1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
50 #define DRV_VERSION "0.3.3.3-k2"
51 char e1000e_driver_name[] = "e1000e";
52 const char e1000e_driver_version[] = DRV_VERSION;
54 static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
58 [board_80003es2lan] = &e1000_es2_info,
59 [board_ich8lan] = &e1000_ich8_info,
60 [board_ich9lan] = &e1000_ich9_info,
65 * e1000_get_hw_dev_name - return device name string
66 * used by hardware layer to print debugging information
68 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
70 return hw->adapter->netdev->name;
75 * e1000_desc_unused - calculate if we have unused descriptors
77 static int e1000_desc_unused(struct e1000_ring *ring)
79 if (ring->next_to_clean > ring->next_to_use)
80 return ring->next_to_clean - ring->next_to_use - 1;
82 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
86 * e1000_receive_skb - helper function to handle Rx indications
87 * @adapter: board private structure
88 * @status: descriptor status field as written by hardware
89 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
90 * @skb: pointer to sk_buff to be indicated to stack
92 static void e1000_receive_skb(struct e1000_adapter *adapter,
93 struct net_device *netdev,
95 u8 status, __le16 vlan)
97 skb->protocol = eth_type_trans(skb, netdev);
99 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
100 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
103 netif_receive_skb(skb);
105 netdev->last_rx = jiffies;
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
115 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
142 * IP fragment with UDP payload
143 * Hardware complements the payload checksum, so we undo it
144 * and then put the value in host order for further stack use.
146 __sum16 sum = (__force __sum16)htons(csum);
147 skb->csum = csum_unfold(~sum);
148 skb->ip_summed = CHECKSUM_COMPLETE;
150 adapter->hw_csum_good++;
154 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
155 * @adapter: address of board private structure
157 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
160 struct net_device *netdev = adapter->netdev;
161 struct pci_dev *pdev = adapter->pdev;
162 struct e1000_ring *rx_ring = adapter->rx_ring;
163 struct e1000_rx_desc *rx_desc;
164 struct e1000_buffer *buffer_info;
167 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
169 i = rx_ring->next_to_use;
170 buffer_info = &rx_ring->buffer_info[i];
172 while (cleaned_count--) {
173 skb = buffer_info->skb;
179 skb = netdev_alloc_skb(netdev, bufsz);
181 /* Better luck next round */
182 adapter->alloc_rx_buff_failed++;
187 * Make buffer alignment 2 beyond a 16 byte boundary
188 * this will result in a 16 byte aligned IP header after
189 * the 14 byte MAC header is removed
191 skb_reserve(skb, NET_IP_ALIGN);
193 buffer_info->skb = skb;
195 buffer_info->dma = pci_map_single(pdev, skb->data,
196 adapter->rx_buffer_len,
198 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
199 dev_err(&pdev->dev, "RX DMA map failed\n");
200 adapter->rx_dma_failed++;
204 rx_desc = E1000_RX_DESC(*rx_ring, i);
205 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
208 if (i == rx_ring->count)
210 buffer_info = &rx_ring->buffer_info[i];
213 if (rx_ring->next_to_use != i) {
214 rx_ring->next_to_use = i;
216 i = (rx_ring->count - 1);
219 * Force memory writes to complete before letting h/w
220 * know there are new descriptors to fetch. (Only
221 * applicable for weak-ordered memory model archs,
225 writel(i, adapter->hw.hw_addr + rx_ring->tail);
230 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
231 * @adapter: address of board private structure
233 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
236 struct net_device *netdev = adapter->netdev;
237 struct pci_dev *pdev = adapter->pdev;
238 union e1000_rx_desc_packet_split *rx_desc;
239 struct e1000_ring *rx_ring = adapter->rx_ring;
240 struct e1000_buffer *buffer_info;
241 struct e1000_ps_page *ps_page;
245 i = rx_ring->next_to_use;
246 buffer_info = &rx_ring->buffer_info[i];
248 while (cleaned_count--) {
249 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
251 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
252 ps_page = &buffer_info->ps_pages[j];
253 if (j >= adapter->rx_ps_pages) {
254 /* all unused desc entries get hw null ptr */
255 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
258 if (!ps_page->page) {
259 ps_page->page = alloc_page(GFP_ATOMIC);
260 if (!ps_page->page) {
261 adapter->alloc_rx_buff_failed++;
264 ps_page->dma = pci_map_page(pdev,
268 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
269 dev_err(&adapter->pdev->dev,
270 "RX DMA page map failed\n");
271 adapter->rx_dma_failed++;
276 * Refresh the desc even if buffer_addrs
277 * didn't change because each write-back
280 rx_desc->read.buffer_addr[j+1] =
281 cpu_to_le64(ps_page->dma);
284 skb = netdev_alloc_skb(netdev,
285 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
288 adapter->alloc_rx_buff_failed++;
293 * Make buffer alignment 2 beyond a 16 byte boundary
294 * this will result in a 16 byte aligned IP header after
295 * the 14 byte MAC header is removed
297 skb_reserve(skb, NET_IP_ALIGN);
299 buffer_info->skb = skb;
300 buffer_info->dma = pci_map_single(pdev, skb->data,
301 adapter->rx_ps_bsize0,
303 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
304 dev_err(&pdev->dev, "RX DMA map failed\n");
305 adapter->rx_dma_failed++;
307 dev_kfree_skb_any(skb);
308 buffer_info->skb = NULL;
312 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
315 if (i == rx_ring->count)
317 buffer_info = &rx_ring->buffer_info[i];
321 if (rx_ring->next_to_use != i) {
322 rx_ring->next_to_use = i;
325 i = (rx_ring->count - 1);
328 * Force memory writes to complete before letting h/w
329 * know there are new descriptors to fetch. (Only
330 * applicable for weak-ordered memory model archs,
335 * Hardware increments by 16 bytes, but packet split
336 * descriptors are 32 bytes...so we increment tail
339 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
344 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
345 * @adapter: address of board private structure
346 * @rx_ring: pointer to receive ring structure
347 * @cleaned_count: number of buffers to allocate this pass
350 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
353 struct net_device *netdev = adapter->netdev;
354 struct pci_dev *pdev = adapter->pdev;
355 struct e1000_rx_desc *rx_desc;
356 struct e1000_ring *rx_ring = adapter->rx_ring;
357 struct e1000_buffer *buffer_info;
360 unsigned int bufsz = 256 -
361 16 /* for skb_reserve */ -
364 i = rx_ring->next_to_use;
365 buffer_info = &rx_ring->buffer_info[i];
367 while (cleaned_count--) {
368 skb = buffer_info->skb;
374 skb = netdev_alloc_skb(netdev, bufsz);
375 if (unlikely(!skb)) {
376 /* Better luck next round */
377 adapter->alloc_rx_buff_failed++;
381 /* Make buffer alignment 2 beyond a 16 byte boundary
382 * this will result in a 16 byte aligned IP header after
383 * the 14 byte MAC header is removed
385 skb_reserve(skb, NET_IP_ALIGN);
387 buffer_info->skb = skb;
389 /* allocate a new page if necessary */
390 if (!buffer_info->page) {
391 buffer_info->page = alloc_page(GFP_ATOMIC);
392 if (unlikely(!buffer_info->page)) {
393 adapter->alloc_rx_buff_failed++;
398 if (!buffer_info->dma)
399 buffer_info->dma = pci_map_page(pdev,
400 buffer_info->page, 0,
404 rx_desc = E1000_RX_DESC(*rx_ring, i);
405 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
407 if (unlikely(++i == rx_ring->count))
409 buffer_info = &rx_ring->buffer_info[i];
412 if (likely(rx_ring->next_to_use != i)) {
413 rx_ring->next_to_use = i;
414 if (unlikely(i-- == 0))
415 i = (rx_ring->count - 1);
417 /* Force memory writes to complete before letting h/w
418 * know there are new descriptors to fetch. (Only
419 * applicable for weak-ordered memory model archs,
422 writel(i, adapter->hw.hw_addr + rx_ring->tail);
427 * e1000_clean_rx_irq - Send received data up the network stack; legacy
428 * @adapter: board private structure
430 * the return value indicates whether actual cleaning was done, there
431 * is no guarantee that everything was cleaned
433 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
434 int *work_done, int work_to_do)
436 struct net_device *netdev = adapter->netdev;
437 struct pci_dev *pdev = adapter->pdev;
438 struct e1000_ring *rx_ring = adapter->rx_ring;
439 struct e1000_rx_desc *rx_desc, *next_rxd;
440 struct e1000_buffer *buffer_info, *next_buffer;
443 int cleaned_count = 0;
445 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
447 i = rx_ring->next_to_clean;
448 rx_desc = E1000_RX_DESC(*rx_ring, i);
449 buffer_info = &rx_ring->buffer_info[i];
451 while (rx_desc->status & E1000_RXD_STAT_DD) {
455 if (*work_done >= work_to_do)
459 status = rx_desc->status;
460 skb = buffer_info->skb;
461 buffer_info->skb = NULL;
463 prefetch(skb->data - NET_IP_ALIGN);
466 if (i == rx_ring->count)
468 next_rxd = E1000_RX_DESC(*rx_ring, i);
471 next_buffer = &rx_ring->buffer_info[i];
475 pci_unmap_single(pdev,
477 adapter->rx_buffer_len,
479 buffer_info->dma = 0;
481 length = le16_to_cpu(rx_desc->length);
483 /* !EOP means multiple descriptors were used to store a single
484 * packet, also make sure the frame isn't just CRC only */
485 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
486 /* All receives must fit into a single buffer */
487 e_dbg("%s: Receive packet consumed multiple buffers\n",
490 buffer_info->skb = skb;
494 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
496 buffer_info->skb = skb;
500 total_rx_bytes += length;
504 * code added for copybreak, this should improve
505 * performance for small packets with large amounts
506 * of reassembly being done in the stack
508 if (length < copybreak) {
509 struct sk_buff *new_skb =
510 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
512 skb_reserve(new_skb, NET_IP_ALIGN);
513 memcpy(new_skb->data - NET_IP_ALIGN,
514 skb->data - NET_IP_ALIGN,
515 length + NET_IP_ALIGN);
516 /* save the skb in buffer_info as good */
517 buffer_info->skb = skb;
520 /* else just continue with the old one */
522 /* end copybreak code */
523 skb_put(skb, length);
525 /* Receive Checksum Offload */
526 e1000_rx_checksum(adapter,
528 ((u32)(rx_desc->errors) << 24),
529 le16_to_cpu(rx_desc->csum), skb);
531 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
536 /* return some buffers to hardware, one at a time is too slow */
537 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
538 adapter->alloc_rx_buf(adapter, cleaned_count);
542 /* use prefetched values */
544 buffer_info = next_buffer;
546 rx_ring->next_to_clean = i;
548 cleaned_count = e1000_desc_unused(rx_ring);
550 adapter->alloc_rx_buf(adapter, cleaned_count);
552 adapter->total_rx_bytes += total_rx_bytes;
553 adapter->total_rx_packets += total_rx_packets;
554 adapter->net_stats.rx_bytes += total_rx_bytes;
555 adapter->net_stats.rx_packets += total_rx_packets;
559 static void e1000_put_txbuf(struct e1000_adapter *adapter,
560 struct e1000_buffer *buffer_info)
562 if (buffer_info->dma) {
563 pci_unmap_page(adapter->pdev, buffer_info->dma,
564 buffer_info->length, PCI_DMA_TODEVICE);
565 buffer_info->dma = 0;
567 if (buffer_info->skb) {
568 dev_kfree_skb_any(buffer_info->skb);
569 buffer_info->skb = NULL;
573 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
575 struct e1000_ring *tx_ring = adapter->tx_ring;
576 unsigned int i = tx_ring->next_to_clean;
577 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
578 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
580 /* detected Tx unit hang */
581 e_err("Detected Tx Unit Hang:\n"
584 " next_to_use <%x>\n"
585 " next_to_clean <%x>\n"
586 "buffer_info[next_to_clean]:\n"
587 " time_stamp <%lx>\n"
588 " next_to_watch <%x>\n"
590 " next_to_watch.status <%x>\n",
591 readl(adapter->hw.hw_addr + tx_ring->head),
592 readl(adapter->hw.hw_addr + tx_ring->tail),
593 tx_ring->next_to_use,
594 tx_ring->next_to_clean,
595 tx_ring->buffer_info[eop].time_stamp,
598 eop_desc->upper.fields.status);
602 * e1000_clean_tx_irq - Reclaim resources after transmit completes
603 * @adapter: board private structure
605 * the return value indicates whether actual cleaning was done, there
606 * is no guarantee that everything was cleaned
608 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
610 struct net_device *netdev = adapter->netdev;
611 struct e1000_hw *hw = &adapter->hw;
612 struct e1000_ring *tx_ring = adapter->tx_ring;
613 struct e1000_tx_desc *tx_desc, *eop_desc;
614 struct e1000_buffer *buffer_info;
616 unsigned int count = 0;
618 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
620 i = tx_ring->next_to_clean;
621 eop = tx_ring->buffer_info[i].next_to_watch;
622 eop_desc = E1000_TX_DESC(*tx_ring, eop);
624 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
625 for (cleaned = 0; !cleaned; ) {
626 tx_desc = E1000_TX_DESC(*tx_ring, i);
627 buffer_info = &tx_ring->buffer_info[i];
628 cleaned = (i == eop);
631 struct sk_buff *skb = buffer_info->skb;
632 unsigned int segs, bytecount;
633 segs = skb_shinfo(skb)->gso_segs ?: 1;
634 /* multiply data chunks by size of headers */
635 bytecount = ((segs - 1) * skb_headlen(skb)) +
637 total_tx_packets += segs;
638 total_tx_bytes += bytecount;
641 e1000_put_txbuf(adapter, buffer_info);
642 tx_desc->upper.data = 0;
645 if (i == tx_ring->count)
649 eop = tx_ring->buffer_info[i].next_to_watch;
650 eop_desc = E1000_TX_DESC(*tx_ring, eop);
651 #define E1000_TX_WEIGHT 64
652 /* weight of a sort for tx, to avoid endless transmit cleanup */
653 if (count++ == E1000_TX_WEIGHT)
657 tx_ring->next_to_clean = i;
659 #define TX_WAKE_THRESHOLD 32
660 if (cleaned && netif_carrier_ok(netdev) &&
661 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
662 /* Make sure that anybody stopping the queue after this
663 * sees the new next_to_clean.
