2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/hardirq.h>
48 #include <linux/netdevice.h>
49 #include <linux/cache.h>
50 #include <linux/pci.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
54 #include <net/ieee80211_radiotap.h>
56 #include <asm/unaligned.h>
62 static int ath5k_calinterval = 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
63 static int modparam_nohwcrypt;
64 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
65 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
67 static int modparam_all_channels;
68 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
69 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
77 MODULE_AUTHOR("Jiri Slaby");
78 MODULE_AUTHOR("Nick Kossifidis");
79 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
80 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
81 MODULE_LICENSE("Dual BSD/GPL");
82 MODULE_VERSION("0.6.0 (EXPERIMENTAL)");
86 static const struct pci_device_id ath5k_pci_id_table[] = {
87 { PCI_VDEVICE(ATHEROS, 0x0207), .driver_data = AR5K_AR5210 }, /* 5210 early */
88 { PCI_VDEVICE(ATHEROS, 0x0007), .driver_data = AR5K_AR5210 }, /* 5210 */
89 { PCI_VDEVICE(ATHEROS, 0x0011), .driver_data = AR5K_AR5211 }, /* 5311 - this is on AHB bus !*/
90 { PCI_VDEVICE(ATHEROS, 0x0012), .driver_data = AR5K_AR5211 }, /* 5211 */
91 { PCI_VDEVICE(ATHEROS, 0x0013), .driver_data = AR5K_AR5212 }, /* 5212 */
92 { PCI_VDEVICE(3COM_2, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 5212 */
93 { PCI_VDEVICE(3COM, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 3CRDAG675 5212 */
94 { PCI_VDEVICE(ATHEROS, 0x1014), .driver_data = AR5K_AR5212 }, /* IBM minipci 5212 */
95 { PCI_VDEVICE(ATHEROS, 0x0014), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
96 { PCI_VDEVICE(ATHEROS, 0x0015), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
97 { PCI_VDEVICE(ATHEROS, 0x0016), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
98 { PCI_VDEVICE(ATHEROS, 0x0017), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
99 { PCI_VDEVICE(ATHEROS, 0x0018), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
100 { PCI_VDEVICE(ATHEROS, 0x0019), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
101 { PCI_VDEVICE(ATHEROS, 0x001a), .driver_data = AR5K_AR5212 }, /* 2413 Griffin-lite */
102 { PCI_VDEVICE(ATHEROS, 0x001b), .driver_data = AR5K_AR5212 }, /* 5413 Eagle */
103 { PCI_VDEVICE(ATHEROS, 0x001c), .driver_data = AR5K_AR5212 }, /* PCI-E cards */
104 { PCI_VDEVICE(ATHEROS, 0x001d), .driver_data = AR5K_AR5212 }, /* 2417 Nala */
107 MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
110 static const struct ath5k_srev_name srev_names[] = {
111 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
112 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
113 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
114 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
115 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
116 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
117 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
118 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
119 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
120 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
121 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
122 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
123 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
124 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
125 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
126 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
127 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
128 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
129 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
130 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
131 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
132 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
133 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
134 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
135 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
136 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
137 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
138 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
139 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
140 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
141 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
142 { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
143 { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
144 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
145 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
146 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
149 static const struct ieee80211_rate ath5k_rates[] = {
151 .hw_value = ATH5K_RATE_CODE_1M, },
153 .hw_value = ATH5K_RATE_CODE_2M,
154 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
155 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
157 .hw_value = ATH5K_RATE_CODE_5_5M,
158 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
159 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
161 .hw_value = ATH5K_RATE_CODE_11M,
162 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
163 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
165 .hw_value = ATH5K_RATE_CODE_6M,
168 .hw_value = ATH5K_RATE_CODE_9M,
171 .hw_value = ATH5K_RATE_CODE_12M,
174 .hw_value = ATH5K_RATE_CODE_18M,
177 .hw_value = ATH5K_RATE_CODE_24M,
180 .hw_value = ATH5K_RATE_CODE_36M,
183 .hw_value = ATH5K_RATE_CODE_48M,
186 .hw_value = ATH5K_RATE_CODE_54M,
192 * Prototypes - PCI stack related functions
194 static int __devinit ath5k_pci_probe(struct pci_dev *pdev,
195 const struct pci_device_id *id);
196 static void __devexit ath5k_pci_remove(struct pci_dev *pdev);
198 static int ath5k_pci_suspend(struct pci_dev *pdev,
200 static int ath5k_pci_resume(struct pci_dev *pdev);
202 #define ath5k_pci_suspend NULL
203 #define ath5k_pci_resume NULL
204 #endif /* CONFIG_PM */
206 static struct pci_driver ath5k_pci_driver = {
207 .name = KBUILD_MODNAME,
208 .id_table = ath5k_pci_id_table,
209 .probe = ath5k_pci_probe,
210 .remove = __devexit_p(ath5k_pci_remove),
211 .suspend = ath5k_pci_suspend,
212 .resume = ath5k_pci_resume,
218 * Prototypes - MAC 802.11 stack related functions
220 static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb);
221 static int ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan);
222 static int ath5k_reset_wake(struct ath5k_softc *sc);
223 static int ath5k_start(struct ieee80211_hw *hw);
224 static void ath5k_stop(struct ieee80211_hw *hw);
225 static int ath5k_add_interface(struct ieee80211_hw *hw,
226 struct ieee80211_if_init_conf *conf);
227 static void ath5k_remove_interface(struct ieee80211_hw *hw,
228 struct ieee80211_if_init_conf *conf);
229 static int ath5k_config(struct ieee80211_hw *hw, u32 changed);
230 static void ath5k_configure_filter(struct ieee80211_hw *hw,
231 unsigned int changed_flags,
232 unsigned int *new_flags,
233 int mc_count, struct dev_mc_list *mclist);
234 static int ath5k_set_key(struct ieee80211_hw *hw,
235 enum set_key_cmd cmd,
236 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
237 struct ieee80211_key_conf *key);
238 static int ath5k_get_stats(struct ieee80211_hw *hw,
239 struct ieee80211_low_level_stats *stats);
240 static int ath5k_get_tx_stats(struct ieee80211_hw *hw,
241 struct ieee80211_tx_queue_stats *stats);
242 static u64 ath5k_get_tsf(struct ieee80211_hw *hw);
243 static void ath5k_set_tsf(struct ieee80211_hw *hw, u64 tsf);
244 static void ath5k_reset_tsf(struct ieee80211_hw *hw);
245 static int ath5k_beacon_update(struct ieee80211_hw *hw,
246 struct ieee80211_vif *vif);
247 static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
248 struct ieee80211_vif *vif,
249 struct ieee80211_bss_conf *bss_conf,
252 static const struct ieee80211_ops ath5k_hw_ops = {
254 .start = ath5k_start,
256 .add_interface = ath5k_add_interface,
257 .remove_interface = ath5k_remove_interface,
258 .config = ath5k_config,
259 .configure_filter = ath5k_configure_filter,
260 .set_key = ath5k_set_key,
261 .get_stats = ath5k_get_stats,
263 .get_tx_stats = ath5k_get_tx_stats,
264 .get_tsf = ath5k_get_tsf,
265 .set_tsf = ath5k_set_tsf,
266 .reset_tsf = ath5k_reset_tsf,
267 .bss_info_changed = ath5k_bss_info_changed,
271 * Prototypes - Internal functions
274 static int ath5k_attach(struct pci_dev *pdev,
275 struct ieee80211_hw *hw);
276 static void ath5k_detach(struct pci_dev *pdev,
277 struct ieee80211_hw *hw);
278 /* Channel/mode setup */
279 static inline short ath5k_ieee2mhz(short chan);
280 static unsigned int ath5k_copy_channels(struct ath5k_hw *ah,
281 struct ieee80211_channel *channels,
284 static int ath5k_setup_bands(struct ieee80211_hw *hw);
285 static int ath5k_chan_set(struct ath5k_softc *sc,
286 struct ieee80211_channel *chan);
287 static void ath5k_setcurmode(struct ath5k_softc *sc,
289 static void ath5k_mode_setup(struct ath5k_softc *sc);
291 /* Descriptor setup */
292 static int ath5k_desc_alloc(struct ath5k_softc *sc,
293 struct pci_dev *pdev);
294 static void ath5k_desc_free(struct ath5k_softc *sc,
295 struct pci_dev *pdev);
297 static int ath5k_rxbuf_setup(struct ath5k_softc *sc,
298 struct ath5k_buf *bf);
299 static int ath5k_txbuf_setup(struct ath5k_softc *sc,
300 struct ath5k_buf *bf);
301 static inline void ath5k_txbuf_free(struct ath5k_softc *sc,
302 struct ath5k_buf *bf)
307 pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
309 dev_kfree_skb_any(bf->skb);
313 static inline void ath5k_rxbuf_free(struct ath5k_softc *sc,
314 struct ath5k_buf *bf)
319 pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize,
321 dev_kfree_skb_any(bf->skb);
327 static struct ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc,
328 int qtype, int subtype);
329 static int ath5k_beaconq_setup(struct ath5k_hw *ah);
330 static int ath5k_beaconq_config(struct ath5k_softc *sc);
331 static void ath5k_txq_drainq(struct ath5k_softc *sc,
332 struct ath5k_txq *txq);
333 static void ath5k_txq_cleanup(struct ath5k_softc *sc);
334 static void ath5k_txq_release(struct ath5k_softc *sc);
336 static int ath5k_rx_start(struct ath5k_softc *sc);
337 static void ath5k_rx_stop(struct ath5k_softc *sc);
338 static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc,
339 struct ath5k_desc *ds,
341 struct ath5k_rx_status *rs);
342 static void ath5k_tasklet_rx(unsigned long data);
344 static void ath5k_tx_processq(struct ath5k_softc *sc,
345 struct ath5k_txq *txq);
346 static void ath5k_tasklet_tx(unsigned long data);
347 /* Beacon handling */
348 static int ath5k_beacon_setup(struct ath5k_softc *sc,
349 struct ath5k_buf *bf);
350 static void ath5k_beacon_send(struct ath5k_softc *sc);
351 static void ath5k_beacon_config(struct ath5k_softc *sc);
352 static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
353 static void ath5k_tasklet_beacon(unsigned long data);
355 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
357 u64 tsf = ath5k_hw_get_tsf64(ah);
359 if ((tsf & 0x7fff) < rstamp)
362 return (tsf & ~0x7fff) | rstamp;
365 /* Interrupt handling */
366 static int ath5k_init(struct ath5k_softc *sc);
367 static int ath5k_stop_locked(struct ath5k_softc *sc);
368 static int ath5k_stop_hw(struct ath5k_softc *sc);
369 static irqreturn_t ath5k_intr(int irq, void *dev_id);
370 static void ath5k_tasklet_reset(unsigned long data);
372 static void ath5k_calibrate(unsigned long data);
375 * Module init/exit functions
384 ret = pci_register_driver(&ath5k_pci_driver);
386 printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
396 pci_unregister_driver(&ath5k_pci_driver);
398 ath5k_debug_finish();
401 module_init(init_ath5k_pci);
402 module_exit(exit_ath5k_pci);
405 /********************\
406 * PCI Initialization *
407 \********************/
410 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
412 const char *name = "xxxxx";
415 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
416 if (srev_names[i].sr_type != type)
419 if ((val & 0xf0) == srev_names[i].sr_val)
420 name = srev_names[i].sr_name;
422 if ((val & 0xff) == srev_names[i].sr_val) {
423 name = srev_names[i].sr_name;
432 ath5k_pci_probe(struct pci_dev *pdev,
433 const struct pci_device_id *id)
436 struct ath5k_softc *sc;
437 struct ieee80211_hw *hw;
441 ret = pci_enable_device(pdev);
443 dev_err(&pdev->dev, "can't enable device\n");
447 /* XXX 32-bit addressing only */
448 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
450 dev_err(&pdev->dev, "32-bit DMA not available\n");
455 * Cache line size is used to size and align various
456 * structures used to communicate with the hardware.
