2 Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
41 * All access to the CSR registers will go through the methods
42 * rt2x00pci_register_read and rt2x00pci_register_write.
43 * BBP and RF register require indirect register access,
44 * and use the CSR registers BBPCSR and RFCSR to achieve this.
45 * These indirect registers work with busy bits,
46 * and we will try maximal REGISTER_BUSY_COUNT times to access
47 * the register while taking a REGISTER_BUSY_DELAY us delay
48 * between each attampt. When the busy bit is still set at that time,
49 * the access attempt is considered to have failed,
50 * and we will print an error.
52 static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
57 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
58 rt2x00pci_register_read(rt2x00dev, BBPCSR, ®);
59 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
61 udelay(REGISTER_BUSY_DELAY);
67 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
73 * Wait until the BBP becomes ready.
75 reg = rt2500pci_bbp_check(rt2x00dev);
76 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
77 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
82 * Write the data into the BBP.
85 rt2x00_set_field32(®, BBPCSR_VALUE, value);
86 rt2x00_set_field32(®, BBPCSR_REGNUM, word);
87 rt2x00_set_field32(®, BBPCSR_BUSY, 1);
88 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1);
90 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
93 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
94 const unsigned int word, u8 *value)
99 * Wait until the BBP becomes ready.
101 reg = rt2500pci_bbp_check(rt2x00dev);
102 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
103 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
108 * Write the request into the BBP.
111 rt2x00_set_field32(®, BBPCSR_REGNUM, word);
112 rt2x00_set_field32(®, BBPCSR_BUSY, 1);
113 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0);
115 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
118 * Wait until the BBP becomes ready.
120 reg = rt2500pci_bbp_check(rt2x00dev);
121 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
122 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
127 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
130 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
131 const unsigned int word, const u32 value)
139 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
140 rt2x00pci_register_read(rt2x00dev, RFCSR, ®);
141 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
143 udelay(REGISTER_BUSY_DELAY);
146 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
151 rt2x00_set_field32(®, RFCSR_VALUE, value);
152 rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20);
153 rt2x00_set_field32(®, RFCSR_IF_SELECT, 0);
154 rt2x00_set_field32(®, RFCSR_BUSY, 1);
156 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
157 rt2x00_rf_write(rt2x00dev, word, value);
160 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
162 struct rt2x00_dev *rt2x00dev = eeprom->data;
165 rt2x00pci_register_read(rt2x00dev, CSR21, ®);
167 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
168 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
169 eeprom->reg_data_clock =
170 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
171 eeprom->reg_chip_select =
172 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
175 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
177 struct rt2x00_dev *rt2x00dev = eeprom->data;
180 rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
181 rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
182 rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK,
183 !!eeprom->reg_data_clock);
184 rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT,
185 !!eeprom->reg_chip_select);
187 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
190 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
191 #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
193 static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev,
194 const unsigned int word, u32 *data)
196 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
199 static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, u32 data)
202 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
205 static const struct rt2x00debug rt2500pci_rt2x00debug = {
206 .owner = THIS_MODULE,
208 .read = rt2500pci_read_csr,
209 .write = rt2500pci_write_csr,
210 .word_size = sizeof(u32),
211 .word_count = CSR_REG_SIZE / sizeof(u32),
214 .read = rt2x00_eeprom_read,
215 .write = rt2x00_eeprom_write,
216 .word_size = sizeof(u16),
217 .word_count = EEPROM_SIZE / sizeof(u16),
220 .read = rt2500pci_bbp_read,
221 .write = rt2500pci_bbp_write,
222 .word_size = sizeof(u8),
223 .word_count = BBP_SIZE / sizeof(u8),
226 .read = rt2x00_rf_read,
227 .write = rt2500pci_rf_write,
228 .word_size = sizeof(u32),
229 .word_count = RF_SIZE / sizeof(u32),
232 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
234 #ifdef CONFIG_RT2500PCI_RFKILL
235 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
239 rt2x00pci_register_read(rt2x00dev, GPIOCSR, ®);
240 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
243 #define rt2500pci_rfkill_poll NULL
244 #endif /* CONFIG_RT2500PCI_RFKILL */
246 #ifdef CONFIG_RT2500PCI_LEDS
247 static void rt2500pci_led_brightness(struct led_classdev *led_cdev,
248 enum led_brightness brightness)
250 struct rt2x00_led *led =
251 container_of(led_cdev, struct rt2x00_led, led_dev);
252 unsigned int enabled = brightness != LED_OFF;
253 unsigned int activity =
254 led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
257 rt2x00pci_register_read(led->rt2x00dev, LEDCSR, ®);
259 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
260 rt2x00_set_field32(®, LEDCSR_LINK, enabled);
261 rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled && activity);
264 rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
267 #define rt2500pci_led_brightness NULL
268 #endif /* CONFIG_RT2500PCI_LEDS */
271 * Configuration handlers.
273 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
274 struct rt2x00_intf *intf,
275 struct rt2x00intf_conf *conf,
276 const unsigned int flags)
278 struct data_queue *queue =
279 rt2x00queue_get_queue(rt2x00dev, RT2X00_BCN_QUEUE_BEACON);
280 unsigned int bcn_preload;
283 if (flags & CONFIG_UPDATE_TYPE) {
284 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
287 * Enable beacon config
289 bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
290 rt2x00pci_register_read(rt2x00dev, BCNCSR1, ®);
291 rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload);
292 rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, queue->cw_min);
293 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
296 * Enable synchronisation.
