts. Link state change
1275 * and Auto-Negotiation Completion are among the affected.
1276 * Read the intr status to clear it (needed for wake events).
1278 readw(ioaddr + MIntrStatus);
1279 writew(MICRIntEn, ioaddr + MIntrCtrl);
1282 static int switch_port_external(struct net_device *dev)
1284 struct netdev_private *np = netdev_priv(dev);
1285 void __iomem *ioaddr = ns_ioaddr(dev);
1288 cfg = readl(ioaddr + ChipConfig);
1289 if (cfg & CfgExtPhy)
1292 if (netif_msg_link(np)) {
1293 printk(KERN_INFO "%s: switching to external transceiver.\n",
1297 /* 1) switch back to external phy */
1298 writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1299 readl(ioaddr + ChipConfig);
1302 /* 2) reset the external phy: */
1303 /* resetting the external PHY has been known to cause a hub supplying
1304 * power over Ethernet to kill the power. We don't want to kill
1305 * power to this computer, so we avoid resetting the phy.
1308 /* 3) reinit the phy fixup, it got lost during power down. */
1309 move_int_phy(dev, np->phy_addr_external);
1310 init_phy_fixup(dev);
1315 static int switch_port_internal(struct net_device *dev)
1317 struct netdev_private *np = netdev_priv(dev);
1318 void __iomem *ioaddr = ns_ioaddr(dev);
1323 cfg = readl(ioaddr + ChipConfig);
1324 if (!(cfg &CfgExtPhy))
1327 if (netif_msg_link(np)) {
1328 printk(KERN_INFO "%s: switching to internal transceiver.\n",
1331 /* 1) switch back to internal phy: */
1332 cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1333 writel(cfg, ioaddr + ChipConfig);
1334 readl(ioaddr + ChipConfig);
1337 /* 2) reset the internal phy: */
1338 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1339 writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1340 readl(ioaddr + ChipConfig);
1342 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1343 bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1344 if (!(bmcr & BMCR_RESET))
1348 if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1350 "%s: phy reset did not complete in %d usec.\n",
1353 /* 3) reinit the phy fixup, it got lost during power down. */
1354 init_phy_fixup(dev);
1359 /* Scan for a PHY on the external mii bus.
1360 * There are two tricky points:
1361 * - Do not scan while the internal phy is enabled. The internal phy will
1362 * crash: e.g. reads from the DSPCFG register will return odd values and
1363 * the nasty random phy reset code will reset the nic every few seconds.
1364 * - The internal phy must be moved around, an external phy could
1365 * have the same address as the internal phy.
1367 static int find_mii(struct net_device *dev)
1369 struct netdev_private *np = netdev_priv(dev);
1374 /* Switch to external phy */
1375 did_switch = switch_port_external(dev);
1377 /* Scan the possible phy addresses:
1379 * PHY address 0 means that the phy is in isolate mode. Not yet
1380 * supported due to lack of test hardware. User space should
1381 * handle it through ethtool.
1383 for (i = 1; i <= 31; i++) {
1384 move_int_phy(dev, i);
1385 tmp = miiport_read(dev, i, MII_BMSR);
1386 if (tmp != 0xffff && tmp != 0x0000) {
1387 /* found something! */
1388 np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1389 + mdio_read(dev, MII_PHYSID2);
1390 if (netif_msg_probe(np)) {
1391 printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1392 pci_name(np->pci_dev), np->mii, i);
1397 /* And switch back to internal phy: */
1399 switch_port_internal(dev);
1403 /* CFG bits [13:16] [18:23] */
1404 #define CFG_RESET_SAVE 0xfde000
1405 /* WCSR bits [0:4] [9:10] */
1406 #define WCSR_RESET_SAVE 0x61f
1407 /* RFCR bits [20] [22] [27:31] */
1408 #define RFCR_RESET_SAVE 0xf8500000;
1410 static void natsemi_reset(struct net_device *dev)
1418 struct netdev_private *np = netdev_priv(dev);
1419 void __iomem *ioaddr = ns_ioaddr(dev);
1422 * Resetting the chip causes some registers to be lost.
1423 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1424 * we save the state that would have been loaded from EEPROM
1425 * on a normal power-up (see the spec EEPROM map). This assumes
1426 * whoever calls this will follow up with init_registers() eventually.
1430 cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1432 wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1434 rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1436 for (i = 0; i < 3; i++) {
1437 writel(i*2, ioaddr + RxFilterAddr);
1438 pmatch[i] = readw(ioaddr + RxFilterData);
1441 for (i = 0; i < 3; i++) {
1442 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1443 sopass[i] = readw(ioaddr + RxFilterData);
1446 /* now whack the chip */
1447 writel(ChipReset, ioaddr + ChipCmd);
1448 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1449 if (!(readl(ioaddr + ChipCmd) & ChipReset))
1453 if (i==NATSEMI_HW_TIMEOUT) {
1454 printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1456 } else if (netif_msg_hw(np)) {
1457 printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1462 cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1463 /* turn on external phy if it was selected */
1464 if (dev->if_port == PORT_TP)
1465 cfg &= ~(CfgExtPhy | CfgPhyDis);
1467 cfg |= (CfgExtPhy | CfgPhyDis);
1468 writel(cfg, ioaddr + ChipConfig);
1470 wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1471 writel(wcsr, ioaddr + WOLCmd);
1473 rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1474 /* restore PMATCH */
1475 for (i = 0; i < 3; i++) {
1476 writel(i*2, ioaddr + RxFilterAddr);
1477 writew(pmatch[i], ioaddr + RxFilterData);
1479 for (i = 0; i < 3; i++) {
1480 writel(0xa+(i*2), ioaddr + RxFilterAddr);
1481 writew(sopass[i], ioaddr + RxFilterData);
1484 writel(rfcr, ioaddr + RxFilterAddr);
1487 static void natsemi_reload_eeprom(struct net_device *dev)
1489 struct netdev_private *np = netdev_priv(dev);
1490 void __iomem *ioaddr = ns_ioaddr(dev);
1493 writel(EepromReload, ioaddr + PCIBusCfg);
1494 for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1496 if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1499 if (i==NATSEMI_HW_TIMEOUT) {
1500 printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1501 pci_name(np->pci_dev), i*50);
1502 } else if (netif_msg_hw(np)) {
1503 printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1504 pci_name(np->pci_dev), i*50);
1508 static void natsemi_stop_rxtx(struct net_device *dev)
1510 void __iomem * ioaddr = ns_ioaddr(dev);
1511 struct netdev_private *np = netdev_priv(dev);
1514 writel(RxOff | TxOff, ioaddr + ChipCmd);
1515 for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1516 if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1520 if (i==NATSEMI_HW_TIMEOUT) {
1521 printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1523 } else if (netif_msg_hw(np)) {
1524 printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1529 static int netdev_open(struct net_device *dev)
1531 struct netdev_private *np = netdev_priv(dev);
1532 void __iomem * ioaddr = ns_ioaddr(dev);
1535 /* Reset the chip, just in case. */
1538 i = request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev);
1541 if (netif_msg_ifup(np))
1542 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1543 dev->name, dev->irq);
1544 i = alloc_ring(dev);
1546 free_irq(dev->irq, dev);
1550 spin_lock_irq(&np->lock);
1551 init_registers(dev);
1552 /* now set the MAC address according to dev->dev_addr */
1553 for (i = 0; i < 3; i++) {
1554 u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1556 writel(i*2, ioaddr + RxFilterAddr);
1557 writew(mac, ioaddr + RxFilterData);
1559 writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1560 spin_unlock_irq(&np->lock);
1562 netif_start_queue(dev);
1564 if (netif_msg_ifup(np))
1565 printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1566 dev->name, (int)readl(ioaddr + ChipCmd));
1568 /* Set the timer to check for link beat. */
1569 init_timer(&np->timer);
1570 np->timer.expires = jiffies + NATSEMI_TIMER_FREQ;
1571 np->timer.data = (unsigned long)dev;
1572 np->timer.function = &netdev_timer; /* timer handler */
1573 add_timer(&np->timer);
1578 static void do_cable_magic(struct net_device *dev)
1580 struct netdev_private *np = netdev_priv(dev);
1581 void __iomem *ioaddr = ns_ioaddr(dev);
1583 if (dev->if_port != PORT_TP)
1586 if (np->srr >= SRR_DP83816_A5)
1590 * 100 MBit links with short cables can trip an issue with the chip.