458 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
461 * Linux 2.4.18 (at least) writes the cache line size
462 * register as a 16-bit wide register which is wrong.
463 * We must have this setup properly for rx buffer
464 * DMA to work so force a reasonable value here if it
467 csz = L1_CACHE_BYTES / sizeof(u32);
468 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
471 * The default setting of latency timer yields poor results,
472 * set it to the value used by other systems. It may be worth
473 * tweaking this setting more.
475 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
477 /* Enable bus mastering */
478 pci_set_master(pdev);
481 * Disable the RETRY_TIMEOUT register (0x41) to keep
482 * PCI Tx retries from interfering with C3 CPU state.
484 pci_write_config_byte(pdev, 0x41, 0);
486 ret = pci_request_region(pdev, 0, "ath5k");
488 dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
492 mem = pci_iomap(pdev, 0, 0);
494 dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
500 * Allocate hw (mac80211 main struct)
501 * and hw->priv (driver private data)
503 hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
505 dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
510 dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
512 /* Initialize driver private data */
513 SET_IEEE80211_DEV(hw, &pdev->dev);
514 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
515 IEEE80211_HW_SIGNAL_DBM |
516 IEEE80211_HW_NOISE_DBM;
518 hw->wiphy->interface_modes =
519 BIT(NL80211_IFTYPE_AP) |
520 BIT(NL80211_IFTYPE_STATION) |
521 BIT(NL80211_IFTYPE_ADHOC) |
522 BIT(NL80211_IFTYPE_MESH_POINT);
524 hw->extra_tx_headroom = 2;
525 hw->channel_change_time = 5000;
530 ath5k_debug_init_device(sc);
533 * Mark the device as detached to avoid processing
534 * interrupts until setup is complete.
536 __set_bit(ATH_STAT_INVALID, sc->status);
538 sc->iobase = mem; /* So we can unmap it on detach */
539 sc->cachelsz = csz * sizeof(u32); /* convert to bytes */
540 sc->opmode = NL80211_IFTYPE_STATION;
541 mutex_init(&sc->lock);
542 spin_lock_init(&sc->rxbuflock);
543 spin_lock_init(&sc->txbuflock);
544 spin_lock_init(&sc->block);
546 /* Set private data */
547 pci_set_drvdata(pdev, hw);
549 /* Setup interrupt handler */
550 ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
552 ATH5K_ERR(sc, "request_irq failed\n");
556 /* Initialize device */
557 sc->ah = ath5k_hw_attach(sc, id->driver_data);
558 if (IS_ERR(sc->ah)) {
559 ret = PTR_ERR(sc->ah);
563 /* set up multi-rate retry capabilities */
564 if (sc->ah->ah_version == AR5K_AR5212) {
566 hw->max_rate_tries = 11;
569 /* Finish private driver data initialization */
570 ret = ath5k_attach(pdev, hw);
574 ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
575 ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
577 sc->ah->ah_phy_revision);
579 if (!sc->ah->ah_single_chip) {
580 /* Single chip radio (!RF5111) */
581 if (sc->ah->ah_radio_5ghz_revision &&
582 !sc->ah->ah_radio_2ghz_revision) {
583 /* No 5GHz support -> report 2GHz radio */
584 if (!test_bit(AR5K_MODE_11A,
585 sc->ah->ah_capabilities.cap_mode)) {
586 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
587 ath5k_chip_name(AR5K_VERSION_RAD,
588 sc->ah->ah_radio_5ghz_revision),
589 sc->ah->ah_radio_5ghz_revision);
590 /* No 2GHz support (5110 and some
591 * 5Ghz only cards) -> report 5Ghz radio */
592 } else if (!test_bit(AR5K_MODE_11B,
593 sc->ah->ah_capabilities.cap_mode)) {
594 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
595 ath5k_chip_name(AR5K_VERSION_RAD,
596 sc->ah->ah_radio_5ghz_revision),
597 sc->ah->ah_radio_5ghz_revision);
598 /* Multiband radio */
600 ATH5K_INFO(sc, "RF%s multiband radio found"
602 ath5k_chip_name(AR5K_VERSION_RAD,
603 sc->ah->ah_radio_5ghz_revision),
604 sc->ah->ah_radio_5ghz_revision);
607 /* Multi chip radio (RF5111 - RF2111) ->
608 * report both 2GHz/5GHz radios */
609 else if (sc->ah->ah_radio_5ghz_revision &&
610 sc->ah->ah_radio_2ghz_revision){
611 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
612 ath5k_chip_name(AR5K_VERSION_RAD,
613 sc->ah->ah_radio_5ghz_revision),
614 sc->ah->ah_radio_5ghz_revision);
615 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
616 ath5k_chip_name(AR5K_VERSION_RAD,
617 sc->ah->ah_radio_2ghz_revision),
618 sc->ah->ah_radio_2ghz_revision);
623 /* ready to process interrupts */
624 __clear_bit(ATH_STAT_INVALID, sc->status);
628 ath5k_hw_detach(sc->ah);
630 free_irq(pdev->irq, sc);
632 ieee80211_free_hw(hw);
634 pci_iounmap(pdev, mem);
636 pci_release_region(pdev, 0);
638 pci_disable_device(pdev);
643 static void __devexit
644 ath5k_pci_remove(struct pci_dev *pdev)
646 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
647 struct ath5k_softc *sc = hw->priv;
649 ath5k_debug_finish_device(sc);
650 ath5k_detach(pdev, hw);
651 ath5k_hw_detach(sc->ah);
652 free_irq(pdev->irq, sc);
653 pci_iounmap(pdev, sc->iobase);
654 pci_release_region(pdev, 0);
655 pci_disable_device(pdev);
656 ieee80211_free_hw(hw);
661 ath5k_pci_suspend(struct pci_dev *pdev, pm_message_t state)
663 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
664 struct ath5k_softc *sc = hw->priv;
668 free_irq(pdev->irq, sc);
669 pci_save_state(pdev);
670 pci_disable_device(pdev);
671 pci_set_power_state(pdev, PCI_D3hot);
677 ath5k_pci_resume(struct pci_dev *pdev)
679 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
680 struct ath5k_softc *sc = hw->priv;
683 pci_restore_state(pdev);
685 err = pci_enable_device(pdev);
689 err = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
691 ATH5K_ERR(sc, "request_irq failed\n");
695 ath5k_led_enable(sc);
699 pci_disable_device(pdev);
702 #endif /* CONFIG_PM */
705 /***********************\
706 * Driver Initialization *
707 \***********************/
709 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
711 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
712 struct ath5k_softc *sc = hw->priv;
713 struct ath_regulatory *reg = &sc->ah->ah_regulatory;
715 return ath_reg_notifier_apply(wiphy, request, reg);
719 ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
721 struct ath5k_softc *sc = hw->priv;
722 struct ath5k_hw *ah = sc->ah;
723 u8 mac[ETH_ALEN] = {};
726 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
729 * Check if the MAC has multi-rate retry support.
730 * We do this by trying to setup a fake extended
731 * descriptor. MAC's that don't have support will
732 * return false w/o doing anything. MAC's that do
733 * support it will return true w/o doing anything.
735 ret = ah->ah_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
739 __set_bit(ATH_STAT_MRRETRY, sc->status);
742 * Collect the channel list. The 802.11 layer
743 * is resposible for filtering this list based
744 * on settings like the phy mode and regulatory
745 * domain restrictions.
747 ret = ath5k_setup_bands(hw);
749 ATH5K_ERR(sc, "can't get channels\n");
753 /* NB: setup here so ath5k_rate_update is happy */
754 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
755 ath5k_setcurmode(sc, AR5K_MODE_11A);
757 ath5k_setcurmode(sc, AR5K_MODE_11B);
760 * Allocate tx+rx descriptors and populate the lists.
762 ret = ath5k_desc_alloc(sc, pdev);
764 ATH5K_ERR(sc, "can't allocate descriptors\n");
769 * Allocate hardware transmit queues: one queue for
770 * beacon frames and one data queue for each QoS
771 * priority. Note that hw functions handle reseting
772 * these queues at the needed time.