298 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
299 rt2x00_set_field32(®, CSR14_TSF_COUNT, 1);
300 rt2x00_set_field32(®, CSR14_TBCN,
301 (conf->sync == TSF_SYNC_BEACON));
302 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
303 rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync);
304 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
307 if (flags & CONFIG_UPDATE_MAC)
308 rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
309 conf->mac, sizeof(conf->mac));
311 if (flags & CONFIG_UPDATE_BSSID)
312 rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
313 conf->bssid, sizeof(conf->bssid));
316 static int rt2500pci_config_preamble(struct rt2x00_dev *rt2x00dev,
317 const int short_preamble,
318 const int ack_timeout,
319 const int ack_consume_time)
325 * When short preamble is enabled, we should set bit 0x08
327 preamble_mask = short_preamble << 3;
329 rt2x00pci_register_read(rt2x00dev, TXCSR1, ®);
330 rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT, ack_timeout);
331 rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME, ack_consume_time);
332 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
334 rt2x00pci_register_read(rt2x00dev, ARCSR2, ®);
335 rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00 | preamble_mask);
336 rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04);
337 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
338 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
340 rt2x00pci_register_read(rt2x00dev, ARCSR3, ®);
341 rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask);
342 rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04);
343 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
344 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
346 rt2x00pci_register_read(rt2x00dev, ARCSR4, ®);
347 rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask);
348 rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04);
349 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
350 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
352 rt2x00pci_register_read(rt2x00dev, ARCSR5, ®);
353 rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask);
354 rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84);
355 rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
356 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
361 static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
362 const int basic_rate_mask)
364 rt2x00pci_register_write(rt2x00dev, ARCSR1, basic_rate_mask);
367 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
368 struct rf_channel *rf, const int txpower)
375 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
378 * Switch on tuning bits.
379 * For RT2523 devices we do not need to update the R1 register.
381 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
382 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
383 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
386 * For RT2525 we should first set the channel to half band higher.
388 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
389 static const u32 vals[] = {
390 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
391 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
392 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
393 0x00080d2e, 0x00080d3a
396 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
397 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
398 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
400 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
403 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
404 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
405 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
407 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
410 * Channel 14 requires the Japan filter bit to be set.
413 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
414 rt2500pci_bbp_write(rt2x00dev, 70, r70);
419 * Switch off tuning bits.
420 * For RT2523 devices we do not need to update the R1 register.
422 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
423 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
424 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
427 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
428 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
431 * Clear false CRC during channel switch.
433 rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
436 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
441 rt2x00_rf_read(rt2x00dev, 3, &rf3);
442 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
443 rt2500pci_rf_write(rt2x00dev, 3, rf3);
446 static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
447 struct antenna_setup *ant)
453 rt2x00pci_register_read(rt2x00dev, BBPCSR1, ®);
454 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
455 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
458 * Configure the TX antenna.
462 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
463 rt2x00_set_field32(®, BBPCSR1_CCK, 0);
464 rt2x00_set_field32(®, BBPCSR1_OFDM, 0);
466 case ANTENNA_HW_DIVERSITY:
467 case ANTENNA_SW_DIVERSITY:
469 * NOTE: We should never come here because rt2x00lib is
470 * supposed to catch this and send us the correct antenna
471 * explicitely. However we are nog going to bug about this.
472 * Instead, just default to antenna B.
475 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
476 rt2x00_set_field32(®, BBPCSR1_CCK, 2);
477 rt2x00_set_field32(®, BBPCSR1_OFDM, 2);
482 * Configure the RX antenna.
486 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
488 case ANTENNA_HW_DIVERSITY:
489 case ANTENNA_SW_DIVERSITY:
491 * NOTE: We should never come here because rt2x00lib is
492 * supposed to catch this and send us the correct antenna
493 * explicitely. However we are nog going to bug about this.
494 * Instead, just default to antenna B.
497 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
502 * RT2525E and RT5222 need to flip TX I/Q
504 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
505 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
506 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
507 rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1);
508 rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1);
511 * RT2525E does not need RX I/Q Flip.
513 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
514 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
516 rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0);
517 rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0);
520 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
521 rt2500pci_bbp_write(rt2x00dev, 14, r14);
522 rt2500pci_bbp_write(rt2x00dev, 2, r2);
525 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
526 struct rt2x00lib_conf *libconf)
530 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
531 rt2x00_set_field32(®, CSR11_SLOT_TIME, libconf->slot_time);
532 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
534 rt2x00pci_register_read(rt2x00dev, CSR18, ®);
535 rt2x00_set_field32(®, CSR18_SIFS, libconf->sifs);
536 rt2x00_set_field32(®, CSR18_PIFS, libconf->pifs);
537 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
539 rt2x00pci_register_read(rt2x00dev, CSR19, ®);
540 rt2x00_set_field32(®, CSR19_DIFS, libconf->difs);
541 rt2x00_set_field32(®, CSR19_EIFS, libconf->eifs);
542 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
544 rt2x00pci_register_read(rt2x00dev, TXCSR1, ®);
545 rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
546 rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1);
547 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
549 rt2x00pci_register_read(rt2x00dev, CSR12, ®);
550 rt2x00_set_field32(®, CSR12_BEACON_INTERVAL,
551 libconf->conf->beacon_int * 16);
552 rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION,
553 libconf->conf->beacon_int * 16);
554 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
557 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
558 struct rt2x00lib_conf *libconf,
559 const unsigned int flags)
561 if (flags & CONFIG_UPDATE_PHYMODE)
562 rt2500pci_config_phymode(rt2x00dev, libconf->basic_rates);
563 if (flags & CONFIG_UPDATE_CHANNEL)
564 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
565 libconf->conf->power_level);
566 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
567 rt2500pci_config_txpower(rt2x00dev,
568 libconf->conf->power_level);
569 if (flags & CONFIG_UPDATE_ANTENNA)
570 rt2500pci_config_antenna(rt2x00dev, &libconf->ant);
571 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
572 rt2500pci_config_duration(rt2x00dev, libconf);
578 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
579 struct link_qual *qual)
584 * Update FCS error count from register.