667 if (netif_queue_stopped(netdev) &&
668 !(test_bit(__E1000_DOWN, &adapter->state))) {
669 netif_wake_queue(netdev);
670 ++adapter->restart_queue;
674 if (adapter->detect_tx_hung) {
676 * Detect a transmit hang in hardware, this serializes the
677 * check with the clearing of time_stamp and movement of i
679 adapter->detect_tx_hung = 0;
680 if (tx_ring->buffer_info[eop].dma &&
681 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
682 + (adapter->tx_timeout_factor * HZ))
683 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
684 e1000_print_tx_hang(adapter);
685 netif_stop_queue(netdev);
688 adapter->total_tx_bytes += total_tx_bytes;
689 adapter->total_tx_packets += total_tx_packets;
690 adapter->net_stats.tx_bytes += total_tx_bytes;
691 adapter->net_stats.tx_packets += total_tx_packets;
696 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
697 * @adapter: board private structure
699 * the return value indicates whether actual cleaning was done, there
700 * is no guarantee that everything was cleaned
702 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
703 int *work_done, int work_to_do)
705 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
706 struct net_device *netdev = adapter->netdev;
707 struct pci_dev *pdev = adapter->pdev;
708 struct e1000_ring *rx_ring = adapter->rx_ring;
709 struct e1000_buffer *buffer_info, *next_buffer;
710 struct e1000_ps_page *ps_page;
714 int cleaned_count = 0;
716 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
718 i = rx_ring->next_to_clean;
719 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
720 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
721 buffer_info = &rx_ring->buffer_info[i];
723 while (staterr & E1000_RXD_STAT_DD) {
724 if (*work_done >= work_to_do)
727 skb = buffer_info->skb;
729 /* in the packet split case this is header only */
730 prefetch(skb->data - NET_IP_ALIGN);
733 if (i == rx_ring->count)
735 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
738 next_buffer = &rx_ring->buffer_info[i];
742 pci_unmap_single(pdev, buffer_info->dma,
743 adapter->rx_ps_bsize0,
745 buffer_info->dma = 0;
747 if (!(staterr & E1000_RXD_STAT_EOP)) {
748 e_dbg("%s: Packet Split buffers didn't pick up the "
749 "full packet\n", netdev->name);
750 dev_kfree_skb_irq(skb);
754 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
755 dev_kfree_skb_irq(skb);
759 length = le16_to_cpu(rx_desc->wb.middle.length0);
762 e_dbg("%s: Last part of the packet spanning multiple "
763 "descriptors\n", netdev->name);
764 dev_kfree_skb_irq(skb);
769 skb_put(skb, length);
773 * this looks ugly, but it seems compiler issues make it
774 * more efficient than reusing j
776 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
779 * page alloc/put takes too long and effects small packet
780 * throughput, so unsplit small packets and save the alloc/put
781 * only valid in softirq (napi) context to call kmap_*
783 if (l1 && (l1 <= copybreak) &&
784 ((length + l1) <= adapter->rx_ps_bsize0)) {
787 ps_page = &buffer_info->ps_pages[0];
790 * there is no documentation about how to call
791 * kmap_atomic, so we can't hold the mapping
794 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
795 PAGE_SIZE, PCI_DMA_FROMDEVICE);
796 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
797 memcpy(skb_tail_pointer(skb), vaddr, l1);
798 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
799 pci_dma_sync_single_for_device(pdev, ps_page->dma,
800 PAGE_SIZE, PCI_DMA_FROMDEVICE);
807 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
808 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
812 ps_page = &buffer_info->ps_pages[j];
813 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
816 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
817 ps_page->page = NULL;
819 skb->data_len += length;
820 skb->truesize += length;
824 total_rx_bytes += skb->len;
827 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
828 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
830 if (rx_desc->wb.upper.header_status &
831 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
832 adapter->rx_hdr_split++;
834 e1000_receive_skb(adapter, netdev, skb,
835 staterr, rx_desc->wb.middle.vlan);
838 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
839 buffer_info->skb = NULL;
841 /* return some buffers to hardware, one at a time is too slow */
842 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
843 adapter->alloc_rx_buf(adapter, cleaned_count);
847 /* use prefetched values */
849 buffer_info = next_buffer;
851 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
853 rx_ring->next_to_clean = i;
855 cleaned_count = e1000_desc_unused(rx_ring);
857 adapter->alloc_rx_buf(adapter, cleaned_count);
859 adapter->total_rx_bytes += total_rx_bytes;
860 adapter->total_rx_packets += total_rx_packets;
861 adapter->net_stats.rx_bytes += total_rx_bytes;
862 adapter->net_stats.rx_packets += total_rx_packets;
867 * e1000_consume_page - helper function
869 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
874 skb->data_len += length;
875 skb->truesize += length;
879 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
880 * @adapter: board private structure
882 * the return value indicates whether actual cleaning was done, there
883 * is no guarantee that everything was cleaned
886 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
887 int *work_done, int work_to_do)
889 struct net_device *netdev = adapter->netdev;
890 struct pci_dev *pdev = adapter->pdev;
891 struct e1000_ring *rx_ring = adapter->rx_ring;
892 struct e1000_rx_desc *rx_desc, *next_rxd;
893 struct e1000_buffer *buffer_info, *next_buffer;
896 int cleaned_count = 0;
897 bool cleaned = false;
898 unsigned int total_rx_bytes=0, total_rx_packets=0;
900 i = rx_ring->next_to_clean;
901 rx_desc = E1000_RX_DESC(*rx_ring, i);
902 buffer_info = &rx_ring->buffer_info[i];
904 while (rx_desc->status & E1000_RXD_STAT_DD) {
908 if (*work_done >= work_to_do)
912 status = rx_desc->status;
913 skb = buffer_info->skb;
914 buffer_info->skb = NULL;
917 if (i == rx_ring->count)
919 next_rxd = E1000_RX_DESC(*rx_ring, i);
922 next_buffer = &rx_ring->buffer_info[i];
926 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
928 buffer_info->dma = 0;
930 length = le16_to_cpu(rx_desc->length);
932 /* errors is only valid for DD + EOP descriptors */
933 if (unlikely((status & E1000_RXD_STAT_EOP) &&
934 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
935 /* recycle both page and skb */
936 buffer_info->skb = skb;
937 /* an error means any chain goes out the window
939 if (rx_ring->rx_skb_top)
940 dev_kfree_skb(rx_ring->rx_skb_top);
941 rx_ring->rx_skb_top = NULL;
945 #define rxtop rx_ring->rx_skb_top
946 if (!(status & E1000_RXD_STAT_EOP)) {
947 /* this descriptor is only the beginning (or middle) */
949 /* this is the beginning of a chain */
951 skb_fill_page_desc(rxtop, 0, buffer_info->page,
954 /* this is the middle of a chain */
955 skb_fill_page_desc(rxtop,
956 skb_shinfo(rxtop)->nr_frags,
957 buffer_info->page, 0, length);
958 /* re-use the skb, only consumed the page */
959 buffer_info->skb = skb;
961 e1000_consume_page(buffer_info, rxtop, length);
965 /* end of the chain */
966 skb_fill_page_desc(rxtop,
967 skb_shinfo(rxtop)->nr_frags,
968 buffer_info->page, 0, length);
969 /* re-use the current skb, we only consumed the
971 buffer_info->skb = skb;
974 e1000_consume_page(buffer_info, skb, length);
976 /* no chain, got EOP, this buf is the packet
977 * copybreak to save the put_page/alloc_page */
978 if (length <= copybreak &&
979 skb_tailroom(skb) >= length) {
981 vaddr = kmap_atomic(buffer_info->page,
982 KM_SKB_DATA_SOFTIRQ);
983 memcpy(skb_tail_pointer(skb), vaddr,
986 KM_SKB_DATA_SOFTIRQ);
987 /* re-use the page, so don't erase
988 * buffer_info->page */
989 skb_put(skb, length);
991 skb_fill_page_desc(skb, 0,
992 buffer_info->page, 0,
994 e1000_consume_page(buffer_info, skb,
1000 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1001 e1000_rx_checksum(adapter,
1003 ((u32)(rx_desc->errors) << 24),
1004 le16_to_cpu(rx_desc->csum), skb);
1006 /* probably a little skewed due to removing CRC */
1007 total_rx_bytes += skb->len;
1010 /* eth type trans needs skb->data to point to something */
1011 if (!pskb_may_pull(skb, ETH_HLEN)) {
1012 e_err("pskb_may_pull failed.\n");
1017 e1000_receive_skb(adapter, netdev, skb, status,
1021 rx_desc->status = 0;
1023 /* return some buffers to hardware, one at a time is too slow */
1024 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1025 adapter->alloc_rx_buf(adapter, cleaned_count);
1029 /* use prefetched values */
1031 buffer_info = next_buffer;
1033 rx_ring->next_to_clean = i;
1035 cleaned_count = e1000_desc_unused(rx_ring);
1037 adapter->alloc_rx_buf(adapter, cleaned_count);
1039 adapter->total_rx_bytes += total_rx_bytes;
1040 adapter->total_rx_packets += total_rx_packets;
1041 adapter->net_stats.rx_bytes += total_rx_bytes;
1042 adapter->net_stats.rx_packets += total_rx_packets;
1047 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1048 * @adapter: board private structure
1050 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1052 struct e1000_ring *rx_ring = adapter->rx_ring;
1053 struct e1000_buffer *buffer_info;
1054 struct e1000_ps_page *ps_page;
1055 struct pci_dev *pdev = adapter->pdev;
1058 /* Free all the Rx ring sk_buffs */
1059 for (i = 0; i < rx_ring->count; i++) {
1060 buffer_info = &rx_ring->buffer_info[i];
1061 if (buffer_info->dma) {
1062 if (adapter->clean_rx == e1000_clean_rx_irq)
1063 pci_unmap_single(pdev, buffer_info->dma,
1064 adapter->rx_buffer_len,
1065 PCI_DMA_FROMDEVICE);
1066 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1067 pci_unmap_page(pdev, buffer_info->dma,
1069 PCI_DMA_FROMDEVICE);
1070 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1071 pci_unmap_single(pdev, buffer_info->dma,
1072 adapter->rx_ps_bsize0,
1073 PCI_DMA_FROMDEVICE);
1074 buffer_info->dma = 0;
1077 if (buffer_info->page) {
1078 put_page(buffer_info->page);
1079 buffer_info->page = NULL;
1082 if (buffer_info->skb) {
1083 dev_kfree_skb(buffer_info->skb);
1084 buffer_info->skb = NULL;
1087 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1088 ps_page = &buffer_info->ps_pages[j];
1091 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1092 PCI_DMA_FROMDEVICE);
1094 put_page(ps_page->page);
1095 ps_page->page = NULL;
1099 /* there also may be some cached data from a chained receive */
1100 if (rx_ring->rx_skb_top) {
1101 dev_kfree_skb(rx_ring->rx_skb_top);
1102 rx_ring->rx_skb_top = NULL;
1105 /* Zero out the descriptor ring */
1106 memset(rx_ring->desc, 0, rx_ring->size);
1108 rx_ring->next_to_clean = 0;
1109 rx_ring->next_to_use = 0;
1111 writel(0, adapter->hw.hw_addr + rx_ring->head);
1112 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1116 * e1000_intr_msi - Interrupt Handler
1117 * @irq: interrupt number
1118 * @data: pointer to a network interface device structure
1120 static irqreturn_t e1000_intr_msi(int irq, void *data)
1122 struct net_device *netdev = data;
1123 struct e1000_adapter *adapter = netdev_priv(netdev);
1124 struct e1000_hw *hw = &adapter->hw;
1125 u32 icr = er32(ICR);
1128 * read ICR disables interrupts using IAM
1131 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1132 hw->mac.get_link_status = 1;
1134 * ICH8 workaround-- Call gig speed drop workaround on cable
1135 * disconnect (LSC) before accessing any PHY registers
1137 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1138 (!(er32(STATUS) & E1000_STATUS_LU)))
1139 e1000e_gig_downshift_workaround_ich8lan(hw);
1142 * 80003ES2LAN workaround-- For packet buffer work-around on
1143 * link down event; disable receives here in the ISR and reset
1144 * adapter in watchdog
1146 if (netif_carrier_ok(netdev) &&
1147 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1148 /* disable receives */
1149 u32 rctl = er32(RCTL);
1150 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1151 adapter->flags |= FLAG_RX_RESTART_NOW;
1153 /* guard against interrupt when we're going down */
1154 if (!test_bit(__E1000_DOWN, &adapter->state))
1155 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1158 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1159 adapter->total_tx_bytes = 0;
1160 adapter->total_tx_packets = 0;
1161 adapter->total_rx_bytes = 0;
1162 adapter->total_rx_packets = 0;
1163 __netif_rx_schedule(netdev, &adapter->napi);
1170 * e1000_intr - Interrupt Handler
1171 * @irq: interrupt number
1172 * @data: pointer to a network interface device structure
1174 static irqreturn_t e1000_intr(int irq, void *data)
1176 struct net_device *netdev = data;
1177 struct e1000_adapter *adapter = netdev_priv(netdev);
1178 struct e1000_hw *hw = &adapter->hw;
1180 u32 rctl, icr = er32(ICR);
1182 return IRQ_NONE; /* Not our interrupt */
1185 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1186 * not set, then the adapter didn't send an interrupt
1188 if (!(icr & E1000_ICR_INT_ASSERTED))
1192 * Interrupt Auto-Mask...upon reading ICR,
1193 * interrupts are masked. No need for the
1197 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1198 hw->mac.get_link_status = 1;
1200 * ICH8 workaround-- Call gig speed drop workaround on cable
1201 * disconnect (LSC) before accessing any PHY registers
1203 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1204 (!(er32(STATUS) & E1000_STATUS_LU)))
1205 e1000e_gig_downshift_workaround_ich8lan(hw);
1208 * 80003ES2LAN workaround--
1209 * For packet buffer work-around on link down event;
1210 * disable receives here in the ISR and
1211 * reset adapter in watchdog
1213 if (netif_carrier_ok(netdev) &&
1214 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1215 /* disable receives */
1217 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1218 adapter->flags |= FLAG_RX_RESTART_NOW;
1220 /* guard against interrupt when we're going down */
1221 if (!test_bit(__E1000_DOWN, &adapter->state))
1222 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1225 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
1226 adapter->total_tx_bytes = 0;
1227 adapter->total_tx_packets = 0;
1228 adapter->total_rx_bytes = 0;
1229 adapter->total_rx_packets = 0;
1230 __netif_rx_schedule(netdev, &adapter->napi);
1236 static int e1000_request_irq(struct e1000_adapter *adapter)
1238 struct net_device *netdev = adapter->netdev;
1239 irq_handler_t handler = e1000_intr;
1240 int irq_flags = IRQF_SHARED;
1243 if (!pci_enable_msi(adapter->pdev)) {
1244 adapter->flags |= FLAG_MSI_ENABLED;
1245 handler = e1000_intr_msi;
1249 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
1252 e_err("Unable to allocate %s interrupt (return: %d)\n",
1253 adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx", err);
1254 if (adapter->flags & FLAG_MSI_ENABLED)
1255 pci_disable_msi(adapter->pdev);
1261 static void e1000_free_irq(struct e1000_adapter *adapter)
1263 struct net_device *netdev = adapter->netdev;
1265 free_irq(adapter->pdev->irq, netdev);
1266 if (adapter->flags & FLAG_MSI_ENABLED) {
1267 pci_disable_msi(adapter->pdev);
1268 adapter->flags &= ~FLAG_MSI_ENABLED;
1273 * e1000_irq_disable - Mask off interrupt generation on the NIC
1275 static void e1000_irq_disable(struct e1000_adapter *adapter)
1277 struct e1000_hw *hw = &adapter->hw;
1281 synchronize_irq(adapter->pdev->irq);
1285 * e1000_irq_enable - Enable default interrupt generation settings
1287 static void e1000_irq_enable(struct e1000_adapter *adapter)
1289 struct e1000_hw *hw = &adapter->hw;
1291 ew32(IMS, IMS_ENABLE_MASK);
1296 * e1000_get_hw_control - get control of the h/w from f/w
1297 * @adapter: address of board private structure
1299 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1300 * For ASF and Pass Through versions of f/w this means that
1301 * the driver is loaded. For AMT version (only with 82573)
1302 * of the f/w this means that the network i/f is open.