774 ret = ath5k_beaconq_setup(ah);
776 ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
781 sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
782 if (IS_ERR(sc->txq)) {
783 ATH5K_ERR(sc, "can't setup xmit queue\n");
784 ret = PTR_ERR(sc->txq);
788 tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
789 tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
790 tasklet_init(&sc->restq, ath5k_tasklet_reset, (unsigned long)sc);
791 tasklet_init(&sc->beacontq, ath5k_tasklet_beacon, (unsigned long)sc);
792 setup_timer(&sc->calib_tim, ath5k_calibrate, (unsigned long)sc);
794 ret = ath5k_eeprom_read_mac(ah, mac);
796 ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
801 SET_IEEE80211_PERM_ADDR(hw, mac);
802 /* All MAC address bits matter for ACKs */
803 memset(sc->bssidmask, 0xff, ETH_ALEN);
804 ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
806 ah->ah_regulatory.current_rd =
807 ah->ah_capabilities.cap_eeprom.ee_regdomain;
808 ret = ath_regd_init(&ah->ah_regulatory, hw->wiphy, ath5k_reg_notifier);
810 ATH5K_ERR(sc, "can't initialize regulatory system\n");
814 ret = ieee80211_register_hw(hw);
816 ATH5K_ERR(sc, "can't register ieee80211 hw\n");
820 if (!ath_is_world_regd(&sc->ah->ah_regulatory))
821 regulatory_hint(hw->wiphy, sc->ah->ah_regulatory.alpha2);
827 ath5k_txq_release(sc);
829 ath5k_hw_release_tx_queue(ah, sc->bhalq);
831 ath5k_desc_free(sc, pdev);
837 ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
839 struct ath5k_softc *sc = hw->priv;
842 * NB: the order of these is important:
843 * o call the 802.11 layer before detaching ath5k_hw to
844 * insure callbacks into the driver to delete global
845 * key cache entries can be handled
846 * o reclaim the tx queue data structures after calling
847 * the 802.11 layer as we'll get called back to reclaim
848 * node state and potentially want to use them
849 * o to cleanup the tx queues the hal is called, so detach
851 * XXX: ??? detach ath5k_hw ???
852 * Other than that, it's straightforward...
854 ieee80211_unregister_hw(hw);
855 ath5k_desc_free(sc, pdev);
856 ath5k_txq_release(sc);
857 ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
858 ath5k_unregister_leds(sc);
861 * NB: can't reclaim these until after ieee80211_ifdetach
862 * returns because we'll get called back to reclaim node
863 * state and potentially want to use them.
870 /********************\
871 * Channel/mode setup *
872 \********************/
875 * Convert IEEE channel number to MHz frequency.
878 ath5k_ieee2mhz(short chan)
880 if (chan <= 14 || chan >= 27)
881 return ieee80211chan2mhz(chan);
883 return 2212 + chan * 20;
887 * Returns true for the channel numbers used without all_channels modparam.
889 static bool ath5k_is_standard_channel(short chan)
891 return ((chan <= 14) ||
893 ((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
895 ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
897 ((chan & 3) == 1 && chan >= 149 && chan <= 165));
901 ath5k_copy_channels(struct ath5k_hw *ah,
902 struct ieee80211_channel *channels,
906 unsigned int i, count, size, chfreq, freq, ch;
908 if (!test_bit(mode, ah->ah_modes))
913 case AR5K_MODE_11A_TURBO:
914 /* 1..220, but 2GHz frequencies are filtered by check_channel */
916 chfreq = CHANNEL_5GHZ;
920 case AR5K_MODE_11G_TURBO:
922 chfreq = CHANNEL_2GHZ;
925 ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
929 for (i = 0, count = 0; i < size && max > 0; i++) {
931 freq = ath5k_ieee2mhz(ch);
933 /* Check if channel is supported by the chipset */
934 if (!ath5k_channel_ok(ah, freq, chfreq))
937 if (!modparam_all_channels && !ath5k_is_standard_channel(ch))
940 /* Write channel info and increment counter */
941 channels[count].center_freq = freq;
942 channels[count].band = (chfreq == CHANNEL_2GHZ) ?
943 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
947 channels[count].hw_value = chfreq | CHANNEL_OFDM;
949 case AR5K_MODE_11A_TURBO:
950 case AR5K_MODE_11G_TURBO:
951 channels[count].hw_value = chfreq |
952 CHANNEL_OFDM | CHANNEL_TURBO;
955 channels[count].hw_value = CHANNEL_B;
966 ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
970 for (i = 0; i < AR5K_MAX_RATES; i++)
971 sc->rate_idx[b->band][i] = -1;
973 for (i = 0; i < b->n_bitrates; i++) {
974 sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
975 if (b->bitrates[i].hw_value_short)
976 sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
981 ath5k_setup_bands(struct ieee80211_hw *hw)
983 struct ath5k_softc *sc = hw->priv;
984 struct ath5k_hw *ah = sc->ah;
985 struct ieee80211_supported_band *sband;
986 int max_c, count_c = 0;
989 BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
990 max_c = ARRAY_SIZE(sc->channels);
993 sband = &sc->sbands[IEEE80211_BAND_2GHZ];
994 sband->band = IEEE80211_BAND_2GHZ;
995 sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
997 if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
999 memcpy(sband->bitrates, &ath5k_rates[0],
1000 sizeof(struct ieee80211_rate) * 12);
1001 sband->n_bitrates = 12;
1003 sband->channels = sc->channels;
1004 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1005 AR5K_MODE_11G, max_c);
1007 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
1008 count_c = sband->n_channels;
1010 } else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
1012 memcpy(sband->bitrates, &ath5k_rates[0],
1013 sizeof(struct ieee80211_rate) * 4);
1014 sband->n_bitrates = 4;
1016 /* 5211 only supports B rates and uses 4bit rate codes
1017 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
1020 if (ah->ah_version == AR5K_AR5211) {
1021 for (i = 0; i < 4; i++) {
1022 sband->bitrates[i].hw_value =
1023 sband->bitrates[i].hw_value & 0xF;
1024 sband->bitrates[i].hw_value_short =
1025 sband->bitrates[i].hw_value_short & 0xF;
1029 sband->channels = sc->channels;
1030 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1031 AR5K_MODE_11B, max_c);
1033 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
1034 count_c = sband->n_channels;
1037 ath5k_setup_rate_idx(sc, sband);
1039 /* 5GHz band, A mode */
1040 if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
1041 sband = &sc->sbands[IEEE80211_BAND_5GHZ];
1042 sband->band = IEEE80211_BAND_5GHZ;
1043 sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
1045 memcpy(sband->bitrates, &ath5k_rates[4],
1046 sizeof(struct ieee80211_rate) * 8);
1047 sband->n_bitrates = 8;
1049 sband->channels = &sc->channels[count_c];
1050 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1051 AR5K_MODE_11A, max_c);
1053 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
1055 ath5k_setup_rate_idx(sc, sband);
1057 ath5k_debug_dump_bands(sc);
1063 * Set/change channels. If the channel is really being changed,
1064 * it's done by reseting the chip. To accomplish this we must
1065 * first cleanup any pending DMA, then restart stuff after a la
1068 * Called with sc->lock.
1071 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
1073 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "(%u MHz) -> (%u MHz)\n",
1074 sc->curchan->center_freq, chan->center_freq);
1076 if (chan->center_freq != sc->curchan->center_freq ||
1077 chan->hw_value != sc->curchan->hw_value) {
1080 * To switch channels clear any pending DMA operations;
1081 * wait long enough for the RX fifo to drain, reset the
1082 * hardware at the new frequency, and then re-enable
1083 * the relevant bits of the h/w.
1085 return ath5k_reset(sc, chan);
1092 ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
1096 if (mode == AR5K_MODE_11A) {
1097 sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
1099 sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
1104 ath5k_mode_setup(struct ath5k_softc *sc)
1106 struct ath5k_hw *ah = sc->ah;
1109 /* configure rx filter */
1110 rfilt = sc->filter_flags;
1111 ath5k_hw_set_rx_filter(ah, rfilt);
1113 if (ath5k_hw_hasbssidmask(ah))
1114 ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
1116 /* configure operational mode */
1117 ath5k_hw_set_opmode(ah);
1119 ath5k_hw_set_mcast_filter(ah, 0, 0);
1120 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
1124 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
1128 /* return base rate on errors */
1129 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
1130 "hw_rix out of bounds: %x\n", hw_rix))
1133 rix = sc->rate_idx[sc->curband->band][hw_rix];
1134 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
1145 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_softc *sc, dma_addr_t *skb_addr)
1147 struct sk_buff *skb;
1151 * Allocate buffer with headroom_needed space for the
1152 * fake physical layer header at the start.
1154 skb = dev_alloc_skb(sc->rxbufsize + sc->cachelsz - 1);
1157 ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
1158 sc->rxbufsize + sc->cachelsz - 1);
1162 * Cache-line-align. This is important (for the
1163 * 5210 at least) as not doing so causes bogus data
1166 off = ((unsigned long)skb->data) % sc->cachelsz;
1168 skb_reserve(skb, sc->cachelsz - off);
1170 *skb_addr = pci_map_single(sc->pdev,
1171 skb->data, sc->rxbufsize, PCI_DMA_FROMDEVICE);
1172 if (unlikely(pci_dma_mapping_error(sc->pdev, *skb_addr))) {
1173 ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
1181 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1183 struct ath5k_hw *ah = sc->ah;
1184 struct sk_buff *skb = bf->skb;
1185 struct ath5k_desc *ds;
1188 skb = ath5k_rx_skb_alloc(sc, &bf->skbaddr);
1195 * Setup descriptors. For receive we always terminate
1196 * the descriptor list with a self-linked entry so we'll
1197 * not get overrun under high load (as can happen with a
1198 * 5212 when ANI processing enables PHY error frames).
1200 * To insure the last descriptor is self-linked we create
1201 * each descriptor as self-linked and add it to the end. As
1202 * each additional descriptor is added the previous self-linked
1203 * entry is ``fixed'' naturally. This should be safe even
1204 * if DMA is happening. When processing RX interrupts we
1205 * never remove/process the last, self-linked, entry on the
1206 * descriptor list. This insures the hardware always has
1207 * someplace to write a new frame.
