2 * zs.c: Serial port driver for IOASIC DECstations.
4 * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
5 * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
8 * Copyright (C) 1998-2000 Harald Koerfgen
9 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
11 * For the rest of the code the original Copyright applies:
12 * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au)
13 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
16 * Note: for IOASIC systems the wiring is as follows:
19 * DIN-7 MJ-4 signal SCC
24 * DB-25 MMJ-6 signal SCC
31 * 12 DSRS(DCE) -> ~A.CTS (*)
36 * 23 DSRS(DTE) <- ~B.RTS
38 * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
39 * is shared with DSRS(DTE) at pin 23.
41 * As you can immediately notice the wiring of the RTS, DTR and DSR signals
42 * is a bit odd. This makes the handling of port B unnecessarily
43 * complicated and prevents the use of some automatic modes of operation.
46 #if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
50 #include <linux/bug.h>
51 #include <linux/console.h>
52 #include <linux/delay.h>
53 #include <linux/errno.h>
54 #include <linux/init.h>
55 #include <linux/interrupt.h>
57 #include <linux/ioport.h>
58 #include <linux/irqflags.h>
59 #include <linux/kernel.h>
60 #include <linux/major.h>
61 #include <linux/serial.h>
62 #include <linux/serial_core.h>
63 #include <linux/spinlock.h>
64 #include <linux/sysrq.h>
65 #include <linux/tty.h>
66 #include <linux/types.h>
68 #include <asm/atomic.h>
69 #include <asm/system.h>
71 #include <asm/dec/interrupts.h>
72 #include <asm/dec/ioasic_addrs.h>
73 #include <asm/dec/system.h>
78 MODULE_AUTHOR("Maciej W. Rozycki <macro@linux-mips.org>");
79 MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
80 MODULE_LICENSE("GPL");
83 static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
84 static char zs_version[] __initdata = "0.10";
87 * It would be nice to dynamically allocate everything that
88 * depends on ZS_NUM_SCCS, so we could support any number of
89 * Z85C30s, but for now...
91 #define ZS_NUM_SCCS 2 /* Max # of ZS chips supported. */
92 #define ZS_NUM_CHAN 2 /* 2 channels per chip. */
93 #define ZS_CHAN_A 0 /* Index of the channel A. */
94 #define ZS_CHAN_B 1 /* Index of the channel B. */
95 #define ZS_CHAN_IO_SIZE 8 /* IOMEM space size. */
96 #define ZS_CHAN_IO_STRIDE 4 /* Register alignment. */
97 #define ZS_CHAN_IO_OFFSET 1 /* The SCC resides on the high byte
98 of the 16-bit IOBUS. */
99 #define ZS_CLOCK 7372800 /* Z85C30 PCLK input clock rate. */
101 #define to_zport(uport) container_of(uport, struct zs_port, port)
104 resource_size_t scc[ZS_NUM_SCCS];
105 int irq[ZS_NUM_SCCS];
108 static struct zs_scc zs_sccs[ZS_NUM_SCCS];
110 static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
112 PAR_SPEC, /* write 1 */
115 X16CLK | SB1, /* write 4 */
117 0, 0, 0, /* write 6, 7, 8 */
118 MIE | DLC | NV, /* write 9 */
120 TCBR | RCBR, /* write 11 */
121 0, 0, /* BRG time constant, write 12 + 13 */
122 BRSRC | BRENABL, /* write 14 */
133 * Reading and writing Z85C30 registers.