586 rt2x00pci_register_read(rt2x00dev, CNT0, ®);
587 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
590 * Update False CCA count from register.
592 rt2x00pci_register_read(rt2x00dev, CNT3, ®);
593 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
596 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
598 rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
599 rt2x00dev->link.vgc_level = 0x48;
602 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
604 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
608 * To prevent collisions with MAC ASIC on chipsets
609 * up to version C the link tuning should halt after 20
610 * seconds while being associated.
612 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
613 rt2x00dev->intf_associated &&
614 rt2x00dev->link.count > 20)
617 rt2500pci_bbp_read(rt2x00dev, 17, &r17);
620 * Chipset versions C and lower should directly continue
621 * to the dynamic CCA tuning. Chipset version D and higher
622 * should go straight to dynamic CCA tuning when they
623 * are not associated.
625 if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
626 !rt2x00dev->intf_associated)
627 goto dynamic_cca_tune;
630 * A too low RSSI will cause too much false CCA which will
631 * then corrupt the R17 tuning. To remidy this the tuning should
632 * be stopped (While making sure the R17 value will not exceed limits)
634 if (rssi < -80 && rt2x00dev->link.count > 20) {
636 r17 = rt2x00dev->link.vgc_level;
637 rt2500pci_bbp_write(rt2x00dev, 17, r17);
643 * Special big-R17 for short distance
647 rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
652 * Special mid-R17 for middle distance
656 rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
661 * Leave short or middle distance condition, restore r17
662 * to the dynamic tuning range.
665 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
672 * R17 is inside the dynamic tuning range,
673 * start tuning the link based on the false cca counter.
675 if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
676 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
677 rt2x00dev->link.vgc_level = r17;
678 } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
679 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
680 rt2x00dev->link.vgc_level = r17;
685 * Initialization functions.
687 static void rt2500pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
688 struct queue_entry *entry)
690 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
693 rt2x00_desc_read(priv_rx->desc, 1, &word);
694 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, priv_rx->data_dma);
695 rt2x00_desc_write(priv_rx->desc, 1, word);
697 rt2x00_desc_read(priv_rx->desc, 0, &word);
698 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
699 rt2x00_desc_write(priv_rx->desc, 0, word);
702 static void rt2500pci_init_txentry(struct rt2x00_dev *rt2x00dev,
703 struct queue_entry *entry)
705 struct queue_entry_priv_pci_tx *priv_tx = entry->priv_data;
708 rt2x00_desc_read(priv_tx->desc, 1, &word);
709 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, priv_tx->data_dma);
710 rt2x00_desc_write(priv_tx->desc, 1, word);
712 rt2x00_desc_read(priv_tx->desc, 0, &word);
713 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
714 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
715 rt2x00_desc_write(priv_tx->desc, 0, word);
718 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
720 struct queue_entry_priv_pci_rx *priv_rx;
721 struct queue_entry_priv_pci_tx *priv_tx;
725 * Initialize registers.
727 rt2x00pci_register_read(rt2x00dev, TXCSR2, ®);
728 rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
729 rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
730 rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
731 rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
732 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
734 priv_tx = rt2x00dev->tx[1].entries[0].priv_data;
735 rt2x00pci_register_read(rt2x00dev, TXCSR3, ®);
736 rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER,
738 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
740 priv_tx = rt2x00dev->tx[0].entries[0].priv_data;
741 rt2x00pci_register_read(rt2x00dev, TXCSR5, ®);
742 rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER,
744 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
746 priv_tx = rt2x00dev->bcn[1].entries[0].priv_data;
747 rt2x00pci_register_read(rt2x00dev, TXCSR4, ®);
748 rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER,
750 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
752 priv_tx = rt2x00dev->bcn[0].entries[0].priv_data;
753 rt2x00pci_register_read(rt2x00dev, TXCSR6, ®);
754 rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER,
756 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
758 rt2x00pci_register_read(rt2x00dev, RXCSR1, ®);
759 rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
760 rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
761 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
763 priv_rx = rt2x00dev->rx->entries[0].priv_data;
764 rt2x00pci_register_read(rt2x00dev, RXCSR2, ®);
765 rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER, priv_tx->desc_dma);
766 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
771 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
775 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
776 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
777 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
778 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
780 rt2x00pci_register_read(rt2x00dev, TIMECSR, ®);
781 rt2x00_set_field32(®, TIMECSR_US_COUNT, 33);
782 rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63);
783 rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0);
784 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
786 rt2x00pci_register_read(rt2x00dev, CSR9, ®);
787 rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT,
788 rt2x00dev->rx->data_size / 128);
789 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
792 * Always use CWmin and CWmax set in descriptor.