1210 ds->ds_link = bf->daddr; /* link to self */
1211 ds->ds_data = bf->skbaddr;
1212 ah->ah_setup_rx_desc(ah, ds,
1213 skb_tailroom(skb), /* buffer size */
1216 if (sc->rxlink != NULL)
1217 *sc->rxlink = bf->daddr;
1218 sc->rxlink = &ds->ds_link;
1223 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1225 struct ath5k_hw *ah = sc->ah;
1226 struct ath5k_txq *txq = sc->txq;
1227 struct ath5k_desc *ds = bf->desc;
1228 struct sk_buff *skb = bf->skb;
1229 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1230 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
1231 struct ieee80211_rate *rate;
1232 unsigned int mrr_rate[3], mrr_tries[3];
1239 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
1241 /* XXX endianness */
1242 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1245 rate = ieee80211_get_tx_rate(sc->hw, info);
1247 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1248 flags |= AR5K_TXDESC_NOACK;
1250 rc_flags = info->control.rates[0].flags;
1251 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
1252 rate->hw_value_short : rate->hw_value;
1256 /* FIXME: If we are in g mode and rate is a CCK rate
1257 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1258 * from tx power (value is in dB units already) */
1259 if (info->control.hw_key) {
1260 keyidx = info->control.hw_key->hw_key_idx;
1261 pktlen += info->control.hw_key->icv_len;
1263 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1264 flags |= AR5K_TXDESC_RTSENA;
1265 cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
1266 duration = le16_to_cpu(ieee80211_rts_duration(sc->hw,
1267 sc->vif, pktlen, info));
1269 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1270 flags |= AR5K_TXDESC_CTSENA;
1271 cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
1272 duration = le16_to_cpu(ieee80211_ctstoself_duration(sc->hw,
1273 sc->vif, pktlen, info));
1275 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
1276 ieee80211_get_hdrlen_from_skb(skb), AR5K_PKT_TYPE_NORMAL,
1277 (sc->power_level * 2),
1279 info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
1280 cts_rate, duration);
1284 memset(mrr_rate, 0, sizeof(mrr_rate));
1285 memset(mrr_tries, 0, sizeof(mrr_tries));
1286 for (i = 0; i < 3; i++) {
1287 rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
1291 mrr_rate[i] = rate->hw_value;
1292 mrr_tries[i] = info->control.rates[i + 1].count;
1295 ah->ah_setup_mrr_tx_desc(ah, ds,
1296 mrr_rate[0], mrr_tries[0],
1297 mrr_rate[1], mrr_tries[1],
1298 mrr_rate[2], mrr_tries[2]);
1301 ds->ds_data = bf->skbaddr;
1303 spin_lock_bh(&txq->lock);
1304 list_add_tail(&bf->list, &txq->q);
1305 sc->tx_stats[txq->qnum].len++;
1306 if (txq->link == NULL) /* is this first packet? */
1307 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
1308 else /* no, so only link it */
1309 *txq->link = bf->daddr;
1311 txq->link = &ds->ds_link;
1312 ath5k_hw_start_tx_dma(ah, txq->qnum);
1314 spin_unlock_bh(&txq->lock);
1318 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1322 /*******************\
1323 * Descriptors setup *
1324 \*******************/
1327 ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
1329 struct ath5k_desc *ds;
1330 struct ath5k_buf *bf;
1335 /* allocate descriptors */
1336 sc->desc_len = sizeof(struct ath5k_desc) *
1337 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
1338 sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
1339 if (sc->desc == NULL) {
1340 ATH5K_ERR(sc, "can't allocate descriptors\n");
1345 da = sc->desc_daddr;
1346 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
1347 ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
1349 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
1350 sizeof(struct ath5k_buf), GFP_KERNEL);
1352 ATH5K_ERR(sc, "can't allocate bufptr\n");
1358 INIT_LIST_HEAD(&sc->rxbuf);
1359 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
1362 list_add_tail(&bf->list, &sc->rxbuf);
1365 INIT_LIST_HEAD(&sc->txbuf);
1366 sc->txbuf_len = ATH_TXBUF;
1367 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
1368 da += sizeof(*ds)) {
1371 list_add_tail(&bf->list, &sc->txbuf);
1381 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1388 ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
1390 struct ath5k_buf *bf;
1392 ath5k_txbuf_free(sc, sc->bbuf);
1393 list_for_each_entry(bf, &sc->txbuf, list)
1394 ath5k_txbuf_free(sc, bf);
1395 list_for_each_entry(bf, &sc->rxbuf, list)
1396 ath5k_rxbuf_free(sc, bf);
1398 /* Free memory associated with all descriptors */
1399 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1413 static struct ath5k_txq *
1414 ath5k_txq_setup(struct ath5k_softc *sc,
1415 int qtype, int subtype)
1417 struct ath5k_hw *ah = sc->ah;
1418 struct ath5k_txq *txq;
1419 struct ath5k_txq_info qi = {
1420 .tqi_subtype = subtype,
1421 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1422 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1423 .tqi_cw_max = AR5K_TXQ_USEDEFAULT
1428 * Enable interrupts only for EOL and DESC conditions.
1429 * We mark tx descriptors to receive a DESC interrupt
1430 * when a tx queue gets deep; otherwise waiting for the
1431 * EOL to reap descriptors. Note that this is done to
1432 * reduce interrupt load and this only defers reaping
1433 * descriptors, never transmitting frames. Aside from
1434 * reducing interrupts this also permits more concurrency.
1435 * The only potential downside is if the tx queue backs
1436 * up in which case the top half of the kernel may backup
1437 * due to a lack of tx descriptors.
1439 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1440 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1441 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1444 * NB: don't print a message, this happens
1445 * normally on parts with too few tx queues
1447 return ERR_PTR(qnum);
1449 if (qnum >= ARRAY_SIZE(sc->txqs)) {
1450 ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
1451 qnum, ARRAY_SIZE(sc->txqs));
1452 ath5k_hw_release_tx_queue(ah, qnum);
1453 return ERR_PTR(-EINVAL);
1455 txq = &sc->txqs[qnum];
1459 INIT_LIST_HEAD(&txq->q);
1460 spin_lock_init(&txq->lock);
1463 return &sc->txqs[qnum];
1467 ath5k_beaconq_setup(struct ath5k_hw *ah)
1469 struct ath5k_txq_info qi = {
1470 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1471 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1472 .tqi_cw_max = AR5K_TXQ_USEDEFAULT,
1473 /* NB: for dynamic turbo, don't enable any other interrupts */
1474 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1477 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1481 ath5k_beaconq_config(struct ath5k_softc *sc)
1483 struct ath5k_hw *ah = sc->ah;
1484 struct ath5k_txq_info qi;
1487 ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1490 if (sc->opmode == NL80211_IFTYPE_AP ||
1491 sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1493 * Always burst out beacon and CAB traffic
1494 * (aifs = cwmin = cwmax = 0)
1499 } else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
1501 * Adhoc mode; backoff between 0 and (2 * cw_min).
1505 qi.tqi_cw_max = 2 * ah->ah_cw_min;
1508 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1509 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1510 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1512 ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1514 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1515 "hardware queue!\n", __func__);
1519 return ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */;
1523 ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1525 struct ath5k_buf *bf, *bf0;
1528 * NB: this assumes output has been stopped and
1529 * we do not need to block ath5k_tx_tasklet
1531 spin_lock_bh(&txq->lock);
1532 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1533 ath5k_debug_printtxbuf(sc, bf);
1535 ath5k_txbuf_free(sc, bf);
1537 spin_lock_bh(&sc->txbuflock);
1538 sc->tx_stats[txq->qnum].len--;
1539 list_move_tail(&bf->list, &sc->txbuf);
1541 spin_unlock_bh(&sc->txbuflock);
1544 spin_unlock_bh(&txq->lock);
1548 * Drain the transmit queues and reclaim resources.
1551 ath5k_txq_cleanup(struct ath5k_softc *sc)
1553 struct ath5k_hw *ah = sc->ah;
1556 /* XXX return value */
1557 if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1558 /* don't touch the hardware if marked invalid */
1559 ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1560 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1561 ath5k_hw_get_txdp(ah, sc->bhalq));
1562 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1563 if (sc->txqs[i].setup) {
1564 ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1565 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1568 ath5k_hw_get_txdp(ah,
1573 ieee80211_wake_queues(sc->hw); /* XXX move to callers */
1575 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1576 if (sc->txqs[i].setup)
1577 ath5k_txq_drainq(sc, &sc->txqs[i]);
1581 ath5k_txq_release(struct ath5k_softc *sc)
1583 struct ath5k_txq *txq = sc->txqs;
1586 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1588 ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1601 * Enable the receive h/w following a reset.
1604 ath5k_rx_start(struct ath5k_softc *sc)
1606 struct ath5k_hw *ah = sc->ah;
1607 struct ath5k_buf *bf;
1610 sc->rxbufsize = roundup(IEEE80211_MAX_LEN, sc->cachelsz);
1612 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rxbufsize %u\n",
1613 sc->cachelsz, sc->rxbufsize);
1615 spin_lock_bh(&sc->rxbuflock);
1617 list_for_each_entry(bf, &sc->rxbuf, list) {
1618 ret = ath5k_rxbuf_setup(sc, bf);
1620 spin_unlock_bh(&sc->rxbuflock);
1624 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1625 ath5k_hw_set_rxdp(ah, bf->daddr);
1626 spin_unlock_bh(&sc->rxbuflock);
1628 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
1629 ath5k_mode_setup(sc); /* set filters, etc. */
1630 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1638 * Disable the receive h/w in preparation for a reset.
1641 ath5k_rx_stop(struct ath5k_softc *sc)
1643 struct ath5k_hw *ah = sc->ah;
1645 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
1646 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1647 ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */
1649 ath5k_debug_printrxbuffs(sc, ah);
1651 sc->rxlink = NULL; /* just in case */
1655 ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds,
1656 struct sk_buff *skb, struct ath5k_rx_status *rs)
1658 struct ieee80211_hdr *hdr = (void *)skb->data;
1659 unsigned int keyix, hlen;
1661 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1662 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1663 return RX_FLAG_DECRYPTED;
1665 /* Apparently when a default key is used to decrypt the packet
1666 the hw does not set the index used to decrypt. In such cases
1667 get the index from the packet. */
1668 hlen = ieee80211_hdrlen(hdr->frame_control);
1669 if (ieee80211_has_protected(hdr->frame_control) &&
1670 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1671 skb->len >= hlen + 4) {
1672 keyix = skb->data[hlen + 3] >> 6;
1674 if (test_bit(keyix, sc->keymap))
1675 return RX_FLAG_DECRYPTED;
1683 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1684 struct ieee80211_rx_status *rxs)
1688 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1690 if (ieee80211_is_beacon(mgmt->frame_control) &&
1691 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1692 memcmp(mgmt->bssid, sc->ah->ah_bssid, ETH_ALEN) == 0) {
1694 * Received an IBSS beacon with the same BSSID. Hardware *must*
1695 * have updated the local TSF. We have to work around various
1696 * hardware bugs, though...