1591 * The problem manifests as lots of CRC errors and/or flickering
1592 * activity LED while idle. This process is based on instructions
1593 * from engineers at National.
1595 if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1598 writew(1, ioaddr + PGSEL);
1600 * coefficient visibility should already be enabled via
1603 data = readw(ioaddr + TSTDAT) & 0xff;
1605 * the value must be negative, and within certain values
1606 * (these values all come from National)
1608 if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1609 struct netdev_private *np = netdev_priv(dev);
1611 /* the bug has been triggered - fix the coefficient */
1612 writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1613 /* lock the value */
1614 data = readw(ioaddr + DSPCFG);
1615 np->dspcfg = data | DSPCFG_LOCK;
1616 writew(np->dspcfg, ioaddr + DSPCFG);
1618 writew(0, ioaddr + PGSEL);
1622 static void undo_cable_magic(struct net_device *dev)
1625 struct netdev_private *np = netdev_priv(dev);
1626 void __iomem * ioaddr = ns_ioaddr(dev);
1628 if (dev->if_port != PORT_TP)
1631 if (np->srr >= SRR_DP83816_A5)
1634 writew(1, ioaddr + PGSEL);
1635 /* make sure the lock bit is clear */
1636 data = readw(ioaddr + DSPCFG);
1637 np->dspcfg = data & ~DSPCFG_LOCK;
1638 writew(np->dspcfg, ioaddr + DSPCFG);
1639 writew(0, ioaddr + PGSEL);
1642 static void check_link(struct net_device *dev)
1644 struct netdev_private *np = netdev_priv(dev);
1645 void __iomem * ioaddr = ns_ioaddr(dev);
1649 /* The link status field is latched: it remains low after a temporary
1650 * link failure until it's read. We need the current link status,
1653 mdio_read(dev, MII_BMSR);
1654 bmsr = mdio_read(dev, MII_BMSR);
1656 if (!(bmsr & BMSR_LSTATUS)) {
1657 if (netif_carrier_ok(dev)) {
1658 if (netif_msg_link(np))
1659 printk(KERN_NOTICE "%s: link down.\n",
1661 netif_carrier_off(dev);
1662 undo_cable_magic(dev);
1666 if (!netif_carrier_ok(dev)) {
1667 if (netif_msg_link(np))
1668 printk(KERN_NOTICE "%s: link up.\n", dev->name);
1669 netif_carrier_on(dev);
1670 do_cable_magic(dev);
1673 duplex = np->full_duplex;
1675 if (bmsr & BMSR_ANEGCOMPLETE) {
1676 int tmp = mii_nway_result(
1677 np->advertising & mdio_read(dev, MII_LPA));
1678 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1680 } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1684 /* if duplex is set then bit 28 must be set, too */
1685 if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1686 if (netif_msg_link(np))
1688 "%s: Setting %s-duplex based on negotiated "
1689 "link capability.\n", dev->name,
1690 duplex ? "full" : "half");
1692 np->rx_config |= RxAcceptTx;
1693 np->tx_config |= TxCarrierIgn | TxHeartIgn;
1695 np->rx_config &= ~RxAcceptTx;
1696 np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1698 writel(np->tx_config, ioaddr + TxConfig);
1699 writel(np->rx_config, ioaddr + RxConfig);
1703 static void init_registers(struct net_device *dev)
1705 struct netdev_private *np = netdev_priv(dev);
1706 void __iomem * ioaddr = ns_ioaddr(dev);
1708 init_phy_fixup(dev);
1710 /* clear any interrupts that are pending, such as wake events */
1711 readl(ioaddr + IntrStatus);
1713 writel(np->ring_dma, ioaddr + RxRingPtr);
1714 writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1715 ioaddr + TxRingPtr);
1717 /* Initialize other registers.
1718 * Configure the PCI bus bursts and FIFO thresholds.
1719 * Configure for standard, in-spec Ethernet.
1720 * Start with half-duplex. check_link will update
1721 * to the correct settings.
1724 /* DRTH: 2: start tx if 64 bytes are in the fifo
1725 * FLTH: 0x10: refill with next packet if 512 bytes are free
1726 * MXDMA: 0: up to 256 byte bursts.
1727 * MXDMA must be <= FLTH
1731 np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1732 TX_FLTH_VAL | TX_DRTH_VAL_START;
1733 writel(np->tx_config, ioaddr + TxConfig);
1735 /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1736 * MXDMA 0: up to 256 byte bursts
1738 np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1739 /* if receive ring now has bigger buffers than normal, enable jumbo */
1740 if (np->rx_buf_sz > NATSEMI_LONGPKT)
1741 np->rx_config |= RxAcceptLong;
1743 writel(np->rx_config, ioaddr + RxConfig);
1746 * The PME bit is initialized from the EEPROM contents.
1747 * PCI cards probably have PME disabled, but motherboard
1748 * implementations may have PME set to enable WakeOnLan.
1749 * With PME set the chip will scan incoming packets but
1750 * nothing will be written to memory. */
1751 np->SavedClkRun = readl(ioaddr + ClkRun);
1752 writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1753 if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1754 printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1755 dev->name, readl(ioaddr + WOLCmd));
1761 /* Enable interrupts by setting the interrupt mask. */
1762 writel(DEFAULT_INTR, ioaddr + IntrMask);
1763 writel(1, ioaddr + IntrEnable);
1765 writel(RxOn | TxOn, ioaddr + ChipCmd);
1766 writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1772 * 1) check for link changes. Usually they are handled by the MII interrupt
1773 * but it doesn't hurt to check twice.
