2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
56 kmem_zone_t *xfs_ifork_zone;
57 kmem_zone_t *xfs_inode_zone;
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
63 #define XFS_ITRUNC_MAX_EXTENTS 2
65 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
72 * Make sure that the extents in the given memory buffer
82 xfs_bmbt_rec_host_t rec;
85 for (i = 0; i < nrecs; i++) {
86 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 rec.l0 = get_unaligned(&ep->l0);
88 rec.l1 = get_unaligned(&ep->l1);
89 xfs_bmbt_get_all(&rec, &irec);
90 if (fmt == XFS_EXTFMT_NOSTATE)
91 ASSERT(irec.br_state == XFS_EXT_NORM);
95 #define xfs_validate_extents(ifp, nrecs, fmt)
99 * Check that none of the inode's in the buffer have a next
100 * unlinked field of 0.
112 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
114 for (i = 0; i < j; i++) {
115 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 i * mp->m_sb.sb_inodesize);
117 if (!dip->di_next_unlinked) {
118 xfs_fs_cmn_err(CE_ALERT, mp,
119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
121 ASSERT(dip->di_next_unlinked);
128 * Find the buffer associated with the given inode map
129 * We do basic validation checks on the buffer once it has been
130 * retrieved from disk.
136 struct xfs_imap *imap,
146 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
147 (int)imap->im_len, buf_flags, &bp);
149 if (error != EAGAIN) {
151 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
152 "an error %d on %s. Returning error.",
153 error, mp->m_fsname);
155 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
161 * Validate the magic number and version of every inode in the buffer
162 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
165 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
166 #else /* usual case */
170 for (i = 0; i < ni; i++) {
174 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
175 (i << mp->m_sb.sb_inodelog));
176 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
177 XFS_DINODE_GOOD_VERSION(dip->di_version);
178 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
179 XFS_ERRTAG_ITOBP_INOTOBP,
180 XFS_RANDOM_ITOBP_INOTOBP))) {
181 if (iget_flags & XFS_IGET_BULKSTAT) {
182 xfs_trans_brelse(tp, bp);
183 return XFS_ERROR(EINVAL);
185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 XFS_ERRLEVEL_HIGH, mp, dip);
189 "Device %s - bad inode magic/vsn "
190 "daddr %lld #%d (magic=%x)",
191 XFS_BUFTARG_NAME(mp->m_ddev_targp),
192 (unsigned long long)imap->im_blkno, i,
193 be16_to_cpu(dip->di_magic));
195 xfs_trans_brelse(tp, bp);
196 return XFS_ERROR(EFSCORRUPTED);
200 xfs_inobp_check(mp, bp);
203 * Mark the buffer as an inode buffer now that it looks good
205 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
212 * This routine is called to map an inode number within a file
213 * system to the buffer containing the on-disk version of the
214 * inode. It returns a pointer to the buffer containing the
215 * on-disk inode in the bpp parameter, and in the dip parameter
216 * it returns a pointer to the on-disk inode within that buffer.
218 * If a non-zero error is returned, then the contents of bpp and
219 * dipp are undefined.
221 * Use xfs_imap() to determine the size and location of the
222 * buffer to read from disk.
234 struct xfs_imap imap;
239 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
243 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
247 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
249 *offset = imap.im_boffset;
255 * This routine is called to map an inode to the buffer containing
256 * the on-disk version of the inode. It returns a pointer to the
257 * buffer containing the on-disk inode in the bpp parameter, and in
258 * the dip parameter it returns a pointer to the on-disk inode within
261 * If a non-zero error is returned, then the contents of bpp and
262 * dipp are undefined.
264 * The inode is expected to already been mapped to its buffer and read
265 * in once, thus we can use the mapping information stored in the inode
266 * rather than calling xfs_imap(). This allows us to avoid the overhead
267 * of looking at the inode btree for small block file systems
282 ASSERT(ip->i_imap.im_blkno != 0);
284 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
289 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
295 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
301 * Move inode type and inode format specific information from the
302 * on-disk inode to the in-core inode. For fifos, devs, and sockets
303 * this means set if_rdev to the proper value. For files, directories,
304 * and symlinks this means to bring in the in-line data or extent
305 * pointers. For a file in B-tree format, only the root is immediately
306 * brought in-core. The rest will be in-lined in if_extents when it
307 * is first referenced (see xfs_iread_extents()).
314 xfs_attr_shortform_t *atp;
318 ip->i_df.if_ext_max =
319 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
322 if (unlikely(be32_to_cpu(dip->di_nextents) +
323 be16_to_cpu(dip->di_anextents) >
324 be64_to_cpu(dip->di_nblocks))) {
325 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
326 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
327 (unsigned long long)ip->i_ino,
328 (int)(be32_to_cpu(dip->di_nextents) +
329 be16_to_cpu(dip->di_anextents)),
331 be64_to_cpu(dip->di_nblocks));
332 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
334 return XFS_ERROR(EFSCORRUPTED);
337 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
338 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
339 "corrupt dinode %Lu, forkoff = 0x%x.",
340 (unsigned long long)ip->i_ino,
342 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
344 return XFS_ERROR(EFSCORRUPTED);
347 switch (ip->i_d.di_mode & S_IFMT) {
352 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
353 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
355 return XFS_ERROR(EFSCORRUPTED);
359 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
365 switch (dip->di_format) {
366 case XFS_DINODE_FMT_LOCAL:
368 * no local regular files yet
370 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
371 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
373 "(local format for regular file).",
374 (unsigned long long) ip->i_ino);
375 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
378 return XFS_ERROR(EFSCORRUPTED);
381 di_size = be64_to_cpu(dip->di_size);
382 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
383 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
385 "(bad size %Ld for local inode).",
386 (unsigned long long) ip->i_ino,
387 (long long) di_size);
388 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
391 return XFS_ERROR(EFSCORRUPTED);
395 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
397 case XFS_DINODE_FMT_EXTENTS:
398 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
400 case XFS_DINODE_FMT_BTREE:
401 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
404 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
406 return XFS_ERROR(EFSCORRUPTED);
411 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
412 return XFS_ERROR(EFSCORRUPTED);
417 if (!XFS_DFORK_Q(dip))
419 ASSERT(ip->i_afp == NULL);
420 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
421 ip->i_afp->if_ext_max =
422 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
423 switch (dip->di_aformat) {
424 case XFS_DINODE_FMT_LOCAL:
425 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
426 size = be16_to_cpu(atp->hdr.totsize);
428 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
429 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
431 "(bad attr fork size %Ld).",
432 (unsigned long long) ip->i_ino,
434 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
437 return XFS_ERROR(EFSCORRUPTED);
440 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
442 case XFS_DINODE_FMT_EXTENTS:
443 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
445 case XFS_DINODE_FMT_BTREE:
446 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
449 error = XFS_ERROR(EFSCORRUPTED);
453 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
455 xfs_idestroy_fork(ip, XFS_DATA_FORK);
461 * The file is in-lined in the on-disk inode.
462 * If it fits into if_inline_data, then copy
463 * it there, otherwise allocate a buffer for it
464 * and copy the data there. Either way, set
465 * if_data to point at the data.
466 * If we allocate a buffer for the data, make
467 * sure that its size is a multiple of 4 and
468 * record the real size in i_real_bytes.
481 * If the size is unreasonable, then something
482 * is wrong and we just bail out rather than crash in
483 * kmem_alloc() or memcpy() below.
485 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
486 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
488 "(bad size %d for local fork, size = %d).",
489 (unsigned long long) ip->i_ino, size,
490 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
491 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
493 return XFS_ERROR(EFSCORRUPTED);
495 ifp = XFS_IFORK_PTR(ip, whichfork);
498 ifp->if_u1.if_data = NULL;
499 else if (size <= sizeof(ifp->if_u2.if_inline_data))
500 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
502 real_size = roundup(size, 4);
503 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
505 ifp->if_bytes = size;
506 ifp->if_real_bytes = real_size;
508 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
509 ifp->if_flags &= ~XFS_IFEXTENTS;
510 ifp->if_flags |= XFS_IFINLINE;
515 * The file consists of a set of extents all
516 * of which fit into the on-disk inode.
517 * If there are few enough extents to fit into
518 * the if_inline_ext, then copy them there.
519 * Otherwise allocate a buffer for them and copy
520 * them into it. Either way, set if_extents
521 * to point at the extents.
535 ifp = XFS_IFORK_PTR(ip, whichfork);
536 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
537 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
540 * If the number of extents is unreasonable, then something
541 * is wrong and we just bail out rather than crash in
542 * kmem_alloc() or memcpy() below.
544 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
545 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
546 "corrupt inode %Lu ((a)extents = %d).",
547 (unsigned long long) ip->i_ino, nex);
548 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
550 return XFS_ERROR(EFSCORRUPTED);
553 ifp->if_real_bytes = 0;
555 ifp->if_u1.if_extents = NULL;
556 else if (nex <= XFS_INLINE_EXTS)
557 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
559 xfs_iext_add(ifp, 0, nex);
561 ifp->if_bytes = size;
563 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
564 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
565 for (i = 0; i < nex; i++, dp++) {
566 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
567 ep->l0 = get_unaligned_be64(&dp->l0);
568 ep->l1 = get_unaligned_be64(&dp->l1);
570 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
571 if (whichfork != XFS_DATA_FORK ||
572 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
573 if (unlikely(xfs_check_nostate_extents(
575 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
578 return XFS_ERROR(EFSCORRUPTED);
581 ifp->if_flags |= XFS_IFEXTENTS;
586 * The file has too many extents to fit into
587 * the inode, so they are in B-tree format.
588 * Allocate a buffer for the root of the B-tree
589 * and copy the root into it. The i_extents
590 * field will remain NULL until all of the
591 * extents are read in (when they are needed).
599 xfs_bmdr_block_t *dfp;
605 ifp = XFS_IFORK_PTR(ip, whichfork);
606 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
607 size = XFS_BMAP_BROOT_SPACE(dfp);
608 nrecs = be16_to_cpu(dfp->bb_numrecs);
611 * blow out if -- fork has less extents than can fit in
612 * fork (fork shouldn't be a btree format), root btree
613 * block has more records than can fit into the fork,
614 * or the number of extents is greater than the number of
617 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
618 || XFS_BMDR_SPACE_CALC(nrecs) >
619 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
620 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
621 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
622 "corrupt inode %Lu (btree).",
623 (unsigned long long) ip->i_ino);
624 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
626 return XFS_ERROR(EFSCORRUPTED);
629 ifp->if_broot_bytes = size;
630 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
631 ASSERT(ifp->if_broot != NULL);
633 * Copy and convert from the on-disk structure
634 * to the in-memory structure.