1304 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1306 struct e1000_hw *hw = &adapter->hw;
1310 /* Let firmware know the driver has taken over */
1311 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1313 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1314 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1315 ctrl_ext = er32(CTRL_EXT);
1316 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1321 * e1000_release_hw_control - release control of the h/w to f/w
1322 * @adapter: address of board private structure
1324 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1325 * For ASF and Pass Through versions of f/w this means that the
1326 * driver is no longer loaded. For AMT version (only with 82573) i
1327 * of the f/w this means that the network i/f is closed.
1330 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1332 struct e1000_hw *hw = &adapter->hw;
1336 /* Let firmware taken over control of h/w */
1337 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1339 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1340 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1341 ctrl_ext = er32(CTRL_EXT);
1342 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1347 * @e1000_alloc_ring - allocate memory for a ring structure
1349 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1350 struct e1000_ring *ring)
1352 struct pci_dev *pdev = adapter->pdev;
1354 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1363 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1364 * @adapter: board private structure
1366 * Return 0 on success, negative on failure
1368 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1370 struct e1000_ring *tx_ring = adapter->tx_ring;
1371 int err = -ENOMEM, size;
1373 size = sizeof(struct e1000_buffer) * tx_ring->count;
1374 tx_ring->buffer_info = vmalloc(size);
1375 if (!tx_ring->buffer_info)
1377 memset(tx_ring->buffer_info, 0, size);
1379 /* round up to nearest 4K */
1380 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1381 tx_ring->size = ALIGN(tx_ring->size, 4096);
1383 err = e1000_alloc_ring_dma(adapter, tx_ring);
1387 tx_ring->next_to_use = 0;
1388 tx_ring->next_to_clean = 0;
1389 spin_lock_init(&adapter->tx_queue_lock);
1393 vfree(tx_ring->buffer_info);
1394 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1399 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1400 * @adapter: board private structure
1402 * Returns 0 on success, negative on failure
1404 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1406 struct e1000_ring *rx_ring = adapter->rx_ring;
1407 struct e1000_buffer *buffer_info;
1408 int i, size, desc_len, err = -ENOMEM;
1410 size = sizeof(struct e1000_buffer) * rx_ring->count;
1411 rx_ring->buffer_info = vmalloc(size);
1412 if (!rx_ring->buffer_info)
1414 memset(rx_ring->buffer_info, 0, size);
1416 for (i = 0; i < rx_ring->count; i++) {
1417 buffer_info = &rx_ring->buffer_info[i];
1418 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1419 sizeof(struct e1000_ps_page),
1421 if (!buffer_info->ps_pages)
1425 desc_len = sizeof(union e1000_rx_desc_packet_split);
1427 /* Round up to nearest 4K */
1428 rx_ring->size = rx_ring->count * desc_len;
1429 rx_ring->size = ALIGN(rx_ring->size, 4096);
1431 err = e1000_alloc_ring_dma(adapter, rx_ring);
1435 rx_ring->next_to_clean = 0;
1436 rx_ring->next_to_use = 0;
1437 rx_ring->rx_skb_top = NULL;
1442 for (i = 0; i < rx_ring->count; i++) {
1443 buffer_info = &rx_ring->buffer_info[i];
1444 kfree(buffer_info->ps_pages);
1447 vfree(rx_ring->buffer_info);
1448 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1453 * e1000_clean_tx_ring - Free Tx Buffers
1454 * @adapter: board private structure
1456 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1458 struct e1000_ring *tx_ring = adapter->tx_ring;
1459 struct e1000_buffer *buffer_info;
1463 for (i = 0; i < tx_ring->count; i++) {
1464 buffer_info = &tx_ring->buffer_info[i];
1465 e1000_put_txbuf(adapter, buffer_info);
1468 size = sizeof(struct e1000_buffer) * tx_ring->count;
1469 memset(tx_ring->buffer_info, 0, size);
1471 memset(tx_ring->desc, 0, tx_ring->size);
1473 tx_ring->next_to_use = 0;
1474 tx_ring->next_to_clean = 0;
1476 writel(0, adapter->hw.hw_addr + tx_ring->head);
1477 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1481 * e1000e_free_tx_resources - Free Tx Resources per Queue
1482 * @adapter: board private structure
1484 * Free all transmit software resources
1486 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1488 struct pci_dev *pdev = adapter->pdev;
1489 struct e1000_ring *tx_ring = adapter->tx_ring;
1491 e1000_clean_tx_ring(adapter);
1493 vfree(tx_ring->buffer_info);
1494 tx_ring->buffer_info = NULL;
1496 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1498 tx_ring->desc = NULL;
1502 * e1000e_free_rx_resources - Free Rx Resources
1503 * @adapter: board private structure
1505 * Free all receive software resources
1508 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1510 struct pci_dev *pdev = adapter->pdev;
1511 struct e1000_ring *rx_ring = adapter->rx_ring;
1514 e1000_clean_rx_ring(adapter);
1516 for (i = 0; i < rx_ring->count; i++) {
1517 kfree(rx_ring->buffer_info[i].ps_pages);
1520 vfree(rx_ring->buffer_info);
1521 rx_ring->buffer_info = NULL;
1523 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1525 rx_ring->desc = NULL;
1529 * e1000_update_itr - update the dynamic ITR value based on statistics
1530 * @adapter: pointer to adapter
1531 * @itr_setting: current adapter->itr
1532 * @packets: the number of packets during this measurement interval
1533 * @bytes: the number of bytes during this measurement interval
1535 * Stores a new ITR value based on packets and byte
1536 * counts during the last interrupt. The advantage of per interrupt
1537 * computation is faster updates and more accurate ITR for the current
1538 * traffic pattern. Constants in this function were computed
1539 * based on theoretical maximum wire speed and thresholds were set based
1540 * on testing data as well as attempting to minimize response time
1541 * while increasing bulk throughput.
1542 * this functionality is controlled by the InterruptThrottleRate module
1543 * parameter (see e1000_param.c)
1545 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1546 u16 itr_setting, int packets,
1549 unsigned int retval = itr_setting;
1552 goto update_itr_done;
1554 switch (itr_setting) {
1555 case lowest_latency:
1556 /* handle TSO and jumbo frames */
1557 if (bytes/packets > 8000)
1558 retval = bulk_latency;
1559 else if ((packets < 5) && (bytes > 512)) {
1560 retval = low_latency;
1563 case low_latency: /* 50 usec aka 20000 ints/s */
1564 if (bytes > 10000) {
1565 /* this if handles the TSO accounting */
1566 if (bytes/packets > 8000) {
1567 retval = bulk_latency;
1568 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1569 retval = bulk_latency;
1570 } else if ((packets > 35)) {
1571 retval = lowest_latency;
1573 } else if (bytes/packets > 2000) {
1574 retval = bulk_latency;
1575 } else if (packets <= 2 && bytes < 512) {
1576 retval = lowest_latency;
1579 case bulk_latency: /* 250 usec aka 4000 ints/s */
1580 if (bytes > 25000) {
1582 retval = low_latency;
1584 } else if (bytes < 6000) {
1585 retval = low_latency;
1594 static void e1000_set_itr(struct e1000_adapter *adapter)
1596 struct e1000_hw *hw = &adapter->hw;
1598 u32 new_itr = adapter->itr;
1600 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1601 if (adapter->link_speed != SPEED_1000) {
1607 adapter->tx_itr = e1000_update_itr(adapter,
1609 adapter->total_tx_packets,
1610 adapter->total_tx_bytes);
1611 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1612 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1613 adapter->tx_itr = low_latency;
1615 adapter->rx_itr = e1000_update_itr(adapter,
1617 adapter->total_rx_packets,
1618 adapter->total_rx_bytes);
1619 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1620 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1621 adapter->rx_itr = low_latency;
1623 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1625 switch (current_itr) {
1626 /* counts and packets in update_itr are dependent on these numbers */
1627 case lowest_latency:
1631 new_itr = 20000; /* aka hwitr = ~200 */
1641 if (new_itr != adapter->itr) {
1643 * this attempts to bias the interrupt rate towards Bulk
1644 * by adding intermediate steps when interrupt rate is
1647 new_itr = new_itr > adapter->itr ?
1648 min(adapter->itr + (new_itr >> 2), new_itr) :
1650 adapter->itr = new_itr;
1651 ew32(ITR, 1000000000 / (new_itr * 256));
1656 * e1000_clean - NAPI Rx polling callback
1657 * @napi: struct associated with this polling callback
1658 * @budget: amount of packets driver is allowed to process this poll
1660 static int e1000_clean(struct napi_struct *napi, int budget)
1662 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1663 struct net_device *poll_dev = adapter->netdev;
1664 int tx_cleaned = 0, work_done = 0;
1666 /* Must NOT use netdev_priv macro here. */
1667 adapter = poll_dev->priv;
1670 * e1000_clean is called per-cpu. This lock protects
1671 * tx_ring from being cleaned by multiple cpus
1672 * simultaneously. A failure obtaining the lock means
1673 * tx_ring is currently being cleaned anyway.
1675 if (spin_trylock(&adapter->tx_queue_lock)) {
1676 tx_cleaned = e1000_clean_tx_irq(adapter);
1677 spin_unlock(&adapter->tx_queue_lock);
1680 adapter->clean_rx(adapter, &work_done, budget);
1685 /* If budget not fully consumed, exit the polling mode */
1686 if (work_done < budget) {
1687 if (adapter->itr_setting & 3)
1688 e1000_set_itr(adapter);
1689 netif_rx_complete(poll_dev, napi);
1690 e1000_irq_enable(adapter);
1696 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1698 struct e1000_adapter *adapter = netdev_priv(netdev);
1699 struct e1000_hw *hw = &adapter->hw;
1702 /* don't update vlan cookie if already programmed */
1703 if ((adapter->hw.mng_cookie.status &
1704 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1705 (vid == adapter->mng_vlan_id))
1707 /* add VID to filter table */
1708 index = (vid >> 5) & 0x7F;
1709 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1710 vfta |= (1 << (vid & 0x1F));
1711 e1000e_write_vfta(hw, index, vfta);
1714 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1716 struct e1000_adapter *adapter = netdev_priv(netdev);
1717 struct e1000_hw *hw = &adapter->hw;
1720 if (!test_bit(__E1000_DOWN, &adapter->state))
1721 e1000_irq_disable(adapter);
1722 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1724 if (!test_bit(__E1000_DOWN, &adapter->state))
1725 e1000_irq_enable(adapter);
1727 if ((adapter->hw.mng_cookie.status &
1728 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1729 (vid == adapter->mng_vlan_id)) {
1730 /* release control to f/w */
1731 e1000_release_hw_control(adapter);
1735 /* remove VID from filter table */
1736 index = (vid >> 5) & 0x7F;
1737 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1738 vfta &= ~(1 << (vid & 0x1F));
1739 e1000e_write_vfta(hw, index, vfta);
1742 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1744 struct net_device *netdev = adapter->netdev;
1745 u16 vid = adapter->hw.mng_cookie.vlan_id;
1746 u16 old_vid = adapter->mng_vlan_id;
1748 if (!adapter->vlgrp)
1751 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1752 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1753 if (adapter->hw.mng_cookie.status &
1754 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1755 e1000_vlan_rx_add_vid(netdev, vid);
1756 adapter->mng_vlan_id = vid;
1759 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1761 !vlan_group_get_device(adapter->vlgrp, old_vid))
1762 e1000_vlan_rx_kill_vid(netdev, old_vid);
1764 adapter->mng_vlan_id = vid;
1769 static void e1000_vlan_rx_register(struct net_device *netdev,
1770 struct vlan_group *grp)
1772 struct e1000_adapter *adapter = netdev_priv(netdev);
1773 struct e1000_hw *hw = &adapter->hw;
1776 if (!test_bit(__E1000_DOWN, &adapter->state))
1777 e1000_irq_disable(adapter);
1778 adapter->vlgrp = grp;
1781 /* enable VLAN tag insert/strip */
1783 ctrl |= E1000_CTRL_VME;
1786 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1787 /* enable VLAN receive filtering */
1789 rctl &= ~E1000_RCTL_CFIEN;
1791 e1000_update_mng_vlan(adapter);
1794 /* disable VLAN tag insert/strip */
1796 ctrl &= ~E1000_CTRL_VME;
1799 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1800 if (adapter->mng_vlan_id !=
1801 (u16)E1000_MNG_VLAN_NONE) {
1802 e1000_vlan_rx_kill_vid(netdev,
1803 adapter->mng_vlan_id);
1804 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1809 if (!test_bit(__E1000_DOWN, &adapter->state))
1810 e1000_irq_enable(adapter);
1813 static void e1000_restore_vlan(struct e1000_adapter *adapter)
1817 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1819 if (!adapter->vlgrp)
1822 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1823 if (!vlan_group_get_device(adapter->vlgrp, vid))
1825 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1829 static void e1000_init_manageability(struct e1000_adapter *adapter)
1831 struct e1000_hw *hw = &adapter->hw;
1834 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1840 * enable receiving management packets to the host. this will probably
1841 * generate destination unreachable messages from the host OS, but
1842 * the packets will be handled on SMBUS
1844 manc |= E1000_MANC_EN_MNG2HOST;
1845 manc2h = er32(MANC2H);
1846 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1847 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1848 manc2h |= E1000_MNG2HOST_PORT_623;
1849 manc2h |= E1000_MNG2HOST_PORT_664;
1850 ew32(MANC2H, manc2h);
1855 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1856 * @adapter: board private structure
1858 * Configure the Tx unit of the MAC after a reset.