135 static void recovery_delay(void)
140 static u8 read_zsreg(struct zs_port *zport, int reg)
142 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
146 writeb(reg & 0xf, control);
150 retval = readb(control);
155 static void write_zsreg(struct zs_port *zport, int reg, u8 value)
157 void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
160 writeb(reg & 0xf, control);
161 fast_iob(); recovery_delay();
163 writeb(value, control);
169 static u8 read_zsdata(struct zs_port *zport)
171 void __iomem *data = zport->port.membase +
172 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
175 retval = readb(data);
180 static void write_zsdata(struct zs_port *zport, u8 value)
182 void __iomem *data = zport->port.membase +
183 ZS_CHAN_IO_STRIDE + ZS_CHAN_IO_OFFSET;
194 struct zs_port *zport;
197 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
198 zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
203 for (j = 0; j < 16; j++)
204 printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
206 for (j = 0; j < 16; j++)
207 printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
214 static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
222 static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
225 spin_unlock_irq(lock);
230 static int zs_receive_drain(struct zs_port *zport)
234 while ((read_zsreg(zport, R0) & Rx_CH_AV) && loops--)
239 static int zs_transmit_drain(struct zs_port *zport, int irq)
241 struct zs_scc *scc = zport->scc;
244 while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && loops--) {
245 zs_spin_unlock_cond_irq(&scc->zlock, irq);
247 zs_spin_lock_cond_irq(&scc->zlock, irq);
252 static int zs_line_drain(struct zs_port *zport, int irq)
254 struct zs_scc *scc = zport->scc;
257 while (!(read_zsreg(zport, R1) & ALL_SNT) && loops--) {
258 zs_spin_unlock_cond_irq(&scc->zlock, irq);
260 zs_spin_lock_cond_irq(&scc->zlock, irq);
266 static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
268 /* Let the current transmission finish. */
269 zs_line_drain(zport, irq);
271 write_zsreg(zport, R3, regs[3] & ~RxENABLE);
272 write_zsreg(zport, R5, regs[5] & ~TxENAB);
273 write_zsreg(zport, R4, regs[4]);
274 write_zsreg(zport, R9, regs[9]);
275 write_zsreg(zport, R1, regs[1]);
276 write_zsreg(zport, R2, regs[2]);
277 write_zsreg(zport, R10, regs[10]);
278 write_zsreg(zport, R14, regs[14] & ~BRENABL);
279 write_zsreg(zport, R11, regs[11]);
280 write_zsreg(zport, R12, regs[12]);
281 write_zsreg(zport, R13, regs[13]);
282 write_zsreg(zport, R14, regs[14]);
283 write_zsreg(zport, R15, regs[15]);
284 if (regs[3] & RxENABLE)
285 write_zsreg(zport, R3, regs[3]);
286 if (regs[5] & TxENAB)
287 write_zsreg(zport, R5, regs[5]);
293 * Status handling routines.
297 * zs_tx_empty() -- get the transmitter empty status
299 * Purpose: Let user call ioctl() to get info when the UART physically
300 * is emptied. On bus types like RS485, the transmitter must
301 * release the bus after transmitting. This must be done when
302 * the transmit shift register is empty, not be done when the
303 * transmit holding register is empty. This functionality
304 * allows an RS485 driver to be written in user space.
306 static unsigned int zs_tx_empty(struct uart_port *uport)
308 struct zs_port *zport = to_zport(uport);
309 struct zs_scc *scc = zport->scc;
313 spin_lock_irqsave(&scc->zlock, flags);
314 status = read_zsreg(zport, R1);
315 spin_unlock_irqrestore(&scc->zlock, flags);
317 return status & ALL_SNT ? TIOCSER_TEMT : 0;
320 static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
321 struct zs_port *zport_b)
323 u8 status_a, status_b;
326 status_a = read_zsreg(zport_a, R0);
327 status_b = read_zsreg(zport_b, R0);
329 mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
330 ((status_b & DCD) ? TIOCM_CAR : 0) |
331 ((status_a & DCD) ? TIOCM_RNG : 0) |
332 ((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
337 static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
339 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
341 return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
344 static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
346 struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
347 unsigned int mmask, mctrl, delta;
350 if (zport == zport_a)
353 mask_a = zport_a->regs[15];
354 mask_b = zport->regs[15];