1774 * 2) check for sudden death of the NIC:
1775 * It seems that a reference set for this chip went out with incorrect info,
1776 * and there exist boards that aren't quite right. An unexpected voltage
1777 * drop can cause the PHY to get itself in a weird state (basically reset).
1778 * NOTE: this only seems to affect revC chips.
1779 * 3) check of death of the RX path due to OOM
1781 static void netdev_timer(unsigned long data)
1783 struct net_device *dev = (struct net_device *)data;
1784 struct netdev_private *np = netdev_priv(dev);
1785 void __iomem * ioaddr = ns_ioaddr(dev);
1786 int next_tick = 5*HZ;
1788 if (netif_msg_timer(np)) {
1789 /* DO NOT read the IntrStatus register,
1790 * a read clears any pending interrupts.
1792 printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1796 if (dev->if_port == PORT_TP) {
1799 spin_lock_irq(&np->lock);
1800 /* check for a nasty random phy-reset - use dspcfg as a flag */
1801 writew(1, ioaddr+PGSEL);
1802 dspcfg = readw(ioaddr+DSPCFG);
1803 writew(0, ioaddr+PGSEL);
1804 if (dspcfg != np->dspcfg) {
1805 if (!netif_queue_stopped(dev)) {
1806 spin_unlock_irq(&np->lock);
1807 if (netif_msg_hw(np))
1808 printk(KERN_NOTICE "%s: possible phy reset: "
1809 "re-initializing\n", dev->name);
1810 disable_irq(dev->irq);
1811 spin_lock_irq(&np->lock);
1812 natsemi_stop_rxtx(dev);
1815 init_registers(dev);
1816 spin_unlock_irq(&np->lock);
1817 enable_irq(dev->irq);
1821 spin_unlock_irq(&np->lock);
1824 /* init_registers() calls check_link() for the above case */
1826 spin_unlock_irq(&np->lock);
1829 spin_lock_irq(&np->lock);
1831 spin_unlock_irq(&np->lock);
1834 disable_irq(dev->irq);
1837 enable_irq(dev->irq);
1839 writel(RxOn, ioaddr + ChipCmd);
1844 mod_timer(&np->timer, jiffies + next_tick);
1847 static void dump_ring(struct net_device *dev)
1849 struct netdev_private *np = netdev_priv(dev);
1851 if (netif_msg_pktdata(np)) {
1853 printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring);
1854 for (i = 0; i < TX_RING_SIZE; i++) {
1855 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1856 i, np->tx_ring[i].next_desc,
1857 np->tx_ring[i].cmd_status,
1858 np->tx_ring[i].addr);
1860 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring);
1861 for (i = 0; i < RX_RING_SIZE; i++) {
1862 printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1863 i, np->rx_ring[i].next_desc,
1864 np->rx_ring[i].cmd_status,
1865 np->rx_ring[i].addr);
1870 static void tx_timeout(struct net_device *dev)
1872 struct netdev_private *np = netdev_priv(dev);
1873 void __iomem * ioaddr = ns_ioaddr(dev);
1875 disable_irq(dev->irq);
1876 spin_lock_irq(&np->lock);
1877 if (!np->hands_off) {
1878 if (netif_msg_tx_err(np))
1880 "%s: Transmit timed out, status %#08x,"
1882 dev->name, readl(ioaddr + IntrStatus));
1887 init_registers(dev);
1890 "%s: tx_timeout while in hands_off state?\n",
1893 spin_unlock_irq(&np->lock);
1894 enable_irq(dev->irq);
1896 dev->trans_start = jiffies;
1897 np->stats.tx_errors++;
1898 netif_wake_queue(dev);
1901 static int alloc_ring(struct net_device *dev)
1903 struct netdev_private *np = netdev_priv(dev);
1904 np->rx_ring = pci_alloc_consistent(np->pci_dev,
1905 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1909 np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1913 static void refill_rx(struct net_device *dev)
1915 struct netdev_private *np = netdev_priv(dev);
1917 /* Refill the Rx ring buffers. */
1918 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1919 struct sk_buff *skb;
1920 int entry = np->dirty_rx % RX_RING_SIZE;
1921 if (np->rx_skbuff[entry] == NULL) {
1922 unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1923 skb = dev_alloc_skb(buflen);
1924 np->rx_skbuff[entry] = skb;
1926 break; /* Better luck next round. */
1927 skb->dev = dev; /* Mark as being used by this device. */
1928 np->rx_dma[entry] = pci_map_single(np->pci_dev,
1929 skb->data, buflen, PCI_DMA_FROMDEVICE);
1930 np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1932 np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1934 if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1935 if (netif_msg_rx_err(np))
1936 printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1941 static void set_bufsize(struct net_device *dev)
1943 struct netdev_private *np = netdev_priv(dev);
1944 if (dev->mtu <= ETH_DATA_LEN)
1945 np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1947 np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1950 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1951 static void init_ring(struct net_device *dev)
1953 struct netdev_private *np = netdev_priv(dev);
1957 np->dirty_tx = np->cur_tx = 0;
1958 for (i = 0; i < TX_RING_SIZE; i++) {
1959 np->tx_skbuff[i] = NULL;
1960 np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1961 +sizeof(struct netdev_desc)
1962 *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1963 np->tx_ring[i].cmd_status = 0;
1968 np->cur_rx = RX_RING_SIZE;
1972 np->rx_head_desc = &np->rx_ring[0];
1974 /* Please be carefull before changing this loop - at least gcc-2.95.1
1975 * miscompiles it otherwise.