1860 static void e1000_configure_tx(struct e1000_adapter *adapter)
1862 struct e1000_hw *hw = &adapter->hw;
1863 struct e1000_ring *tx_ring = adapter->tx_ring;
1865 u32 tdlen, tctl, tipg, tarc;
1868 /* Setup the HW Tx Head and Tail descriptor pointers */
1869 tdba = tx_ring->dma;
1870 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1871 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1872 ew32(TDBAH, (tdba >> 32));
1876 tx_ring->head = E1000_TDH;
1877 tx_ring->tail = E1000_TDT;
1879 /* Set the default values for the Tx Inter Packet Gap timer */
1880 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
1881 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
1882 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
1884 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1885 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
1887 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1888 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1891 /* Set the Tx Interrupt Delay register */
1892 ew32(TIDV, adapter->tx_int_delay);
1893 /* Tx irq moderation */
1894 ew32(TADV, adapter->tx_abs_int_delay);
1896 /* Program the Transmit Control Register */
1898 tctl &= ~E1000_TCTL_CT;
1899 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1900 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1902 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1903 tarc = er32(TARC(0));
1905 * set the speed mode bit, we'll clear it if we're not at
1906 * gigabit link later
1908 #define SPEED_MODE_BIT (1 << 21)
1909 tarc |= SPEED_MODE_BIT;
1910 ew32(TARC(0), tarc);
1913 /* errata: program both queues to unweighted RR */
1914 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1915 tarc = er32(TARC(0));
1917 ew32(TARC(0), tarc);
1918 tarc = er32(TARC(1));
1920 ew32(TARC(1), tarc);
1923 e1000e_config_collision_dist(hw);
1925 /* Setup Transmit Descriptor Settings for eop descriptor */
1926 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1928 /* only set IDE if we are delaying interrupts using the timers */
1929 if (adapter->tx_int_delay)
1930 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1932 /* enable Report Status bit */
1933 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1937 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1941 * e1000_setup_rctl - configure the receive control registers
1942 * @adapter: Board private structure
1944 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1945 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1946 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1948 struct e1000_hw *hw = &adapter->hw;
1953 /* Program MC offset vector base */
1955 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1956 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1957 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1958 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1960 /* Do not Store bad packets */
1961 rctl &= ~E1000_RCTL_SBP;
1963 /* Enable Long Packet receive */
1964 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1965 rctl &= ~E1000_RCTL_LPE;
1967 rctl |= E1000_RCTL_LPE;
1969 /* Enable hardware CRC frame stripping */
1970 rctl |= E1000_RCTL_SECRC;
1972 /* Setup buffer sizes */
1973 rctl &= ~E1000_RCTL_SZ_4096;
1974 rctl |= E1000_RCTL_BSEX;
1975 switch (adapter->rx_buffer_len) {
1977 rctl |= E1000_RCTL_SZ_256;
1978 rctl &= ~E1000_RCTL_BSEX;
1981 rctl |= E1000_RCTL_SZ_512;
1982 rctl &= ~E1000_RCTL_BSEX;
1985 rctl |= E1000_RCTL_SZ_1024;
1986 rctl &= ~E1000_RCTL_BSEX;
1990 rctl |= E1000_RCTL_SZ_2048;
1991 rctl &= ~E1000_RCTL_BSEX;
1994 rctl |= E1000_RCTL_SZ_4096;
1997 rctl |= E1000_RCTL_SZ_8192;
2000 rctl |= E1000_RCTL_SZ_16384;
2005 * 82571 and greater support packet-split where the protocol
2006 * header is placed in skb->data and the packet data is
2007 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2008 * In the case of a non-split, skb->data is linearly filled,
2009 * followed by the page buffers. Therefore, skb->data is
2010 * sized to hold the largest protocol header.
2012 * allocations using alloc_page take too long for regular MTU
2013 * so only enable packet split for jumbo frames
2015 * Using pages when the page size is greater than 16k wastes
2016 * a lot of memory, since we allocate 3 pages at all times
2019 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2020 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2021 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2022 adapter->rx_ps_pages = pages;
2024 adapter->rx_ps_pages = 0;
2026 if (adapter->rx_ps_pages) {
2027 /* Configure extra packet-split registers */
2028 rfctl = er32(RFCTL);
2029 rfctl |= E1000_RFCTL_EXTEN;
2031 * disable packet split support for IPv6 extension headers,
2032 * because some malformed IPv6 headers can hang the Rx
2034 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2035 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2039 /* Enable Packet split descriptors */
2040 rctl |= E1000_RCTL_DTYP_PS;
2042 psrctl |= adapter->rx_ps_bsize0 >>
2043 E1000_PSRCTL_BSIZE0_SHIFT;
2045 switch (adapter->rx_ps_pages) {
2047 psrctl |= PAGE_SIZE <<
2048 E1000_PSRCTL_BSIZE3_SHIFT;
2050 psrctl |= PAGE_SIZE <<
2051 E1000_PSRCTL_BSIZE2_SHIFT;
2053 psrctl |= PAGE_SIZE >>
2054 E1000_PSRCTL_BSIZE1_SHIFT;
2058 ew32(PSRCTL, psrctl);
2062 /* just started the receive unit, no need to restart */
2063 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2067 * e1000_configure_rx - Configure Receive Unit after Reset
2068 * @adapter: board private structure
2070 * Configure the Rx unit of the MAC after a reset.
2072 static void e1000_configure_rx(struct e1000_adapter *adapter)
2074 struct e1000_hw *hw = &adapter->hw;
2075 struct e1000_ring *rx_ring = adapter->rx_ring;
2077 u32 rdlen, rctl, rxcsum, ctrl_ext;
2079 if (adapter->rx_ps_pages) {
2080 /* this is a 32 byte descriptor */
2081 rdlen = rx_ring->count *
2082 sizeof(union e1000_rx_desc_packet_split);
2083 adapter->clean_rx = e1000_clean_rx_irq_ps;
2084 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2085 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2086 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2087 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2088 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2090 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2091 adapter->clean_rx = e1000_clean_rx_irq;
2092 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2095 /* disable receives while setting up the descriptors */
2097 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2101 /* set the Receive Delay Timer Register */
2102 ew32(RDTR, adapter->rx_int_delay);
2104 /* irq moderation */
2105 ew32(RADV, adapter->rx_abs_int_delay);
2106 if (adapter->itr_setting != 0)
2107 ew32(ITR, 1000000000 / (adapter->itr * 256));
2109 ctrl_ext = er32(CTRL_EXT);
2110 /* Reset delay timers after every interrupt */
2111 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2112 /* Auto-Mask interrupts upon ICR access */
2113 ctrl_ext |= E1000_CTRL_EXT_IAME;
2114 ew32(IAM, 0xffffffff);
2115 ew32(CTRL_EXT, ctrl_ext);
2119 * Setup the HW Rx Head and Tail Descriptor Pointers and
2120 * the Base and Length of the Rx Descriptor Ring
2122 rdba = rx_ring->dma;
2123 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2124 ew32(RDBAH, (rdba >> 32));
2128 rx_ring->head = E1000_RDH;
2129 rx_ring->tail = E1000_RDT;
2131 /* Enable Receive Checksum Offload for TCP and UDP */
2132 rxcsum = er32(RXCSUM);
2133 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2134 rxcsum |= E1000_RXCSUM_TUOFL;
2137 * IPv4 payload checksum for UDP fragments must be
2138 * used in conjunction with packet-split.
2140 if (adapter->rx_ps_pages)
2141 rxcsum |= E1000_RXCSUM_IPPCSE;
2143 rxcsum &= ~E1000_RXCSUM_TUOFL;
2144 /* no need to clear IPPCSE as it defaults to 0 */
2146 ew32(RXCSUM, rxcsum);
2149 * Enable early receives on supported devices, only takes effect when
2150 * packet size is equal or larger than the specified value (in 8 byte
2151 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2153 if ((adapter->flags & FLAG_HAS_ERT) &&
2154 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2155 u32 rxdctl = er32(RXDCTL(0));
2156 ew32(RXDCTL(0), rxdctl | 0x3);
2157 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2159 * With jumbo frames and early-receive enabled, excessive
2160 * C4->C2 latencies result in dropped transactions.
2162 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2163 e1000e_driver_name, 55);
2165 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2167 PM_QOS_DEFAULT_VALUE);
2170 /* Enable Receives */
2175 * e1000_update_mc_addr_list - Update Multicast addresses
2176 * @hw: pointer to the HW structure
2177 * @mc_addr_list: array of multicast addresses to program
2178 * @mc_addr_count: number of multicast addresses to program
2179 * @rar_used_count: the first RAR register free to program
2180 * @rar_count: total number of supported Receive Address Registers
2182 * Updates the Receive Address Registers and Multicast Table Array.
2183 * The caller must have a packed mc_addr_list of multicast addresses.
2184 * The parameter rar_count will usually be hw->mac.rar_entry_count
2185 * unless there are workarounds that change this. Currently no func pointer
2186 * exists and all implementations are handled in the generic version of this
2189 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2190 u32 mc_addr_count, u32 rar_used_count,
2193 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2194 rar_used_count, rar_count);
2198 * e1000_set_multi - Multicast and Promiscuous mode set
2199 * @netdev: network interface device structure
2201 * The set_multi entry point is called whenever the multicast address
2202 * list or the network interface flags are updated. This routine is
2203 * responsible for configuring the hardware for proper multicast,
2204 * promiscuous mode, and all-multi behavior.
2206 static void e1000_set_multi(struct net_device *netdev)
2208 struct e1000_adapter *adapter = netdev_priv(netdev);
2209 struct e1000_hw *hw = &adapter->hw;
2210 struct e1000_mac_info *mac = &hw->mac;
2211 struct dev_mc_list *mc_ptr;
2216 /* Check for Promiscuous and All Multicast modes */
2220 if (netdev->flags & IFF_PROMISC) {
2221 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2222 rctl &= ~E1000_RCTL_VFE;
2224 if (netdev->flags & IFF_ALLMULTI) {
2225 rctl |= E1000_RCTL_MPE;
2226 rctl &= ~E1000_RCTL_UPE;
2228 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2230 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2231 rctl |= E1000_RCTL_VFE;
2236 if (netdev->mc_count) {
2237 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2241 /* prepare a packed array of only addresses. */
2242 mc_ptr = netdev->mc_list;
2244 for (i = 0; i < netdev->mc_count; i++) {
2247 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2249 mc_ptr = mc_ptr->next;
2252 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2253 mac->rar_entry_count);
2257 * if we're called from probe, we might not have
2258 * anything to do here, so clear out the list
2260 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2265 * e1000_configure - configure the hardware for Rx and Tx
2266 * @adapter: private board structure
2268 static void e1000_configure(struct e1000_adapter *adapter)
2270 e1000_set_multi(adapter->netdev);
2272 e1000_restore_vlan(adapter);
2273 e1000_init_manageability(adapter);
2275 e1000_configure_tx(adapter);
2276 e1000_setup_rctl(adapter);
2277 e1000_configure_rx(adapter);
2278 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2282 * e1000e_power_up_phy - restore link in case the phy was powered down
2283 * @adapter: address of board private structure
2285 * The phy may be powered down to save power and turn off link when the
2286 * driver is unloaded and wake on lan is not enabled (among others)
2287 * *** this routine MUST be followed by a call to e1000e_reset ***
2289 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2293 /* Just clear the power down bit to wake the phy back up */
2294 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2296 * According to the manual, the phy will retain its
2297 * settings across a power-down/up cycle
2299 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2300 mii_reg &= ~MII_CR_POWER_DOWN;
2301 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2304 adapter->hw.mac.ops.setup_link(&adapter->hw);
2308 * e1000_power_down_phy - Power down the PHY
2310 * Power down the PHY so no link is implied when interface is down
2311 * The PHY cannot be powered down is management or WoL is active
2313 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2315 struct e1000_hw *hw = &adapter->hw;
2318 /* WoL is enabled */
2322 /* non-copper PHY? */
2323 if (adapter->hw.phy.media_type != e1000_media_type_copper)
2326 /* reset is blocked because of a SoL/IDER session */
2327 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2330 /* manageability (AMT) is enabled */
2331 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2334 /* power down the PHY */
2335 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2336 mii_reg |= MII_CR_POWER_DOWN;
2337 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2342 * e1000e_reset - bring the hardware into a known good state
2344 * This function boots the hardware and enables some settings that
2345 * require a configuration cycle of the hardware - those cannot be
2346 * set/changed during runtime. After reset the device needs to be
2347 * properly configured for Rx, Tx etc.
2349 void e1000e_reset(struct e1000_adapter *adapter)
2351 struct e1000_mac_info *mac = &adapter->hw.mac;
2352 struct e1000_fc_info *fc = &adapter->hw.fc;
2353 struct e1000_hw *hw = &adapter->hw;
2354 u32 tx_space, min_tx_space, min_rx_space;
2355 u32 pba = adapter->pba;
2358 /* reset Packet Buffer Allocation to default */
2361 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2363 * To maintain wire speed transmits, the Tx FIFO should be
2364 * large enough to accommodate two full transmit packets,
2365 * rounded up to the next 1KB and expressed in KB. Likewise,
2366 * the Rx FIFO should be large enough to accommodate at least
2367 * one full receive packet and is similarly rounded up and
2371 /* upper 16 bits has Tx packet buffer allocation size in KB */
2372 tx_space = pba >> 16;
2373 /* lower 16 bits has Rx packet buffer allocation size in KB */
2376 * the Tx fifo also stores 16 bytes of information about the tx
2377 * but don't include ethernet FCS because hardware appends it
2379 min_tx_space = (adapter->max_frame_size +
2380 sizeof(struct e1000_tx_desc) -
2382 min_tx_space = ALIGN(min_tx_space, 1024);
2383 min_tx_space >>= 10;
2384 /* software strips receive CRC, so leave room for it */
2385 min_rx_space = adapter->max_frame_size;
2386 min_rx_space = ALIGN(min_rx_space, 1024);
2387 min_rx_space >>= 10;
2390 * If current Tx allocation is less than the min Tx FIFO size,
2391 * and the min Tx FIFO size is less than the current Rx FIFO
2392 * allocation, take space away from current Rx allocation
2394 if ((tx_space < min_tx_space) &&
2395 ((min_tx_space - tx_space) < pba)) {
2396 pba -= min_tx_space - tx_space;
2399 * if short on Rx space, Rx wins and must trump tx
2400 * adjustment or use Early Receive if available
2402 if ((pba < min_rx_space) &&
2403 (!(adapter->flags & FLAG_HAS_ERT)))
2404 /* ERT enabled in e1000_configure_rx */
2413 * flow control settings
2415 * The high water mark must be low enough to fit one full frame
2416 * (or the size used for early receive) above it in the Rx FIFO.