636 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
637 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
638 ifp->if_broot, size);
639 ifp->if_flags &= ~XFS_IFEXTENTS;
640 ifp->if_flags |= XFS_IFBROOT;
646 xfs_dinode_from_disk(
650 to->di_magic = be16_to_cpu(from->di_magic);
651 to->di_mode = be16_to_cpu(from->di_mode);
652 to->di_version = from ->di_version;
653 to->di_format = from->di_format;
654 to->di_onlink = be16_to_cpu(from->di_onlink);
655 to->di_uid = be32_to_cpu(from->di_uid);
656 to->di_gid = be32_to_cpu(from->di_gid);
657 to->di_nlink = be32_to_cpu(from->di_nlink);
658 to->di_projid = be16_to_cpu(from->di_projid);
659 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
660 to->di_flushiter = be16_to_cpu(from->di_flushiter);
661 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
662 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
663 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
664 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
665 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
666 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
667 to->di_size = be64_to_cpu(from->di_size);
668 to->di_nblocks = be64_to_cpu(from->di_nblocks);
669 to->di_extsize = be32_to_cpu(from->di_extsize);
670 to->di_nextents = be32_to_cpu(from->di_nextents);
671 to->di_anextents = be16_to_cpu(from->di_anextents);
672 to->di_forkoff = from->di_forkoff;
673 to->di_aformat = from->di_aformat;
674 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
675 to->di_dmstate = be16_to_cpu(from->di_dmstate);
676 to->di_flags = be16_to_cpu(from->di_flags);
677 to->di_gen = be32_to_cpu(from->di_gen);
683 xfs_icdinode_t *from)
685 to->di_magic = cpu_to_be16(from->di_magic);
686 to->di_mode = cpu_to_be16(from->di_mode);
687 to->di_version = from ->di_version;
688 to->di_format = from->di_format;
689 to->di_onlink = cpu_to_be16(from->di_onlink);
690 to->di_uid = cpu_to_be32(from->di_uid);
691 to->di_gid = cpu_to_be32(from->di_gid);
692 to->di_nlink = cpu_to_be32(from->di_nlink);
693 to->di_projid = cpu_to_be16(from->di_projid);
694 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
695 to->di_flushiter = cpu_to_be16(from->di_flushiter);
696 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
697 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
698 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
699 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
700 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
701 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
702 to->di_size = cpu_to_be64(from->di_size);
703 to->di_nblocks = cpu_to_be64(from->di_nblocks);
704 to->di_extsize = cpu_to_be32(from->di_extsize);
705 to->di_nextents = cpu_to_be32(from->di_nextents);
706 to->di_anextents = cpu_to_be16(from->di_anextents);
707 to->di_forkoff = from->di_forkoff;
708 to->di_aformat = from->di_aformat;
709 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
710 to->di_dmstate = cpu_to_be16(from->di_dmstate);
711 to->di_flags = cpu_to_be16(from->di_flags);
712 to->di_gen = cpu_to_be32(from->di_gen);
721 if (di_flags & XFS_DIFLAG_ANY) {
722 if (di_flags & XFS_DIFLAG_REALTIME)
723 flags |= XFS_XFLAG_REALTIME;
724 if (di_flags & XFS_DIFLAG_PREALLOC)
725 flags |= XFS_XFLAG_PREALLOC;
726 if (di_flags & XFS_DIFLAG_IMMUTABLE)
727 flags |= XFS_XFLAG_IMMUTABLE;
728 if (di_flags & XFS_DIFLAG_APPEND)
729 flags |= XFS_XFLAG_APPEND;
730 if (di_flags & XFS_DIFLAG_SYNC)
731 flags |= XFS_XFLAG_SYNC;
732 if (di_flags & XFS_DIFLAG_NOATIME)
733 flags |= XFS_XFLAG_NOATIME;
734 if (di_flags & XFS_DIFLAG_NODUMP)
735 flags |= XFS_XFLAG_NODUMP;
736 if (di_flags & XFS_DIFLAG_RTINHERIT)
737 flags |= XFS_XFLAG_RTINHERIT;
738 if (di_flags & XFS_DIFLAG_PROJINHERIT)
739 flags |= XFS_XFLAG_PROJINHERIT;
740 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
741 flags |= XFS_XFLAG_NOSYMLINKS;
742 if (di_flags & XFS_DIFLAG_EXTSIZE)
743 flags |= XFS_XFLAG_EXTSIZE;
744 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
745 flags |= XFS_XFLAG_EXTSZINHERIT;
746 if (di_flags & XFS_DIFLAG_NODEFRAG)
747 flags |= XFS_XFLAG_NODEFRAG;
748 if (di_flags & XFS_DIFLAG_FILESTREAM)
749 flags |= XFS_XFLAG_FILESTREAM;
759 xfs_icdinode_t *dic = &ip->i_d;
761 return _xfs_dic2xflags(dic->di_flags) |
762 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
769 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
770 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
774 * Read the disk inode attributes into the in-core inode structure.
789 * Fill in the location information in the in-core inode.
791 ip->i_imap.im_blkno = bno;
792 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
795 ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
798 * Get pointers to the on-disk inode and the buffer containing it.
800 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
801 XFS_BUF_LOCK, iget_flags);
804 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
807 * If we got something that isn't an inode it means someone
808 * (nfs or dmi) has a stale handle.
810 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
812 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
813 "dip->di_magic (0x%x) != "
814 "XFS_DINODE_MAGIC (0x%x)",
815 be16_to_cpu(dip->di_magic),
818 error = XFS_ERROR(EINVAL);
823 * If the on-disk inode is already linked to a directory
824 * entry, copy all of the inode into the in-core inode.
825 * xfs_iformat() handles copying in the inode format
826 * specific information.
827 * Otherwise, just get the truly permanent information.
830 xfs_dinode_from_disk(&ip->i_d, dip);
831 error = xfs_iformat(ip, dip);
834 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
835 "xfs_iformat() returned error %d",
841 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
842 ip->i_d.di_version = dip->di_version;
843 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
844 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
846 * Make sure to pull in the mode here as well in
847 * case the inode is released without being used.
848 * This ensures that xfs_inactive() will see that
849 * the inode is already free and not try to mess
850 * with the uninitialized part of it.
854 * Initialize the per-fork minima and maxima for a new
855 * inode here. xfs_iformat will do it for old inodes.
857 ip->i_df.if_ext_max =
858 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
862 * The inode format changed when we moved the link count and
863 * made it 32 bits long. If this is an old format inode,
864 * convert it in memory to look like a new one. If it gets
865 * flushed to disk we will convert back before flushing or
866 * logging it. We zero out the new projid field and the old link
867 * count field. We'll handle clearing the pad field (the remains
868 * of the old uuid field) when we actually convert the inode to
869 * the new format. We don't change the version number so that we
870 * can distinguish this from a real new format inode.
872 if (ip->i_d.di_version == 1) {
873 ip->i_d.di_nlink = ip->i_d.di_onlink;
874 ip->i_d.di_onlink = 0;
875 ip->i_d.di_projid = 0;
878 ip->i_delayed_blks = 0;
879 ip->i_size = ip->i_d.di_size;
882 * Mark the buffer containing the inode as something to keep
883 * around for a while. This helps to keep recently accessed
884 * meta-data in-core longer.
886 XFS_BUF_SET_REF(bp, XFS_INO_REF);
889 * Use xfs_trans_brelse() to release the buffer containing the
890 * on-disk inode, because it was acquired with xfs_trans_read_buf()
891 * in xfs_itobp() above. If tp is NULL, this is just a normal
892 * brelse(). If we're within a transaction, then xfs_trans_brelse()
893 * will only release the buffer if it is not dirty within the
894 * transaction. It will be OK to release the buffer in this case,
895 * because inodes on disk are never destroyed and we will be
896 * locking the new in-core inode before putting it in the hash
897 * table where other processes can find it. Thus we don't have
898 * to worry about the inode being changed just because we released
902 xfs_trans_brelse(tp, bp);
907 * Read in extents from a btree-format inode.
908 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
918 xfs_extnum_t nextents;
921 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
922 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
924 return XFS_ERROR(EFSCORRUPTED);
926 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
927 size = nextents * sizeof(xfs_bmbt_rec_t);
928 ifp = XFS_IFORK_PTR(ip, whichfork);
931 * We know that the size is valid (it's checked in iformat_btree)
933 ifp->if_lastex = NULLEXTNUM;
934 ifp->if_bytes = ifp->if_real_bytes = 0;
935 ifp->if_flags |= XFS_IFEXTENTS;
936 xfs_iext_add(ifp, 0, nextents);
937 error = xfs_bmap_read_extents(tp, ip, whichfork);
939 xfs_iext_destroy(ifp);
940 ifp->if_flags &= ~XFS_IFEXTENTS;
943 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
948 * Allocate an inode on disk and return a copy of its in-core version.
949 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
950 * appropriately within the inode. The uid and gid for the inode are
951 * set according to the contents of the given cred structure.
953 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
954 * has a free inode available, call xfs_iget()
955 * to obtain the in-core version of the allocated inode. Finally,
956 * fill in the inode and log its initial contents. In this case,
957 * ialloc_context would be set to NULL and call_again set to false.
959 * If xfs_dialloc() does not have an available inode,
960 * it will replenish its supply by doing an allocation. Since we can
961 * only do one allocation within a transaction without deadlocks, we
962 * must commit the current transaction before returning the inode itself.
963 * In this case, therefore, we will set call_again to true and return.
964 * The caller should then commit the current transaction, start a new
965 * transaction, and call xfs_ialloc() again to actually get the inode.
967 * To ensure that some other process does not grab the inode that
968 * was allocated during the first call to xfs_ialloc(), this routine
969 * also returns the [locked] bp pointing to the head of the freelist
970 * as ialloc_context. The caller should hold this buffer across
971 * the commit and pass it back into this routine on the second call.
973 * If we are allocating quota inodes, we do not have a parent inode
974 * to attach to or associate with (i.e. pip == NULL) because they
975 * are not linked into the directory structure - they are attached
976 * directly to the superblock - and so have no parent.
988 xfs_buf_t **ialloc_context,
989 boolean_t *call_again,
1000 * Call the space management code to pick
1001 * the on-disk inode to be allocated.
1003 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1004 ialloc_context, call_again, &ino);
1007 if (*call_again || ino == NULLFSINO) {
1011 ASSERT(*ialloc_context == NULL);
1014 * Get the in-core inode with the lock held exclusively.
1015 * This is because we're setting fields here we need
1016 * to prevent others from looking at until we're done.
1018 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1019 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1024 ip->i_d.di_mode = (__uint16_t)mode;
1025 ip->i_d.di_onlink = 0;
1026 ip->i_d.di_nlink = nlink;
1027 ASSERT(ip->i_d.di_nlink == nlink);
1028 ip->i_d.di_uid = current_fsuid();
1029 ip->i_d.di_gid = current_fsgid();
1030 ip->i_d.di_projid = prid;
1031 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1034 * If the superblock version is up to where we support new format
1035 * inodes and this is currently an old format inode, then change
1036 * the inode version number now. This way we only do the conversion
1037 * here rather than here and in the flush/logging code.
1039 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1040 ip->i_d.di_version == 1) {
1041 ip->i_d.di_version = 2;
1043 * We've already zeroed the old link count, the projid field,
1044 * and the pad field.
1049 * Project ids won't be stored on disk if we are using a version 1 inode.
1051 if ((prid != 0) && (ip->i_d.di_version == 1))
1052 xfs_bump_ino_vers2(tp, ip);
1054 if (pip && XFS_INHERIT_GID(pip)) {
1055 ip->i_d.di_gid = pip->i_d.di_gid;
1056 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1057 ip->i_d.di_mode |= S_ISGID;
1062 * If the group ID of the new file does not match the effective group
1063 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1064 * (and only if the irix_sgid_inherit compatibility variable is set).
1066 if ((irix_sgid_inherit) &&
1067 (ip->i_d.di_mode & S_ISGID) &&
1068 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1069 ip->i_d.di_mode &= ~S_ISGID;
1072 ip->i_d.di_size = 0;
1074 ip->i_d.di_nextents = 0;
1075 ASSERT(ip->i_d.di_nblocks == 0);
1078 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1079 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1080 ip->i_d.di_atime = ip->i_d.di_mtime;
1081 ip->i_d.di_ctime = ip->i_d.di_mtime;
1084 * di_gen will have been taken care of in xfs_iread.
1086 ip->i_d.di_extsize = 0;
1087 ip->i_d.di_dmevmask = 0;
1088 ip->i_d.di_dmstate = 0;
1089 ip->i_d.di_flags = 0;
1090 flags = XFS_ILOG_CORE;
1091 switch (mode & S_IFMT) {
1096 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1097 ip->i_df.if_u2.if_rdev = rdev;
1098 ip->i_df.if_flags = 0;
1099 flags |= XFS_ILOG_DEV;
1103 * we can't set up filestreams until after the VFS inode
1104 * is set up properly.
1106 if (pip && xfs_inode_is_filestream(pip))
1110 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1113 if ((mode & S_IFMT) == S_IFDIR) {
1114 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1115 di_flags |= XFS_DIFLAG_RTINHERIT;
1116 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1117 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1118 ip->i_d.di_extsize = pip->i_d.di_extsize;
1120 } else if ((mode & S_IFMT) == S_IFREG) {
1121 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1122 di_flags |= XFS_DIFLAG_REALTIME;
1123 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1124 di_flags |= XFS_DIFLAG_EXTSIZE;
1125 ip->i_d.di_extsize = pip->i_d.di_extsize;
1128 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1129 xfs_inherit_noatime)
1130 di_flags |= XFS_DIFLAG_NOATIME;
1131 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1133 di_flags |= XFS_DIFLAG_NODUMP;
1134 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1136 di_flags |= XFS_DIFLAG_SYNC;
1137 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1138 xfs_inherit_nosymlinks)
1139 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1140 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1141 di_flags |= XFS_DIFLAG_PROJINHERIT;
1142 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1143 xfs_inherit_nodefrag)
1144 di_flags |= XFS_DIFLAG_NODEFRAG;
1145 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1146 di_flags |= XFS_DIFLAG_FILESTREAM;
1147 ip->i_d.di_flags |= di_flags;
1151 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1152 ip->i_df.if_flags = XFS_IFEXTENTS;
1153 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1154 ip->i_df.if_u1.if_extents = NULL;
1160 * Attribute fork settings for new inode.
1162 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1163 ip->i_d.di_anextents = 0;
1166 * Log the new values stuffed into the inode.