1977 /* Initialize all Rx descriptors. */
1978 for (i = 0; i < RX_RING_SIZE; i++) {
1979 np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1980 +sizeof(struct netdev_desc)
1981 *((i+1)%RX_RING_SIZE));
1982 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1983 np->rx_skbuff[i] = NULL;
1989 static void drain_tx(struct net_device *dev)
1991 struct netdev_private *np = netdev_priv(dev);
1994 for (i = 0; i < TX_RING_SIZE; i++) {
1995 if (np->tx_skbuff[i]) {
1996 pci_unmap_single(np->pci_dev,
1997 np->tx_dma[i], np->tx_skbuff[i]->len,
1999 dev_kfree_skb(np->tx_skbuff[i]);
2000 np->stats.tx_dropped++;
2002 np->tx_skbuff[i] = NULL;
2006 static void drain_rx(struct net_device *dev)
2008 struct netdev_private *np = netdev_priv(dev);
2009 unsigned int buflen = np->rx_buf_sz;
2012 /* Free all the skbuffs in the Rx queue. */
2013 for (i = 0; i < RX_RING_SIZE; i++) {
2014 np->rx_ring[i].cmd_status = 0;
2015 np->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */
2016 if (np->rx_skbuff[i]) {
2017 pci_unmap_single(np->pci_dev,
2018 np->rx_dma[i], buflen,
2019 PCI_DMA_FROMDEVICE);
2020 dev_kfree_skb(np->rx_skbuff[i]);
2022 np->rx_skbuff[i] = NULL;
2026 static void drain_ring(struct net_device *dev)
2032 static void free_ring(struct net_device *dev)
2034 struct netdev_private *np = netdev_priv(dev);
2035 pci_free_consistent(np->pci_dev,
2036 sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2037 np->rx_ring, np->ring_dma);
2040 static void reinit_rx(struct net_device *dev)
2042 struct netdev_private *np = netdev_priv(dev);
2047 np->cur_rx = RX_RING_SIZE;
2048 np->rx_head_desc = &np->rx_ring[0];
2049 /* Initialize all Rx descriptors. */
2050 for (i = 0; i < RX_RING_SIZE; i++)
2051 np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2056 static void reinit_ring(struct net_device *dev)
2058 struct netdev_private *np = netdev_priv(dev);
2063 np->dirty_tx = np->cur_tx = 0;
2064 for (i=0;i<TX_RING_SIZE;i++)
2065 np->tx_ring[i].cmd_status = 0;
2070 static int start_tx(struct sk_buff *skb, struct net_device *dev)
2072 struct netdev_private *np = netdev_priv(dev);
2073 void __iomem * ioaddr = ns_ioaddr(dev);
2076 /* Note: Ordering is important here, set the field with the
2077 "ownership" bit last, and only then increment cur_tx. */
2079 /* Calculate the next Tx descriptor entry. */
2080 entry = np->cur_tx % TX_RING_SIZE;
2082 np->tx_skbuff[entry] = skb;
2083 np->tx_dma[entry] = pci_map_single(np->pci_dev,
2084 skb->data,skb->len, PCI_DMA_TODEVICE);
2086 np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2088 spin_lock_irq(&np->lock);
2090 if (!np->hands_off) {
2091 np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2092 /* StrongARM: Explicitly cache flush np->tx_ring and
2093 * skb->data,skb->len. */
2096 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2097 netdev_tx_done(dev);
2098 if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2099 netif_stop_queue(dev);
2101 /* Wake the potentially-idle transmit channel. */
2102 writel(TxOn, ioaddr + ChipCmd);
2104 dev_kfree_skb_irq(skb);
2105 np->stats.tx_dropped++;
2107 spin_unlock_irq(&np->lock);
2109 dev->trans_start = jiffies;
2111 if (netif_msg_tx_queued(np)) {
2112 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2113 dev->name, np->cur_tx, entry);
2118 static void netdev_tx_done(struct net_device *dev)
2120 struct netdev_private *np = netdev_priv(dev);
2122 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2123 int entry = np->dirty_tx % TX_RING_SIZE;
2124 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2126 if (netif_msg_tx_done(np))
2128 "%s: tx frame #%d finished, status %#08x.\n",
2129 dev->name, np->dirty_tx,
2130 le32_to_cpu(np->tx_ring[entry].cmd_status));
2131 if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2132 np->stats.tx_packets++;
2133 np->stats.tx_bytes += np->tx_skbuff[entry]->len;
2134 } else { /* Various Tx errors */
2136 le32_to_cpu(np->tx_ring[entry].cmd_status);
2137 if (tx_status & (DescTxAbort|DescTxExcColl))
2138 np->stats.tx_aborted_errors++;
2139 if (tx_status & DescTxFIFO)
2140 np->stats.tx_fifo_errors++;
2141 if (tx_status & DescTxCarrier)
2142 np->stats.tx_carrier_errors++;
2143 if (tx_status & DescTxOOWCol)
2144 np->stats.tx_window_errors++;
2145 np->stats.tx_errors++;
2147 pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2148 np->tx_skbuff[entry]->len,
2150 /* Free the original skb. */
2151 dev_kfree_skb_irq(np->tx_skbuff[entry]);
2152 np->tx_skbuff[entry] = NULL;
2154 if (netif_queue_stopped(dev)
2155 && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2156 /* The ring is no longer full, wake queue. */
2157 netif_wake_queue(dev);
2161 /* The interrupt handler does all of the Rx thread work and cleans up
2162 after the Tx thread. */
2163 static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
2165 struct net_device *dev = dev_instance;
2166 struct netdev_private *np = netdev_priv(dev);
2167 void __iomem * ioaddr = ns_ioaddr(dev);
2168 int boguscnt = max_interrupt_work;
2169 unsigned int handled = 0;
2174 /* Reading automatically acknowledges all int sources. */
2175 u32 intr_status = readl(ioaddr + IntrStatus);
2177 if (netif_msg_intr(np))
2179 "%s: Interrupt, status %#08x, mask %#08x.\n",
2180 dev->name, intr_status,
2181 readl(ioaddr + IntrMask));
2183 if (intr_status == 0)
2188 (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2189 IntrRxErr | IntrRxOverrun)) {
2194 (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2195 spin_lock(&np->lock);
2196 netdev_tx_done(dev);
2197 spin_unlock(&np->lock);
2200 /* Abnormal error summary/uncommon events handlers. */
2201 if (intr_status & IntrAbnormalSummary)
2202 netdev_error(dev, intr_status);
2204 if (--boguscnt < 0) {
2205 if (netif_msg_intr(np))
2207 "%s: Too much work at interrupt, "
2209 dev->name, intr_status);
2214 if (netif_msg_intr(np))
2215 printk(KERN_DEBUG "%s: exiting interrupt.\n", dev->name);
2217 return IRQ_RETVAL(handled);
2220 /* This routine is logically part of the interrupt handler, but separated
2221 for clarity and better register allocation. */
2222 static void netdev_rx(struct net_device *dev)
2224 struct netdev_private *np = netdev_priv(dev);
2225 int entry = np->cur_rx % RX_RING_SIZE;
2226 int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2227 s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2228 unsigned int buflen = np->rx_buf_sz;
2229 void __iomem * ioaddr = ns_ioaddr(dev);
2231 /* If the driver owns the next entry it's a new packet. Send it up. */
2232 while (desc_status < 0) { /* e.g. & DescOwn */
2234 if (netif_msg_rx_status(np))
2236 " netdev_rx() entry %d status was %#08x.\n",
2237 entry, desc_status);
2240 pkt_len = (desc_status & DescSizeMask) - 4;
2241 if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2242 if (desc_status & DescMore) {
2243 if (netif_msg_rx_err(np))
2245 "%s: Oversized(?) Ethernet "
2246 "frame spanned multiple "
2247 "buffers, entry %#08x "
2248 "status %#08x.\n", dev->name,
2249 np->cur_rx, desc_status);
2250 np->stats.rx_length_errors++;
2252 /* There was an error. */
2253 np->stats.rx_errors++;
2254 if (desc_status & (DescRxAbort|DescRxOver))
2255 np->stats.rx_over_errors++;
2256 if (desc_status & (DescRxLong|DescRxRunt))
2257 np->stats.rx_length_errors++;
2258 if (desc_status & (DescRxInvalid|DescRxAlign))
2259 np->stats.rx_frame_errors++;
2260 if (desc_status & DescRxCRC)
2261 np->stats.rx_crc_errors++;
2263 } else if (pkt_len > np->rx_buf_sz) {
2264 /* if this is the tail of a double buffer
2265 * packet, we've already counted the error
2266 * on the first part. Ignore the second half.