794 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
795 rt2x00_set_field32(®, CSR11_CW_SELECT, 0);
796 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
798 rt2x00pci_register_read(rt2x00dev, LEDCSR, ®);
799 rt2x00_set_field32(®, LEDCSR_ON_PERIOD, 70);
800 rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, 30);
801 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
803 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
805 rt2x00pci_register_read(rt2x00dev, TXCSR8, ®);
806 rt2x00_set_field32(®, TXCSR8_BBP_ID0, 10);
807 rt2x00_set_field32(®, TXCSR8_BBP_ID0_VALID, 1);
808 rt2x00_set_field32(®, TXCSR8_BBP_ID1, 11);
809 rt2x00_set_field32(®, TXCSR8_BBP_ID1_VALID, 1);
810 rt2x00_set_field32(®, TXCSR8_BBP_ID2, 13);
811 rt2x00_set_field32(®, TXCSR8_BBP_ID2_VALID, 1);
812 rt2x00_set_field32(®, TXCSR8_BBP_ID3, 12);
813 rt2x00_set_field32(®, TXCSR8_BBP_ID3_VALID, 1);
814 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
816 rt2x00pci_register_read(rt2x00dev, ARTCSR0, ®);
817 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_1MBS, 112);
818 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_2MBS, 56);
819 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_5_5MBS, 20);
820 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_11MBS, 10);
821 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
823 rt2x00pci_register_read(rt2x00dev, ARTCSR1, ®);
824 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_6MBS, 45);
825 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_9MBS, 37);
826 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_12MBS, 33);
827 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_18MBS, 29);
828 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
830 rt2x00pci_register_read(rt2x00dev, ARTCSR2, ®);
831 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_24MBS, 29);
832 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_36MBS, 25);
833 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_48MBS, 25);
834 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_54MBS, 25);
835 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
837 rt2x00pci_register_read(rt2x00dev, RXCSR3, ®);
838 rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); /* CCK Signal */
839 rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1);
840 rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); /* Rssi */
841 rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1);
842 rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
843 rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1);
844 rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); /* RSSI */
845 rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1);
846 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
848 rt2x00pci_register_read(rt2x00dev, PCICSR, ®);
849 rt2x00_set_field32(®, PCICSR_BIG_ENDIAN, 0);
850 rt2x00_set_field32(®, PCICSR_RX_TRESHOLD, 0);
851 rt2x00_set_field32(®, PCICSR_TX_TRESHOLD, 3);
852 rt2x00_set_field32(®, PCICSR_BURST_LENTH, 1);
853 rt2x00_set_field32(®, PCICSR_ENABLE_CLK, 1);
854 rt2x00_set_field32(®, PCICSR_READ_MULTIPLE, 1);
855 rt2x00_set_field32(®, PCICSR_WRITE_INVALID, 1);
856 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
858 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
860 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
861 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
863 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
866 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
867 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
869 rt2x00pci_register_read(rt2x00dev, MACCSR2, ®);
870 rt2x00_set_field32(®, MACCSR2_DELAY, 64);
871 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
873 rt2x00pci_register_read(rt2x00dev, RALINKCSR, ®);
874 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17);
875 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26);
876 rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1);
877 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0);
878 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26);
879 rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1);
880 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
882 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
884 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
886 rt2x00pci_register_read(rt2x00dev, CSR1, ®);
887 rt2x00_set_field32(®, CSR1_SOFT_RESET, 1);
888 rt2x00_set_field32(®, CSR1_BBP_RESET, 0);
889 rt2x00_set_field32(®, CSR1_HOST_READY, 0);
890 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
892 rt2x00pci_register_read(rt2x00dev, CSR1, ®);
893 rt2x00_set_field32(®, CSR1_SOFT_RESET, 0);
894 rt2x00_set_field32(®, CSR1_HOST_READY, 1);
895 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
898 * We must clear the FCS and FIFO error count.
899 * These registers are cleared on read,
900 * so we may pass a useless variable to store the value.
902 rt2x00pci_register_read(rt2x00dev, CNT0, ®);
903 rt2x00pci_register_read(rt2x00dev, CNT4, ®);
908 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
915 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
916 rt2500pci_bbp_read(rt2x00dev, 0, &value);
917 if ((value != 0xff) && (value != 0x00))
918 goto continue_csr_init;
919 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
920 udelay(REGISTER_BUSY_DELAY);
923 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
927 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
928 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
929 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
930 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
931 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
932 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
933 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
934 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
935 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
936 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
937 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
938 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
939 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
940 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
941 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
942 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
943 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
944 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
945 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
946 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
947 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
948 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
949 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
950 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
951 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
952 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
953 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
954 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
955 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
956 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
958 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
959 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
961 if (eeprom != 0xffff && eeprom != 0x0000) {
962 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
963 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
964 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
972 * Device state switch handlers.
974 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
975 enum dev_state state)
979 rt2x00pci_register_read(rt2x00dev, RXCSR0, ®);
980 rt2x00_set_field32(®, RXCSR0_DISABLE_RX,
981 state == STATE_RADIO_RX_OFF);
982 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
985 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
986 enum dev_state state)
988 int mask = (state == STATE_RADIO_IRQ_OFF);
992 * When interrupts are being enabled, the interrupt registers
993 * should clear the register to assure a clean state.
995 if (state == STATE_RADIO_IRQ_ON) {
996 rt2x00pci_register_read(rt2x00dev, CSR7, ®);
997 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1001 * Only toggle the interrupts bits we are going to use.
1002 * Non-checked interrupt bits are disabled by default.