1168 xfs_trans_log_inode(tp, ip, flags);
1170 /* now that we have an i_mode we can setup inode ops and unlock */
1171 xfs_setup_inode(ip);
1173 /* now we have set up the vfs inode we can associate the filestream */
1175 error = xfs_filestream_associate(pip, ip);
1179 xfs_iflags_set(ip, XFS_IFILESTREAM);
1187 * Check to make sure that there are no blocks allocated to the
1188 * file beyond the size of the file. We don't check this for
1189 * files with fixed size extents or real time extents, but we
1190 * at least do it for regular files.
1199 xfs_fileoff_t map_first;
1201 xfs_bmbt_irec_t imaps[2];
1203 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1206 if (XFS_IS_REALTIME_INODE(ip))
1209 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1213 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1215 * The filesystem could be shutting down, so bmapi may return
1218 if (xfs_bmapi(NULL, ip, map_first,
1220 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1222 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1225 ASSERT(nimaps == 1);
1226 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1231 * Calculate the last possible buffered byte in a file. This must
1232 * include data that was buffered beyond the EOF by the write code.
1233 * This also needs to deal with overflowing the xfs_fsize_t type
1234 * which can happen for sizes near the limit.
1236 * We also need to take into account any blocks beyond the EOF. It
1237 * may be the case that they were buffered by a write which failed.
1238 * In that case the pages will still be in memory, but the inode size
1239 * will never have been updated.
1246 xfs_fsize_t last_byte;
1247 xfs_fileoff_t last_block;
1248 xfs_fileoff_t size_last_block;
1251 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1255 * Only check for blocks beyond the EOF if the extents have
1256 * been read in. This eliminates the need for the inode lock,
1257 * and it also saves us from looking when it really isn't
1260 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1261 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1269 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1270 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1272 last_byte = XFS_FSB_TO_B(mp, last_block);
1273 if (last_byte < 0) {
1274 return XFS_MAXIOFFSET(mp);
1276 last_byte += (1 << mp->m_writeio_log);
1277 if (last_byte < 0) {
1278 return XFS_MAXIOFFSET(mp);
1283 #if defined(XFS_RW_TRACE)
1289 xfs_fsize_t new_size,
1290 xfs_off_t toss_start,
1291 xfs_off_t toss_finish)
1293 if (ip->i_rwtrace == NULL) {
1297 ktrace_enter(ip->i_rwtrace,
1300 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1301 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1302 (void*)((long)flag),
1303 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1304 (void*)(unsigned long)(new_size & 0xffffffff),
1305 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1306 (void*)(unsigned long)(toss_start & 0xffffffff),
1307 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1308 (void*)(unsigned long)(toss_finish & 0xffffffff),
1309 (void*)(unsigned long)current_cpu(),
1310 (void*)(unsigned long)current_pid(),
1316 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1320 * Start the truncation of the file to new_size. The new size
1321 * must be smaller than the current size. This routine will
1322 * clear the buffer and page caches of file data in the removed
1323 * range, and xfs_itruncate_finish() will remove the underlying
1326 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1327 * must NOT have the inode lock held at all. This is because we're
1328 * calling into the buffer/page cache code and we can't hold the
1329 * inode lock when we do so.
1331 * We need to wait for any direct I/Os in flight to complete before we
1332 * proceed with the truncate. This is needed to prevent the extents
1333 * being read or written by the direct I/Os from being removed while the
1334 * I/O is in flight as there is no other method of synchronising
1335 * direct I/O with the truncate operation. Also, because we hold
1336 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1337 * started until the truncate completes and drops the lock. Essentially,
1338 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1339 * ordering between direct I/Os and the truncate operation.
1341 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1342 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1343 * in the case that the caller is locking things out of order and
1344 * may not be able to call xfs_itruncate_finish() with the inode lock
1345 * held without dropping the I/O lock. If the caller must drop the
1346 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1347 * must be called again with all the same restrictions as the initial
1351 xfs_itruncate_start(
1354 xfs_fsize_t new_size)
1356 xfs_fsize_t last_byte;
1357 xfs_off_t toss_start;
1361 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1362 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1363 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1364 (flags == XFS_ITRUNC_MAYBE));
1368 /* wait for the completion of any pending DIOs */
1369 if (new_size == 0 || new_size < ip->i_size)
1373 * Call toss_pages or flushinval_pages to get rid of pages
1374 * overlapping the region being removed. We have to use
1375 * the less efficient flushinval_pages in the case that the
1376 * caller may not be able to finish the truncate without
1377 * dropping the inode's I/O lock. Make sure
1378 * to catch any pages brought in by buffers overlapping
1379 * the EOF by searching out beyond the isize by our
1380 * block size. We round new_size up to a block boundary
1381 * so that we don't toss things on the same block as
1382 * new_size but before it.
1384 * Before calling toss_page or flushinval_pages, make sure to
1385 * call remapf() over the same region if the file is mapped.
1386 * This frees up mapped file references to the pages in the
1387 * given range and for the flushinval_pages case it ensures
1388 * that we get the latest mapped changes flushed out.
1390 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1391 toss_start = XFS_FSB_TO_B(mp, toss_start);
1392 if (toss_start < 0) {
1394 * The place to start tossing is beyond our maximum
1395 * file size, so there is no way that the data extended
1400 last_byte = xfs_file_last_byte(ip);
1401 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1403 if (last_byte > toss_start) {
1404 if (flags & XFS_ITRUNC_DEFINITE) {
1405 xfs_tosspages(ip, toss_start,
1406 -1, FI_REMAPF_LOCKED);
1408 error = xfs_flushinval_pages(ip, toss_start,
1409 -1, FI_REMAPF_LOCKED);
1414 if (new_size == 0) {
1415 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1422 * Shrink the file to the given new_size. The new size must be smaller than
1423 * the current size. This will free up the underlying blocks in the removed
1424 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1426 * The transaction passed to this routine must have made a permanent log
1427 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1428 * given transaction and start new ones, so make sure everything involved in
1429 * the transaction is tidy before calling here. Some transaction will be
1430 * returned to the caller to be committed. The incoming transaction must
1431 * already include the inode, and both inode locks must be held exclusively.
1432 * The inode must also be "held" within the transaction. On return the inode
1433 * will be "held" within the returned transaction. This routine does NOT
1434 * require any disk space to be reserved for it within the transaction.
1436 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1437 * indicates the fork which is to be truncated. For the attribute fork we only
1438 * support truncation to size 0.
1440 * We use the sync parameter to indicate whether or not the first transaction
1441 * we perform might have to be synchronous. For the attr fork, it needs to be
1442 * so if the unlink of the inode is not yet known to be permanent in the log.
1443 * This keeps us from freeing and reusing the blocks of the attribute fork
1444 * before the unlink of the inode becomes permanent.
1446 * For the data fork, we normally have to run synchronously if we're being
1447 * called out of the inactive path or we're being called out of the create path
1448 * where we're truncating an existing file. Either way, the truncate needs to
1449 * be sync so blocks don't reappear in the file with altered data in case of a
1450 * crash. wsync filesystems can run the first case async because anything that
1451 * shrinks the inode has to run sync so by the time we're called here from
1452 * inactive, the inode size is permanently set to 0.
1454 * Calls from the truncate path always need to be sync unless we're in a wsync
1455 * filesystem and the file has already been unlinked.
1457 * The caller is responsible for correctly setting the sync parameter. It gets
1458 * too hard for us to guess here which path we're being called out of just
1459 * based on inode state.
1461 * If we get an error, we must return with the inode locked and linked into the
1462 * current transaction. This keeps things simple for the higher level code,
1463 * because it always knows that the inode is locked and held in the transaction
1464 * that returns to it whether errors occur or not. We don't mark the inode
1465 * dirty on error so that transactions can be easily aborted if possible.
1468 xfs_itruncate_finish(
1471 xfs_fsize_t new_size,
1475 xfs_fsblock_t first_block;
1476 xfs_fileoff_t first_unmap_block;
1477 xfs_fileoff_t last_block;
1478 xfs_filblks_t unmap_len=0;
1483 xfs_bmap_free_t free_list;
1486 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1487 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1488 ASSERT(*tp != NULL);
1489 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1490 ASSERT(ip->i_transp == *tp);
1491 ASSERT(ip->i_itemp != NULL);
1492 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1496 mp = (ntp)->t_mountp;
1497 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1500 * We only support truncating the entire attribute fork.
1502 if (fork == XFS_ATTR_FORK) {
1505 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1506 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1508 * The first thing we do is set the size to new_size permanently
1509 * on disk. This way we don't have to worry about anyone ever
1510 * being able to look at the data being freed even in the face
1511 * of a crash. What we're getting around here is the case where
1512 * we free a block, it is allocated to another file, it is written
1513 * to, and then we crash. If the new data gets written to the
1514 * file but the log buffers containing the free and reallocation
1515 * don't, then we'd end up with garbage in the blocks being freed.
1516 * As long as we make the new_size permanent before actually
1517 * freeing any blocks it doesn't matter if they get writtten to.
1519 * The callers must signal into us whether or not the size
1520 * setting here must be synchronous. There are a few cases
1521 * where it doesn't have to be synchronous. Those cases
1522 * occur if the file is unlinked and we know the unlink is
1523 * permanent or if the blocks being truncated are guaranteed
1524 * to be beyond the inode eof (regardless of the link count)
1525 * and the eof value is permanent. Both of these cases occur
1526 * only on wsync-mounted filesystems. In those cases, we're
1527 * guaranteed that no user will ever see the data in the blocks
1528 * that are being truncated so the truncate can run async.
1529 * In the free beyond eof case, the file may wind up with
1530 * more blocks allocated to it than it needs if we crash
1531 * and that won't get fixed until the next time the file
1532 * is re-opened and closed but that's ok as that shouldn't
1533 * be too many blocks.
1535 * However, we can't just make all wsync xactions run async
1536 * because there's one call out of the create path that needs
1537 * to run sync where it's truncating an existing file to size
1538 * 0 whose size is > 0.
1540 * It's probably possible to come up with a test in this
1541 * routine that would correctly distinguish all the above
1542 * cases from the values of the function parameters and the
1543 * inode state but for sanity's sake, I've decided to let the
1544 * layers above just tell us. It's simpler to correctly figure
1545 * out in the layer above exactly under what conditions we
1546 * can run async and I think it's easier for others read and
1547 * follow the logic in case something has to be changed.
1548 * cscope is your friend -- rcc.
1550 * The attribute fork is much simpler.
1552 * For the attribute fork we allow the caller to tell us whether
1553 * the unlink of the inode that led to this call is yet permanent
1554 * in the on disk log. If it is not and we will be freeing extents
1555 * in this inode then we make the first transaction synchronous
1556 * to make sure that the unlink is permanent by the time we free
1559 if (fork == XFS_DATA_FORK) {
1560 if (ip->i_d.di_nextents > 0) {
1562 * If we are not changing the file size then do
1563 * not update the on-disk file size - we may be
1564 * called from xfs_inactive_free_eofblocks(). If we
1565 * update the on-disk file size and then the system
1566 * crashes before the contents of the file are
1567 * flushed to disk then the files may be full of
1568 * holes (ie NULL files bug).
1570 if (ip->i_size != new_size) {
1571 ip->i_d.di_size = new_size;
1572 ip->i_size = new_size;
1573 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1577 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1578 if (ip->i_d.di_anextents > 0)
1579 xfs_trans_set_sync(ntp);
1581 ASSERT(fork == XFS_DATA_FORK ||
1582 (fork == XFS_ATTR_FORK &&
1583 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1584 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1587 * Since it is possible for space to become allocated beyond
1588 * the end of the file (in a crash where the space is allocated
1589 * but the inode size is not yet updated), simply remove any
1590 * blocks which show up between the new EOF and the maximum
1591 * possible file size. If the first block to be removed is
1592 * beyond the maximum file size (ie it is the same as last_block),
1593 * then there is nothing to do.
1595 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1596 ASSERT(first_unmap_block <= last_block);
1598 if (last_block == first_unmap_block) {
1601 unmap_len = last_block - first_unmap_block + 1;
1605 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1606 * will tell us whether it freed the entire range or
1607 * not. If this is a synchronous mount (wsync),
1608 * then we can tell bunmapi to keep all the
1609 * transactions asynchronous since the unlink
1610 * transaction that made this inode inactive has
1611 * already hit the disk. There's no danger of
1612 * the freed blocks being reused, there being a
1613 * crash, and the reused blocks suddenly reappearing
1614 * in this file with garbage in them once recovery
1617 xfs_bmap_init(&free_list, &first_block);
1618 error = xfs_bunmapi(ntp, ip,
1619 first_unmap_block, unmap_len,
1620 xfs_bmapi_aflag(fork) |
1621 (sync ? 0 : XFS_BMAPI_ASYNC),
1622 XFS_ITRUNC_MAX_EXTENTS,
1623 &first_block, &free_list,
1627 * If the bunmapi call encounters an error,
1628 * return to the caller where the transaction
1629 * can be properly aborted. We just need to
1630 * make sure we're not holding any resources
1631 * that we were not when we came in.