2269 struct sk_buff *skb;
2270 /* Omit CRC size. */
2271 /* Check if the packet is long enough to accept
2272 * without copying to a minimally-sized skbuff. */
2273 if (pkt_len < rx_copybreak
2274 && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2276 /* 16 byte align the IP header */
2277 skb_reserve(skb, RX_OFFSET);
2278 pci_dma_sync_single_for_cpu(np->pci_dev,
2281 PCI_DMA_FROMDEVICE);
2282 eth_copy_and_sum(skb,
2283 np->rx_skbuff[entry]->data, pkt_len, 0);
2284 skb_put(skb, pkt_len);
2285 pci_dma_sync_single_for_device(np->pci_dev,
2288 PCI_DMA_FROMDEVICE);
2290 pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2291 buflen, PCI_DMA_FROMDEVICE);
2292 skb_put(skb = np->rx_skbuff[entry], pkt_len);
2293 np->rx_skbuff[entry] = NULL;
2295 skb->protocol = eth_type_trans(skb, dev);
2297 dev->last_rx = jiffies;
2298 np->stats.rx_packets++;
2299 np->stats.rx_bytes += pkt_len;
2301 entry = (++np->cur_rx) % RX_RING_SIZE;
2302 np->rx_head_desc = &np->rx_ring[entry];
2303 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2307 /* Restart Rx engine if stopped. */
2309 mod_timer(&np->timer, jiffies + 1);
2311 writel(RxOn, ioaddr + ChipCmd);
2314 static void netdev_error(struct net_device *dev, int intr_status)
2316 struct netdev_private *np = netdev_priv(dev);
2317 void __iomem * ioaddr = ns_ioaddr(dev);
2319 spin_lock(&np->lock);
2320 if (intr_status & LinkChange) {
2321 u16 lpa = mdio_read(dev, MII_LPA);
2322 if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE
2323 && netif_msg_link(np)) {
2325 "%s: Autonegotiation advertising"
2326 " %#04x partner %#04x.\n", dev->name,
2327 np->advertising, lpa);
2330 /* read MII int status to clear the flag */
2331 readw(ioaddr + MIntrStatus);
2334 if (intr_status & StatsMax) {
2337 if (intr_status & IntrTxUnderrun) {
2338 if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2339 np->tx_config += TX_DRTH_VAL_INC;
2340 if (netif_msg_tx_err(np))
2342 "%s: increased tx threshold, txcfg %#08x.\n",
2343 dev->name, np->tx_config);
2345 if (netif_msg_tx_err(np))
2347 "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2348 dev->name, np->tx_config);
2350 writel(np->tx_config, ioaddr + TxConfig);
2352 if (intr_status & WOLPkt && netif_msg_wol(np)) {
2353 int wol_status = readl(ioaddr + WOLCmd);
2354 printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2355 dev->name, wol_status);
2357 if (intr_status & RxStatusFIFOOver) {
2358 if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2359 printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2362 np->stats.rx_fifo_errors++;
2364 /* Hmmmmm, it's not clear how to recover from PCI faults. */
2365 if (intr_status & IntrPCIErr) {
2366 printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2367 intr_status & IntrPCIErr);
2368 np->stats.tx_fifo_errors++;
2369 np->stats.rx_fifo_errors++;
2371 spin_unlock(&np->lock);
2374 static void __get_stats(struct net_device *dev)
2376 void __iomem * ioaddr = ns_ioaddr(dev);
2377 struct netdev_private *np = netdev_priv(dev);
2379 /* The chip only need report frame silently dropped. */
2380 np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2381 np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2384 static struct net_device_stats *get_stats(struct net_device *dev)
2386 struct netdev_private *np = netdev_priv(dev);
2388 /* The chip only need report frame silently dropped. */
2389 spin_lock_irq(&np->lock);
2390 if (netif_running(dev) && !np->hands_off)
2392 spin_unlock_irq(&np->lock);
2397 #ifdef CONFIG_NET_POLL_CONTROLLER
2398 static void natsemi_poll_controller(struct net_device *dev)
2400 disable_irq(dev->irq);
2401 intr_handler(dev->irq, dev, NULL);
2402 enable_irq(dev->irq);
2406 #define HASH_TABLE 0x200
2407 static void __set_rx_mode(struct net_device *dev)
2409 void __iomem * ioaddr = ns_ioaddr(dev);
2410 struct netdev_private *np = netdev_priv(dev);
2411 u8 mc_filter[64]; /* Multicast hash filter */
2414 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2415 /* Unconditionally log net taps. */
2416 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n",
2418 rx_mode = RxFilterEnable | AcceptBroadcast
2419 | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2420 } else if ((dev->mc_count > multicast_filter_limit)
2421 || (dev->flags & IFF_ALLMULTI)) {
2422 rx_mode = RxFilterEnable | AcceptBroadcast
2423 | AcceptAllMulticast | AcceptMyPhys;
2425 struct dev_mc_list *mclist;
2427 memset(mc_filter, 0, sizeof(mc_filter));
2428 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
2429 i++, mclist = mclist->next) {
2430 int i = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff;
2431 mc_filter[i/8] |= (1 << (i & 0x07));
2433 rx_mode = RxFilterEnable | AcceptBroadcast
2434 | AcceptMulticast | AcceptMyPhys;
2435 for (i = 0; i < 64; i += 2) {
2436 writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2437 writel((mc_filter[i + 1] << 8) + mc_filter[i],
2438 ioaddr + RxFilterData);
2441 writel(rx_mode, ioaddr + RxFilterAddr);
2442 np->cur_rx_mode = rx_mode;
2445 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2447 if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2452 /* synchronized against open : rtnl_lock() held by caller */
2453 if (netif_running(dev)) {
2454 struct netdev_private *np = netdev_priv(dev);
2455 void __iomem * ioaddr = ns_ioaddr(dev);
2457 disable_irq(dev->irq);
2458 spin_lock(&np->lock);
2460 natsemi_stop_rxtx(dev);
2461 /* drain rx queue */
2463 /* change buffers */
2466 writel(np->ring_dma, ioaddr + RxRingPtr);
2467 /* restart engines */
2468 writel(RxOn | TxOn, ioaddr + ChipCmd);
2469 spin_unlock(&np->lock);
2470 enable_irq(dev->irq);
2475 static void set_rx_mode(struct net_device *dev)
2477 struct netdev_private *np = netdev_priv(dev);
2478 spin_lock_irq(&np->lock);
2481 spin_unlock_irq(&np->lock);
2484 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2486 struct netdev_private *np = netdev_priv(dev);
2487 strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2488 strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2489 strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2492 static int get_regs_len(struct net_device *dev)
2494 return NATSEMI_REGS_SIZE;
2497 static int get_eeprom_len(struct net_device *dev)
2499 return NATSEMI_EEPROM_SIZE;
2502 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2504 struct netdev_private *np = netdev_priv(dev);
2505 spin_lock_irq(&np->lock);
2506 netdev_get_ecmd(dev, ecmd);
2507 spin_unlock_irq(&np->lock);
2511 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2513 struct netdev_private *np = netdev_priv(dev);
2515 spin_lock_irq(&np->lock);
2516 res = netdev_set_ecmd(dev, ecmd);