1004 rt2x00pci_register_read(rt2x00dev, CSR8, ®);
1005 rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask);
1006 rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask);
1007 rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask);
1008 rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask);
1009 rt2x00_set_field32(®, CSR8_RXDONE, mask);
1010 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1013 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1016 * Initialize all registers.
1018 if (rt2500pci_init_queues(rt2x00dev) ||
1019 rt2500pci_init_registers(rt2x00dev) ||
1020 rt2500pci_init_bbp(rt2x00dev)) {
1021 ERROR(rt2x00dev, "Register initialization failed.\n");
1026 * Enable interrupts.
1028 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1033 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1037 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1040 * Disable synchronisation.
1042 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1047 rt2x00pci_register_read(rt2x00dev, TXCSR0, ®);
1048 rt2x00_set_field32(®, TXCSR0_ABORT, 1);
1049 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1052 * Disable interrupts.
1054 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1057 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1058 enum dev_state state)
1066 put_to_sleep = (state != STATE_AWAKE);
1068 rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®);
1069 rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1);
1070 rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state);
1071 rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state);
1072 rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1073 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1076 * Device is not guaranteed to be in the requested state yet.
1077 * We must wait until the register indicates that the
1078 * device has entered the correct state.
1080 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1081 rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®);
1082 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1083 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1084 if (bbp_state == state && rf_state == state)
1089 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1090 "current device state: bbp %d and rf %d.\n",
1091 state, bbp_state, rf_state);
1096 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1097 enum dev_state state)
1102 case STATE_RADIO_ON:
1103 retval = rt2500pci_enable_radio(rt2x00dev);
1105 case STATE_RADIO_OFF:
1106 rt2500pci_disable_radio(rt2x00dev);
1108 case STATE_RADIO_RX_ON:
1109 case STATE_RADIO_RX_ON_LINK:
1110 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
1112 case STATE_RADIO_RX_OFF:
1113 case STATE_RADIO_RX_OFF_LINK:
1114 rt2500pci_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
1116 case STATE_DEEP_SLEEP:
1120 retval = rt2500pci_set_state(rt2x00dev, state);
1131 * TX descriptor initialization
1133 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1134 struct sk_buff *skb,
1135 struct txentry_desc *txdesc,
1136 struct ieee80211_tx_control *control)
1138 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1139 __le32 *txd = skbdesc->desc;
1143 * Start writing the descriptor words.
1145 rt2x00_desc_read(txd, 2, &word);
1146 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1147 rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1148 rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1149 rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1150 rt2x00_desc_write(txd, 2, word);
1152 rt2x00_desc_read(txd, 3, &word);
1153 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1154 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1155 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1156 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1157 rt2x00_desc_write(txd, 3, word);
1159 rt2x00_desc_read(txd, 10, &word);
1160 rt2x00_set_field32(&word, TXD_W10_RTS,
1161 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1162 rt2x00_desc_write(txd, 10, word);
1164 rt2x00_desc_read(txd, 0, &word);
1165 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1166 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1167 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1168 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1169 rt2x00_set_field32(&word, TXD_W0_ACK,
1170 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1171 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1172 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1173 rt2x00_set_field32(&word, TXD_W0_OFDM,
1174 test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1175 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1176 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1177 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1179 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1180 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
1181 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1182 rt2x00_desc_write(txd, 0, word);
1186 * TX data initialization
1188 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1189 const unsigned int queue)
1193 if (queue == RT2X00_BCN_QUEUE_BEACON) {
1194 rt2x00pci_register_read(rt2x00dev, CSR14, ®);
1195 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1196 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1);
1197 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1202 rt2x00pci_register_read(rt2x00dev, TXCSR0, ®);
1203 rt2x00_set_field32(®, TXCSR0_KICK_PRIO,
1204 (queue == IEEE80211_TX_QUEUE_DATA0));
1205 rt2x00_set_field32(®, TXCSR0_KICK_TX,
1206 (queue == IEEE80211_TX_QUEUE_DATA1));
1207 rt2x00_set_field32(®, TXCSR0_KICK_ATIM,
1208 (queue == RT2X00_BCN_QUEUE_ATIM));
1209 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1213 * RX control handlers
1215 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1216 struct rxdone_entry_desc *rxdesc)
1218 struct queue_entry_priv_pci_rx *priv_rx = entry->priv_data;
1222 rt2x00_desc_read(priv_rx->desc, 0, &word0);
1223 rt2x00_desc_read(priv_rx->desc, 2, &word2);
1226 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1227 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1228 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1229 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1231 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1232 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1233 entry->queue->rt2x00dev->rssi_offset;
1234 rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1235 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1236 rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
1240 * Interrupt functions.
1242 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1243 const enum ieee80211_tx_queue queue_idx)
1245 struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1246 struct queue_entry_priv_pci_tx *priv_tx;
1247 struct queue_entry *entry;
1248 struct txdone_entry_desc txdesc;
1251 while (!rt2x00queue_empty(queue)) {
1252 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1253 priv_tx = entry->priv_data;
1254 rt2x00_desc_read(priv_tx->desc, 0, &word);
1256 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1257 !rt2x00_get_field32(word, TXD_W0_VALID))
1261 * Obtain the status about this packet.
1263 txdesc.status = rt2x00_get_field32(word, TXD_W0_RESULT);
1264 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1266 rt2x00pci_txdone(rt2x00dev, entry, &txdesc);
1270 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1272 struct rt2x00_dev *rt2x00dev = dev_instance;
1276 * Get the interrupt sources & saved to local variable.