1633 xfs_bmap_cancel(&free_list);
1638 * Duplicate the transaction that has the permanent
1639 * reservation and commit the old transaction.
1641 error = xfs_bmap_finish(tp, &free_list, &committed);
1644 /* link the inode into the next xact in the chain */
1645 xfs_trans_ijoin(ntp, ip,
1646 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1647 xfs_trans_ihold(ntp, ip);
1652 * If the bmap finish call encounters an error, return
1653 * to the caller where the transaction can be properly
1654 * aborted. We just need to make sure we're not
1655 * holding any resources that we were not when we came
1658 * Aborting from this point might lose some blocks in
1659 * the file system, but oh well.
1661 xfs_bmap_cancel(&free_list);
1667 * Mark the inode dirty so it will be logged and
1668 * moved forward in the log as part of every commit.
1670 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1673 ntp = xfs_trans_dup(ntp);
1674 error = xfs_trans_commit(*tp, 0);
1677 /* link the inode into the next transaction in the chain */
1678 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1679 xfs_trans_ihold(ntp, ip);
1684 * transaction commit worked ok so we can drop the extra ticket
1685 * reference that we gained in xfs_trans_dup()
1687 xfs_log_ticket_put(ntp->t_ticket);
1688 error = xfs_trans_reserve(ntp, 0,
1689 XFS_ITRUNCATE_LOG_RES(mp), 0,
1690 XFS_TRANS_PERM_LOG_RES,
1691 XFS_ITRUNCATE_LOG_COUNT);
1696 * Only update the size in the case of the data fork, but
1697 * always re-log the inode so that our permanent transaction
1698 * can keep on rolling it forward in the log.
1700 if (fork == XFS_DATA_FORK) {
1701 xfs_isize_check(mp, ip, new_size);
1703 * If we are not changing the file size then do
1704 * not update the on-disk file size - we may be
1705 * called from xfs_inactive_free_eofblocks(). If we
1706 * update the on-disk file size and then the system
1707 * crashes before the contents of the file are
1708 * flushed to disk then the files may be full of
1709 * holes (ie NULL files bug).
1711 if (ip->i_size != new_size) {
1712 ip->i_d.di_size = new_size;
1713 ip->i_size = new_size;
1716 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1717 ASSERT((new_size != 0) ||
1718 (fork == XFS_ATTR_FORK) ||
1719 (ip->i_delayed_blks == 0));
1720 ASSERT((new_size != 0) ||
1721 (fork == XFS_ATTR_FORK) ||
1722 (ip->i_d.di_nextents == 0));
1723 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1728 * This is called when the inode's link count goes to 0.
1729 * We place the on-disk inode on a list in the AGI. It
1730 * will be pulled from this list when the inode is freed.
1747 ASSERT(ip->i_d.di_nlink == 0);
1748 ASSERT(ip->i_d.di_mode != 0);
1749 ASSERT(ip->i_transp == tp);
1754 * Get the agi buffer first. It ensures lock ordering
1757 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1760 agi = XFS_BUF_TO_AGI(agibp);
1763 * Get the index into the agi hash table for the
1764 * list this inode will go on.
1766 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1768 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1769 ASSERT(agi->agi_unlinked[bucket_index]);
1770 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1772 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1774 * There is already another inode in the bucket we need
1775 * to add ourselves to. Add us at the front of the list.
1776 * Here we put the head pointer into our next pointer,
1777 * and then we fall through to point the head at us.
1779 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1783 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1784 /* both on-disk, don't endian flip twice */
1785 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1786 offset = ip->i_imap.im_boffset +
1787 offsetof(xfs_dinode_t, di_next_unlinked);
1788 xfs_trans_inode_buf(tp, ibp);
1789 xfs_trans_log_buf(tp, ibp, offset,
1790 (offset + sizeof(xfs_agino_t) - 1));
1791 xfs_inobp_check(mp, ibp);
1795 * Point the bucket head pointer at the inode being inserted.
1798 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1799 offset = offsetof(xfs_agi_t, agi_unlinked) +
1800 (sizeof(xfs_agino_t) * bucket_index);
1801 xfs_trans_log_buf(tp, agibp, offset,
1802 (offset + sizeof(xfs_agino_t) - 1));
1807 * Pull the on-disk inode from the AGI unlinked list.
1820 xfs_agnumber_t agno;
1822 xfs_agino_t next_agino;
1823 xfs_buf_t *last_ibp;
1824 xfs_dinode_t *last_dip = NULL;
1826 int offset, last_offset = 0;
1830 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1833 * Get the agi buffer first. It ensures lock ordering
1836 error = xfs_read_agi(mp, tp, agno, &agibp);
1840 agi = XFS_BUF_TO_AGI(agibp);
1843 * Get the index into the agi hash table for the
1844 * list this inode will go on.
1846 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1848 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1849 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1850 ASSERT(agi->agi_unlinked[bucket_index]);
1852 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1854 * We're at the head of the list. Get the inode's
1855 * on-disk buffer to see if there is anyone after us
1856 * on the list. Only modify our next pointer if it
1857 * is not already NULLAGINO. This saves us the overhead
1858 * of dealing with the buffer when there is no need to
1861 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1864 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1865 error, mp->m_fsname);
1868 next_agino = be32_to_cpu(dip->di_next_unlinked);
1869 ASSERT(next_agino != 0);
1870 if (next_agino != NULLAGINO) {
1871 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1872 offset = ip->i_imap.im_boffset +
1873 offsetof(xfs_dinode_t, di_next_unlinked);
1874 xfs_trans_inode_buf(tp, ibp);
1875 xfs_trans_log_buf(tp, ibp, offset,
1876 (offset + sizeof(xfs_agino_t) - 1));
1877 xfs_inobp_check(mp, ibp);
1879 xfs_trans_brelse(tp, ibp);
1882 * Point the bucket head pointer at the next inode.
1884 ASSERT(next_agino != 0);
1885 ASSERT(next_agino != agino);
1886 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1887 offset = offsetof(xfs_agi_t, agi_unlinked) +
1888 (sizeof(xfs_agino_t) * bucket_index);
1889 xfs_trans_log_buf(tp, agibp, offset,
1890 (offset + sizeof(xfs_agino_t) - 1));
1893 * We need to search the list for the inode being freed.
1895 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1897 while (next_agino != agino) {
1899 * If the last inode wasn't the one pointing to
1900 * us, then release its buffer since we're not
1901 * going to do anything with it.
1903 if (last_ibp != NULL) {
1904 xfs_trans_brelse(tp, last_ibp);
1906 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1907 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1908 &last_ibp, &last_offset, 0);
1911 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1912 error, mp->m_fsname);
1915 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1916 ASSERT(next_agino != NULLAGINO);
1917 ASSERT(next_agino != 0);
1920 * Now last_ibp points to the buffer previous to us on
1921 * the unlinked list. Pull us from the list.
1923 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
1926 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1927 error, mp->m_fsname);
1930 next_agino = be32_to_cpu(dip->di_next_unlinked);
1931 ASSERT(next_agino != 0);
1932 ASSERT(next_agino != agino);
1933 if (next_agino != NULLAGINO) {
1934 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1935 offset = ip->i_imap.im_boffset +
1936 offsetof(xfs_dinode_t, di_next_unlinked);
1937 xfs_trans_inode_buf(tp, ibp);
1938 xfs_trans_log_buf(tp, ibp, offset,
1939 (offset + sizeof(xfs_agino_t) - 1));
1940 xfs_inobp_check(mp, ibp);
1942 xfs_trans_brelse(tp, ibp);
1945 * Point the previous inode on the list to the next inode.
1947 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1948 ASSERT(next_agino != 0);
1949 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1950 xfs_trans_inode_buf(tp, last_ibp);
1951 xfs_trans_log_buf(tp, last_ibp, offset,
1952 (offset + sizeof(xfs_agino_t) - 1));
1953 xfs_inobp_check(mp, last_ibp);
1960 xfs_inode_t *free_ip,
1964 xfs_mount_t *mp = free_ip->i_mount;
1965 int blks_per_cluster;
1968 int i, j, found, pre_flushed;
1971 xfs_inode_t *ip, **ip_found;
1972 xfs_inode_log_item_t *iip;
1973 xfs_log_item_t *lip;
1974 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1976 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1977 blks_per_cluster = 1;
1978 ninodes = mp->m_sb.sb_inopblock;
1979 nbufs = XFS_IALLOC_BLOCKS(mp);
1981 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1982 mp->m_sb.sb_blocksize;
1983 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1984 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1987 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
1989 for (j = 0; j < nbufs; j++, inum += ninodes) {
1990 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1991 XFS_INO_TO_AGBNO(mp, inum));
1995 * Look for each inode in memory and attempt to lock it,
1996 * we can be racing with flush and tail pushing here.
1997 * any inode we get the locks on, add to an array of
1998 * inode items to process later.
2000 * The get the buffer lock, we could beat a flush
2001 * or tail pushing thread to the lock here, in which
2002 * case they will go looking for the inode buffer
2003 * and fail, we need some other form of interlock
2007 for (i = 0; i < ninodes; i++) {
2008 read_lock(&pag->pag_ici_lock);
2009 ip = radix_tree_lookup(&pag->pag_ici_root,
2010 XFS_INO_TO_AGINO(mp, (inum + i)));
2012 /* Inode not in memory or we found it already,
2015 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2016 read_unlock(&pag->pag_ici_lock);
2020 if (xfs_inode_clean(ip)) {
2021 read_unlock(&pag->pag_ici_lock);
2025 /* If we can get the locks then add it to the
2026 * list, otherwise by the time we get the bp lock
2027 * below it will already be attached to the
2031 /* This inode will already be locked - by us, lets
2035 if (ip == free_ip) {
2036 if (xfs_iflock_nowait(ip)) {
2037 xfs_iflags_set(ip, XFS_ISTALE);
2038 if (xfs_inode_clean(ip)) {
2041 ip_found[found++] = ip;
2044 read_unlock(&pag->pag_ici_lock);
2048 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2049 if (xfs_iflock_nowait(ip)) {
2050 xfs_iflags_set(ip, XFS_ISTALE);
2052 if (xfs_inode_clean(ip)) {
2054 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2056 ip_found[found++] = ip;
2059 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2062 read_unlock(&pag->pag_ici_lock);
2065 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2066 mp->m_bsize * blks_per_cluster,
2070 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2072 if (lip->li_type == XFS_LI_INODE) {
2073 iip = (xfs_inode_log_item_t *)lip;
2074 ASSERT(iip->ili_logged == 1);
2075 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2076 xfs_trans_ail_copy_lsn(mp->m_ail,
2077 &iip->ili_flush_lsn,
2078 &iip->ili_item.li_lsn);
2079 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2082 lip = lip->li_bio_list;
2085 for (i = 0; i < found; i++) {
2090 ip->i_update_core = 0;
2092 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2096 iip->ili_last_fields = iip->ili_format.ilf_fields;
2097 iip->ili_format.ilf_fields = 0;
2098 iip->ili_logged = 1;
2099 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2100 &iip->ili_item.li_lsn);
2102 xfs_buf_attach_iodone(bp,
2103 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2104 xfs_istale_done, (xfs_log_item_t *)iip);
2105 if (ip != free_ip) {
2106 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2110 if (found || pre_flushed)
2111 xfs_trans_stale_inode_buf(tp, bp);
2112 xfs_trans_binval(tp, bp);
2115 kmem_free(ip_found);
2116 xfs_put_perag(mp, pag);
2120 * This is called to return an inode to the inode free list.
2121 * The inode should already be truncated to 0 length and have
2122 * no pages associated with it. This routine also assumes that
2123 * the inode is already a part of the transaction.
2125 * The on-disk copy of the inode will have been added to the list
2126 * of unlinked inodes in the AGI. We need to remove the inode from
2127 * that list atomically with respect to freeing it here.
2133 xfs_bmap_free_t *flist)
2137 xfs_ino_t first_ino;
2141 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2142 ASSERT(ip->i_transp == tp);
2143 ASSERT(ip->i_d.di_nlink == 0);
2144 ASSERT(ip->i_d.di_nextents == 0);
2145 ASSERT(ip->i_d.di_anextents == 0);
2146 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2147 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2148 ASSERT(ip->i_d.di_nblocks == 0);
2151 * Pull the on-disk inode from the AGI unlinked list.