2417 * Set it to the lower of:
2418 * - 90% of the Rx FIFO size, and
2419 * - the full Rx FIFO size minus the early receive size (for parts
2420 * with ERT support assuming ERT set to E1000_ERT_2048), or
2421 * - the full Rx FIFO size minus one full frame
2423 if (adapter->flags & FLAG_HAS_ERT)
2424 hwm = min(((pba << 10) * 9 / 10),
2425 ((pba << 10) - (E1000_ERT_2048 << 3)));
2427 hwm = min(((pba << 10) * 9 / 10),
2428 ((pba << 10) - adapter->max_frame_size));
2430 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2431 fc->low_water = fc->high_water - 8;
2433 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2434 fc->pause_time = 0xFFFF;
2436 fc->pause_time = E1000_FC_PAUSE_TIME;
2438 fc->type = fc->original_type;
2440 /* Allow time for pending master requests to run */
2441 mac->ops.reset_hw(hw);
2444 * For parts with AMT enabled, let the firmware know
2445 * that the network interface is in control
2447 if (adapter->flags & FLAG_HAS_AMT)
2448 e1000_get_hw_control(adapter);
2452 if (mac->ops.init_hw(hw))
2453 e_err("Hardware Error\n");
2455 e1000_update_mng_vlan(adapter);
2457 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2458 ew32(VET, ETH_P_8021Q);
2460 e1000e_reset_adaptive(hw);
2461 e1000_get_phy_info(hw);
2463 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2466 * speed up time to link by disabling smart power down, ignore
2467 * the return value of this function because there is nothing
2468 * different we would do if it failed
2470 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2471 phy_data &= ~IGP02E1000_PM_SPD;
2472 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2476 int e1000e_up(struct e1000_adapter *adapter)
2478 struct e1000_hw *hw = &adapter->hw;
2480 /* hardware has been reset, we need to reload some things */
2481 e1000_configure(adapter);
2483 clear_bit(__E1000_DOWN, &adapter->state);
2485 napi_enable(&adapter->napi);
2486 e1000_irq_enable(adapter);
2488 /* fire a link change interrupt to start the watchdog */
2489 ew32(ICS, E1000_ICS_LSC);
2493 void e1000e_down(struct e1000_adapter *adapter)
2495 struct net_device *netdev = adapter->netdev;
2496 struct e1000_hw *hw = &adapter->hw;
2500 * signal that we're down so the interrupt handler does not
2501 * reschedule our watchdog timer
2503 set_bit(__E1000_DOWN, &adapter->state);
2505 /* disable receives in the hardware */
2507 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2508 /* flush and sleep below */
2510 netif_tx_stop_all_queues(netdev);
2512 /* disable transmits in the hardware */
2514 tctl &= ~E1000_TCTL_EN;
2516 /* flush both disables and wait for them to finish */
2520 napi_disable(&adapter->napi);
2521 e1000_irq_disable(adapter);
2523 del_timer_sync(&adapter->watchdog_timer);
2524 del_timer_sync(&adapter->phy_info_timer);
2526 netdev->tx_queue_len = adapter->tx_queue_len;
2527 netif_carrier_off(netdev);
2528 adapter->link_speed = 0;
2529 adapter->link_duplex = 0;
2531 if (!pci_channel_offline(adapter->pdev))
2532 e1000e_reset(adapter);
2533 e1000_clean_tx_ring(adapter);
2534 e1000_clean_rx_ring(adapter);
2537 * TODO: for power management, we could drop the link and
2538 * pci_disable_device here.
2542 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2545 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2547 e1000e_down(adapter);
2549 clear_bit(__E1000_RESETTING, &adapter->state);
2553 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2554 * @adapter: board private structure to initialize
2556 * e1000_sw_init initializes the Adapter private data structure.
2557 * Fields are initialized based on PCI device information and
2558 * OS network device settings (MTU size).
2560 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2562 struct net_device *netdev = adapter->netdev;
2564 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2565 adapter->rx_ps_bsize0 = 128;
2566 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2567 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2569 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2570 if (!adapter->tx_ring)
2573 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2574 if (!adapter->rx_ring)
2577 spin_lock_init(&adapter->tx_queue_lock);
2579 /* Explicitly disable IRQ since the NIC can be in any state. */
2580 e1000_irq_disable(adapter);
2582 spin_lock_init(&adapter->stats_lock);
2584 set_bit(__E1000_DOWN, &adapter->state);
2588 e_err("Unable to allocate memory for queues\n");
2589 kfree(adapter->rx_ring);
2590 kfree(adapter->tx_ring);
2595 * e1000_open - Called when a network interface is made active
2596 * @netdev: network interface device structure
2598 * Returns 0 on success, negative value on failure
2600 * The open entry point is called when a network interface is made
2601 * active by the system (IFF_UP). At this point all resources needed
2602 * for transmit and receive operations are allocated, the interrupt
2603 * handler is registered with the OS, the watchdog timer is started,
2604 * and the stack is notified that the interface is ready.
2606 static int e1000_open(struct net_device *netdev)
2608 struct e1000_adapter *adapter = netdev_priv(netdev);
2609 struct e1000_hw *hw = &adapter->hw;
2612 /* disallow open during test */
2613 if (test_bit(__E1000_TESTING, &adapter->state))
2616 /* allocate transmit descriptors */
2617 err = e1000e_setup_tx_resources(adapter);
2621 /* allocate receive descriptors */
2622 err = e1000e_setup_rx_resources(adapter);
2626 e1000e_power_up_phy(adapter);
2628 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2629 if ((adapter->hw.mng_cookie.status &
2630 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2631 e1000_update_mng_vlan(adapter);
2634 * If AMT is enabled, let the firmware know that the network
2635 * interface is now open
2637 if (adapter->flags & FLAG_HAS_AMT)
2638 e1000_get_hw_control(adapter);
2641 * before we allocate an interrupt, we must be ready to handle it.
2642 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2643 * as soon as we call pci_request_irq, so we have to setup our
2644 * clean_rx handler before we do so.
2646 e1000_configure(adapter);
2648 err = e1000_request_irq(adapter);
2652 /* From here on the code is the same as e1000e_up() */
2653 clear_bit(__E1000_DOWN, &adapter->state);
2655 napi_enable(&adapter->napi);
2657 e1000_irq_enable(adapter);
2659 netif_tx_start_all_queues(netdev);
2661 /* fire a link status change interrupt to start the watchdog */
2662 ew32(ICS, E1000_ICS_LSC);
2667 e1000_release_hw_control(adapter);
2668 e1000_power_down_phy(adapter);
2669 e1000e_free_rx_resources(adapter);
2671 e1000e_free_tx_resources(adapter);
2673 e1000e_reset(adapter);
2679 * e1000_close - Disables a network interface
2680 * @netdev: network interface device structure
2682 * Returns 0, this is not allowed to fail
2684 * The close entry point is called when an interface is de-activated
2685 * by the OS. The hardware is still under the drivers control, but
2686 * needs to be disabled. A global MAC reset is issued to stop the
2687 * hardware, and all transmit and receive resources are freed.
2689 static int e1000_close(struct net_device *netdev)
2691 struct e1000_adapter *adapter = netdev_priv(netdev);
2693 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2694 e1000e_down(adapter);
2695 e1000_power_down_phy(adapter);
2696 e1000_free_irq(adapter);
2698 e1000e_free_tx_resources(adapter);
2699 e1000e_free_rx_resources(adapter);
2702 * kill manageability vlan ID if supported, but not if a vlan with
2703 * the same ID is registered on the host OS (let 8021q kill it)
2705 if ((adapter->hw.mng_cookie.status &
2706 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2708 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2709 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2712 * If AMT is enabled, let the firmware know that the network
2713 * interface is now closed
2715 if (adapter->flags & FLAG_HAS_AMT)
2716 e1000_release_hw_control(adapter);
2721 * e1000_set_mac - Change the Ethernet Address of the NIC
2722 * @netdev: network interface device structure
2723 * @p: pointer to an address structure
2725 * Returns 0 on success, negative on failure
2727 static int e1000_set_mac(struct net_device *netdev, void *p)
2729 struct e1000_adapter *adapter = netdev_priv(netdev);
2730 struct sockaddr *addr = p;
2732 if (!is_valid_ether_addr(addr->sa_data))
2733 return -EADDRNOTAVAIL;
2735 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2736 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2738 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2740 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2741 /* activate the work around */
2742 e1000e_set_laa_state_82571(&adapter->hw, 1);
2745 * Hold a copy of the LAA in RAR[14] This is done so that
2746 * between the time RAR[0] gets clobbered and the time it
2747 * gets fixed (in e1000_watchdog), the actual LAA is in one
2748 * of the RARs and no incoming packets directed to this port
2749 * are dropped. Eventually the LAA will be in RAR[0] and
2752 e1000e_rar_set(&adapter->hw,
2753 adapter->hw.mac.addr,
2754 adapter->hw.mac.rar_entry_count - 1);
2761 * Need to wait a few seconds after link up to get diagnostic information from
2764 static void e1000_update_phy_info(unsigned long data)
2766 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2767 e1000_get_phy_info(&adapter->hw);
2771 * e1000e_update_stats - Update the board statistics counters
2772 * @adapter: board private structure
2774 void e1000e_update_stats(struct e1000_adapter *adapter)
2776 struct e1000_hw *hw = &adapter->hw;
2777 struct pci_dev *pdev = adapter->pdev;
2778 unsigned long irq_flags;
2781 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2784 * Prevent stats update while adapter is being reset, or if the pci
2785 * connection is down.
2787 if (adapter->link_speed == 0)
2789 if (pci_channel_offline(pdev))
2792 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2795 * these counters are modified from e1000_adjust_tbi_stats,
2796 * called from the interrupt context, so they must only
2797 * be written while holding adapter->stats_lock
2800 adapter->stats.crcerrs += er32(CRCERRS);
2801 adapter->stats.gprc += er32(GPRC);
2802 adapter->stats.gorc += er32(GORCL);
2803 er32(GORCH); /* Clear gorc */
2804 adapter->stats.bprc += er32(BPRC);
2805 adapter->stats.mprc += er32(MPRC);
2806 adapter->stats.roc += er32(ROC);
2808 adapter->stats.mpc += er32(MPC);
2809 adapter->stats.scc += er32(SCC);
2810 adapter->stats.ecol += er32(ECOL);
2811 adapter->stats.mcc += er32(MCC);
2812 adapter->stats.latecol += er32(LATECOL);
2813 adapter->stats.dc += er32(DC);
2814 adapter->stats.xonrxc += er32(XONRXC);
2815 adapter->stats.xontxc += er32(XONTXC);
2816 adapter->stats.xoffrxc += er32(XOFFRXC);
2817 adapter->stats.xofftxc += er32(XOFFTXC);
2818 adapter->stats.gptc += er32(GPTC);
2819 adapter->stats.gotc += er32(GOTCL);
2820 er32(GOTCH); /* Clear gotc */
2821 adapter->stats.rnbc += er32(RNBC);
2822 adapter->stats.ruc += er32(RUC);
2824 adapter->stats.mptc += er32(MPTC);
2825 adapter->stats.bptc += er32(BPTC);
2827 /* used for adaptive IFS */
2829 hw->mac.tx_packet_delta = er32(TPT);
2830 adapter->stats.tpt += hw->mac.tx_packet_delta;
2831 hw->mac.collision_delta = er32(COLC);
2832 adapter->stats.colc += hw->mac.collision_delta;
2834 adapter->stats.algnerrc += er32(ALGNERRC);
2835 adapter->stats.rxerrc += er32(RXERRC);
2836 adapter->stats.tncrs += er32(TNCRS);
2837 adapter->stats.cexterr += er32(CEXTERR);
2838 adapter->stats.tsctc += er32(TSCTC);
2839 adapter->stats.tsctfc += er32(TSCTFC);
2841 /* Fill out the OS statistics structure */
2842 adapter->net_stats.multicast = adapter->stats.mprc;
2843 adapter->net_stats.collisions = adapter->stats.colc;
2848 * RLEC on some newer hardware can be incorrect so build
2849 * our own version based on RUC and ROC
2851 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2852 adapter->stats.crcerrs + adapter->stats.algnerrc +
2853 adapter->stats.ruc + adapter->stats.roc +
2854 adapter->stats.cexterr;
2855 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2857 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2858 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2859 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2862 adapter->net_stats.tx_errors = adapter->stats.ecol +
2863 adapter->stats.latecol;
2864 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2865 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2866 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2868 /* Tx Dropped needs to be maintained elsewhere */
2871 if (hw->phy.media_type == e1000_media_type_copper) {
2872 if ((adapter->link_speed == SPEED_1000) &&
2873 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2874 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2875 adapter->phy_stats.idle_errors += phy_tmp;
2879 /* Management Stats */
2880 adapter->stats.mgptc += er32(MGTPTC);
2881 adapter->stats.mgprc += er32(MGTPRC);
2882 adapter->stats.mgpdc += er32(MGTPDC);
2884 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2888 * e1000_phy_read_status - Update the PHY register status snapshot
2889 * @adapter: board private structure
2891 static void e1000_phy_read_status(struct e1000_adapter *adapter)
2893 struct e1000_hw *hw = &adapter->hw;
2894 struct e1000_phy_regs *phy = &adapter->phy_regs;
2896 unsigned long irq_flags;
2899 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2901 if ((er32(STATUS) & E1000_STATUS_LU) &&
2902 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
2903 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
2904 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
2905 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
2906 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
2907 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
2908 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
2909 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
2910 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
2912 e_warn("Error reading PHY register\n");
2915 * Do not read PHY registers if link is not up
2916 * Set values to typical power-on defaults
2918 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
2919 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
2920 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
2922 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
2923 ADVERTISE_ALL | ADVERTISE_CSMA);
2925 phy->expansion = EXPANSION_ENABLENPAGE;
2926 phy->ctrl1000 = ADVERTISE_1000FULL;
2928 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
2931 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2934 static void e1000_print_link_info(struct e1000_adapter *adapter)
2936 struct e1000_hw *hw = &adapter->hw;
2937 u32 ctrl = er32(CTRL);
2939 e_info("Link is Up %d Mbps %s, Flow Control: %s\n",
2940 adapter->link_speed,
2941 (adapter->link_duplex == FULL_DUPLEX) ?