1277 * Write register value back to clear pending interrupts.
1279 rt2x00pci_register_read(rt2x00dev, CSR7, ®);
1280 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1285 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1289 * Handle interrupts, walk through all bits
1290 * and run the tasks, the bits are checked in order of
1295 * 1 - Beacon timer expired interrupt.
1297 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1298 rt2x00lib_beacondone(rt2x00dev);
1301 * 2 - Rx ring done interrupt.
1303 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1304 rt2x00pci_rxdone(rt2x00dev);
1307 * 3 - Atim ring transmit done interrupt.
1309 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1310 rt2500pci_txdone(rt2x00dev, RT2X00_BCN_QUEUE_ATIM);
1313 * 4 - Priority ring transmit done interrupt.
1315 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1316 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1319 * 5 - Tx ring transmit done interrupt.
1321 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1322 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1328 * Device probe functions.
1330 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1332 struct eeprom_93cx6 eeprom;
1337 rt2x00pci_register_read(rt2x00dev, CSR21, ®);
1339 eeprom.data = rt2x00dev;
1340 eeprom.register_read = rt2500pci_eepromregister_read;
1341 eeprom.register_write = rt2500pci_eepromregister_write;
1342 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1343 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1344 eeprom.reg_data_in = 0;
1345 eeprom.reg_data_out = 0;
1346 eeprom.reg_data_clock = 0;
1347 eeprom.reg_chip_select = 0;
1349 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1350 EEPROM_SIZE / sizeof(u16));
1353 * Start validation of the data that has been read.
1355 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1356 if (!is_valid_ether_addr(mac)) {
1357 DECLARE_MAC_BUF(macbuf);
1359 random_ether_addr(mac);
1360 EEPROM(rt2x00dev, "MAC: %s\n",
1361 print_mac(macbuf, mac));
1364 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1365 if (word == 0xffff) {
1366 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1367 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1368 ANTENNA_SW_DIVERSITY);
1369 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1370 ANTENNA_SW_DIVERSITY);
1371 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1373 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1374 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1375 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1376 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1377 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1380 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1381 if (word == 0xffff) {
1382 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1383 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1384 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1385 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1386 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1389 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1390 if (word == 0xffff) {
1391 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1392 DEFAULT_RSSI_OFFSET);
1393 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1394 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1400 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1407 * Read EEPROM word for configuration.
1409 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1412 * Identify RF chipset.
1414 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1415 rt2x00pci_register_read(rt2x00dev, CSR0, ®);
1416 rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1418 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1419 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1420 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1421 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1422 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1423 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1424 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1429 * Identify default antenna configuration.
1431 rt2x00dev->default_ant.tx =
1432 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1433 rt2x00dev->default_ant.rx =
1434 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1437 * Store led mode, for correct led behaviour.
1439 #ifdef CONFIG_RT2500PCI_LEDS
1440 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1444 case LED_MODE_ALPHA:
1445 case LED_MODE_DEFAULT:
1446 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1448 case LED_MODE_TXRX_ACTIVITY:
1449 rt2x00dev->led_flags =
1450 LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
1452 case LED_MODE_SIGNAL_STRENGTH:
1453 rt2x00dev->led_flags = LED_SUPPORT_RADIO;
1456 #endif /* CONFIG_RT2500PCI_LEDS */
1459 * Detect if this device has an hardware controlled radio.
1461 #ifdef CONFIG_RT2500PCI_RFKILL
1462 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1463 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1464 #endif /* CONFIG_RT2500PCI_RFKILL */
1467 * Check if the BBP tuning should be enabled.
1469 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1471 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1472 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1475 * Read the RSSI <-> dBm offset information.
1477 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1478 rt2x00dev->rssi_offset =
1479 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1485 * RF value list for RF2522
1488 static const struct rf_channel rf_vals_bg_2522[] = {
1489 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1490 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1491 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1492 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1493 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1494 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1495 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1496 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1497 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1498 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1499 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1500 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1501 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1502 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1506 * RF value list for RF2523
1509 static const struct rf_channel rf_vals_bg_2523[] = {
1510 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1511 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1512 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1513 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1514 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1515 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1516 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1517 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1518 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1519 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1520 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1521 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1522 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1523 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1527 * RF value list for RF2524
1530 static const struct rf_channel rf_vals_bg_2524[] = {
1531 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1532 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1533 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1534 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1535 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1536 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1537 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1538 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1539 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1540 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1541 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1542 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1543 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1544 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1548 * RF value list for RF2525
1551 static const struct rf_channel rf_vals_bg_2525[] = {
1552 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1553 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1554 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1555 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1556 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1557 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1558 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1559 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1560 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1561 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1562 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1563 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1564 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1565 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1569 * RF value list for RF2525e
1572 static const struct rf_channel rf_vals_bg_2525e[] = {
1573 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1574 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1575 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1576 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1577 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1578 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1579 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1580 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1581 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1582 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1583 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1584 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1585 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1586 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1590 * RF value list for RF5222
1591 * Supports: 2.4 GHz & 5.2 GHz
1593 static const struct rf_channel rf_vals_5222[] = {
1594 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1595 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1596 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1597 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1598 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1599 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1600 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1601 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1602 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1603 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1604 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1605 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1606 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1607 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1609 /* 802.11 UNI / HyperLan 2 */
1610 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1611 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1612 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1613 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1614 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1615 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1616 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1617 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1619 /* 802.11 HyperLan 2 */
1620 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1621 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1622 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1623 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1624 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1625 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1626 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1627 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1628 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1629 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1632 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1633 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1634 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1635 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1636 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1639 static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1641 struct hw_mode_spec *spec = &rt2x00dev->spec;
1646 * Initialize all hw fields.