2153 error = xfs_iunlink_remove(tp, ip);
2158 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2162 ip->i_d.di_mode = 0; /* mark incore inode as free */
2163 ip->i_d.di_flags = 0;
2164 ip->i_d.di_dmevmask = 0;
2165 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2166 ip->i_df.if_ext_max =
2167 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2168 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2169 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2171 * Bump the generation count so no one will be confused
2172 * by reincarnations of this inode.
2176 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2178 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
2183 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2184 * from picking up this inode when it is reclaimed (its incore state
2185 * initialzed but not flushed to disk yet). The in-core di_mode is
2186 * already cleared and a corresponding transaction logged.
2187 * The hack here just synchronizes the in-core to on-disk
2188 * di_mode value in advance before the actual inode sync to disk.
2189 * This is OK because the inode is already unlinked and would never
2190 * change its di_mode again for this inode generation.
2191 * This is a temporary hack that would require a proper fix
2197 xfs_ifree_cluster(ip, tp, first_ino);
2204 * Reallocate the space for if_broot based on the number of records
2205 * being added or deleted as indicated in rec_diff. Move the records
2206 * and pointers in if_broot to fit the new size. When shrinking this
2207 * will eliminate holes between the records and pointers created by
2208 * the caller. When growing this will create holes to be filled in
2211 * The caller must not request to add more records than would fit in
2212 * the on-disk inode root. If the if_broot is currently NULL, then
2213 * if we adding records one will be allocated. The caller must also
2214 * not request that the number of records go below zero, although
2215 * it can go to zero.
2217 * ip -- the inode whose if_broot area is changing
2218 * ext_diff -- the change in the number of records, positive or negative,
2219 * requested for the if_broot array.
2227 struct xfs_mount *mp = ip->i_mount;
2230 struct xfs_btree_block *new_broot;
2237 * Handle the degenerate case quietly.
2239 if (rec_diff == 0) {
2243 ifp = XFS_IFORK_PTR(ip, whichfork);
2246 * If there wasn't any memory allocated before, just
2247 * allocate it now and get out.
2249 if (ifp->if_broot_bytes == 0) {
2250 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2251 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
2252 ifp->if_broot_bytes = (int)new_size;
2257 * If there is already an existing if_broot, then we need
2258 * to realloc() it and shift the pointers to their new
2259 * location. The records don't change location because
2260 * they are kept butted up against the btree block header.
2262 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2263 new_max = cur_max + rec_diff;
2264 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2265 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2266 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2268 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2269 ifp->if_broot_bytes);
2270 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2272 ifp->if_broot_bytes = (int)new_size;
2273 ASSERT(ifp->if_broot_bytes <=
2274 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2275 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2280 * rec_diff is less than 0. In this case, we are shrinking the
2281 * if_broot buffer. It must already exist. If we go to zero
2282 * records, just get rid of the root and clear the status bit.
2284 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2285 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2286 new_max = cur_max + rec_diff;
2287 ASSERT(new_max >= 0);
2289 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2293 new_broot = kmem_alloc(new_size, KM_SLEEP);
2295 * First copy over the btree block header.
2297 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2300 ifp->if_flags &= ~XFS_IFBROOT;
2304 * Only copy the records and pointers if there are any.
2308 * First copy the records.
2310 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2311 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2312 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2315 * Then copy the pointers.
2317 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2318 ifp->if_broot_bytes);
2319 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2321 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2323 kmem_free(ifp->if_broot);
2324 ifp->if_broot = new_broot;
2325 ifp->if_broot_bytes = (int)new_size;
2326 ASSERT(ifp->if_broot_bytes <=
2327 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2333 * This is called when the amount of space needed for if_data
2334 * is increased or decreased. The change in size is indicated by
2335 * the number of bytes that need to be added or deleted in the
2336 * byte_diff parameter.
2338 * If the amount of space needed has decreased below the size of the
2339 * inline buffer, then switch to using the inline buffer. Otherwise,
2340 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2341 * to what is needed.
2343 * ip -- the inode whose if_data area is changing
2344 * byte_diff -- the change in the number of bytes, positive or negative,
2345 * requested for the if_data array.
2357 if (byte_diff == 0) {
2361 ifp = XFS_IFORK_PTR(ip, whichfork);
2362 new_size = (int)ifp->if_bytes + byte_diff;
2363 ASSERT(new_size >= 0);
2365 if (new_size == 0) {
2366 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2367 kmem_free(ifp->if_u1.if_data);
2369 ifp->if_u1.if_data = NULL;
2371 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2373 * If the valid extents/data can fit in if_inline_ext/data,
2374 * copy them from the malloc'd vector and free it.
2376 if (ifp->if_u1.if_data == NULL) {
2377 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2378 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2379 ASSERT(ifp->if_real_bytes != 0);
2380 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2382 kmem_free(ifp->if_u1.if_data);
2383 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2388 * Stuck with malloc/realloc.
2389 * For inline data, the underlying buffer must be
2390 * a multiple of 4 bytes in size so that it can be
2391 * logged and stay on word boundaries. We enforce
2394 real_size = roundup(new_size, 4);
2395 if (ifp->if_u1.if_data == NULL) {
2396 ASSERT(ifp->if_real_bytes == 0);
2397 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2398 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2400 * Only do the realloc if the underlying size
2401 * is really changing.
2403 if (ifp->if_real_bytes != real_size) {
2404 ifp->if_u1.if_data =
2405 kmem_realloc(ifp->if_u1.if_data,
2411 ASSERT(ifp->if_real_bytes == 0);
2412 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2413 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2417 ifp->if_real_bytes = real_size;
2418 ifp->if_bytes = new_size;
2419 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2429 ifp = XFS_IFORK_PTR(ip, whichfork);
2430 if (ifp->if_broot != NULL) {
2431 kmem_free(ifp->if_broot);
2432 ifp->if_broot = NULL;
2436 * If the format is local, then we can't have an extents
2437 * array so just look for an inline data array. If we're
2438 * not local then we may or may not have an extents list,
2439 * so check and free it up if we do.
2441 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2442 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2443 (ifp->if_u1.if_data != NULL)) {
2444 ASSERT(ifp->if_real_bytes != 0);
2445 kmem_free(ifp->if_u1.if_data);
2446 ifp->if_u1.if_data = NULL;
2447 ifp->if_real_bytes = 0;
2449 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2450 ((ifp->if_flags & XFS_IFEXTIREC) ||
2451 ((ifp->if_u1.if_extents != NULL) &&
2452 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2453 ASSERT(ifp->if_real_bytes != 0);
2454 xfs_iext_destroy(ifp);
2456 ASSERT(ifp->if_u1.if_extents == NULL ||
2457 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2458 ASSERT(ifp->if_real_bytes == 0);
2459 if (whichfork == XFS_ATTR_FORK) {
2460 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2466 * Increment the pin count of the given buffer.
2467 * This value is protected by ipinlock spinlock in the mount structure.
2473 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2475 atomic_inc(&ip->i_pincount);
2479 * Decrement the pin count of the given inode, and wake up
2480 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2481 * inode must have been previously pinned with a call to xfs_ipin().
2487 ASSERT(atomic_read(&ip->i_pincount) > 0);
2489 if (atomic_dec_and_test(&ip->i_pincount))
2490 wake_up(&ip->i_ipin_wait);
2494 * This is called to unpin an inode. It can be directed to wait or to return
2495 * immediately without waiting for the inode to be unpinned. The caller must
2496 * have the inode locked in at least shared mode so that the buffer cannot be
2497 * subsequently pinned once someone is waiting for it to be unpinned.
2504 xfs_inode_log_item_t *iip = ip->i_itemp;
2506 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2507 if (atomic_read(&ip->i_pincount) == 0)
2510 /* Give the log a push to start the unpinning I/O */
2511 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2512 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2514 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2521 __xfs_iunpin_wait(ip, 1);
2528 __xfs_iunpin_wait(ip, 0);
2533 * xfs_iextents_copy()
2535 * This is called to copy the REAL extents (as opposed to the delayed
2536 * allocation extents) from the inode into the given buffer. It
2537 * returns the number of bytes copied into the buffer.
2539 * If there are no delayed allocation extents, then we can just
2540 * memcpy() the extents into the buffer. Otherwise, we need to
2541 * examine each extent in turn and skip those which are delayed.
2553 xfs_fsblock_t start_block;
2555 ifp = XFS_IFORK_PTR(ip, whichfork);
2556 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2557 ASSERT(ifp->if_bytes > 0);
2559 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2560 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2564 * There are some delayed allocation extents in the
2565 * inode, so copy the extents one at a time and skip
2566 * the delayed ones. There must be at least one
2567 * non-delayed extent.
2570 for (i = 0; i < nrecs; i++) {
2571 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2572 start_block = xfs_bmbt_get_startblock(ep);
2573 if (isnullstartblock(start_block)) {
2575 * It's a delayed allocation extent, so skip it.
2580 /* Translate to on disk format */
2581 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2582 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2586 ASSERT(copied != 0);
2587 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2589 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2593 * Each of the following cases stores data into the same region
2594 * of the on-disk inode, so only one of them can be valid at
2595 * any given time. While it is possible to have conflicting formats
2596 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2597 * in EXTENTS format, this can only happen when the fork has
2598 * changed formats after being modified but before being flushed.
2599 * In these cases, the format always takes precedence, because the
2600 * format indicates the current state of the fork.
2607 xfs_inode_log_item_t *iip,
2614 #ifdef XFS_TRANS_DEBUG
2617 static const short brootflag[2] =
2618 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2619 static const short dataflag[2] =
2620 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2621 static const short extflag[2] =
2622 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2626 ifp = XFS_IFORK_PTR(ip, whichfork);
2628 * This can happen if we gave up in iformat in an error path,
2629 * for the attribute fork.
2632 ASSERT(whichfork == XFS_ATTR_FORK);
2635 cp = XFS_DFORK_PTR(dip, whichfork);
2637 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2638 case XFS_DINODE_FMT_LOCAL:
2639 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2640 (ifp->if_bytes > 0)) {
2641 ASSERT(ifp->if_u1.if_data != NULL);
2642 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2643 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2647 case XFS_DINODE_FMT_EXTENTS:
2648 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2649 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2650 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2651 (ifp->if_bytes == 0));
2652 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2653 (ifp->if_bytes > 0));
2654 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2655 (ifp->if_bytes > 0)) {
2656 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2657 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2662 case XFS_DINODE_FMT_BTREE:
2663 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2664 (ifp->if_broot_bytes > 0)) {
2665 ASSERT(ifp->if_broot != NULL);
2666 ASSERT(ifp->if_broot_bytes <=
2667 (XFS_IFORK_SIZE(ip, whichfork) +
2668 XFS_BROOT_SIZE_ADJ));
2669 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2670 (xfs_bmdr_block_t *)cp,
2671 XFS_DFORK_SIZE(dip, mp, whichfork));
2675 case XFS_DINODE_FMT_DEV:
2676 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2677 ASSERT(whichfork == XFS_DATA_FORK);
2678 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2682 case XFS_DINODE_FMT_UUID:
2683 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2684 ASSERT(whichfork == XFS_DATA_FORK);
2685 memcpy(XFS_DFORK_DPTR(dip),
2686 &ip->i_df.if_u2.if_uuid,
2702 xfs_mount_t *mp = ip->i_mount;
2703 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
2704 unsigned long first_index, mask;
2705 unsigned long inodes_per_cluster;
2707 xfs_inode_t **ilist;
2714 ASSERT(pag->pagi_inodeok);
2715 ASSERT(pag->pag_ici_init);
2717 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2718 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2719 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2723 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2724 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2725 read_lock(&pag->pag_ici_lock);
2726 /* really need a gang lookup range call here */
2727 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2728 first_index, inodes_per_cluster);
2732 for (i = 0; i < nr_found; i++) {
2736 /* if the inode lies outside this cluster, we're done. */
2737 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2740 * Do an un-protected check to see if the inode is dirty and
2741 * is a candidate for flushing. These checks will be repeated
2742 * later after the appropriate locks are acquired.
2744 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2748 * Try to get locks. If any are unavailable or it is pinned,
2749 * then this inode cannot be flushed and is skipped.
2752 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2754 if (!xfs_iflock_nowait(iq)) {
2755 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2758 if (xfs_ipincount(iq)) {
2760 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2765 * arriving here means that this inode can be flushed. First
2766 * re-check that it's dirty before flushing.
2768 if (!xfs_inode_clean(iq)) {
2770 error = xfs_iflush_int(iq, bp);
2772 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2773 goto cluster_corrupt_out;
2779 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2783 XFS_STATS_INC(xs_icluster_flushcnt);
2784 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2788 read_unlock(&pag->pag_ici_lock);
2793 cluster_corrupt_out:
2795 * Corruption detected in the clustering loop. Invalidate the
2796 * inode buffer and shut down the filesystem.