2942 "Full Duplex" : "Half Duplex",
2943 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2945 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2946 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2949 static bool e1000_has_link(struct e1000_adapter *adapter)
2951 struct e1000_hw *hw = &adapter->hw;
2952 bool link_active = 0;
2956 * get_link_status is set on LSC (link status) interrupt or
2957 * Rx sequence error interrupt. get_link_status will stay
2958 * false until the check_for_link establishes link
2959 * for copper adapters ONLY
2961 switch (hw->phy.media_type) {
2962 case e1000_media_type_copper:
2963 if (hw->mac.get_link_status) {
2964 ret_val = hw->mac.ops.check_for_link(hw);
2965 link_active = !hw->mac.get_link_status;
2970 case e1000_media_type_fiber:
2971 ret_val = hw->mac.ops.check_for_link(hw);
2972 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2974 case e1000_media_type_internal_serdes:
2975 ret_val = hw->mac.ops.check_for_link(hw);
2976 link_active = adapter->hw.mac.serdes_has_link;
2979 case e1000_media_type_unknown:
2983 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
2984 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2985 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2986 e_info("Gigabit has been disabled, downgrading speed\n");
2992 static void e1000e_enable_receives(struct e1000_adapter *adapter)
2994 /* make sure the receive unit is started */
2995 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
2996 (adapter->flags & FLAG_RX_RESTART_NOW)) {
2997 struct e1000_hw *hw = &adapter->hw;
2998 u32 rctl = er32(RCTL);
2999 ew32(RCTL, rctl | E1000_RCTL_EN);
3000 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3005 * e1000_watchdog - Timer Call-back
3006 * @data: pointer to adapter cast into an unsigned long
3008 static void e1000_watchdog(unsigned long data)
3010 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3012 /* Do the rest outside of interrupt context */
3013 schedule_work(&adapter->watchdog_task);
3015 /* TODO: make this use queue_delayed_work() */
3018 static void e1000_watchdog_task(struct work_struct *work)
3020 struct e1000_adapter *adapter = container_of(work,
3021 struct e1000_adapter, watchdog_task);
3022 struct net_device *netdev = adapter->netdev;
3023 struct e1000_mac_info *mac = &adapter->hw.mac;
3024 struct e1000_ring *tx_ring = adapter->tx_ring;
3025 struct e1000_hw *hw = &adapter->hw;
3029 link = e1000_has_link(adapter);
3030 if ((netif_carrier_ok(netdev)) && link) {
3031 e1000e_enable_receives(adapter);
3035 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3036 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3037 e1000_update_mng_vlan(adapter);
3040 if (!netif_carrier_ok(netdev)) {
3042 /* update snapshot of PHY registers on LSC */
3043 e1000_phy_read_status(adapter);
3044 mac->ops.get_link_up_info(&adapter->hw,
3045 &adapter->link_speed,
3046 &adapter->link_duplex);
3047 e1000_print_link_info(adapter);
3049 * tweak tx_queue_len according to speed/duplex
3050 * and adjust the timeout factor
3052 netdev->tx_queue_len = adapter->tx_queue_len;
3053 adapter->tx_timeout_factor = 1;
3054 switch (adapter->link_speed) {
3057 netdev->tx_queue_len = 10;
3058 adapter->tx_timeout_factor = 14;
3062 netdev->tx_queue_len = 100;
3063 /* maybe add some timeout factor ? */
3068 * workaround: re-program speed mode bit after
3071 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3074 tarc0 = er32(TARC(0));
3075 tarc0 &= ~SPEED_MODE_BIT;
3076 ew32(TARC(0), tarc0);
3080 * disable TSO for pcie and 10/100 speeds, to avoid
3081 * some hardware issues
3083 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3084 switch (adapter->link_speed) {
3087 e_info("10/100 speed: disabling TSO\n");
3088 netdev->features &= ~NETIF_F_TSO;
3089 netdev->features &= ~NETIF_F_TSO6;
3092 netdev->features |= NETIF_F_TSO;
3093 netdev->features |= NETIF_F_TSO6;
3102 * enable transmits in the hardware, need to do this
3103 * after setting TARC(0)
3106 tctl |= E1000_TCTL_EN;
3109 netif_carrier_on(netdev);
3110 netif_tx_wake_all_queues(netdev);
3112 if (!test_bit(__E1000_DOWN, &adapter->state))
3113 mod_timer(&adapter->phy_info_timer,
3114 round_jiffies(jiffies + 2 * HZ));
3117 if (netif_carrier_ok(netdev)) {
3118 adapter->link_speed = 0;
3119 adapter->link_duplex = 0;
3120 e_info("Link is Down\n");
3121 netif_carrier_off(netdev);
3122 netif_tx_stop_all_queues(netdev);
3123 if (!test_bit(__E1000_DOWN, &adapter->state))
3124 mod_timer(&adapter->phy_info_timer,
3125 round_jiffies(jiffies + 2 * HZ));
3127 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3128 schedule_work(&adapter->reset_task);
3133 e1000e_update_stats(adapter);
3135 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3136 adapter->tpt_old = adapter->stats.tpt;
3137 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3138 adapter->colc_old = adapter->stats.colc;
3140 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3141 adapter->gorc_old = adapter->stats.gorc;
3142 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3143 adapter->gotc_old = adapter->stats.gotc;
3145 e1000e_update_adaptive(&adapter->hw);
3147 if (!netif_carrier_ok(netdev)) {
3148 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3152 * We've lost link, so the controller stops DMA,
3153 * but we've got queued Tx work that's never going
3154 * to get done, so reset controller to flush Tx.
3155 * (Do the reset outside of interrupt context).
3157 adapter->tx_timeout_count++;
3158 schedule_work(&adapter->reset_task);
3162 /* Cause software interrupt to ensure Rx ring is cleaned */
3163 ew32(ICS, E1000_ICS_RXDMT0);
3165 /* Force detection of hung controller every watchdog period */
3166 adapter->detect_tx_hung = 1;
3169 * With 82571 controllers, LAA may be overwritten due to controller
3170 * reset from the other port. Set the appropriate LAA in RAR[0]
3172 if (e1000e_get_laa_state_82571(hw))
3173 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3175 /* Reset the timer */
3176 if (!test_bit(__E1000_DOWN, &adapter->state))
3177 mod_timer(&adapter->watchdog_timer,
3178 round_jiffies(jiffies + 2 * HZ));
3181 #define E1000_TX_FLAGS_CSUM 0x00000001
3182 #define E1000_TX_FLAGS_VLAN 0x00000002
3183 #define E1000_TX_FLAGS_TSO 0x00000004
3184 #define E1000_TX_FLAGS_IPV4 0x00000008
3185 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3186 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3188 static int e1000_tso(struct e1000_adapter *adapter,
3189 struct sk_buff *skb)
3191 struct e1000_ring *tx_ring = adapter->tx_ring;
3192 struct e1000_context_desc *context_desc;
3193 struct e1000_buffer *buffer_info;
3196 u16 ipcse = 0, tucse, mss;
3197 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3200 if (skb_is_gso(skb)) {
3201 if (skb_header_cloned(skb)) {
3202 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3207 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3208 mss = skb_shinfo(skb)->gso_size;
3209 if (skb->protocol == htons(ETH_P_IP)) {
3210 struct iphdr *iph = ip_hdr(skb);
3213 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3217 cmd_length = E1000_TXD_CMD_IP;
3218 ipcse = skb_transport_offset(skb) - 1;
3219 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3220 ipv6_hdr(skb)->payload_len = 0;
3221 tcp_hdr(skb)->check =
3222 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3223 &ipv6_hdr(skb)->daddr,
3227 ipcss = skb_network_offset(skb);
3228 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3229 tucss = skb_transport_offset(skb);
3230 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3233 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3234 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3236 i = tx_ring->next_to_use;
3237 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3238 buffer_info = &tx_ring->buffer_info[i];
3240 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3241 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3242 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3243 context_desc->upper_setup.tcp_fields.tucss = tucss;
3244 context_desc->upper_setup.tcp_fields.tucso = tucso;
3245 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3246 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3247 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3248 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3250 buffer_info->time_stamp = jiffies;
3251 buffer_info->next_to_watch = i;
3254 if (i == tx_ring->count)
3256 tx_ring->next_to_use = i;
3264 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3266 struct e1000_ring *tx_ring = adapter->tx_ring;
3267 struct e1000_context_desc *context_desc;
3268 struct e1000_buffer *buffer_info;
3272 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3273 css = skb_transport_offset(skb);
3275 i = tx_ring->next_to_use;
3276 buffer_info = &tx_ring->buffer_info[i];
3277 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3279 context_desc->lower_setup.ip_config = 0;
3280 context_desc->upper_setup.tcp_fields.tucss = css;
3281 context_desc->upper_setup.tcp_fields.tucso =
3282 css + skb->csum_offset;
3283 context_desc->upper_setup.tcp_fields.tucse = 0;
3284 context_desc->tcp_seg_setup.data = 0;
3285 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3287 buffer_info->time_stamp = jiffies;
3288 buffer_info->next_to_watch = i;
3291 if (i == tx_ring->count)
3293 tx_ring->next_to_use = i;
3301 #define E1000_MAX_PER_TXD 8192
3302 #define E1000_MAX_TXD_PWR 12
3304 static int e1000_tx_map(struct e1000_adapter *adapter,
3305 struct sk_buff *skb, unsigned int first,
3306 unsigned int max_per_txd, unsigned int nr_frags,
3309 struct e1000_ring *tx_ring = adapter->tx_ring;
3310 struct e1000_buffer *buffer_info;
3311 unsigned int len = skb->len - skb->data_len;
3312 unsigned int offset = 0, size, count = 0, i;
3315 i = tx_ring->next_to_use;
3318 buffer_info = &tx_ring->buffer_info[i];
3319 size = min(len, max_per_txd);
3321 /* Workaround for premature desc write-backs
3322 * in TSO mode. Append 4-byte sentinel desc */
3323 if (mss && !nr_frags && size == len && size > 8)
3326 buffer_info->length = size;
3327 /* set time_stamp *before* dma to help avoid a possible race */
3328 buffer_info->time_stamp = jiffies;
3330 pci_map_single(adapter->pdev,
3334 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) {
3335 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3336 adapter->tx_dma_failed++;
3339 buffer_info->next_to_watch = i;
3345 if (i == tx_ring->count)
3349 for (f = 0; f < nr_frags; f++) {
3350 struct skb_frag_struct *frag;
3352 frag = &skb_shinfo(skb)->frags[f];
3354 offset = frag->page_offset;
3357 buffer_info = &tx_ring->buffer_info[i];
3358 size = min(len, max_per_txd);
3359 /* Workaround for premature desc write-backs
3360 * in TSO mode. Append 4-byte sentinel desc */
3361 if (mss && f == (nr_frags-1) && size == len && size > 8)
3364 buffer_info->length = size;
3365 buffer_info->time_stamp = jiffies;
3367 pci_map_page(adapter->pdev,
3372 if (pci_dma_mapping_error(adapter->pdev,
3373 buffer_info->dma)) {
3374 dev_err(&adapter->pdev->dev,
3375 "TX DMA page map failed\n");
3376 adapter->tx_dma_failed++;
3380 buffer_info->next_to_watch = i;
3387 if (i == tx_ring->count)
3393 i = tx_ring->count - 1;
3397 tx_ring->buffer_info[i].skb = skb;
3398 tx_ring->buffer_info[first].next_to_watch = i;
3403 static void e1000_tx_queue(struct e1000_adapter *adapter,
3404 int tx_flags, int count)
3406 struct e1000_ring *tx_ring = adapter->tx_ring;
3407 struct e1000_tx_desc *tx_desc = NULL;
3408 struct e1000_buffer *buffer_info;
3409 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3412 if (tx_flags & E1000_TX_FLAGS_TSO) {
3413 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3415 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3417 if (tx_flags & E1000_TX_FLAGS_IPV4)
3418 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3421 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3422 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3423 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3426 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3427 txd_lower |= E1000_TXD_CMD_VLE;
3428 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3431 i = tx_ring->next_to_use;
3434 buffer_info = &tx_ring->buffer_info[i];
3435 tx_desc = E1000_TX_DESC(*tx_ring, i);
3436 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3437 tx_desc->lower.data =
3438 cpu_to_le32(txd_lower | buffer_info->length);
3439 tx_desc->upper.data = cpu_to_le32(txd_upper);
3442 if (i == tx_ring->count)
3446 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3449 * Force memory writes to complete before letting h/w
3450 * know there are new descriptors to fetch. (Only
3451 * applicable for weak-ordered memory model archs,
3456 tx_ring->next_to_use = i;
3457 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3459 * we need this if more than one processor can write to our tail
3460 * at a time, it synchronizes IO on IA64/Altix systems
3465 #define MINIMUM_DHCP_PACKET_SIZE 282
3466 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3467 struct sk_buff *skb)
3469 struct e1000_hw *hw = &adapter->hw;
3472 if (vlan_tx_tag_present(skb)) {
3473 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3474 && (adapter->hw.mng_cookie.status &
3475 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3479 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3482 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3486 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3489 if (ip->protocol != IPPROTO_UDP)
3492 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3493 if (ntohs(udp->dest) != 67)
3496 offset = (u8 *)udp + 8 - skb->data;
3497 length = skb->len - offset;
3498 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3504 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3506 struct e1000_adapter *adapter = netdev_priv(netdev);
3508 netif_stop_queue(netdev);
3510 * Herbert's original patch had:
3511 * smp_mb__after_netif_stop_queue();
3512 * but since that doesn't exist yet, just open code it.
3517 * We need to check again in a case another CPU has just
3518 * made room available.