1648 rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1649 rt2x00dev->hw->extra_tx_headroom = 0;
1650 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1651 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1652 rt2x00dev->hw->queues = 2;
1654 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1655 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1656 rt2x00_eeprom_addr(rt2x00dev,
1657 EEPROM_MAC_ADDR_0));
1660 * Convert tx_power array in eeprom.
1662 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1663 for (i = 0; i < 14; i++)
1664 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1667 * Initialize hw_mode information.
1669 spec->supported_bands = SUPPORT_BAND_2GHZ;
1670 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1671 spec->tx_power_a = NULL;
1672 spec->tx_power_bg = txpower;
1673 spec->tx_power_default = DEFAULT_TXPOWER;
1675 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1676 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1677 spec->channels = rf_vals_bg_2522;
1678 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1679 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1680 spec->channels = rf_vals_bg_2523;
1681 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1682 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1683 spec->channels = rf_vals_bg_2524;
1684 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1685 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1686 spec->channels = rf_vals_bg_2525;
1687 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1688 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1689 spec->channels = rf_vals_bg_2525e;
1690 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1691 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1692 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1693 spec->channels = rf_vals_5222;
1697 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1702 * Allocate eeprom data.
1704 retval = rt2500pci_validate_eeprom(rt2x00dev);
1708 retval = rt2500pci_init_eeprom(rt2x00dev);
1713 * Initialize hw specifications.
1715 rt2500pci_probe_hw_mode(rt2x00dev);
1718 * This device requires the atim queue
1720 __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1723 * Set the rssi offset.
1725 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1731 * IEEE80211 stack callback functions.
1733 static void rt2500pci_configure_filter(struct ieee80211_hw *hw,
1734 unsigned int changed_flags,
1735 unsigned int *total_flags,
1737 struct dev_addr_list *mc_list)
1739 struct rt2x00_dev *rt2x00dev = hw->priv;
1743 * Mask off any flags we are going to ignore from
1744 * the total_flags field.
1755 * Apply some rules to the filters:
1756 * - Some filters imply different filters to be set.
1757 * - Some things we can't filter out at all.
1760 *total_flags |= FIF_ALLMULTI;
1761 if (*total_flags & FIF_OTHER_BSS ||
1762 *total_flags & FIF_PROMISC_IN_BSS)
1763 *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
1766 * Check if there is any work left for us.
1768 if (rt2x00dev->packet_filter == *total_flags)
1770 rt2x00dev->packet_filter = *total_flags;
1773 * Start configuration steps.
1774 * Note that the version error will always be dropped
1775 * and broadcast frames will always be accepted since
1776 * there is no filter for it at this time.
1778 rt2x00pci_register_read(rt2x00dev, RXCSR0, ®);
1779 rt2x00_set_field32(®, RXCSR0_DROP_CRC,
1780 !(*total_flags & FIF_FCSFAIL));
1781 rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL,
1782 !(*total_flags & FIF_PLCPFAIL));
1783 rt2x00_set_field32(®, RXCSR0_DROP_CONTROL,
1784 !(*total_flags & FIF_CONTROL));
1785 rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME,
1786 !(*total_flags & FIF_PROMISC_IN_BSS));
1787 rt2x00_set_field32(®, RXCSR0_DROP_TODS,
1788 !(*total_flags & FIF_PROMISC_IN_BSS));
1789 rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1);
1790 rt2x00_set_field32(®, RXCSR0_DROP_MCAST,
1791 !(*total_flags & FIF_ALLMULTI));
1792 rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0);
1793 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1796 static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1797 u32 short_retry, u32 long_retry)
1799 struct rt2x00_dev *rt2x00dev = hw->priv;
1802 rt2x00pci_register_read(rt2x00dev, CSR11, ®);
1803 rt2x00_set_field32(®, CSR11_LONG_RETRY, long_retry);
1804 rt2x00_set_field32(®, CSR11_SHORT_RETRY, short_retry);
1805 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1810 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1812 struct rt2x00_dev *rt2x00dev = hw->priv;
1816 rt2x00pci_register_read(rt2x00dev, CSR17, ®);
1817 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1818 rt2x00pci_register_read(rt2x00dev, CSR16, ®);
1819 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1824 static int rt2500pci_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb,
1825 struct ieee80211_tx_control *control)
1827 struct rt2x00_dev *rt2x00dev = hw->priv;
1828 struct rt2x00_intf *intf = vif_to_intf(control->vif);
1829 struct queue_entry_priv_pci_tx *priv_tx;
1830 struct skb_frame_desc *skbdesc;
1832 if (unlikely(!intf->beacon))
1835 priv_tx = intf->beacon->priv_data;
1838 * Fill in skb descriptor
1840 skbdesc = get_skb_frame_desc(skb);
1841 memset(skbdesc, 0, sizeof(*skbdesc));
1842 skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
1843 skbdesc->data = skb->data;
1844 skbdesc->data_len = skb->len;
1845 skbdesc->desc = priv_tx->desc;
1846 skbdesc->desc_len = intf->beacon->queue->desc_size;
1847 skbdesc->entry = intf->beacon;
1850 * mac80211 doesn't provide the control->queue variable
1851 * for beacons. Set our own queue identification so
1852 * it can be used during descriptor initialization.