356 mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
357 ((mask_b & DCDIE) ? TIOCM_CAR : 0) |
358 ((mask_a & DCDIE) ? TIOCM_RNG : 0) |
359 ((mask_a & SYNCIE) ? TIOCM_DSR : 0);
361 mctrl = zport->mctrl;
364 mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
367 delta = mctrl ^ zport->mctrl;
369 zport->mctrl = mctrl;
374 static unsigned int zs_get_mctrl(struct uart_port *uport)
376 struct zs_port *zport = to_zport(uport);
377 struct zs_scc *scc = zport->scc;
380 spin_lock(&scc->zlock);
381 mctrl = zs_raw_get_mctrl(zport);
382 spin_unlock(&scc->zlock);
387 static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
389 struct zs_port *zport = to_zport(uport);
390 struct zs_scc *scc = zport->scc;
391 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
394 spin_lock(&scc->zlock);
395 if (zport != zport_a) {
396 if (mctrl & TIOCM_DTR)
397 zport_a->regs[5] |= DTR;
399 zport_a->regs[5] &= ~DTR;
400 if (mctrl & TIOCM_RTS)
401 zport_a->regs[5] |= RTS;
403 zport_a->regs[5] &= ~RTS;
404 write_zsreg(zport_a, R5, zport_a->regs[5]);
407 /* Rarely modified, so don't poke at hardware unless necessary. */
408 oldloop = zport->regs[14];
410 if (mctrl & TIOCM_LOOP)
414 if (newloop != oldloop) {
415 zport->regs[14] = newloop;
416 write_zsreg(zport, R14, zport->regs[14]);
418 spin_unlock(&scc->zlock);
421 static void zs_raw_stop_tx(struct zs_port *zport)
423 write_zsreg(zport, R0, RES_Tx_P);
424 zport->tx_stopped = 1;
427 static void zs_stop_tx(struct uart_port *uport)
429 struct zs_port *zport = to_zport(uport);
430 struct zs_scc *scc = zport->scc;
432 spin_lock(&scc->zlock);
433 zs_raw_stop_tx(zport);
434 spin_unlock(&scc->zlock);
437 static void zs_raw_transmit_chars(struct zs_port *);
439 static void zs_start_tx(struct uart_port *uport)
441 struct zs_port *zport = to_zport(uport);
442 struct zs_scc *scc = zport->scc;
444 spin_lock(&scc->zlock);
445 if (zport->tx_stopped) {
446 zs_transmit_drain(zport, 0);
447 zport->tx_stopped = 0;
448 zs_raw_transmit_chars(zport);
450 spin_unlock(&scc->zlock);
453 static void zs_stop_rx(struct uart_port *uport)
455 struct zs_port *zport = to_zport(uport);
456 struct zs_scc *scc = zport->scc;
457 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
459 spin_lock(&scc->zlock);
460 zport->regs[15] &= ~BRKIE;
461 zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
462 zport->regs[1] |= RxINT_DISAB;
464 if (zport != zport_a) {
465 /* A-side DCD tracks RI and SYNC tracks DSR. */
466 zport_a->regs[15] &= ~(DCDIE | SYNCIE);
467 write_zsreg(zport_a, R15, zport_a->regs[15]);
468 if (!(zport_a->regs[15] & BRKIE)) {
469 zport_a->regs[1] &= ~EXT_INT_ENAB;
470 write_zsreg(zport_a, R1, zport_a->regs[1]);
473 /* This-side DCD tracks DCD and CTS tracks CTS. */
474 zport->regs[15] &= ~(DCDIE | CTSIE);
475 zport->regs[1] &= ~EXT_INT_ENAB;
477 /* DCD tracks RI and SYNC tracks DSR for the B side. */
478 if (!(zport->regs[15] & (DCDIE | SYNCIE)))
479 zport->regs[1] &= ~EXT_INT_ENAB;
482 write_zsreg(zport, R15, zport->regs[15]);
483 write_zsreg(zport, R1, zport->regs[1]);
484 spin_unlock(&scc->zlock);
487 static void zs_enable_ms(struct uart_port *uport)
489 struct zs_port *zport = to_zport(uport);
490 struct zs_scc *scc = zport->scc;
491 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
493 if (zport == zport_a)
496 spin_lock(&scc->zlock);
498 /* Clear Ext interrupts if not being handled already. */
499 if (!(zport_a->regs[1] & EXT_INT_ENAB))
500 write_zsreg(zport_a, R0, RES_EXT_INT);
502 /* A-side DCD tracks RI and SYNC tracks DSR. */
503 zport_a->regs[1] |= EXT_INT_ENAB;
504 zport_a->regs[15] |= DCDIE | SYNCIE;
506 /* This-side DCD tracks DCD and CTS tracks CTS. */
507 zport->regs[15] |= DCDIE | CTSIE;
509 zs_raw_xor_mctrl(zport);
511 write_zsreg(zport_a, R1, zport_a->regs[1]);
512 write_zsreg(zport_a, R15, zport_a->regs[15]);
513 write_zsreg(zport, R15, zport->regs[15]);
514 spin_unlock(&scc->zlock);
517 static void zs_break_ctl(struct uart_port *uport, int break_state)
519 struct zs_port *zport = to_zport(uport);
520 struct zs_scc *scc = zport->scc;
523 spin_lock_irqsave(&scc->zlock, flags);
524 if (break_state == -1)
525 zport->regs[5] |= SND_BRK;
527 zport->regs[5] &= ~SND_BRK;
528 write_zsreg(zport, R5, zport->regs[5]);
529 spin_unlock_irqrestore(&scc->zlock, flags);
534 * Interrupt handling routines.