1698 tsf = ath5k_hw_get_tsf64(sc->ah);
1699 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1700 hw_tu = TSF_TO_TU(tsf);
1702 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1703 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1704 (unsigned long long)bc_tstamp,
1705 (unsigned long long)rxs->mactime,
1706 (unsigned long long)(rxs->mactime - bc_tstamp),
1707 (unsigned long long)tsf);
1710 * Sometimes the HW will give us a wrong tstamp in the rx
1711 * status, causing the timestamp extension to go wrong.
1712 * (This seems to happen especially with beacon frames bigger
1713 * than 78 byte (incl. FCS))
1714 * But we know that the receive timestamp must be later than the
1715 * timestamp of the beacon since HW must have synced to that.
1717 * NOTE: here we assume mactime to be after the frame was
1718 * received, not like mac80211 which defines it at the start.
1720 if (bc_tstamp > rxs->mactime) {
1721 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1722 "fixing mactime from %llx to %llx\n",
1723 (unsigned long long)rxs->mactime,
1724 (unsigned long long)tsf);
1729 * Local TSF might have moved higher than our beacon timers,
1730 * in that case we have to update them to continue sending
1731 * beacons. This also takes care of synchronizing beacon sending
1732 * times with other stations.
1734 if (hw_tu >= sc->nexttbtt)
1735 ath5k_beacon_update_timers(sc, bc_tstamp);
1740 ath5k_tasklet_rx(unsigned long data)
1742 struct ieee80211_rx_status rxs = {};
1743 struct ath5k_rx_status rs = {};
1744 struct sk_buff *skb, *next_skb;
1745 dma_addr_t next_skb_addr;
1746 struct ath5k_softc *sc = (void *)data;
1747 struct ath5k_buf *bf;
1748 struct ath5k_desc *ds;
1753 spin_lock(&sc->rxbuflock);
1754 if (list_empty(&sc->rxbuf)) {
1755 ATH5K_WARN(sc, "empty rx buf pool\n");
1761 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1762 BUG_ON(bf->skb == NULL);
1766 /* bail if HW is still using self-linked descriptor */
1767 if (ath5k_hw_get_rxdp(sc->ah) == bf->daddr)
1770 ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1771 if (unlikely(ret == -EINPROGRESS))
1773 else if (unlikely(ret)) {
1774 ATH5K_ERR(sc, "error in processing rx descriptor\n");
1775 spin_unlock(&sc->rxbuflock);
1779 if (unlikely(rs.rs_more)) {
1780 ATH5K_WARN(sc, "unsupported jumbo\n");
1784 if (unlikely(rs.rs_status)) {
1785 if (rs.rs_status & AR5K_RXERR_PHY)
1787 if (rs.rs_status & AR5K_RXERR_DECRYPT) {
1789 * Decrypt error. If the error occurred
1790 * because there was no hardware key, then
1791 * let the frame through so the upper layers
1792 * can process it. This is necessary for 5210
1793 * parts which have no way to setup a ``clear''
1796 * XXX do key cache faulting
1798 if (rs.rs_keyix == AR5K_RXKEYIX_INVALID &&
1799 !(rs.rs_status & AR5K_RXERR_CRC))
1802 if (rs.rs_status & AR5K_RXERR_MIC) {
1803 rxs.flag |= RX_FLAG_MMIC_ERROR;
1807 /* let crypto-error packets fall through in MNTR */
1809 ~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) ||
1810 sc->opmode != NL80211_IFTYPE_MONITOR)
1814 next_skb = ath5k_rx_skb_alloc(sc, &next_skb_addr);
1817 * If we can't replace bf->skb with a new skb under memory
1818 * pressure, just skip this packet
1823 pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize,
1824 PCI_DMA_FROMDEVICE);
1825 skb_put(skb, rs.rs_datalen);
1827 /* The MAC header is padded to have 32-bit boundary if the
1828 * packet payload is non-zero. The general calculation for
1829 * padsize would take into account odd header lengths:
1830 * padsize = (4 - hdrlen % 4) % 4; However, since only
1831 * even-length headers are used, padding can only be 0 or 2
1832 * bytes and we can optimize this a bit. In addition, we must
1833 * not try to remove padding from short control frames that do
1834 * not have payload. */
1835 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1836 padsize = ath5k_pad_size(hdrlen);
1838 memmove(skb->data + padsize, skb->data, hdrlen);
1839 skb_pull(skb, padsize);
1843 * always extend the mac timestamp, since this information is
1844 * also needed for proper IBSS merging.
1846 * XXX: it might be too late to do it here, since rs_tstamp is
1847 * 15bit only. that means TSF extension has to be done within
1848 * 32768usec (about 32ms). it might be necessary to move this to
1849 * the interrupt handler, like it is done in madwifi.
1851 * Unfortunately we don't know when the hardware takes the rx
1852 * timestamp (beginning of phy frame, data frame, end of rx?).
1853 * The only thing we know is that it is hardware specific...
1854 * On AR5213 it seems the rx timestamp is at the end of the
1855 * frame, but i'm not sure.
1857 * NOTE: mac80211 defines mactime at the beginning of the first
1858 * data symbol. Since we don't have any time references it's
1859 * impossible to comply to that. This affects IBSS merge only
1860 * right now, so it's not too bad...
1862 rxs.mactime = ath5k_extend_tsf(sc->ah, rs.rs_tstamp);
1863 rxs.flag |= RX_FLAG_TSFT;
1865 rxs.freq = sc->curchan->center_freq;
1866 rxs.band = sc->curband->band;
1868 rxs.noise = sc->ah->ah_noise_floor;
1869 rxs.signal = rxs.noise + rs.rs_rssi;
1871 /* An rssi of 35 indicates you should be able use
1872 * 54 Mbps reliably. A more elaborate scheme can be used
1873 * here but it requires a map of SNR/throughput for each
1874 * possible mode used */
1875 rxs.qual = rs.rs_rssi * 100 / 35;
1877 /* rssi can be more than 35 though, anything above that
1878 * should be considered at 100% */
1882 rxs.antenna = rs.rs_antenna;
1883 rxs.rate_idx = ath5k_hw_to_driver_rix(sc, rs.rs_rate);
1884 rxs.flag |= ath5k_rx_decrypted(sc, ds, skb, &rs);
1886 if (rxs.rate_idx >= 0 && rs.rs_rate ==
1887 sc->curband->bitrates[rxs.rate_idx].hw_value_short)
1888 rxs.flag |= RX_FLAG_SHORTPRE;
1890 ath5k_debug_dump_skb(sc, skb, "RX ", 0);
1892 /* check beacons in IBSS mode */
1893 if (sc->opmode == NL80211_IFTYPE_ADHOC)
1894 ath5k_check_ibss_tsf(sc, skb, &rxs);
1896 __ieee80211_rx(sc->hw, skb, &rxs);
1899 bf->skbaddr = next_skb_addr;
1901 list_move_tail(&bf->list, &sc->rxbuf);
1902 } while (ath5k_rxbuf_setup(sc, bf) == 0);
1904 spin_unlock(&sc->rxbuflock);
1915 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1917 struct ath5k_tx_status ts = {};
1918 struct ath5k_buf *bf, *bf0;
1919 struct ath5k_desc *ds;
1920 struct sk_buff *skb;
1921 struct ieee80211_tx_info *info;
1924 spin_lock(&txq->lock);
1925 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1928 ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1929 if (unlikely(ret == -EINPROGRESS))
1931 else if (unlikely(ret)) {
1932 ATH5K_ERR(sc, "error %d while processing queue %u\n",
1938 info = IEEE80211_SKB_CB(skb);
1941 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1944 ieee80211_tx_info_clear_status(info);
1945 for (i = 0; i < 4; i++) {
1946 struct ieee80211_tx_rate *r =
1947 &info->status.rates[i];
1949 if (ts.ts_rate[i]) {
1950 r->idx = ath5k_hw_to_driver_rix(sc, ts.ts_rate[i]);
1951 r->count = ts.ts_retry[i];
1958 /* count the successful attempt as well */
1959 info->status.rates[ts.ts_final_idx].count++;
1961 if (unlikely(ts.ts_status)) {
1962 sc->ll_stats.dot11ACKFailureCount++;
1963 if (ts.ts_status & AR5K_TXERR_FILT)
1964 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1966 info->flags |= IEEE80211_TX_STAT_ACK;
1967 info->status.ack_signal = ts.ts_rssi;
1970 ieee80211_tx_status(sc->hw, skb);
1971 sc->tx_stats[txq->qnum].count++;
1973 spin_lock(&sc->txbuflock);
1974 sc->tx_stats[txq->qnum].len--;
1975 list_move_tail(&bf->list, &sc->txbuf);
1977 spin_unlock(&sc->txbuflock);
1979 if (likely(list_empty(&txq->q)))
1981 spin_unlock(&txq->lock);
1982 if (sc->txbuf_len > ATH_TXBUF / 5)
1983 ieee80211_wake_queues(sc->hw);
1987 ath5k_tasklet_tx(unsigned long data)
1989 struct ath5k_softc *sc = (void *)data;
1991 ath5k_tx_processq(sc, sc->txq);
2000 * Setup the beacon frame for transmit.
2003 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
2005 struct sk_buff *skb = bf->skb;
2006 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2007 struct ath5k_hw *ah = sc->ah;
2008 struct ath5k_desc *ds;
2013 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
2015 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
2016 "skbaddr %llx\n", skb, skb->data, skb->len,
2017 (unsigned long long)bf->skbaddr);
2018 if (pci_dma_mapping_error(sc->pdev, bf->skbaddr)) {
2019 ATH5K_ERR(sc, "beacon DMA mapping failed\n");
2024 antenna = ah->ah_tx_ant;
2026 flags = AR5K_TXDESC_NOACK;
2027 if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
2028 ds->ds_link = bf->daddr; /* self-linked */
2029 flags |= AR5K_TXDESC_VEOL;
2034 * If we use multiple antennas on AP and use
2035 * the Sectored AP scenario, switch antenna every
2036 * 4 beacons to make sure everybody hears our AP.