2517 spin_unlock_irq(&np->lock);
2521 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2523 struct netdev_private *np = netdev_priv(dev);
2524 spin_lock_irq(&np->lock);
2525 netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2526 netdev_get_sopass(dev, wol->sopass);
2527 spin_unlock_irq(&np->lock);
2530 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2532 struct netdev_private *np = netdev_priv(dev);
2534 spin_lock_irq(&np->lock);
2535 netdev_set_wol(dev, wol->wolopts);
2536 res = netdev_set_sopass(dev, wol->sopass);
2537 spin_unlock_irq(&np->lock);
2541 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2543 struct netdev_private *np = netdev_priv(dev);
2544 regs->version = NATSEMI_REGS_VER;
2545 spin_lock_irq(&np->lock);
2546 netdev_get_regs(dev, buf);
2547 spin_unlock_irq(&np->lock);
2550 static u32 get_msglevel(struct net_device *dev)
2552 struct netdev_private *np = netdev_priv(dev);
2553 return np->msg_enable;
2556 static void set_msglevel(struct net_device *dev, u32 val)
2558 struct netdev_private *np = netdev_priv(dev);
2559 np->msg_enable = val;
2562 static int nway_reset(struct net_device *dev)
2566 /* if autoneg is off, it's an error */
2567 tmp = mdio_read(dev, MII_BMCR);
2568 if (tmp & BMCR_ANENABLE) {
2569 tmp |= (BMCR_ANRESTART);
2570 mdio_write(dev, MII_BMCR, tmp);
2576 static u32 get_link(struct net_device *dev)
2578 /* LSTATUS is latched low until a read - so read twice */
2579 mdio_read(dev, MII_BMSR);
2580 return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2583 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2585 struct netdev_private *np = netdev_priv(dev);
2586 u8 eebuf[NATSEMI_EEPROM_SIZE];
2589 eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2590 spin_lock_irq(&np->lock);
2591 res = netdev_get_eeprom(dev, eebuf);
2592 spin_unlock_irq(&np->lock);
2594 memcpy(data, eebuf+eeprom->offset, eeprom->len);
2598 static struct ethtool_ops ethtool_ops = {
2599 .get_drvinfo = get_drvinfo,
2600 .get_regs_len = get_regs_len,
2601 .get_eeprom_len = get_eeprom_len,
2602 .get_settings = get_settings,
2603 .set_settings = set_settings,
2606 .get_regs = get_regs,
2607 .get_msglevel = get_msglevel,
2608 .set_msglevel = set_msglevel,
2609 .nway_reset = nway_reset,
2610 .get_link = get_link,
2611 .get_eeprom = get_eeprom,
2614 static int netdev_set_wol(struct net_device *dev, u32 newval)
2616 struct netdev_private *np = netdev_priv(dev);
2617 void __iomem * ioaddr = ns_ioaddr(dev);
2618 u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2620 /* translate to bitmasks this chip understands */
2621 if (newval & WAKE_PHY)
2623 if (newval & WAKE_UCAST)
2624 data |= WakeUnicast;
2625 if (newval & WAKE_MCAST)
2626 data |= WakeMulticast;
2627 if (newval & WAKE_BCAST)
2628 data |= WakeBroadcast;
2629 if (newval & WAKE_ARP)
2631 if (newval & WAKE_MAGIC)
2633 if (np->srr >= SRR_DP83815_D) {
2634 if (newval & WAKE_MAGICSECURE) {
2635 data |= WakeMagicSecure;
2639 writel(data, ioaddr + WOLCmd);
2644 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2646 struct netdev_private *np = netdev_priv(dev);
2647 void __iomem * ioaddr = ns_ioaddr(dev);
2648 u32 regval = readl(ioaddr + WOLCmd);
2650 *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2651 | WAKE_ARP | WAKE_MAGIC);
2653 if (np->srr >= SRR_DP83815_D) {
2654 /* SOPASS works on revD and higher */
2655 *supported |= WAKE_MAGICSECURE;
2659 /* translate from chip bitmasks */
2660 if (regval & WakePhy)
2662 if (regval & WakeUnicast)
2664 if (regval & WakeMulticast)
2666 if (regval & WakeBroadcast)
2668 if (regval & WakeArp)
2670 if (regval & WakeMagic)
2672 if (regval & WakeMagicSecure) {
2673 /* this can be on in revC, but it's broken */
2674 *cur |= WAKE_MAGICSECURE;
2680 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2682 struct netdev_private *np = netdev_priv(dev);
2683 void __iomem * ioaddr = ns_ioaddr(dev);
2684 u16 *sval = (u16 *)newval;
2687 if (np->srr < SRR_DP83815_D) {
2691 /* enable writing to these registers by disabling the RX filter */
2692 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2693 addr &= ~RxFilterEnable;
2694 writel(addr, ioaddr + RxFilterAddr);
2696 /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2697 writel(addr | 0xa, ioaddr + RxFilterAddr);
2698 writew(sval[0], ioaddr + RxFilterData);
2700 writel(addr | 0xc, ioaddr + RxFilterAddr);
2701 writew(sval[1], ioaddr + RxFilterData);
2703 writel(addr | 0xe, ioaddr + RxFilterAddr);
2704 writew(sval[2], ioaddr + RxFilterData);
2706 /* re-enable the RX filter */
2707 writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2712 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2714 struct netdev_private *np = netdev_priv(dev);
2715 void __iomem * ioaddr = ns_ioaddr(dev);
2716 u16 *sval = (u16 *)data;
2719 if (np->srr < SRR_DP83815_D) {
2720 sval[0] = sval[1] = sval[2] = 0;
2724 /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2725 addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2727 writel(addr | 0xa, ioaddr + RxFilterAddr);
2728 sval[0] = readw(ioaddr + RxFilterData);
2730 writel(addr | 0xc, ioaddr + RxFilterAddr);
2731 sval[1] = readw(ioaddr + RxFilterData);
2733 writel(addr | 0xe, ioaddr + RxFilterAddr);
2734 sval[2] = readw(ioaddr + RxFilterData);
2736 writel(addr, ioaddr + RxFilterAddr);
2741 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2743 struct netdev_private *np = netdev_priv(dev);
2746 ecmd->port = dev->if_port;
2747 ecmd->speed = np->speed;
2748 ecmd->duplex = np->duplex;
2749 ecmd->autoneg = np->autoneg;
2750 ecmd->advertising = 0;
2751 if (np->advertising & ADVERTISE_10HALF)
2752 ecmd->advertising |= ADVERTISED_10baseT_Half;
2753 if (np->advertising & ADVERTISE_10FULL)
2754 ecmd->advertising |= ADVERTISED_10baseT_Full;
2755 if (np->advertising & ADVERTISE_100HALF)
2756 ecmd->advertising |= ADVERTISED_100baseT_Half;
2757 if (np->advertising & ADVERTISE_100FULL)
2758 ecmd->advertising |= ADVERTISED_100baseT_Full;
2759 ecmd->supported = (SUPPORTED_Autoneg |
2760 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2761 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2762 SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2763 ecmd->phy_address = np->phy_addr_external;
2765 * We intentionally report the phy address of the external
2766 * phy, even if the internal phy is used. This is necessary
2767 * to work around a deficiency of the ethtool interface:
2768 * It's only possible to query the settings of the active
2770 * # ethtool -s ethX port mii
2771 * actually sends an ioctl to switch to port mii with the
2772 * settings that are used for the current active port.