2798 read_unlock(&pag->pag_ici_lock);
2800 * Clean up the buffer. If it was B_DELWRI, just release it --
2801 * brelse can handle it with no problems. If not, shut down the
2802 * filesystem before releasing the buffer.
2804 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2808 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2810 if (!bufwasdelwri) {
2812 * Just like incore_relse: if we have b_iodone functions,
2813 * mark the buffer as an error and call them. Otherwise
2814 * mark it as stale and brelse.
2816 if (XFS_BUF_IODONE_FUNC(bp)) {
2817 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
2820 XFS_BUF_ERROR(bp,EIO);
2829 * Unlocks the flush lock
2831 xfs_iflush_abort(iq);
2833 return XFS_ERROR(EFSCORRUPTED);
2837 * xfs_iflush() will write a modified inode's changes out to the
2838 * inode's on disk home. The caller must have the inode lock held
2839 * in at least shared mode and the inode flush completion must be
2840 * active as well. The inode lock will still be held upon return from
2841 * the call and the caller is free to unlock it.
2842 * The inode flush will be completed when the inode reaches the disk.
2843 * The flags indicate how the inode's buffer should be written out.
2850 xfs_inode_log_item_t *iip;
2855 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
2856 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
2858 XFS_STATS_INC(xs_iflush_count);
2860 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2861 ASSERT(!completion_done(&ip->i_flush));
2862 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2863 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2869 * If the inode isn't dirty, then just release the inode
2870 * flush lock and do nothing.
2872 if (xfs_inode_clean(ip)) {
2878 * We can't flush the inode until it is unpinned, so wait for it if we
2879 * are allowed to block. We know noone new can pin it, because we are
2880 * holding the inode lock shared and you need to hold it exclusively to
2883 * If we are not allowed to block, force the log out asynchronously so
2884 * that when we come back the inode will be unpinned. If other inodes
2885 * in the same cluster are dirty, they will probably write the inode
2886 * out for us if they occur after the log force completes.
2888 if (noblock && xfs_ipincount(ip)) {
2889 xfs_iunpin_nowait(ip);
2893 xfs_iunpin_wait(ip);
2896 * This may have been unpinned because the filesystem is shutting
2897 * down forcibly. If that's the case we must not write this inode
2898 * to disk, because the log record didn't make it to disk!
2900 if (XFS_FORCED_SHUTDOWN(mp)) {
2901 ip->i_update_core = 0;
2903 iip->ili_format.ilf_fields = 0;
2905 return XFS_ERROR(EIO);
2909 * Decide how buffer will be flushed out. This is done before
2910 * the call to xfs_iflush_int because this field is zeroed by it.
2912 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2914 * Flush out the inode buffer according to the directions
2915 * of the caller. In the cases where the caller has given
2916 * us a choice choose the non-delwri case. This is because
2917 * the inode is in the AIL and we need to get it out soon.
2920 case XFS_IFLUSH_SYNC:
2921 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2924 case XFS_IFLUSH_ASYNC_NOBLOCK:
2925 case XFS_IFLUSH_ASYNC:
2926 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2929 case XFS_IFLUSH_DELWRI:
2939 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
2940 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
2941 case XFS_IFLUSH_DELWRI:
2944 case XFS_IFLUSH_ASYNC_NOBLOCK:
2945 case XFS_IFLUSH_ASYNC:
2948 case XFS_IFLUSH_SYNC:
2959 * Get the buffer containing the on-disk inode.
2961 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2962 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
2969 * First flush out the inode that xfs_iflush was called with.
2971 error = xfs_iflush_int(ip, bp);
2976 * If the buffer is pinned then push on the log now so we won't
2977 * get stuck waiting in the write for too long.
2979 if (XFS_BUF_ISPINNED(bp))
2980 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
2984 * see if other inodes can be gathered into this write
2986 error = xfs_iflush_cluster(ip, bp);
2988 goto cluster_corrupt_out;
2990 if (flags & INT_DELWRI) {
2991 xfs_bdwrite(mp, bp);
2992 } else if (flags & INT_ASYNC) {
2993 error = xfs_bawrite(mp, bp);
2995 error = xfs_bwrite(mp, bp);
3001 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3002 cluster_corrupt_out:
3004 * Unlocks the flush lock
3006 xfs_iflush_abort(ip);
3007 return XFS_ERROR(EFSCORRUPTED);
3016 xfs_inode_log_item_t *iip;
3019 #ifdef XFS_TRANS_DEBUG
3023 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3024 ASSERT(!completion_done(&ip->i_flush));
3025 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3026 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3033 * If the inode isn't dirty, then just release the inode
3034 * flush lock and do nothing.
3036 if (xfs_inode_clean(ip)) {
3041 /* set *dip = inode's place in the buffer */
3042 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3045 * Clear i_update_core before copying out the data.
3046 * This is for coordination with our timestamp updates
3047 * that don't hold the inode lock. They will always
3048 * update the timestamps BEFORE setting i_update_core,
3049 * so if we clear i_update_core after they set it we
3050 * are guaranteed to see their updates to the timestamps.
3051 * I believe that this depends on strongly ordered memory
3052 * semantics, but we have that. We use the SYNCHRONIZE
3053 * macro to make sure that the compiler does not reorder
3054 * the i_update_core access below the data copy below.
3056 ip->i_update_core = 0;
3060 * Make sure to get the latest atime from the Linux inode.
3062 xfs_synchronize_atime(ip);
3064 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
3065 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3066 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3067 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3068 ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3071 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3072 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3073 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3074 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3075 ip->i_ino, ip, ip->i_d.di_magic);
3078 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3080 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3081 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3082 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3083 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3084 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3088 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3090 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3091 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3092 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3093 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3094 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3095 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3100 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3101 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3102 XFS_RANDOM_IFLUSH_5)) {
3103 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3104 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3106 ip->i_d.di_nextents + ip->i_d.di_anextents,
3111 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3112 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3113 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3114 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3115 ip->i_ino, ip->i_d.di_forkoff, ip);
3119 * bump the flush iteration count, used to detect flushes which
3120 * postdate a log record during recovery.
3123 ip->i_d.di_flushiter++;
3126 * Copy the dirty parts of the inode into the on-disk
3127 * inode. We always copy out the core of the inode,
3128 * because if the inode is dirty at all the core must
3131 xfs_dinode_to_disk(dip, &ip->i_d);
3133 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3134 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3135 ip->i_d.di_flushiter = 0;
3138 * If this is really an old format inode and the superblock version
3139 * has not been updated to support only new format inodes, then
3140 * convert back to the old inode format. If the superblock version
3141 * has been updated, then make the conversion permanent.
3143 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3144 if (ip->i_d.di_version == 1) {
3145 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3149 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3150 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3153 * The superblock version has already been bumped,
3154 * so just make the conversion to the new inode
3157 ip->i_d.di_version = 2;
3158 dip->di_version = 2;
3159 ip->i_d.di_onlink = 0;
3161 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3162 memset(&(dip->di_pad[0]), 0,
3163 sizeof(dip->di_pad));
3164 ASSERT(ip->i_d.di_projid == 0);
3168 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3169 if (XFS_IFORK_Q(ip))
3170 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3171 xfs_inobp_check(mp, bp);
3174 * We've recorded everything logged in the inode, so we'd
3175 * like to clear the ilf_fields bits so we don't log and
3176 * flush things unnecessarily. However, we can't stop
3177 * logging all this information until the data we've copied
3178 * into the disk buffer is written to disk. If we did we might
3179 * overwrite the copy of the inode in the log with all the
3180 * data after re-logging only part of it, and in the face of
3181 * a crash we wouldn't have all the data we need to recover.
3183 * What we do is move the bits to the ili_last_fields field.
3184 * When logging the inode, these bits are moved back to the
3185 * ilf_fields field. In the xfs_iflush_done() routine we
3186 * clear ili_last_fields, since we know that the information
3187 * those bits represent is permanently on disk. As long as
3188 * the flush completes before the inode is logged again, then
3189 * both ilf_fields and ili_last_fields will be cleared.
3191 * We can play with the ilf_fields bits here, because the inode
3192 * lock must be held exclusively in order to set bits there
3193 * and the flush lock protects the ili_last_fields bits.
3194 * Set ili_logged so the flush done
3195 * routine can tell whether or not to look in the AIL.
3196 * Also, store the current LSN of the inode so that we can tell
3197 * whether the item has moved in the AIL from xfs_iflush_done().
3198 * In order to read the lsn we need the AIL lock, because
3199 * it is a 64 bit value that cannot be read atomically.
3201 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3202 iip->ili_last_fields = iip->ili_format.ilf_fields;
3203 iip->ili_format.ilf_fields = 0;
3204 iip->ili_logged = 1;
3206 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3207 &iip->ili_item.li_lsn);
3210 * Attach the function xfs_iflush_done to the inode's
3211 * buffer. This will remove the inode from the AIL
3212 * and unlock the inode's flush lock when the inode is
3213 * completely written to disk.
3215 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3216 xfs_iflush_done, (xfs_log_item_t *)iip);
3218 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3219 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3222 * We're flushing an inode which is not in the AIL and has
3223 * not been logged but has i_update_core set. For this
3224 * case we can use a B_DELWRI flush and immediately drop
3225 * the inode flush lock because we can avoid the whole
3226 * AIL state thing. It's OK to drop the flush lock now,
3227 * because we've already locked the buffer and to do anything
3228 * you really need both.
3231 ASSERT(iip->ili_logged == 0);
3232 ASSERT(iip->ili_last_fields == 0);
3233 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3241 return XFS_ERROR(EFSCORRUPTED);
3246 #ifdef XFS_ILOCK_TRACE
3248 xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3250 ktrace_enter(ip->i_lock_trace,
3252 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3253 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3254 (void *)ra, /* caller of ilock */
3255 (void *)(unsigned long)current_cpu(),
3256 (void *)(unsigned long)current_pid(),
3257 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3262 * Return a pointer to the extent record at file index idx.
3264 xfs_bmbt_rec_host_t *
3266 xfs_ifork_t *ifp, /* inode fork pointer */
3267 xfs_extnum_t idx) /* index of target extent */
3270 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3271 return ifp->if_u1.if_ext_irec->er_extbuf;
3272 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3273 xfs_ext_irec_t *erp; /* irec pointer */
3274 int erp_idx = 0; /* irec index */
3275 xfs_extnum_t page_idx = idx; /* ext index in target list */
3277 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3278 return &erp->er_extbuf[page_idx];
3279 } else if (ifp->if_bytes) {
3280 return &ifp->if_u1.if_extents[idx];
3287 * Insert new item(s) into the extent records for incore inode
3288 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3292 xfs_ifork_t *ifp, /* inode fork pointer */
3293 xfs_extnum_t idx, /* starting index of new items */
3294 xfs_extnum_t count, /* number of inserted items */
3295 xfs_bmbt_irec_t *new) /* items to insert */
3297 xfs_extnum_t i; /* extent record index */
3299 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3300 xfs_iext_add(ifp, idx, count);
3301 for (i = idx; i < idx + count; i++, new++)
3302 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3306 * This is called when the amount of space required for incore file
3307 * extents needs to be increased. The ext_diff parameter stores the
3308 * number of new extents being added and the idx parameter contains
3309 * the extent index where the new extents will be added. If the new
3310 * extents are being appended, then we just need to (re)allocate and
3311 * initialize the space. Otherwise, if the new extents are being
3312 * inserted into the middle of the existing entries, a bit more work
3313 * is required to make room for the new extents to be inserted. The
3314 * caller is responsible for filling in the new extent entries upon
3319 xfs_ifork_t *ifp, /* inode fork pointer */
3320 xfs_extnum_t idx, /* index to begin adding exts */
3321 int ext_diff) /* number of extents to add */
3323 int byte_diff; /* new bytes being added */
3324 int new_size; /* size of extents after adding */
3325 xfs_extnum_t nextents; /* number of extents in file */
3327 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3328 ASSERT((idx >= 0) && (idx <= nextents));
3329 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3330 new_size = ifp->if_bytes + byte_diff;
3332 * If the new number of extents (nextents + ext_diff)
3333 * fits inside the inode, then continue to use the inline
3336 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3337 if (idx < nextents) {
3338 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3339 &ifp->if_u2.if_inline_ext[idx],
3340 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3341 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3343 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3344 ifp->if_real_bytes = 0;
3345 ifp->if_lastex = nextents + ext_diff;
3348 * Otherwise use a linear (direct) extent list.
3349 * If the extents are currently inside the inode,
3350 * xfs_iext_realloc_direct will switch us from
3351 * inline to direct extent allocation mode.