2037 * When a client tries to associate, hw will keep
2038 * track of the tx antenna to be used for this client
2039 * automaticaly, based on ACKed packets.
2041 * Note: AP still listens and transmits RTS on the
2042 * default antenna which is supposed to be an omni.
2044 * Note2: On sectored scenarios it's possible to have
2045 * multiple antennas (1omni -the default- and 14 sectors)
2046 * so if we choose to actually support this mode we need
2047 * to allow user to set how many antennas we have and tweak
2048 * the code below to send beacons on all of them.
2050 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
2051 antenna = sc->bsent & 4 ? 2 : 1;
2054 /* FIXME: If we are in g mode and rate is a CCK rate
2055 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
2056 * from tx power (value is in dB units already) */
2057 ds->ds_data = bf->skbaddr;
2058 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
2059 ieee80211_get_hdrlen_from_skb(skb),
2060 AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
2061 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
2062 1, AR5K_TXKEYIX_INVALID,
2063 antenna, flags, 0, 0);
2069 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
2073 static void ath5k_beacon_disable(struct ath5k_softc *sc)
2075 sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2076 ath5k_hw_set_imr(sc->ah, sc->imask);
2077 ath5k_hw_stop_tx_dma(sc->ah, sc->bhalq);
2081 * Transmit a beacon frame at SWBA. Dynamic updates to the
2082 * frame contents are done as needed and the slot time is
2083 * also adjusted based on current state.
2085 * This is called from software irq context (beacontq or restq
2086 * tasklets) or user context from ath5k_beacon_config.
2089 ath5k_beacon_send(struct ath5k_softc *sc)
2091 struct ath5k_buf *bf = sc->bbuf;
2092 struct ath5k_hw *ah = sc->ah;
2094 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
2096 if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
2097 sc->opmode == NL80211_IFTYPE_MONITOR)) {
2098 ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
2102 * Check if the previous beacon has gone out. If
2103 * not don't don't try to post another, skip this
2104 * period and wait for the next. Missed beacons
2105 * indicate a problem and should not occur. If we
2106 * miss too many consecutive beacons reset the device.
2108 if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
2110 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2111 "missed %u consecutive beacons\n", sc->bmisscount);
2112 if (sc->bmisscount > 10) { /* NB: 10 is a guess */
2113 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2114 "stuck beacon time (%u missed)\n",
2116 tasklet_schedule(&sc->restq);
2120 if (unlikely(sc->bmisscount != 0)) {
2121 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2122 "resume beacon xmit after %u misses\n",
2128 * Stop any current dma and put the new frame on the queue.
2129 * This should never fail since we check above that no frames
2130 * are still pending on the queue.
2132 if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
2133 ATH5K_WARN(sc, "beacon queue %u didn't start/stop ?\n", sc->bhalq);
2134 /* NB: hw still stops DMA, so proceed */
2137 /* refresh the beacon for AP mode */
2138 if (sc->opmode == NL80211_IFTYPE_AP)
2139 ath5k_beacon_update(sc->hw, sc->vif);
2141 ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
2142 ath5k_hw_start_tx_dma(ah, sc->bhalq);
2143 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2144 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
2151 * ath5k_beacon_update_timers - update beacon timers
2153 * @sc: struct ath5k_softc pointer we are operating on
2154 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2155 * beacon timer update based on the current HW TSF.
2157 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2158 * of a received beacon or the current local hardware TSF and write it to the
2159 * beacon timer registers.
2161 * This is called in a variety of situations, e.g. when a beacon is received,
2162 * when a TSF update has been detected, but also when an new IBSS is created or
2163 * when we otherwise know we have to update the timers, but we keep it in this
2164 * function to have it all together in one place.
2167 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
2169 struct ath5k_hw *ah = sc->ah;
2170 u32 nexttbtt, intval, hw_tu, bc_tu;
2173 intval = sc->bintval & AR5K_BEACON_PERIOD;
2174 if (WARN_ON(!intval))
2177 /* beacon TSF converted to TU */
2178 bc_tu = TSF_TO_TU(bc_tsf);
2180 /* current TSF converted to TU */
2181 hw_tsf = ath5k_hw_get_tsf64(ah);
2182 hw_tu = TSF_TO_TU(hw_tsf);
2185 /* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2188 * no beacons received, called internally.
2189 * just need to refresh timers based on HW TSF.
2191 nexttbtt = roundup(hw_tu + FUDGE, intval);
2192 } else if (bc_tsf == 0) {
2194 * no beacon received, probably called by ath5k_reset_tsf().
2195 * reset TSF to start with 0.
2198 intval |= AR5K_BEACON_RESET_TSF;
2199 } else if (bc_tsf > hw_tsf) {
2201 * beacon received, SW merge happend but HW TSF not yet updated.
2202 * not possible to reconfigure timers yet, but next time we
2203 * receive a beacon with the same BSSID, the hardware will
2204 * automatically update the TSF and then we need to reconfigure
2207 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2208 "need to wait for HW TSF sync\n");
2212 * most important case for beacon synchronization between STA.
2214 * beacon received and HW TSF has been already updated by HW.
2215 * update next TBTT based on the TSF of the beacon, but make
2216 * sure it is ahead of our local TSF timer.
2218 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2222 sc->nexttbtt = nexttbtt;
2224 intval |= AR5K_BEACON_ENA;
2225 ath5k_hw_init_beacon(ah, nexttbtt, intval);
2228 * debugging output last in order to preserve the time critical aspect
2232 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2233 "reconfigured timers based on HW TSF\n");
2234 else if (bc_tsf == 0)
2235 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2236 "reset HW TSF and timers\n");
2238 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2239 "updated timers based on beacon TSF\n");
2241 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2242 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2243 (unsigned long long) bc_tsf,
2244 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2245 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2246 intval & AR5K_BEACON_PERIOD,
2247 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2248 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2253 * ath5k_beacon_config - Configure the beacon queues and interrupts
2255 * @sc: struct ath5k_softc pointer we are operating on
2257 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2258 * interrupts to detect TSF updates only.
2261 ath5k_beacon_config(struct ath5k_softc *sc)
2263 struct ath5k_hw *ah = sc->ah;
2264 unsigned long flags;
2266 ath5k_hw_set_imr(ah, 0);
2268 sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2270 if (sc->opmode == NL80211_IFTYPE_ADHOC ||
2271 sc->opmode == NL80211_IFTYPE_MESH_POINT ||
2272 sc->opmode == NL80211_IFTYPE_AP) {
2274 * In IBSS mode we use a self-linked tx descriptor and let the
2275 * hardware send the beacons automatically. We have to load it
2277 * We use the SWBA interrupt only to keep track of the beacon
2278 * timers in order to detect automatic TSF updates.
2280 ath5k_beaconq_config(sc);
2282 sc->imask |= AR5K_INT_SWBA;
2284 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2285 if (ath5k_hw_hasveol(ah)) {
2286 spin_lock_irqsave(&sc->block, flags);
2287 ath5k_beacon_send(sc);
2288 spin_unlock_irqrestore(&sc->block, flags);
2291 ath5k_beacon_update_timers(sc, -1);
2294 ath5k_hw_set_imr(ah, sc->imask);
2297 static void ath5k_tasklet_beacon(unsigned long data)
2299 struct ath5k_softc *sc = (struct ath5k_softc *) data;
2302 * Software beacon alert--time to send a beacon.
2304 * In IBSS mode we use this interrupt just to
2305 * keep track of the next TBTT (target beacon
2306 * transmission time) in order to detect wether
2307 * automatic TSF updates happened.
2309 if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2310 /* XXX: only if VEOL suppported */
2311 u64 tsf = ath5k_hw_get_tsf64(sc->ah);
2312 sc->nexttbtt += sc->bintval;
2313 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2314 "SWBA nexttbtt: %x hw_tu: %x "
2318 (unsigned long long) tsf);
2320 spin_lock(&sc->block);
2321 ath5k_beacon_send(sc);
2322 spin_unlock(&sc->block);
2327 /********************\
2328 * Interrupt handling *
2329 \********************/
2332 ath5k_init(struct ath5k_softc *sc)
2334 struct ath5k_hw *ah = sc->ah;
2337 mutex_lock(&sc->lock);
2339 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2342 * Stop anything previously setup. This is safe
2343 * no matter this is the first time through or not.
2345 ath5k_stop_locked(sc);
2348 * The basic interface to setting the hardware in a good
2349 * state is ``reset''. On return the hardware is known to
2350 * be powered up and with interrupts disabled. This must
2351 * be followed by initialization of the appropriate bits
2352 * and then setup of the interrupt mask.
2354 sc->curchan = sc->hw->conf.channel;
2355 sc->curband = &sc->sbands[sc->curchan->band];
2356 sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2357 AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2358 AR5K_INT_FATAL | AR5K_INT_GLOBAL;
2359 ret = ath5k_reset(sc, NULL);
2363 ath5k_rfkill_hw_start(ah);
2366 * Reset the key cache since some parts do not reset the
2367 * contents on initial power up or resume from suspend.
2369 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
2370 ath5k_hw_reset_key(ah, i);
2372 /* Set ack to be sent at low bit-rates */
2373 ath5k_hw_set_ack_bitrate_high(ah, false);
2375 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2376 msecs_to_jiffies(ath5k_calinterval * 1000)));
2381 mutex_unlock(&sc->lock);
2386 ath5k_stop_locked(struct ath5k_softc *sc)
2388 struct ath5k_hw *ah = sc->ah;
2390 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2391 test_bit(ATH_STAT_INVALID, sc->status));
2394 * Shutdown the hardware and driver:
2395 * stop output from above
2396 * disable interrupts
2398 * turn off the radio
2399 * clear transmit machinery
2400 * clear receive machinery
2401 * drain and release tx queues
2402 * reclaim beacon resources
2403 * power down hardware
2405 * Note that some of this work is not possible if the
2406 * hardware is gone (invalid).