2773 * If we would report a different phy address in this
2775 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2776 * would unintentionally change the phy address.
2778 * Fortunately the phy address doesn't matter with the
2782 /* set information based on active port type */
2783 switch (ecmd->port) {
2786 ecmd->advertising |= ADVERTISED_TP;
2787 ecmd->transceiver = XCVR_INTERNAL;
2790 ecmd->advertising |= ADVERTISED_MII;
2791 ecmd->transceiver = XCVR_EXTERNAL;
2794 ecmd->advertising |= ADVERTISED_FIBRE;
2795 ecmd->transceiver = XCVR_EXTERNAL;
2799 /* if autonegotiation is on, try to return the active speed/duplex */
2800 if (ecmd->autoneg == AUTONEG_ENABLE) {
2801 ecmd->advertising |= ADVERTISED_Autoneg;
2802 tmp = mii_nway_result(
2803 np->advertising & mdio_read(dev, MII_LPA));
2804 if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2805 ecmd->speed = SPEED_100;
2807 ecmd->speed = SPEED_10;
2808 if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2809 ecmd->duplex = DUPLEX_FULL;
2811 ecmd->duplex = DUPLEX_HALF;
2814 /* ignore maxtxpkt, maxrxpkt for now */
2819 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2821 struct netdev_private *np = netdev_priv(dev);
2823 if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2825 if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2827 if (ecmd->autoneg == AUTONEG_ENABLE) {
2828 if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2829 ADVERTISED_10baseT_Full |
2830 ADVERTISED_100baseT_Half |
2831 ADVERTISED_100baseT_Full)) == 0) {
2834 } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2835 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2837 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2844 * maxtxpkt, maxrxpkt: ignored for now.
2847 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2848 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2849 * selects based on ecmd->port.
2851 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2852 * phys that are connected to the mii bus. It's used to apply fibre
2856 /* WHEW! now lets bang some bits */
2858 /* save the parms */
2859 dev->if_port = ecmd->port;
2860 np->autoneg = ecmd->autoneg;
2861 np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2862 if (np->autoneg == AUTONEG_ENABLE) {
2863 /* advertise only what has been requested */
2864 np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2865 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2866 np->advertising |= ADVERTISE_10HALF;
2867 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2868 np->advertising |= ADVERTISE_10FULL;
2869 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2870 np->advertising |= ADVERTISE_100HALF;
2871 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2872 np->advertising |= ADVERTISE_100FULL;
2874 np->speed = ecmd->speed;
2875 np->duplex = ecmd->duplex;
2876 /* user overriding the initial full duplex parm? */
2877 if (np->duplex == DUPLEX_HALF)
2878 np->full_duplex = 0;
2881 /* get the right phy enabled */
2882 if (ecmd->port == PORT_TP)
2883 switch_port_internal(dev);
2885 switch_port_external(dev);
2887 /* set parms and see how this affected our link status */
2888 init_phy_fixup(dev);
2893 static int netdev_get_regs(struct net_device *dev, u8 *buf)
2898 u32 *rbuf = (u32 *)buf;
2899 void __iomem * ioaddr = ns_ioaddr(dev);
2901 /* read non-mii page 0 of registers */
2902 for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2903 rbuf[i] = readl(ioaddr + i*4);
2906 /* read current mii registers */
2907 for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2908 rbuf[i] = mdio_read(dev, i & 0x1f);
2910 /* read only the 'magic' registers from page 1 */
2911 writew(1, ioaddr + PGSEL);
2912 rbuf[i++] = readw(ioaddr + PMDCSR);
2913 rbuf[i++] = readw(ioaddr + TSTDAT);
2914 rbuf[i++] = readw(ioaddr + DSPCFG);
2915 rbuf[i++] = readw(ioaddr + SDCFG);
2916 writew(0, ioaddr + PGSEL);
2918 /* read RFCR indexed registers */
2919 rfcr = readl(ioaddr + RxFilterAddr);
2920 for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
2921 writel(j*2, ioaddr + RxFilterAddr);
2922 rbuf[i++] = readw(ioaddr + RxFilterData);
2924 writel(rfcr, ioaddr + RxFilterAddr);
2926 /* the interrupt status is clear-on-read - see if we missed any */
2927 if (rbuf[4] & rbuf[5]) {
2929 "%s: shoot, we dropped an interrupt (%#08x)\n",
2930 dev->name, rbuf[4] & rbuf[5]);
2936 #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
2937 | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \
2938 | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \
2939 | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \
2940 | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \
2941 | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \
2942 | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \
2943 | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
2945 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
2948 u16 *ebuf = (u16 *)buf;
2949 void __iomem * ioaddr = ns_ioaddr(dev);
2951 /* eeprom_read reads 16 bits, and indexes by 16 bits */
2952 for (i = 0; i < NATSEMI_EEPROM_SIZE/2; i++) {
2953 ebuf[i] = eeprom_read(ioaddr, i);
2954 /* The EEPROM itself stores data bit-swapped, but eeprom_read
2955 * reads it back "sanely". So we swap it back here in order to
2956 * present it to userland as it is stored. */
2957 ebuf[i] = SWAP_BITS(ebuf[i]);
2962 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2964 struct mii_ioctl_data *data = if_mii(rq);
2965 struct netdev_private *np = netdev_priv(dev);
2968 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2969 case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
2970 data->phy_id = np->phy_addr_external;
2973 case SIOCGMIIREG: /* Read MII PHY register. */
2974 case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
2975 /* The phy_id is not enough to uniquely identify
2976 * the intended target. Therefore the command is sent to
2977 * the given mii on the current port.