3353 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3354 xfs_iext_realloc_direct(ifp, new_size);
3355 if (idx < nextents) {
3356 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3357 &ifp->if_u1.if_extents[idx],
3358 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3359 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3362 /* Indirection array */
3364 xfs_ext_irec_t *erp;
3368 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3369 if (ifp->if_flags & XFS_IFEXTIREC) {
3370 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3372 xfs_iext_irec_init(ifp);
3373 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3374 erp = ifp->if_u1.if_ext_irec;
3376 /* Extents fit in target extent page */
3377 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3378 if (page_idx < erp->er_extcount) {
3379 memmove(&erp->er_extbuf[page_idx + ext_diff],
3380 &erp->er_extbuf[page_idx],
3381 (erp->er_extcount - page_idx) *
3382 sizeof(xfs_bmbt_rec_t));
3383 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3385 erp->er_extcount += ext_diff;
3386 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3388 /* Insert a new extent page */
3390 xfs_iext_add_indirect_multi(ifp,
3391 erp_idx, page_idx, ext_diff);
3394 * If extent(s) are being appended to the last page in
3395 * the indirection array and the new extent(s) don't fit
3396 * in the page, then erp is NULL and erp_idx is set to
3397 * the next index needed in the indirection array.
3400 int count = ext_diff;
3403 erp = xfs_iext_irec_new(ifp, erp_idx);
3404 erp->er_extcount = count;
3405 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3412 ifp->if_bytes = new_size;
3416 * This is called when incore extents are being added to the indirection
3417 * array and the new extents do not fit in the target extent list. The
3418 * erp_idx parameter contains the irec index for the target extent list
3419 * in the indirection array, and the idx parameter contains the extent
3420 * index within the list. The number of extents being added is stored
3421 * in the count parameter.
3423 * |-------| |-------|
3424 * | | | | idx - number of extents before idx
3426 * | | | | count - number of extents being inserted at idx
3427 * |-------| |-------|
3428 * | count | | nex2 | nex2 - number of extents after idx + count
3429 * |-------| |-------|
3432 xfs_iext_add_indirect_multi(
3433 xfs_ifork_t *ifp, /* inode fork pointer */
3434 int erp_idx, /* target extent irec index */
3435 xfs_extnum_t idx, /* index within target list */
3436 int count) /* new extents being added */
3438 int byte_diff; /* new bytes being added */
3439 xfs_ext_irec_t *erp; /* pointer to irec entry */
3440 xfs_extnum_t ext_diff; /* number of extents to add */
3441 xfs_extnum_t ext_cnt; /* new extents still needed */
3442 xfs_extnum_t nex2; /* extents after idx + count */
3443 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3444 int nlists; /* number of irec's (lists) */
3446 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3447 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3448 nex2 = erp->er_extcount - idx;
3449 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3452 * Save second part of target extent list
3453 * (all extents past */
3455 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3456 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3457 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3458 erp->er_extcount -= nex2;
3459 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3460 memset(&erp->er_extbuf[idx], 0, byte_diff);
3464 * Add the new extents to the end of the target
3465 * list, then allocate new irec record(s) and
3466 * extent buffer(s) as needed to store the rest
3467 * of the new extents.
3470 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3472 erp->er_extcount += ext_diff;
3473 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3474 ext_cnt -= ext_diff;
3478 erp = xfs_iext_irec_new(ifp, erp_idx);
3479 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3480 erp->er_extcount = ext_diff;
3481 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3482 ext_cnt -= ext_diff;
3485 /* Add nex2 extents back to indirection array */
3487 xfs_extnum_t ext_avail;
3490 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3491 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3494 * If nex2 extents fit in the current page, append
3495 * nex2_ep after the new extents.
3497 if (nex2 <= ext_avail) {
3498 i = erp->er_extcount;
3501 * Otherwise, check if space is available in the
3504 else if ((erp_idx < nlists - 1) &&
3505 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3506 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3509 /* Create a hole for nex2 extents */
3510 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3511 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3514 * Final choice, create a new extent page for
3519 erp = xfs_iext_irec_new(ifp, erp_idx);
3521 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3523 erp->er_extcount += nex2;
3524 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3529 * This is called when the amount of space required for incore file
3530 * extents needs to be decreased. The ext_diff parameter stores the
3531 * number of extents to be removed and the idx parameter contains
3532 * the extent index where the extents will be removed from.
3534 * If the amount of space needed has decreased below the linear
3535 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3536 * extent array. Otherwise, use kmem_realloc() to adjust the
3537 * size to what is needed.
3541 xfs_ifork_t *ifp, /* inode fork pointer */
3542 xfs_extnum_t idx, /* index to begin removing exts */
3543 int ext_diff) /* number of extents to remove */
3545 xfs_extnum_t nextents; /* number of extents in file */
3546 int new_size; /* size of extents after removal */
3548 ASSERT(ext_diff > 0);
3549 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3550 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3552 if (new_size == 0) {
3553 xfs_iext_destroy(ifp);
3554 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3555 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3556 } else if (ifp->if_real_bytes) {
3557 xfs_iext_remove_direct(ifp, idx, ext_diff);
3559 xfs_iext_remove_inline(ifp, idx, ext_diff);
3561 ifp->if_bytes = new_size;
3565 * This removes ext_diff extents from the inline buffer, beginning
3566 * at extent index idx.
3569 xfs_iext_remove_inline(
3570 xfs_ifork_t *ifp, /* inode fork pointer */
3571 xfs_extnum_t idx, /* index to begin removing exts */
3572 int ext_diff) /* number of extents to remove */
3574 int nextents; /* number of extents in file */
3576 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3577 ASSERT(idx < XFS_INLINE_EXTS);
3578 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3579 ASSERT(((nextents - ext_diff) > 0) &&
3580 (nextents - ext_diff) < XFS_INLINE_EXTS);
3582 if (idx + ext_diff < nextents) {
3583 memmove(&ifp->if_u2.if_inline_ext[idx],
3584 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3585 (nextents - (idx + ext_diff)) *
3586 sizeof(xfs_bmbt_rec_t));
3587 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3588 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3590 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3591 ext_diff * sizeof(xfs_bmbt_rec_t));
3596 * This removes ext_diff extents from a linear (direct) extent list,
3597 * beginning at extent index idx. If the extents are being removed
3598 * from the end of the list (ie. truncate) then we just need to re-
3599 * allocate the list to remove the extra space. Otherwise, if the
3600 * extents are being removed from the middle of the existing extent
3601 * entries, then we first need to move the extent records beginning
3602 * at idx + ext_diff up in the list to overwrite the records being
3603 * removed, then remove the extra space via kmem_realloc.
3606 xfs_iext_remove_direct(
3607 xfs_ifork_t *ifp, /* inode fork pointer */
3608 xfs_extnum_t idx, /* index to begin removing exts */
3609 int ext_diff) /* number of extents to remove */
3611 xfs_extnum_t nextents; /* number of extents in file */
3612 int new_size; /* size of extents after removal */
3614 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3615 new_size = ifp->if_bytes -
3616 (ext_diff * sizeof(xfs_bmbt_rec_t));
3617 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3619 if (new_size == 0) {
3620 xfs_iext_destroy(ifp);
3623 /* Move extents up in the list (if needed) */
3624 if (idx + ext_diff < nextents) {
3625 memmove(&ifp->if_u1.if_extents[idx],
3626 &ifp->if_u1.if_extents[idx + ext_diff],
3627 (nextents - (idx + ext_diff)) *
3628 sizeof(xfs_bmbt_rec_t));
3630 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3631 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3633 * Reallocate the direct extent list. If the extents
3634 * will fit inside the inode then xfs_iext_realloc_direct
3635 * will switch from direct to inline extent allocation
3638 xfs_iext_realloc_direct(ifp, new_size);
3639 ifp->if_bytes = new_size;
3643 * This is called when incore extents are being removed from the
3644 * indirection array and the extents being removed span multiple extent
3645 * buffers. The idx parameter contains the file extent index where we
3646 * want to begin removing extents, and the count parameter contains
3647 * how many extents need to be removed.
3649 * |-------| |-------|
3650 * | nex1 | | | nex1 - number of extents before idx
3651 * |-------| | count |
3652 * | | | | count - number of extents being removed at idx
3653 * | count | |-------|
3654 * | | | nex2 | nex2 - number of extents after idx + count
3655 * |-------| |-------|
3658 xfs_iext_remove_indirect(
3659 xfs_ifork_t *ifp, /* inode fork pointer */
3660 xfs_extnum_t idx, /* index to begin removing extents */
3661 int count) /* number of extents to remove */
3663 xfs_ext_irec_t *erp; /* indirection array pointer */
3664 int erp_idx = 0; /* indirection array index */
3665 xfs_extnum_t ext_cnt; /* extents left to remove */
3666 xfs_extnum_t ext_diff; /* extents to remove in current list */
3667 xfs_extnum_t nex1; /* number of extents before idx */
3668 xfs_extnum_t nex2; /* extents after idx + count */
3669 int nlists; /* entries in indirection array */
3670 int page_idx = idx; /* index in target extent list */
3672 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3673 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3674 ASSERT(erp != NULL);
3675 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3679 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3680 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3682 * Check for deletion of entire list;
3683 * xfs_iext_irec_remove() updates extent offsets.
3685 if (ext_diff == erp->er_extcount) {
3686 xfs_iext_irec_remove(ifp, erp_idx);
3687 ext_cnt -= ext_diff;
3690 ASSERT(erp_idx < ifp->if_real_bytes /
3692 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3699 /* Move extents up (if needed) */
3701 memmove(&erp->er_extbuf[nex1],
3702 &erp->er_extbuf[nex1 + ext_diff],
3703 nex2 * sizeof(xfs_bmbt_rec_t));
3705 /* Zero out rest of page */
3706 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3707 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3708 /* Update remaining counters */
3709 erp->er_extcount -= ext_diff;
3710 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3711 ext_cnt -= ext_diff;
3716 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3717 xfs_iext_irec_compact(ifp);
3721 * Create, destroy, or resize a linear (direct) block of extents.
3724 xfs_iext_realloc_direct(
3725 xfs_ifork_t *ifp, /* inode fork pointer */
3726 int new_size) /* new size of extents */
3728 int rnew_size; /* real new size of extents */
3730 rnew_size = new_size;
3732 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3733 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3734 (new_size != ifp->if_real_bytes)));
3736 /* Free extent records */
3737 if (new_size == 0) {
3738 xfs_iext_destroy(ifp);
3740 /* Resize direct extent list and zero any new bytes */
3741 else if (ifp->if_real_bytes) {
3742 /* Check if extents will fit inside the inode */
3743 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3744 xfs_iext_direct_to_inline(ifp, new_size /
3745 (uint)sizeof(xfs_bmbt_rec_t));
3746 ifp->if_bytes = new_size;
3749 if (!is_power_of_2(new_size)){
3750 rnew_size = roundup_pow_of_two(new_size);
3752 if (rnew_size != ifp->if_real_bytes) {
3753 ifp->if_u1.if_extents =
3754 kmem_realloc(ifp->if_u1.if_extents,
3756 ifp->if_real_bytes, KM_NOFS);
3758 if (rnew_size > ifp->if_real_bytes) {
3759 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3760 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3761 rnew_size - ifp->if_real_bytes);
3765 * Switch from the inline extent buffer to a direct
3766 * extent list. Be sure to include the inline extent
3767 * bytes in new_size.
3770 new_size += ifp->if_bytes;
3771 if (!is_power_of_2(new_size)) {
3772 rnew_size = roundup_pow_of_two(new_size);
3774 xfs_iext_inline_to_direct(ifp, rnew_size);
3776 ifp->if_real_bytes = rnew_size;
3777 ifp->if_bytes = new_size;
3781 * Switch from linear (direct) extent records to inline buffer.
3784 xfs_iext_direct_to_inline(
3785 xfs_ifork_t *ifp, /* inode fork pointer */
3786 xfs_extnum_t nextents) /* number of extents in file */
3788 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3789 ASSERT(nextents <= XFS_INLINE_EXTS);
3791 * The inline buffer was zeroed when we switched
3792 * from inline to direct extent allocation mode,
3793 * so we don't need to clear it here.
3795 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3796 nextents * sizeof(xfs_bmbt_rec_t));
3797 kmem_free(ifp->if_u1.if_extents);
3798 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3799 ifp->if_real_bytes = 0;
3803 * Switch from inline buffer to linear (direct) extent records.
3804 * new_size should already be rounded up to the next power of 2
3805 * by the caller (when appropriate), so use new_size as it is.
3806 * However, since new_size may be rounded up, we can't update
3807 * if_bytes here. It is the caller's responsibility to update
3808 * if_bytes upon return.