3520 if (e1000_desc_unused(adapter->tx_ring) < size)
3524 netif_start_queue(netdev);
3525 ++adapter->restart_queue;
3529 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3531 struct e1000_adapter *adapter = netdev_priv(netdev);
3533 if (e1000_desc_unused(adapter->tx_ring) >= size)
3535 return __e1000_maybe_stop_tx(netdev, size);
3538 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3539 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3541 struct e1000_adapter *adapter = netdev_priv(netdev);
3542 struct e1000_ring *tx_ring = adapter->tx_ring;
3544 unsigned int max_per_txd = E1000_MAX_PER_TXD;
3545 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3546 unsigned int tx_flags = 0;
3547 unsigned int len = skb->len - skb->data_len;
3548 unsigned long irq_flags;
3549 unsigned int nr_frags;
3555 if (test_bit(__E1000_DOWN, &adapter->state)) {
3556 dev_kfree_skb_any(skb);
3557 return NETDEV_TX_OK;
3560 if (skb->len <= 0) {
3561 dev_kfree_skb_any(skb);
3562 return NETDEV_TX_OK;
3565 mss = skb_shinfo(skb)->gso_size;
3567 * The controller does a simple calculation to
3568 * make sure there is enough room in the FIFO before
3569 * initiating the DMA for each buffer. The calc is:
3570 * 4 = ceil(buffer len/mss). To make sure we don't
3571 * overrun the FIFO, adjust the max buffer len if mss
3576 max_per_txd = min(mss << 2, max_per_txd);
3577 max_txd_pwr = fls(max_per_txd) - 1;
3580 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
3581 * points to just header, pull a few bytes of payload from
3582 * frags into skb->data
3584 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3586 * we do this workaround for ES2LAN, but it is un-necessary,
3587 * avoiding it could save a lot of cycles
3589 if (skb->data_len && (hdr_len == len)) {
3590 unsigned int pull_size;
3592 pull_size = min((unsigned int)4, skb->data_len);
3593 if (!__pskb_pull_tail(skb, pull_size)) {
3594 e_err("__pskb_pull_tail failed.\n");
3595 dev_kfree_skb_any(skb);
3596 return NETDEV_TX_OK;
3598 len = skb->len - skb->data_len;
3602 /* reserve a descriptor for the offload context */
3603 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3607 count += TXD_USE_COUNT(len, max_txd_pwr);
3609 nr_frags = skb_shinfo(skb)->nr_frags;
3610 for (f = 0; f < nr_frags; f++)
3611 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3614 if (adapter->hw.mac.tx_pkt_filtering)
3615 e1000_transfer_dhcp_info(adapter, skb);
3617 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3618 /* Collision - tell upper layer to requeue */
3619 return NETDEV_TX_LOCKED;
3622 * need: count + 2 desc gap to keep tail from touching
3623 * head, otherwise try next time
3625 if (e1000_maybe_stop_tx(netdev, count + 2)) {
3626 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3627 return NETDEV_TX_BUSY;
3630 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3631 tx_flags |= E1000_TX_FLAGS_VLAN;
3632 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3635 first = tx_ring->next_to_use;
3637 tso = e1000_tso(adapter, skb);
3639 dev_kfree_skb_any(skb);
3640 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3641 return NETDEV_TX_OK;
3645 tx_flags |= E1000_TX_FLAGS_TSO;
3646 else if (e1000_tx_csum(adapter, skb))
3647 tx_flags |= E1000_TX_FLAGS_CSUM;
3650 * Old method was to assume IPv4 packet by default if TSO was enabled.
3651 * 82571 hardware supports TSO capabilities for IPv6 as well...
3652 * no longer assume, we must.
3654 if (skb->protocol == htons(ETH_P_IP))
3655 tx_flags |= E1000_TX_FLAGS_IPV4;
3657 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3659 /* handle pci_map_single() error in e1000_tx_map */
3660 dev_kfree_skb_any(skb);
3661 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3662 return NETDEV_TX_OK;
3665 e1000_tx_queue(adapter, tx_flags, count);
3667 netdev->trans_start = jiffies;
3669 /* Make sure there is space in the ring for the next send. */
3670 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3672 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3673 return NETDEV_TX_OK;
3677 * e1000_tx_timeout - Respond to a Tx Hang
3678 * @netdev: network interface device structure
3680 static void e1000_tx_timeout(struct net_device *netdev)
3682 struct e1000_adapter *adapter = netdev_priv(netdev);
3684 /* Do the reset outside of interrupt context */
3685 adapter->tx_timeout_count++;
3686 schedule_work(&adapter->reset_task);
3689 static void e1000_reset_task(struct work_struct *work)
3691 struct e1000_adapter *adapter;
3692 adapter = container_of(work, struct e1000_adapter, reset_task);
3694 e1000e_reinit_locked(adapter);
3698 * e1000_get_stats - Get System Network Statistics
3699 * @netdev: network interface device structure
3701 * Returns the address of the device statistics structure.
3702 * The statistics are actually updated from the timer callback.
3704 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3706 struct e1000_adapter *adapter = netdev_priv(netdev);
3708 /* only return the current stats */
3709 return &adapter->net_stats;
3713 * e1000_change_mtu - Change the Maximum Transfer Unit
3714 * @netdev: network interface device structure
3715 * @new_mtu: new value for maximum frame size
3717 * Returns 0 on success, negative on failure
3719 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3721 struct e1000_adapter *adapter = netdev_priv(netdev);
3722 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3724 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3725 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3726 e_err("Invalid MTU setting\n");
3730 /* Jumbo frame size limits */
3731 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3732 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3733 e_err("Jumbo Frames not supported.\n");
3736 if (adapter->hw.phy.type == e1000_phy_ife) {
3737 e_err("Jumbo Frames not supported.\n");
3742 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3743 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3744 e_err("MTU > 9216 not supported.\n");
3748 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3750 /* e1000e_down has a dependency on max_frame_size */
3751 adapter->max_frame_size = max_frame;
3752 if (netif_running(netdev))
3753 e1000e_down(adapter);
3756 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3757 * means we reserve 2 more, this pushes us to allocate from the next
3759 * i.e. RXBUFFER_2048 --> size-4096 slab
3760 * However with the new *_jumbo_rx* routines, jumbo receives will use
3764 if (max_frame <= 256)
3765 adapter->rx_buffer_len = 256;
3766 else if (max_frame <= 512)
3767 adapter->rx_buffer_len = 512;
3768 else if (max_frame <= 1024)
3769 adapter->rx_buffer_len = 1024;
3770 else if (max_frame <= 2048)
3771 adapter->rx_buffer_len = 2048;
3773 adapter->rx_buffer_len = 4096;
3775 /* adjust allocation if LPE protects us, and we aren't using SBP */
3776 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3777 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3778 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3781 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3782 netdev->mtu = new_mtu;
3784 if (netif_running(netdev))
3787 e1000e_reset(adapter);
3789 clear_bit(__E1000_RESETTING, &adapter->state);
3794 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3797 struct e1000_adapter *adapter = netdev_priv(netdev);
3798 struct mii_ioctl_data *data = if_mii(ifr);
3800 if (adapter->hw.phy.media_type != e1000_media_type_copper)
3805 data->phy_id = adapter->hw.phy.addr;
3808 if (!capable(CAP_NET_ADMIN))
3810 switch (data->reg_num & 0x1F) {
3812 data->val_out = adapter->phy_regs.bmcr;
3815 data->val_out = adapter->phy_regs.bmsr;
3818 data->val_out = (adapter->hw.phy.id >> 16);
3821 data->val_out = (adapter->hw.phy.id & 0xFFFF);
3824 data->val_out = adapter->phy_regs.advertise;
3827 data->val_out = adapter->phy_regs.lpa;
3830 data->val_out = adapter->phy_regs.expansion;
3833 data->val_out = adapter->phy_regs.ctrl1000;
3836 data->val_out = adapter->phy_regs.stat1000;
3839 data->val_out = adapter->phy_regs.estatus;
3852 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3858 return e1000_mii_ioctl(netdev, ifr, cmd);
3864 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3866 struct net_device *netdev = pci_get_drvdata(pdev);
3867 struct e1000_adapter *adapter = netdev_priv(netdev);
3868 struct e1000_hw *hw = &adapter->hw;
3869 u32 ctrl, ctrl_ext, rctl, status;
3870 u32 wufc = adapter->wol;
3873 netif_device_detach(netdev);
3875 if (netif_running(netdev)) {
3876 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3877 e1000e_down(adapter);
3878 e1000_free_irq(adapter);
3881 retval = pci_save_state(pdev);
3885 status = er32(STATUS);
3886 if (status & E1000_STATUS_LU)
3887 wufc &= ~E1000_WUFC_LNKC;
3890 e1000_setup_rctl(adapter);
3891 e1000_set_multi(netdev);
3893 /* turn on all-multi mode if wake on multicast is enabled */
3894 if (wufc & E1000_WUFC_MC) {
3896 rctl |= E1000_RCTL_MPE;
3901 /* advertise wake from D3Cold */
3902 #define E1000_CTRL_ADVD3WUC 0x00100000
3903 /* phy power management enable */
3904 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3905 ctrl |= E1000_CTRL_ADVD3WUC |
3906 E1000_CTRL_EN_PHY_PWR_MGMT;
3909 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3910 adapter->hw.phy.media_type ==
3911 e1000_media_type_internal_serdes) {
3912 /* keep the laser running in D3 */
3913 ctrl_ext = er32(CTRL_EXT);
3914 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3915 ew32(CTRL_EXT, ctrl_ext);
3918 if (adapter->flags & FLAG_IS_ICH)
3919 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
3921 /* Allow time for pending master requests to run */
3922 e1000e_disable_pcie_master(&adapter->hw);
3924 ew32(WUC, E1000_WUC_PME_EN);
3926 pci_enable_wake(pdev, PCI_D3hot, 1);
3927 pci_enable_wake(pdev, PCI_D3cold, 1);
3931 pci_enable_wake(pdev, PCI_D3hot, 0);
3932 pci_enable_wake(pdev, PCI_D3cold, 0);
3935 /* make sure adapter isn't asleep if manageability is enabled */
3936 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3937 pci_enable_wake(pdev, PCI_D3hot, 1);
3938 pci_enable_wake(pdev, PCI_D3cold, 1);
3941 if (adapter->hw.phy.type == e1000_phy_igp_3)
3942 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3945 * Release control of h/w to f/w. If f/w is AMT enabled, this
3946 * would have already happened in close and is redundant.
3948 e1000_release_hw_control(adapter);
3950 pci_disable_device(pdev);
3952 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3957 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
3963 * 82573 workaround - disable L1 ASPM on mobile chipsets
3965 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
3966 * resulting in lost data or garbage information on the pci-e link
3967 * level. This could result in (false) bad EEPROM checksum errors,
3968 * long ping times (up to 2s) or even a system freeze/hang.
3970 * Unfortunately this feature saves about 1W power consumption when
3973 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3974 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
3976 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
3978 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
3983 static int e1000_resume(struct pci_dev *pdev)
3985 struct net_device *netdev = pci_get_drvdata(pdev);
3986 struct e1000_adapter *adapter = netdev_priv(netdev);
3987 struct e1000_hw *hw = &adapter->hw;
3990 pci_set_power_state(pdev, PCI_D0);
3991 pci_restore_state(pdev);
3992 e1000e_disable_l1aspm(pdev);
3994 err = pci_enable_device_mem(pdev);
3997 "Cannot enable PCI device from suspend\n");
4001 pci_set_master(pdev);
4003 pci_enable_wake(pdev, PCI_D3hot, 0);
4004 pci_enable_wake(pdev, PCI_D3cold, 0);
4006 if (netif_running(netdev)) {
4007 err = e1000_request_irq(adapter);
4012 e1000e_power_up_phy(adapter);
4013 e1000e_reset(adapter);
4016 e1000_init_manageability(adapter);
4018 if (netif_running(netdev))
4021 netif_device_attach(netdev);
4024 * If the controller has AMT, do not set DRV_LOAD until the interface
4025 * is up. For all other cases, let the f/w know that the h/w is now
4026 * under the control of the driver.
4028 if (!(adapter->flags & FLAG_HAS_AMT))
4029 e1000_get_hw_control(adapter);
4035 static void e1000_shutdown(struct pci_dev *pdev)
4037 e1000_suspend(pdev, PMSG_SUSPEND);
4040 #ifdef CONFIG_NET_POLL_CONTROLLER
4042 * Polling 'interrupt' - used by things like netconsole to send skbs
4043 * without having to re-enable interrupts. It's not called while
4044 * the interrupt routine is executing.
4046 static void e1000_netpoll(struct net_device *netdev)
4048 struct e1000_adapter *adapter = netdev_priv(netdev);
4050 disable_irq(adapter->pdev->irq);
4051 e1000_intr(adapter->pdev->irq, netdev);
4053 enable_irq(adapter->pdev->irq);
4058 * e1000_io_error_detected - called when PCI error is detected
4059 * @pdev: Pointer to PCI device
4060 * @state: The current pci connection state
4062 * This function is called after a PCI bus error affecting
4063 * this device has been detected.
4065 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4066 pci_channel_state_t state)
4068 struct net_device *netdev = pci_get_drvdata(pdev);
4069 struct e1000_adapter *adapter = netdev_priv(netdev);
4071 netif_device_detach(netdev);
4073 if (netif_running(netdev))
4074 e1000e_down(adapter);
4075 pci_disable_device(pdev);
4077 /* Request a slot slot reset. */
4078 return PCI_ERS_RESULT_NEED_RESET;
4082 * e1000_io_slot_reset - called after the pci bus has been reset.
4083 * @pdev: Pointer to PCI device
4085 * Restart the card from scratch, as if from a cold-boot. Implementation
4086 * resembles the first-half of the e1000_resume routine.
4088 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4090 struct net_device *netdev = pci_get_drvdata(pdev);
4091 struct e1000_adapter *adapter = netdev_priv(netdev);
4092 struct e1000_hw *hw = &adapter->hw;
4095 e1000e_disable_l1aspm(pdev);
4096 err = pci_enable_device_mem(pdev);
4099 "Cannot re-enable PCI device after reset.\n");
4100 return PCI_ERS_RESULT_DISCONNECT;
4102 pci_set_master(pdev);
4103 pci_restore_state(pdev);
4105 pci_enable_wake(pdev, PCI_D3hot, 0);
4106 pci_enable_wake(pdev, PCI_D3cold, 0);
4108 e1000e_reset(adapter);
4111 return PCI_ERS_RESULT_RECOVERED;
4115 * e1000_io_resume - called when traffic can start flowing again.
4116 * @pdev: Pointer to PCI device
4118 * This callback is called when the error recovery driver tells us that
4119 * its OK to resume normal operation. Implementation resembles the
4120 * second-half of the e1000_resume routine.