2979 if (dev->if_port == PORT_TP) {
2980 if ((data->phy_id & 0x1f) == np->phy_addr_external)
2981 data->val_out = mdio_read(dev,
2982 data->reg_num & 0x1f);
2986 move_int_phy(dev, data->phy_id & 0x1f);
2987 data->val_out = miiport_read(dev, data->phy_id & 0x1f,
2988 data->reg_num & 0x1f);
2992 case SIOCSMIIREG: /* Write MII PHY register. */
2993 case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
2994 if (!capable(CAP_NET_ADMIN))
2996 if (dev->if_port == PORT_TP) {
2997 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
2998 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
2999 np->advertising = data->val_in;
3000 mdio_write(dev, data->reg_num & 0x1f,
3004 if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3005 if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3006 np->advertising = data->val_in;
3008 move_int_phy(dev, data->phy_id & 0x1f);
3009 miiport_write(dev, data->phy_id & 0x1f,
3010 data->reg_num & 0x1f,
3019 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3021 void __iomem * ioaddr = ns_ioaddr(dev);
3022 struct netdev_private *np = netdev_priv(dev);
3024 if (netif_msg_wol(np))
3025 printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3028 /* For WOL we must restart the rx process in silent mode.
3029 * Write NULL to the RxRingPtr. Only possible if
3030 * rx process is stopped
3032 writel(0, ioaddr + RxRingPtr);
3034 /* read WoL status to clear */
3035 readl(ioaddr + WOLCmd);
3037 /* PME on, clear status */
3038 writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3040 /* and restart the rx process */
3041 writel(RxOn, ioaddr + ChipCmd);
3044 /* enable the WOL interrupt.
3045 * Could be used to send a netlink message.
3047 writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3048 writel(1, ioaddr + IntrEnable);
3052 static int netdev_close(struct net_device *dev)
3054 void __iomem * ioaddr = ns_ioaddr(dev);
3055 struct netdev_private *np = netdev_priv(dev);
3057 if (netif_msg_ifdown(np))
3059 "%s: Shutting down ethercard, status was %#04x.\n",
3060 dev->name, (int)readl(ioaddr + ChipCmd));
3061 if (netif_msg_pktdata(np))
3063 "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
3064 dev->name, np->cur_tx, np->dirty_tx,
3065 np->cur_rx, np->dirty_rx);
3068 * FIXME: what if someone tries to close a device
3069 * that is suspended?
3070 * Should we reenable the nic to switch to
3071 * the final WOL settings?
3074 del_timer_sync(&np->timer);
3075 disable_irq(dev->irq);
3076 spin_lock_irq(&np->lock);
3077 /* Disable interrupts, and flush posted writes */
3078 writel(0, ioaddr + IntrEnable);
3079 readl(ioaddr + IntrEnable);
3081 spin_unlock_irq(&np->lock);
3082 enable_irq(dev->irq);
3084 free_irq(dev->irq, dev);
3086 /* Interrupt disabled, interrupt handler released,
3087 * queue stopped, timer deleted, rtnl_lock held
3088 * All async codepaths that access the driver are disabled.
3090 spin_lock_irq(&np->lock);
3092 readl(ioaddr + IntrMask);
3093 readw(ioaddr + MIntrStatus);
3096 writel(StatsFreeze, ioaddr + StatsCtrl);
3098 /* Stop the chip's Tx and Rx processes. */
3099 natsemi_stop_rxtx(dev);
3102 spin_unlock_irq(&np->lock);
3104 /* clear the carrier last - an interrupt could reenable it otherwise */
3105 netif_carrier_off(dev);
3106 netif_stop_queue(dev);
3113 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3115 /* restart the NIC in WOL mode.
3116 * The nic must be stopped for this.
3118 enable_wol_mode(dev, 0);
3120 /* Restore PME enable bit unmolested */
3121 writel(np->SavedClkRun, ioaddr + ClkRun);
3128 static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3130 struct net_device *dev = pci_get_drvdata(pdev);
3131 void __iomem * ioaddr = ns_ioaddr(dev);
3133 unregister_netdev (dev);
3134 pci_release_regions (pdev);
3137 pci_set_drvdata(pdev, NULL);
3143 * The ns83815 chip doesn't have explicit RxStop bits.
3144 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3145 * of the nic, thus this function must be very careful:
3147 * suspend/resume synchronization:
3149 * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3150 * start_tx, tx_timeout
3152 * No function accesses the hardware without checking np->hands_off.
3153 * the check occurs under spin_lock_irq(&np->lock);
3155 * * netdev_ioctl: noncritical access.
3156 * * netdev_open: cannot happen due to the device_detach
3157 * * netdev_close: doesn't hurt.
3158 * * netdev_timer: timer stopped by natsemi_suspend.
3159 * * intr_handler: doesn't acquire the spinlock. suspend calls
3160 * disable_irq() to enforce synchronization.
3162 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3165 static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3167 struct net_device *dev = pci_get_drvdata (pdev);
3168 struct netdev_private *np = netdev_priv(dev);
3169 void __iomem * ioaddr = ns_ioaddr(dev);
3172 if (netif_running (dev)) {
3173 del_timer_sync(&np->timer);
3175 disable_irq(dev->irq);
3176 spin_lock_irq(&np->lock);
3178 writel(0, ioaddr + IntrEnable);
3180 natsemi_stop_rxtx(dev);
3181 netif_stop_queue(dev);
3183 spin_unlock_irq(&np->lock);
3184 enable_irq(dev->irq);
3186 /* Update the error counts. */
3189 /* pci_power_off(pdev, -1); */
3192 u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3193 /* Restore PME enable bit */
3195 /* restart the NIC in WOL mode.
3196 * The nic must be stopped for this.
3197 * FIXME: use the WOL interrupt
3199 enable_wol_mode(dev, 0);
3201 /* Restore PME enable bit unmolested */
3202 writel(np->SavedClkRun, ioaddr + ClkRun);
3206 netif_device_detach(dev);
3212 static int natsemi_resume (struct pci_dev *pdev)
3214 struct net_device *dev = pci_get_drvdata (pdev);
3215 struct netdev_private *np = netdev_priv(dev);
3218 if (netif_device_present(dev))
3220 if (netif_running(dev)) {
3221 BUG_ON(!np->hands_off);
3222 pci_enable_device(pdev);
3223 /* pci_power_on(pdev); */
3227 disable_irq(dev->irq);
3228 spin_lock_irq(&np->lock);
3230 init_registers(dev);
3231 netif_device_attach(dev);
3232 spin_unlock_irq(&np->lock);
3233 enable_irq(dev->irq);
3235 mod_timer(&np->timer, jiffies + 1*HZ);
3237 netif_device_attach(dev);
3243 #endif /* CONFIG_PM */
3245 static struct pci_driver natsemi_driver = {
3247 .id_table = natsemi_pci_tbl,
3248 .probe = natsemi_probe1,
3249 .remove = __devexit_p(natsemi_remove1),
3251 .suspend = natsemi_suspend,
3252 .resume = natsemi_resume,
3256 static int __init natsemi_init_mod (void)
3258 /* when a module, this is printed whether or not devices are found in probe */
3263 return pci_module_init (&natsemi_driver);
3266 static void __exit natsemi_exit_mod (void)
3268 pci_unregister_driver (&natsemi_driver);
3271 module_init(natsemi_init_mod);
3272 module_exit(natsemi_exit_mod);