3811 xfs_iext_inline_to_direct(
3812 xfs_ifork_t *ifp, /* inode fork pointer */
3813 int new_size) /* number of extents in file */
3815 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3816 memset(ifp->if_u1.if_extents, 0, new_size);
3817 if (ifp->if_bytes) {
3818 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3820 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3821 sizeof(xfs_bmbt_rec_t));
3823 ifp->if_real_bytes = new_size;
3827 * Resize an extent indirection array to new_size bytes.
3830 xfs_iext_realloc_indirect(
3831 xfs_ifork_t *ifp, /* inode fork pointer */
3832 int new_size) /* new indirection array size */
3834 int nlists; /* number of irec's (ex lists) */
3835 int size; /* current indirection array size */
3837 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3838 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3839 size = nlists * sizeof(xfs_ext_irec_t);
3840 ASSERT(ifp->if_real_bytes);
3841 ASSERT((new_size >= 0) && (new_size != size));
3842 if (new_size == 0) {
3843 xfs_iext_destroy(ifp);
3845 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3846 kmem_realloc(ifp->if_u1.if_ext_irec,
3847 new_size, size, KM_NOFS);
3852 * Switch from indirection array to linear (direct) extent allocations.
3855 xfs_iext_indirect_to_direct(
3856 xfs_ifork_t *ifp) /* inode fork pointer */
3858 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
3859 xfs_extnum_t nextents; /* number of extents in file */
3860 int size; /* size of file extents */
3862 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3863 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3864 ASSERT(nextents <= XFS_LINEAR_EXTS);
3865 size = nextents * sizeof(xfs_bmbt_rec_t);
3867 xfs_iext_irec_compact_pages(ifp);
3868 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3870 ep = ifp->if_u1.if_ext_irec->er_extbuf;
3871 kmem_free(ifp->if_u1.if_ext_irec);
3872 ifp->if_flags &= ~XFS_IFEXTIREC;
3873 ifp->if_u1.if_extents = ep;
3874 ifp->if_bytes = size;
3875 if (nextents < XFS_LINEAR_EXTS) {
3876 xfs_iext_realloc_direct(ifp, size);
3881 * Free incore file extents.
3885 xfs_ifork_t *ifp) /* inode fork pointer */
3887 if (ifp->if_flags & XFS_IFEXTIREC) {
3891 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3892 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3893 xfs_iext_irec_remove(ifp, erp_idx);
3895 ifp->if_flags &= ~XFS_IFEXTIREC;
3896 } else if (ifp->if_real_bytes) {
3897 kmem_free(ifp->if_u1.if_extents);
3898 } else if (ifp->if_bytes) {
3899 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3900 sizeof(xfs_bmbt_rec_t));
3902 ifp->if_u1.if_extents = NULL;
3903 ifp->if_real_bytes = 0;
3908 * Return a pointer to the extent record for file system block bno.
3910 xfs_bmbt_rec_host_t * /* pointer to found extent record */
3911 xfs_iext_bno_to_ext(
3912 xfs_ifork_t *ifp, /* inode fork pointer */
3913 xfs_fileoff_t bno, /* block number to search for */
3914 xfs_extnum_t *idxp) /* index of target extent */
3916 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
3917 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
3918 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
3919 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3920 int high; /* upper boundary in search */
3921 xfs_extnum_t idx = 0; /* index of target extent */
3922 int low; /* lower boundary in search */
3923 xfs_extnum_t nextents; /* number of file extents */
3924 xfs_fileoff_t startoff = 0; /* start offset of extent */
3926 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3927 if (nextents == 0) {
3932 if (ifp->if_flags & XFS_IFEXTIREC) {
3933 /* Find target extent list */
3935 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3936 base = erp->er_extbuf;
3937 high = erp->er_extcount - 1;
3939 base = ifp->if_u1.if_extents;
3940 high = nextents - 1;
3942 /* Binary search extent records */
3943 while (low <= high) {
3944 idx = (low + high) >> 1;
3946 startoff = xfs_bmbt_get_startoff(ep);
3947 blockcount = xfs_bmbt_get_blockcount(ep);
3948 if (bno < startoff) {
3950 } else if (bno >= startoff + blockcount) {
3953 /* Convert back to file-based extent index */
3954 if (ifp->if_flags & XFS_IFEXTIREC) {
3955 idx += erp->er_extoff;
3961 /* Convert back to file-based extent index */
3962 if (ifp->if_flags & XFS_IFEXTIREC) {
3963 idx += erp->er_extoff;
3965 if (bno >= startoff + blockcount) {
3966 if (++idx == nextents) {
3969 ep = xfs_iext_get_ext(ifp, idx);
3977 * Return a pointer to the indirection array entry containing the
3978 * extent record for filesystem block bno. Store the index of the
3979 * target irec in *erp_idxp.
3981 xfs_ext_irec_t * /* pointer to found extent record */
3982 xfs_iext_bno_to_irec(
3983 xfs_ifork_t *ifp, /* inode fork pointer */
3984 xfs_fileoff_t bno, /* block number to search for */
3985 int *erp_idxp) /* irec index of target ext list */
3987 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3988 xfs_ext_irec_t *erp_next; /* next indirection array entry */
3989 int erp_idx; /* indirection array index */
3990 int nlists; /* number of extent irec's (lists) */
3991 int high; /* binary search upper limit */
3992 int low; /* binary search lower limit */
3994 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3995 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3999 while (low <= high) {
4000 erp_idx = (low + high) >> 1;
4001 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4002 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4003 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4005 } else if (erp_next && bno >=
4006 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4012 *erp_idxp = erp_idx;
4017 * Return a pointer to the indirection array entry containing the
4018 * extent record at file extent index *idxp. Store the index of the
4019 * target irec in *erp_idxp and store the page index of the target
4020 * extent record in *idxp.
4023 xfs_iext_idx_to_irec(
4024 xfs_ifork_t *ifp, /* inode fork pointer */
4025 xfs_extnum_t *idxp, /* extent index (file -> page) */
4026 int *erp_idxp, /* pointer to target irec */
4027 int realloc) /* new bytes were just added */
4029 xfs_ext_irec_t *prev; /* pointer to previous irec */
4030 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4031 int erp_idx; /* indirection array index */
4032 int nlists; /* number of irec's (ex lists) */
4033 int high; /* binary search upper limit */
4034 int low; /* binary search lower limit */
4035 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4037 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4038 ASSERT(page_idx >= 0 && page_idx <=
4039 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4040 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4045 /* Binary search extent irec's */
4046 while (low <= high) {
4047 erp_idx = (low + high) >> 1;
4048 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4049 prev = erp_idx > 0 ? erp - 1 : NULL;
4050 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4051 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4053 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4054 (page_idx == erp->er_extoff + erp->er_extcount &&
4057 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4058 erp->er_extcount == XFS_LINEAR_EXTS) {
4062 erp = erp_idx < nlists ? erp + 1 : NULL;
4065 page_idx -= erp->er_extoff;
4070 *erp_idxp = erp_idx;
4075 * Allocate and initialize an indirection array once the space needed
4076 * for incore extents increases above XFS_IEXT_BUFSZ.
4080 xfs_ifork_t *ifp) /* inode fork pointer */
4082 xfs_ext_irec_t *erp; /* indirection array pointer */
4083 xfs_extnum_t nextents; /* number of extents in file */
4085 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4086 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4087 ASSERT(nextents <= XFS_LINEAR_EXTS);
4089 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
4091 if (nextents == 0) {
4092 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4093 } else if (!ifp->if_real_bytes) {
4094 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4095 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4096 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4098 erp->er_extbuf = ifp->if_u1.if_extents;
4099 erp->er_extcount = nextents;
4102 ifp->if_flags |= XFS_IFEXTIREC;
4103 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4104 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4105 ifp->if_u1.if_ext_irec = erp;
4111 * Allocate and initialize a new entry in the indirection array.
4115 xfs_ifork_t *ifp, /* inode fork pointer */
4116 int erp_idx) /* index for new irec */
4118 xfs_ext_irec_t *erp; /* indirection array pointer */
4119 int i; /* loop counter */
4120 int nlists; /* number of irec's (ex lists) */
4122 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4123 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4125 /* Resize indirection array */
4126 xfs_iext_realloc_indirect(ifp, ++nlists *
4127 sizeof(xfs_ext_irec_t));
4129 * Move records down in the array so the
4130 * new page can use erp_idx.
4132 erp = ifp->if_u1.if_ext_irec;
4133 for (i = nlists - 1; i > erp_idx; i--) {
4134 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4136 ASSERT(i == erp_idx);
4138 /* Initialize new extent record */
4139 erp = ifp->if_u1.if_ext_irec;
4140 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
4141 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4142 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4143 erp[erp_idx].er_extcount = 0;
4144 erp[erp_idx].er_extoff = erp_idx > 0 ?
4145 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4146 return (&erp[erp_idx]);
4150 * Remove a record from the indirection array.
4153 xfs_iext_irec_remove(
4154 xfs_ifork_t *ifp, /* inode fork pointer */
4155 int erp_idx) /* irec index to remove */
4157 xfs_ext_irec_t *erp; /* indirection array pointer */
4158 int i; /* loop counter */
4159 int nlists; /* number of irec's (ex lists) */
4161 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4162 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4163 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4164 if (erp->er_extbuf) {
4165 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4167 kmem_free(erp->er_extbuf);
4169 /* Compact extent records */
4170 erp = ifp->if_u1.if_ext_irec;
4171 for (i = erp_idx; i < nlists - 1; i++) {
4172 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4175 * Manually free the last extent record from the indirection
4176 * array. A call to xfs_iext_realloc_indirect() with a size
4177 * of zero would result in a call to xfs_iext_destroy() which
4178 * would in turn call this function again, creating a nasty
4182 xfs_iext_realloc_indirect(ifp,
4183 nlists * sizeof(xfs_ext_irec_t));
4185 kmem_free(ifp->if_u1.if_ext_irec);
4187 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4191 * This is called to clean up large amounts of unused memory allocated
4192 * by the indirection array. Before compacting anything though, verify
4193 * that the indirection array is still needed and switch back to the
4194 * linear extent list (or even the inline buffer) if possible. The
4195 * compaction policy is as follows:
4197 * Full Compaction: Extents fit into a single page (or inline buffer)
4198 * Partial Compaction: Extents occupy less than 50% of allocated space
4199 * No Compaction: Extents occupy at least 50% of allocated space
4202 xfs_iext_irec_compact(
4203 xfs_ifork_t *ifp) /* inode fork pointer */
4205 xfs_extnum_t nextents; /* number of extents in file */
4206 int nlists; /* number of irec's (ex lists) */
4208 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4209 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4210 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4212 if (nextents == 0) {
4213 xfs_iext_destroy(ifp);
4214 } else if (nextents <= XFS_INLINE_EXTS) {
4215 xfs_iext_indirect_to_direct(ifp);
4216 xfs_iext_direct_to_inline(ifp, nextents);
4217 } else if (nextents <= XFS_LINEAR_EXTS) {
4218 xfs_iext_indirect_to_direct(ifp);
4219 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4220 xfs_iext_irec_compact_pages(ifp);
4225 * Combine extents from neighboring extent pages.
4228 xfs_iext_irec_compact_pages(
4229 xfs_ifork_t *ifp) /* inode fork pointer */
4231 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4232 int erp_idx = 0; /* indirection array index */
4233 int nlists; /* number of irec's (ex lists) */
4235 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4236 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4237 while (erp_idx < nlists - 1) {
4238 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4240 if (erp_next->er_extcount <=
4241 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4242 memcpy(&erp->er_extbuf[erp->er_extcount],
4243 erp_next->er_extbuf, erp_next->er_extcount *
4244 sizeof(xfs_bmbt_rec_t));
4245 erp->er_extcount += erp_next->er_extcount;
4247 * Free page before removing extent record
4248 * so er_extoffs don't get modified in
4249 * xfs_iext_irec_remove.
4251 kmem_free(erp_next->er_extbuf);
4252 erp_next->er_extbuf = NULL;
4253 xfs_iext_irec_remove(ifp, erp_idx + 1);
4254 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4262 * This is called to update the er_extoff field in the indirection
4263 * array when extents have been added or removed from one of the
4264 * extent lists. erp_idx contains the irec index to begin updating
4265 * at and ext_diff contains the number of extents that were added
4269 xfs_iext_irec_update_extoffs(
4270 xfs_ifork_t *ifp, /* inode fork pointer */
4271 int erp_idx, /* irec index to update */
4272 int ext_diff) /* number of new extents */
4274 int i; /* loop counter */
4275 int nlists; /* number of irec's (ex lists */
4277 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4278 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4279 for (i = erp_idx; i < nlists; i++) {
4280 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;