1854 control->queue = RT2X00_BCN_QUEUE_BEACON;
1855 rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
1858 * Enable beacon generation.
1859 * Write entire beacon with descriptor to register,
1860 * and kick the beacon generator.
1862 memcpy(priv_tx->data, skb->data, skb->len);
1863 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, control->queue);
1868 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1870 struct rt2x00_dev *rt2x00dev = hw->priv;
1873 rt2x00pci_register_read(rt2x00dev, CSR15, ®);
1874 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1877 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1879 .start = rt2x00mac_start,
1880 .stop = rt2x00mac_stop,
1881 .add_interface = rt2x00mac_add_interface,
1882 .remove_interface = rt2x00mac_remove_interface,
1883 .config = rt2x00mac_config,
1884 .config_interface = rt2x00mac_config_interface,
1885 .configure_filter = rt2500pci_configure_filter,
1886 .get_stats = rt2x00mac_get_stats,
1887 .set_retry_limit = rt2500pci_set_retry_limit,
1888 .bss_info_changed = rt2x00mac_bss_info_changed,
1889 .conf_tx = rt2x00mac_conf_tx,
1890 .get_tx_stats = rt2x00mac_get_tx_stats,
1891 .get_tsf = rt2500pci_get_tsf,
1892 .beacon_update = rt2500pci_beacon_update,
1893 .tx_last_beacon = rt2500pci_tx_last_beacon,
1896 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1897 .irq_handler = rt2500pci_interrupt,
1898 .probe_hw = rt2500pci_probe_hw,
1899 .initialize = rt2x00pci_initialize,
1900 .uninitialize = rt2x00pci_uninitialize,
1901 .init_rxentry = rt2500pci_init_rxentry,
1902 .init_txentry = rt2500pci_init_txentry,
1903 .set_device_state = rt2500pci_set_device_state,
1904 .rfkill_poll = rt2500pci_rfkill_poll,
1905 .link_stats = rt2500pci_link_stats,
1906 .reset_tuner = rt2500pci_reset_tuner,
1907 .link_tuner = rt2500pci_link_tuner,
1908 .led_brightness = rt2500pci_led_brightness,
1909 .write_tx_desc = rt2500pci_write_tx_desc,
1910 .write_tx_data = rt2x00pci_write_tx_data,
1911 .kick_tx_queue = rt2500pci_kick_tx_queue,
1912 .fill_rxdone = rt2500pci_fill_rxdone,
1913 .config_intf = rt2500pci_config_intf,
1914 .config_preamble = rt2500pci_config_preamble,
1915 .config = rt2500pci_config,
1918 static const struct data_queue_desc rt2500pci_queue_rx = {
1919 .entry_num = RX_ENTRIES,
1920 .data_size = DATA_FRAME_SIZE,
1921 .desc_size = RXD_DESC_SIZE,
1922 .priv_size = sizeof(struct queue_entry_priv_pci_rx),
1925 static const struct data_queue_desc rt2500pci_queue_tx = {
1926 .entry_num = TX_ENTRIES,
1927 .data_size = DATA_FRAME_SIZE,
1928 .desc_size = TXD_DESC_SIZE,
1929 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1932 static const struct data_queue_desc rt2500pci_queue_bcn = {
1933 .entry_num = BEACON_ENTRIES,
1934 .data_size = MGMT_FRAME_SIZE,
1935 .desc_size = TXD_DESC_SIZE,
1936 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1939 static const struct data_queue_desc rt2500pci_queue_atim = {
1940 .entry_num = ATIM_ENTRIES,
1941 .data_size = DATA_FRAME_SIZE,
1942 .desc_size = TXD_DESC_SIZE,
1943 .priv_size = sizeof(struct queue_entry_priv_pci_tx),
1946 static const struct rt2x00_ops rt2500pci_ops = {
1947 .name = KBUILD_MODNAME,
1950 .eeprom_size = EEPROM_SIZE,
1952 .rx = &rt2500pci_queue_rx,
1953 .tx = &rt2500pci_queue_tx,
1954 .bcn = &rt2500pci_queue_bcn,
1955 .atim = &rt2500pci_queue_atim,
1956 .lib = &rt2500pci_rt2x00_ops,
1957 .hw = &rt2500pci_mac80211_ops,
1958 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1959 .debugfs = &rt2500pci_rt2x00debug,
1960 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1964 * RT2500pci module information.
1966 static struct pci_device_id rt2500pci_device_table[] = {
1967 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1971 MODULE_AUTHOR(DRV_PROJECT);
1972 MODULE_VERSION(DRV_VERSION);
1973 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1974 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1975 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1976 MODULE_LICENSE("GPL");
1978 static struct pci_driver rt2500pci_driver = {
1979 .name = KBUILD_MODNAME,
1980 .id_table = rt2500pci_device_table,
1981 .probe = rt2x00pci_probe,
1982 .remove = __devexit_p(rt2x00pci_remove),
1983 .suspend = rt2x00pci_suspend,
1984 .resume = rt2x00pci_resume,
1987 static int __init rt2500pci_init(void)
1989 return pci_register_driver(&rt2500pci_driver);
1992 static void __exit rt2500pci_exit(void)
1994 pci_unregister_driver(&rt2500pci_driver);
1997 module_init(rt2500pci_init);
1998 module_exit(rt2500pci_exit);