2408 ieee80211_stop_queues(sc->hw);
2410 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2412 ath5k_hw_set_imr(ah, 0);
2413 synchronize_irq(sc->pdev->irq);
2415 ath5k_txq_cleanup(sc);
2416 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2418 ath5k_hw_phy_disable(ah);
2426 * Stop the device, grabbing the top-level lock to protect
2427 * against concurrent entry through ath5k_init (which can happen
2428 * if another thread does a system call and the thread doing the
2429 * stop is preempted).
2432 ath5k_stop_hw(struct ath5k_softc *sc)
2436 mutex_lock(&sc->lock);
2437 ret = ath5k_stop_locked(sc);
2438 if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2440 * Set the chip in full sleep mode. Note that we are
2441 * careful to do this only when bringing the interface
2442 * completely to a stop. When the chip is in this state
2443 * it must be carefully woken up or references to
2444 * registers in the PCI clock domain may freeze the bus
2445 * (and system). This varies by chip and is mostly an
2446 * issue with newer parts that go to sleep more quickly.
2448 if (sc->ah->ah_mac_srev >= 0x78) {
2451 * don't put newer MAC revisions > 7.8 to sleep because
2452 * of the above mentioned problems
2454 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mac version > 7.8, "
2455 "not putting device to sleep\n");
2457 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2458 "putting device to full sleep\n");
2459 ath5k_hw_set_power(sc->ah, AR5K_PM_FULL_SLEEP, true, 0);
2462 ath5k_txbuf_free(sc, sc->bbuf);
2465 mutex_unlock(&sc->lock);
2467 del_timer_sync(&sc->calib_tim);
2468 tasklet_kill(&sc->rxtq);
2469 tasklet_kill(&sc->txtq);
2470 tasklet_kill(&sc->restq);
2471 tasklet_kill(&sc->beacontq);
2473 ath5k_rfkill_hw_stop(sc->ah);
2479 ath5k_intr(int irq, void *dev_id)
2481 struct ath5k_softc *sc = dev_id;
2482 struct ath5k_hw *ah = sc->ah;
2483 enum ath5k_int status;
2484 unsigned int counter = 1000;
2486 if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2487 !ath5k_hw_is_intr_pending(ah)))
2491 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2492 ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2494 if (unlikely(status & AR5K_INT_FATAL)) {
2496 * Fatal errors are unrecoverable.
2497 * Typically these are caused by DMA errors.
2499 tasklet_schedule(&sc->restq);
2500 } else if (unlikely(status & AR5K_INT_RXORN)) {
2501 tasklet_schedule(&sc->restq);
2503 if (status & AR5K_INT_SWBA) {
2504 tasklet_hi_schedule(&sc->beacontq);
2506 if (status & AR5K_INT_RXEOL) {
2508 * NB: the hardware should re-read the link when
2509 * RXE bit is written, but it doesn't work at
2510 * least on older hardware revs.
2514 if (status & AR5K_INT_TXURN) {
2515 /* bump tx trigger level */
2516 ath5k_hw_update_tx_triglevel(ah, true);
2518 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2519 tasklet_schedule(&sc->rxtq);
2520 if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2521 | AR5K_INT_TXERR | AR5K_INT_TXEOL))
2522 tasklet_schedule(&sc->txtq);
2523 if (status & AR5K_INT_BMISS) {
2526 if (status & AR5K_INT_MIB) {
2528 * These stats are also used for ANI i think
2529 * so how about updating them more often ?
2531 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
2533 if (status & AR5K_INT_GPIO)
2534 tasklet_schedule(&sc->rf_kill.toggleq);
2537 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2539 if (unlikely(!counter))
2540 ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2546 ath5k_tasklet_reset(unsigned long data)
2548 struct ath5k_softc *sc = (void *)data;
2550 ath5k_reset_wake(sc);
2554 * Periodically recalibrate the PHY to account
2555 * for temperature/environment changes.
2558 ath5k_calibrate(unsigned long data)
2560 struct ath5k_softc *sc = (void *)data;
2561 struct ath5k_hw *ah = sc->ah;
2563 ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2564 ieee80211_frequency_to_channel(sc->curchan->center_freq),
2565 sc->curchan->hw_value);
2567 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2569 * Rfgain is out of bounds, reset the chip
2570 * to load new gain values.
2572 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2573 ath5k_reset_wake(sc);
2575 if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2576 ATH5K_ERR(sc, "calibration of channel %u failed\n",
2577 ieee80211_frequency_to_channel(
2578 sc->curchan->center_freq));
2580 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2581 msecs_to_jiffies(ath5k_calinterval * 1000)));
2585 /********************\
2586 * Mac80211 functions *
2587 \********************/
2590 ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2592 struct ath5k_softc *sc = hw->priv;
2593 struct ath5k_buf *bf;
2594 unsigned long flags;
2598 ath5k_debug_dump_skb(sc, skb, "TX ", 1);
2600 if (sc->opmode == NL80211_IFTYPE_MONITOR)
2601 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
2604 * the hardware expects the header padded to 4 byte boundaries
2605 * if this is not the case we add the padding after the header
2607 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2608 padsize = ath5k_pad_size(hdrlen);
2611 if (skb_headroom(skb) < padsize) {
2612 ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough"
2613 " headroom to pad %d\n", hdrlen, padsize);
2616 skb_push(skb, padsize);
2617 memmove(skb->data, skb->data+padsize, hdrlen);
2620 spin_lock_irqsave(&sc->txbuflock, flags);
2621 if (list_empty(&sc->txbuf)) {
2622 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
2623 spin_unlock_irqrestore(&sc->txbuflock, flags);
2624 ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
2627 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
2628 list_del(&bf->list);
2630 if (list_empty(&sc->txbuf))
2631 ieee80211_stop_queues(hw);
2632 spin_unlock_irqrestore(&sc->txbuflock, flags);
2636 if (ath5k_txbuf_setup(sc, bf)) {
2638 spin_lock_irqsave(&sc->txbuflock, flags);
2639 list_add_tail(&bf->list, &sc->txbuf);
2641 spin_unlock_irqrestore(&sc->txbuflock, flags);
2644 return NETDEV_TX_OK;
2647 dev_kfree_skb_any(skb);
2648 return NETDEV_TX_OK;
2652 * Reset the hardware. If chan is not NULL, then also pause rx/tx
2653 * and change to the given channel.
2656 ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan)
2658 struct ath5k_hw *ah = sc->ah;
2661 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2664 ath5k_hw_set_imr(ah, 0);
2665 ath5k_txq_cleanup(sc);
2669 sc->curband = &sc->sbands[chan->band];
2671 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
2673 ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2677 ret = ath5k_rx_start(sc);
2679 ATH5K_ERR(sc, "can't start recv logic\n");
2684 * Change channels and update the h/w rate map if we're switching;
2685 * e.g. 11a to 11b/g.
2687 * We may be doing a reset in response to an ioctl that changes the
2688 * channel so update any state that might change as a result.
2692 /* ath5k_chan_change(sc, c); */
2694 ath5k_beacon_config(sc);
2695 /* intrs are enabled by ath5k_beacon_config */
2703 ath5k_reset_wake(struct ath5k_softc *sc)
2707 ret = ath5k_reset(sc, sc->curchan);
2709 ieee80211_wake_queues(sc->hw);
2714 static int ath5k_start(struct ieee80211_hw *hw)
2716 return ath5k_init(hw->priv);
2719 static void ath5k_stop(struct ieee80211_hw *hw)
2721 ath5k_stop_hw(hw->priv);
2724 static int ath5k_add_interface(struct ieee80211_hw *hw,
2725 struct ieee80211_if_init_conf *conf)
2727 struct ath5k_softc *sc = hw->priv;
2730 mutex_lock(&sc->lock);
2736 sc->vif = conf->vif;
2738 switch (conf->type) {
2739 case NL80211_IFTYPE_AP:
2740 case NL80211_IFTYPE_STATION:
2741 case NL80211_IFTYPE_ADHOC:
2742 case NL80211_IFTYPE_MESH_POINT:
2743 case NL80211_IFTYPE_MONITOR:
2744 sc->opmode = conf->type;
2751 /* Set to a reasonable value. Note that this will
2752 * be set to mac80211's value at ath5k_config(). */
2754 ath5k_hw_set_lladdr(sc->ah, conf->mac_addr);
2758 mutex_unlock(&sc->lock);
2763 ath5k_remove_interface(struct ieee80211_hw *hw,
2764 struct ieee80211_if_init_conf *conf)
2766 struct ath5k_softc *sc = hw->priv;
2767 u8 mac[ETH_ALEN] = {};
2769 mutex_lock(&sc->lock);
2770 if (sc->vif != conf->vif)
2773 ath5k_hw_set_lladdr(sc->ah, mac);
2774 ath5k_beacon_disable(sc);
2777 mutex_unlock(&sc->lock);
2781 * TODO: Phy disable/diversity etc
2784 ath5k_config(struct ieee80211_hw *hw, u32 changed)
2786 struct ath5k_softc *sc = hw->priv;
2787 struct ath5k_hw *ah = sc->ah;
2788 struct ieee80211_conf *conf = &hw->conf;
2791 mutex_lock(&sc->lock);
2793 ret = ath5k_chan_set(sc, conf->channel);
2797 if ((changed & IEEE80211_CONF_CHANGE_POWER) &&
2798 (sc->power_level != conf->power_level)) {
2799 sc->power_level = conf->power_level;
2802 ath5k_hw_set_txpower_limit(ah, (conf->power_level * 2));
2806 * 1) Move this on config_interface and handle each case
2807 * separately eg. when we have only one STA vif, use
2808 * AR5K_ANTMODE_SINGLE_AP
2810 * 2) Allow the user to change antenna mode eg. when only
2811 * one antenna is present
2813 * 3) Allow the user to set default/tx antenna when possible
2815 * 4) Default mode should handle 90% of the cases, together
2816 * with fixed a/b and single AP modes we should be able to
2817 * handle 99%. Sectored modes are extreme cases and i still
2818 * haven't found a usage for them. If we decide to support them,
2819 * then we must allow the user to set how many tx antennas we
2822 ath5k_hw_set_antenna_mode(ah, AR5K_ANTMODE_DEFAULT);
2825 mutex_unlock(&sc->lock);
2829 #define SUPPORTED_FIF_FLAGS \
2830 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
2831 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2832 FIF_BCN_PRBRESP_PROMISC
2834 * o always accept unicast, broadcast, and multicast traffic
2835 * o multicast traffic for all BSSIDs will be enabled if mac80211
2837 * o maintain current state of phy ofdm or phy cck error reception.