4122 static void e1000_io_resume(struct pci_dev *pdev)
4124 struct net_device *netdev = pci_get_drvdata(pdev);
4125 struct e1000_adapter *adapter = netdev_priv(netdev);
4127 e1000_init_manageability(adapter);
4129 if (netif_running(netdev)) {
4130 if (e1000e_up(adapter)) {
4132 "can't bring device back up after reset\n");
4137 netif_device_attach(netdev);
4140 * If the controller has AMT, do not set DRV_LOAD until the interface
4141 * is up. For all other cases, let the f/w know that the h/w is now
4142 * under the control of the driver.
4144 if (!(adapter->flags & FLAG_HAS_AMT))
4145 e1000_get_hw_control(adapter);
4149 static void e1000_print_device_info(struct e1000_adapter *adapter)
4151 struct e1000_hw *hw = &adapter->hw;
4152 struct net_device *netdev = adapter->netdev;
4155 /* print bus type/speed/width info */
4156 e_info("(PCI Express:2.5GB/s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
4158 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4161 netdev->dev_addr[0], netdev->dev_addr[1],
4162 netdev->dev_addr[2], netdev->dev_addr[3],
4163 netdev->dev_addr[4], netdev->dev_addr[5]);
4164 e_info("Intel(R) PRO/%s Network Connection\n",
4165 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4166 e1000e_read_pba_num(hw, &pba_num);
4167 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4168 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4171 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4173 struct e1000_hw *hw = &adapter->hw;
4177 if (hw->mac.type != e1000_82573)
4180 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4181 if (!(le16_to_cpu(buf) & (1 << 0))) {
4182 /* Deep Smart Power Down (DSPD) */
4183 e_warn("Warning: detected DSPD enabled in EEPROM\n");
4186 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4187 if (le16_to_cpu(buf) & (3 << 2)) {
4189 e_warn("Warning: detected ASPM enabled in EEPROM\n");
4194 * e1000_probe - Device Initialization Routine
4195 * @pdev: PCI device information struct
4196 * @ent: entry in e1000_pci_tbl
4198 * Returns 0 on success, negative on failure
4200 * e1000_probe initializes an adapter identified by a pci_dev structure.
4201 * The OS initialization, configuring of the adapter private structure,
4202 * and a hardware reset occur.
4204 static int __devinit e1000_probe(struct pci_dev *pdev,
4205 const struct pci_device_id *ent)
4207 struct net_device *netdev;
4208 struct e1000_adapter *adapter;
4209 struct e1000_hw *hw;
4210 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4211 resource_size_t mmio_start, mmio_len;
4212 resource_size_t flash_start, flash_len;
4214 static int cards_found;
4215 int i, err, pci_using_dac;
4216 u16 eeprom_data = 0;
4217 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4219 e1000e_disable_l1aspm(pdev);
4221 err = pci_enable_device_mem(pdev);
4226 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4228 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4232 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4234 err = pci_set_consistent_dma_mask(pdev,
4237 dev_err(&pdev->dev, "No usable DMA "
4238 "configuration, aborting\n");
4244 err = pci_request_selected_regions(pdev,
4245 pci_select_bars(pdev, IORESOURCE_MEM),
4246 e1000e_driver_name);
4250 pci_set_master(pdev);
4251 pci_save_state(pdev);
4254 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4256 goto err_alloc_etherdev;
4258 SET_NETDEV_DEV(netdev, &pdev->dev);
4260 pci_set_drvdata(pdev, netdev);
4261 adapter = netdev_priv(netdev);
4263 adapter->netdev = netdev;
4264 adapter->pdev = pdev;
4266 adapter->pba = ei->pba;
4267 adapter->flags = ei->flags;
4268 adapter->hw.adapter = adapter;
4269 adapter->hw.mac.type = ei->mac;
4270 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4272 mmio_start = pci_resource_start(pdev, 0);
4273 mmio_len = pci_resource_len(pdev, 0);
4276 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4277 if (!adapter->hw.hw_addr)
4280 if ((adapter->flags & FLAG_HAS_FLASH) &&
4281 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4282 flash_start = pci_resource_start(pdev, 1);
4283 flash_len = pci_resource_len(pdev, 1);
4284 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4285 if (!adapter->hw.flash_address)
4289 /* construct the net_device struct */
4290 netdev->open = &e1000_open;
4291 netdev->stop = &e1000_close;
4292 netdev->hard_start_xmit = &e1000_xmit_frame;
4293 netdev->get_stats = &e1000_get_stats;
4294 netdev->set_multicast_list = &e1000_set_multi;
4295 netdev->set_mac_address = &e1000_set_mac;
4296 netdev->change_mtu = &e1000_change_mtu;
4297 netdev->do_ioctl = &e1000_ioctl;
4298 e1000e_set_ethtool_ops(netdev);
4299 netdev->tx_timeout = &e1000_tx_timeout;
4300 netdev->watchdog_timeo = 5 * HZ;
4301 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4302 netdev->vlan_rx_register = e1000_vlan_rx_register;
4303 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
4304 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
4305 #ifdef CONFIG_NET_POLL_CONTROLLER
4306 netdev->poll_controller = e1000_netpoll;
4308 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4310 netdev->mem_start = mmio_start;
4311 netdev->mem_end = mmio_start + mmio_len;
4313 adapter->bd_number = cards_found++;
4315 /* setup adapter struct */
4316 err = e1000_sw_init(adapter);
4322 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4323 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4324 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4326 err = ei->get_variants(adapter);
4330 hw->mac.ops.get_bus_info(&adapter->hw);
4332 adapter->hw.phy.autoneg_wait_to_complete = 0;
4334 /* Copper options */
4335 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
4336 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4337 adapter->hw.phy.disable_polarity_correction = 0;
4338 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4341 if (e1000_check_reset_block(&adapter->hw))
4342 e_info("PHY reset is blocked due to SOL/IDER session.\n");
4344 netdev->features = NETIF_F_SG |
4346 NETIF_F_HW_VLAN_TX |
4349 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4350 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4352 netdev->features |= NETIF_F_TSO;
4353 netdev->features |= NETIF_F_TSO6;
4355 netdev->vlan_features |= NETIF_F_TSO;
4356 netdev->vlan_features |= NETIF_F_TSO6;
4357 netdev->vlan_features |= NETIF_F_HW_CSUM;
4358 netdev->vlan_features |= NETIF_F_SG;
4361 netdev->features |= NETIF_F_HIGHDMA;
4364 * We should not be using LLTX anymore, but we are still Tx faster with
4367 netdev->features |= NETIF_F_LLTX;
4369 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4370 adapter->flags |= FLAG_MNG_PT_ENABLED;
4373 * before reading the NVM, reset the controller to
4374 * put the device in a known good starting state
4376 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4379 * systems with ASPM and others may see the checksum fail on the first
4380 * attempt. Let's give it a few tries
4383 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4386 e_err("The NVM Checksum Is Not Valid\n");
4392 e1000_eeprom_checks(adapter);
4394 /* copy the MAC address out of the NVM */
4395 if (e1000e_read_mac_addr(&adapter->hw))
4396 e_err("NVM Read Error while reading MAC address\n");
4398 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4399 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4401 if (!is_valid_ether_addr(netdev->perm_addr)) {
4402 e_err("Invalid MAC Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
4403 netdev->perm_addr[0], netdev->perm_addr[1],
4404 netdev->perm_addr[2], netdev->perm_addr[3],
4405 netdev->perm_addr[4], netdev->perm_addr[5]);
4410 init_timer(&adapter->watchdog_timer);
4411 adapter->watchdog_timer.function = &e1000_watchdog;
4412 adapter->watchdog_timer.data = (unsigned long) adapter;
4414 init_timer(&adapter->phy_info_timer);
4415 adapter->phy_info_timer.function = &e1000_update_phy_info;
4416 adapter->phy_info_timer.data = (unsigned long) adapter;
4418 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4419 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4421 e1000e_check_options(adapter);
4423 /* Initialize link parameters. User can change them with ethtool */
4424 adapter->hw.mac.autoneg = 1;
4425 adapter->fc_autoneg = 1;
4426 adapter->hw.fc.original_type = e1000_fc_default;
4427 adapter->hw.fc.type = e1000_fc_default;
4428 adapter->hw.phy.autoneg_advertised = 0x2f;
4430 /* ring size defaults */
4431 adapter->rx_ring->count = 256;
4432 adapter->tx_ring->count = 256;
4435 * Initial Wake on LAN setting - If APM wake is enabled in
4436 * the EEPROM, enable the ACPI Magic Packet filter
4438 if (adapter->flags & FLAG_APME_IN_WUC) {
4439 /* APME bit in EEPROM is mapped to WUC.APME */
4440 eeprom_data = er32(WUC);
4441 eeprom_apme_mask = E1000_WUC_APME;
4442 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4443 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4444 (adapter->hw.bus.func == 1))
4445 e1000_read_nvm(&adapter->hw,
4446 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4448 e1000_read_nvm(&adapter->hw,
4449 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4452 /* fetch WoL from EEPROM */
4453 if (eeprom_data & eeprom_apme_mask)
4454 adapter->eeprom_wol |= E1000_WUFC_MAG;
4457 * now that we have the eeprom settings, apply the special cases
4458 * where the eeprom may be wrong or the board simply won't support
4459 * wake on lan on a particular port
4461 if (!(adapter->flags & FLAG_HAS_WOL))
4462 adapter->eeprom_wol = 0;
4464 /* initialize the wol settings based on the eeprom settings */
4465 adapter->wol = adapter->eeprom_wol;
4467 /* reset the hardware with the new settings */
4468 e1000e_reset(adapter);
4471 * If the controller has AMT, do not set DRV_LOAD until the interface
4472 * is up. For all other cases, let the f/w know that the h/w is now
4473 * under the control of the driver.
4475 if (!(adapter->flags & FLAG_HAS_AMT))
4476 e1000_get_hw_control(adapter);
4478 /* tell the stack to leave us alone until e1000_open() is called */
4479 netif_carrier_off(netdev);
4480 netif_tx_stop_all_queues(netdev);
4482 strcpy(netdev->name, "eth%d");
4483 err = register_netdev(netdev);
4487 e1000_print_device_info(adapter);
4492 if (!(adapter->flags & FLAG_HAS_AMT))
4493 e1000_release_hw_control(adapter);
4495 if (!e1000_check_reset_block(&adapter->hw))
4496 e1000_phy_hw_reset(&adapter->hw);
4499 kfree(adapter->tx_ring);
4500 kfree(adapter->rx_ring);
4502 if (adapter->hw.flash_address)
4503 iounmap(adapter->hw.flash_address);
4505 iounmap(adapter->hw.hw_addr);
4507 free_netdev(netdev);
4509 pci_release_selected_regions(pdev,
4510 pci_select_bars(pdev, IORESOURCE_MEM));
4513 pci_disable_device(pdev);
4518 * e1000_remove - Device Removal Routine
4519 * @pdev: PCI device information struct
4521 * e1000_remove is called by the PCI subsystem to alert the driver
4522 * that it should release a PCI device. The could be caused by a
4523 * Hot-Plug event, or because the driver is going to be removed from
4526 static void __devexit e1000_remove(struct pci_dev *pdev)
4528 struct net_device *netdev = pci_get_drvdata(pdev);
4529 struct e1000_adapter *adapter = netdev_priv(netdev);
4532 * flush_scheduled work may reschedule our watchdog task, so
4533 * explicitly disable watchdog tasks from being rescheduled
4535 set_bit(__E1000_DOWN, &adapter->state);
4536 del_timer_sync(&adapter->watchdog_timer);
4537 del_timer_sync(&adapter->phy_info_timer);
4539 flush_scheduled_work();
4542 * Release control of h/w to f/w. If f/w is AMT enabled, this
4543 * would have already happened in close and is redundant.
4545 e1000_release_hw_control(adapter);
4547 unregister_netdev(netdev);
4549 if (!e1000_check_reset_block(&adapter->hw))
4550 e1000_phy_hw_reset(&adapter->hw);
4552 kfree(adapter->tx_ring);
4553 kfree(adapter->rx_ring);
4555 iounmap(adapter->hw.hw_addr);
4556 if (adapter->hw.flash_address)
4557 iounmap(adapter->hw.flash_address);
4558 pci_release_selected_regions(pdev,
4559 pci_select_bars(pdev, IORESOURCE_MEM));
4561 free_netdev(netdev);
4563 pci_disable_device(pdev);
4566 /* PCI Error Recovery (ERS) */
4567 static struct pci_error_handlers e1000_err_handler = {
4568 .error_detected = e1000_io_error_detected,
4569 .slot_reset = e1000_io_slot_reset,
4570 .resume = e1000_io_resume,
4573 static struct pci_device_id e1000_pci_tbl[] = {
4574 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4575 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4576 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4577 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4578 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4579 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4580 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
4581 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
4582 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
4584 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4585 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4586 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4587 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4589 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4590 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4591 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4593 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4594 board_80003es2lan },
4595 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4596 board_80003es2lan },
4597 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4598 board_80003es2lan },
4599 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4600 board_80003es2lan },
4602 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4603 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4604 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4605 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4606 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4607 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4608 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4610 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4611 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4612 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4613 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4614 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4615 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
4616 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
4617 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
4619 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
4620 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
4621 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
4623 { } /* terminate list */
4625 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4627 /* PCI Device API Driver */
4628 static struct pci_driver e1000_driver = {
4629 .name = e1000e_driver_name,
4630 .id_table = e1000_pci_tbl,
4631 .probe = e1000_probe,
4632 .remove = __devexit_p(e1000_remove),
4634 /* Power Management Hooks */
4635 .suspend = e1000_suspend,
4636 .resume = e1000_resume,
4638 .shutdown = e1000_shutdown,
4639 .err_handler = &e1000_err_handler
4643 * e1000_init_module - Driver Registration Routine
4645 * e1000_init_module is the first routine called when the driver is
4646 * loaded. All it does is register with the PCI subsystem.
4648 static int __init e1000_init_module(void)
4651 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4652 e1000e_driver_name, e1000e_driver_version);
4653 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
4654 e1000e_driver_name);
4655 ret = pci_register_driver(&e1000_driver);
4656 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
4657 PM_QOS_DEFAULT_VALUE);
4661 module_init(e1000_init_module);
4664 * e1000_exit_module - Driver Exit Cleanup Routine
4666 * e1000_exit_module is called just before the driver is removed
4669 static void __exit e1000_exit_module(void)
4671 pci_unregister_driver(&e1000_driver);
4672 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
4674 module_exit(e1000_exit_module);
4677 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4678 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4679 MODULE_LICENSE("GPL");
4680 MODULE_VERSION(DRV_VERSION);