2838 * If the hardware detects any of these type of errors then
2839 * ath5k_hw_get_rx_filter() will pass to us the respective
2840 * hardware filters to be able to receive these type of frames.
2841 * o probe request frames are accepted only when operating in
2842 * hostap, adhoc, or monitor modes
2843 * o enable promiscuous mode according to the interface state
2845 * - when operating in adhoc mode so the 802.11 layer creates
2846 * node table entries for peers,
2847 * - when operating in station mode for collecting rssi data when
2848 * the station is otherwise quiet, or
2851 static void ath5k_configure_filter(struct ieee80211_hw *hw,
2852 unsigned int changed_flags,
2853 unsigned int *new_flags,
2854 int mc_count, struct dev_mc_list *mclist)
2856 struct ath5k_softc *sc = hw->priv;
2857 struct ath5k_hw *ah = sc->ah;
2858 u32 mfilt[2], val, rfilt;
2865 /* Only deal with supported flags */
2866 changed_flags &= SUPPORTED_FIF_FLAGS;
2867 *new_flags &= SUPPORTED_FIF_FLAGS;
2869 /* If HW detects any phy or radar errors, leave those filters on.
2870 * Also, always enable Unicast, Broadcasts and Multicast
2871 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2872 rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
2873 (AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
2874 AR5K_RX_FILTER_MCAST);
2876 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
2877 if (*new_flags & FIF_PROMISC_IN_BSS) {
2878 rfilt |= AR5K_RX_FILTER_PROM;
2879 __set_bit(ATH_STAT_PROMISC, sc->status);
2881 __clear_bit(ATH_STAT_PROMISC, sc->status);
2885 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
2886 if (*new_flags & FIF_ALLMULTI) {
2890 for (i = 0; i < mc_count; i++) {
2893 /* calculate XOR of eight 6-bit values */
2894 val = get_unaligned_le32(mclist->dmi_addr + 0);
2895 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2896 val = get_unaligned_le32(mclist->dmi_addr + 3);
2897 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2899 mfilt[pos / 32] |= (1 << (pos % 32));
2900 /* XXX: we might be able to just do this instead,
2901 * but not sure, needs testing, if we do use this we'd
2902 * neet to inform below to not reset the mcast */
2903 /* ath5k_hw_set_mcast_filterindex(ah,
2904 * mclist->dmi_addr[5]); */
2905 mclist = mclist->next;
2909 /* This is the best we can do */
2910 if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
2911 rfilt |= AR5K_RX_FILTER_PHYERR;
2913 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2914 * and probes for any BSSID, this needs testing */
2915 if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
2916 rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ;
2918 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2919 * set we should only pass on control frames for this
2920 * station. This needs testing. I believe right now this
2921 * enables *all* control frames, which is OK.. but
2922 * but we should see if we can improve on granularity */
2923 if (*new_flags & FIF_CONTROL)
2924 rfilt |= AR5K_RX_FILTER_CONTROL;
2926 /* Additional settings per mode -- this is per ath5k */
2928 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2930 if (sc->opmode == NL80211_IFTYPE_MONITOR)
2931 rfilt |= AR5K_RX_FILTER_CONTROL | AR5K_RX_FILTER_BEACON |
2932 AR5K_RX_FILTER_PROBEREQ | AR5K_RX_FILTER_PROM;
2933 if (sc->opmode != NL80211_IFTYPE_STATION)
2934 rfilt |= AR5K_RX_FILTER_PROBEREQ;
2935 if (sc->opmode != NL80211_IFTYPE_AP &&
2936 sc->opmode != NL80211_IFTYPE_MESH_POINT &&
2937 test_bit(ATH_STAT_PROMISC, sc->status))
2938 rfilt |= AR5K_RX_FILTER_PROM;
2939 if ((sc->opmode == NL80211_IFTYPE_STATION && sc->assoc) ||
2940 sc->opmode == NL80211_IFTYPE_ADHOC ||
2941 sc->opmode == NL80211_IFTYPE_AP)
2942 rfilt |= AR5K_RX_FILTER_BEACON;
2943 if (sc->opmode == NL80211_IFTYPE_MESH_POINT)
2944 rfilt |= AR5K_RX_FILTER_CONTROL | AR5K_RX_FILTER_BEACON |
2945 AR5K_RX_FILTER_PROBEREQ | AR5K_RX_FILTER_PROM;
2948 ath5k_hw_set_rx_filter(ah, rfilt);
2950 /* Set multicast bits */
2951 ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
2952 /* Set the cached hw filter flags, this will alter actually
2954 sc->filter_flags = rfilt;
2958 ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
2959 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
2960 struct ieee80211_key_conf *key)
2962 struct ath5k_softc *sc = hw->priv;
2965 if (modparam_nohwcrypt)
2979 mutex_lock(&sc->lock);
2983 ret = ath5k_hw_set_key(sc->ah, key->keyidx, key,
2984 sta ? sta->addr : NULL);
2986 ATH5K_ERR(sc, "can't set the key\n");
2989 __set_bit(key->keyidx, sc->keymap);
2990 key->hw_key_idx = key->keyidx;
2991 key->flags |= (IEEE80211_KEY_FLAG_GENERATE_IV |
2992 IEEE80211_KEY_FLAG_GENERATE_MMIC);
2995 ath5k_hw_reset_key(sc->ah, key->keyidx);
2996 __clear_bit(key->keyidx, sc->keymap);
3005 mutex_unlock(&sc->lock);
3010 ath5k_get_stats(struct ieee80211_hw *hw,
3011 struct ieee80211_low_level_stats *stats)
3013 struct ath5k_softc *sc = hw->priv;
3014 struct ath5k_hw *ah = sc->ah;
3017 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
3019 memcpy(stats, &sc->ll_stats, sizeof(sc->ll_stats));
3025 ath5k_get_tx_stats(struct ieee80211_hw *hw,
3026 struct ieee80211_tx_queue_stats *stats)
3028 struct ath5k_softc *sc = hw->priv;
3030 memcpy(stats, &sc->tx_stats, sizeof(sc->tx_stats));
3036 ath5k_get_tsf(struct ieee80211_hw *hw)
3038 struct ath5k_softc *sc = hw->priv;
3040 return ath5k_hw_get_tsf64(sc->ah);
3044 ath5k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
3046 struct ath5k_softc *sc = hw->priv;
3048 ath5k_hw_set_tsf64(sc->ah, tsf);
3052 ath5k_reset_tsf(struct ieee80211_hw *hw)
3054 struct ath5k_softc *sc = hw->priv;
3057 * in IBSS mode we need to update the beacon timers too.
3058 * this will also reset the TSF if we call it with 0
3060 if (sc->opmode == NL80211_IFTYPE_ADHOC)
3061 ath5k_beacon_update_timers(sc, 0);
3063 ath5k_hw_reset_tsf(sc->ah);
3067 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
3068 * this is called only once at config_bss time, for AP we do it every
3069 * SWBA interrupt so that the TIM will reflect buffered frames.
3071 * Called with the beacon lock.
3074 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
3077 struct ath5k_softc *sc = hw->priv;
3078 struct sk_buff *skb;
3080 if (WARN_ON(!vif)) {
3085 skb = ieee80211_beacon_get(hw, vif);
3092 ath5k_debug_dump_skb(sc, skb, "BC ", 1);
3094 ath5k_txbuf_free(sc, sc->bbuf);
3095 sc->bbuf->skb = skb;
3096 ret = ath5k_beacon_setup(sc, sc->bbuf);
3098 sc->bbuf->skb = NULL;
3104 * Update the beacon and reconfigure the beacon queues.
3107 ath5k_beacon_reconfig(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
3110 unsigned long flags;
3111 struct ath5k_softc *sc = hw->priv;
3113 spin_lock_irqsave(&sc->block, flags);
3114 ret = ath5k_beacon_update(hw, vif);
3115 spin_unlock_irqrestore(&sc->block, flags);
3117 ath5k_beacon_config(sc);
3123 set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3125 struct ath5k_softc *sc = hw->priv;
3126 struct ath5k_hw *ah = sc->ah;
3128 rfilt = ath5k_hw_get_rx_filter(ah);
3130 rfilt |= AR5K_RX_FILTER_BEACON;
3132 rfilt &= ~AR5K_RX_FILTER_BEACON;
3133 ath5k_hw_set_rx_filter(ah, rfilt);
3134 sc->filter_flags = rfilt;
3137 static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
3138 struct ieee80211_vif *vif,
3139 struct ieee80211_bss_conf *bss_conf,
3142 struct ath5k_softc *sc = hw->priv;
3143 struct ath5k_hw *ah = sc->ah;
3145 mutex_lock(&sc->lock);
3146 if (WARN_ON(sc->vif != vif))
3149 if (changes & BSS_CHANGED_BSSID) {
3150 /* Cache for later use during resets */
3151 memcpy(ah->ah_bssid, bss_conf->bssid, ETH_ALEN);
3152 /* XXX: assoc id is set to 0 for now, mac80211 doesn't have
3153 * a clean way of letting us retrieve this yet. */
3154 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
3158 if (changes & BSS_CHANGED_BEACON_INT)
3159 sc->bintval = bss_conf->beacon_int;
3161 if (changes & BSS_CHANGED_ASSOC) {
3162 sc->assoc = bss_conf->assoc;
3163 if (sc->opmode == NL80211_IFTYPE_STATION)
3164 set_beacon_filter(hw, sc->assoc);
3167 if (changes & BSS_CHANGED_BEACON &&
3168 (vif->type == NL80211_IFTYPE_ADHOC ||
3169 vif->type == NL80211_IFTYPE_MESH_POINT ||
3170 vif->type == NL80211_IFTYPE_AP)) {
3171 ath5k_beacon_reconfig(hw, vif);
3175 mutex_unlock(&sc->lock);