536 #define Rx_BRK 0x0100 /* BREAK event software flag. */
537 #define Rx_SYS 0x0200 /* SysRq event software flag. */
539 static void zs_receive_chars(struct zs_port *zport)
541 struct uart_port *uport = &zport->port;
542 struct zs_scc *scc = zport->scc;
543 struct uart_icount *icount;
544 unsigned int avail, status, ch, flag;
547 for (count = 16; count; count--) {
548 spin_lock(&scc->zlock);
549 avail = read_zsreg(zport, R0) & Rx_CH_AV;
550 spin_unlock(&scc->zlock);
554 spin_lock(&scc->zlock);
555 status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
556 ch = read_zsdata(zport);
557 spin_unlock(&scc->zlock);
561 icount = &uport->icount;
564 /* Handle the null char got when BREAK is removed. */
566 status |= zport->tty_break;
567 if (unlikely(status &
568 (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
569 zport->tty_break = 0;
571 /* Reset the error indication. */
572 if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
573 spin_lock(&scc->zlock);
574 write_zsreg(zport, R0, ERR_RES);
575 spin_unlock(&scc->zlock);
578 if (status & (Rx_SYS | Rx_BRK)) {
580 /* SysRq discards the null char. */
583 } else if (status & FRM_ERR)
585 else if (status & PAR_ERR)
590 status &= uport->read_status_mask;
593 else if (status & FRM_ERR)
595 else if (status & PAR_ERR)
599 if (uart_handle_sysrq_char(uport, ch))
602 uart_insert_char(uport, status, Rx_OVR, ch, flag);
605 tty_flip_buffer_push(uport->info->tty);
608 static void zs_raw_transmit_chars(struct zs_port *zport)
610 struct circ_buf *xmit = &zport->port.info->xmit;
612 /* XON/XOFF chars. */
613 if (zport->port.x_char) {
614 write_zsdata(zport, zport->port.x_char);
615 zport->port.icount.tx++;
616 zport->port.x_char = 0;
620 /* If nothing to do or stopped or hardware stopped. */
621 if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
622 zs_raw_stop_tx(zport);
627 write_zsdata(zport, xmit->buf[xmit->tail]);
628 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
629 zport->port.icount.tx++;
631 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
632 uart_write_wakeup(&zport->port);
634 /* Are we are done? */
635 if (uart_circ_empty(xmit))
636 zs_raw_stop_tx(zport);
639 static void zs_transmit_chars(struct zs_port *zport)
641 struct zs_scc *scc = zport->scc;
643 spin_lock(&scc->zlock);
644 zs_raw_transmit_chars(zport);
645 spin_unlock(&scc->zlock);
648 static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
650 struct uart_port *uport = &zport->port;
651 struct zs_scc *scc = zport->scc;
655 spin_lock(&scc->zlock);
657 /* Get status from Read Register 0. */
658 status = read_zsreg(zport, R0);
660 if (zport->regs[15] & BRKIE) {
661 brk = status & BRK_ABRT;
662 if (brk && !zport->brk) {
663 spin_unlock(&scc->zlock);
664 if (uart_handle_break(uport))
665 zport->tty_break = Rx_SYS;
667 zport->tty_break = Rx_BRK;
668 spin_lock(&scc->zlock);
673 if (zport != zport_a) {
674 delta = zs_raw_xor_mctrl(zport);
675 spin_unlock(&scc->zlock);
677 if (delta & TIOCM_CTS)
678 uart_handle_cts_change(uport,
679 zport->mctrl & TIOCM_CTS);
680 if (delta & TIOCM_CAR)
681 uart_handle_dcd_change(uport,
682 zport->mctrl & TIOCM_CAR);
683 if (delta & TIOCM_RNG)
685 if (delta & TIOCM_DSR)
689 wake_up_interruptible(&uport->info->delta_msr_wait);
691 spin_lock(&scc->zlock);
694 /* Clear the status condition... */
695 write_zsreg(zport, R0, RES_EXT_INT);
697 spin_unlock(&scc->zlock);
701 * This is the Z85C30 driver's generic interrupt routine.
703 static irqreturn_t zs_interrupt(int irq, void *dev_id)
705 struct zs_scc *scc = dev_id;
706 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
707 struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
708 irqreturn_t status = IRQ_NONE;
713 * NOTE: The read register 3, which holds the irq status,
714 * does so for both channels on each chip. Although
715 * the status value itself must be read from the A
716 * channel and is only valid when read from channel A.
717 * Yes... broken hardware...
719 for (count = 16; count; count--) {
720 spin_lock(&scc->zlock);
721 zs_intreg = read_zsreg(zport_a, R3);
722 spin_unlock(&scc->zlock);
727 * We do not like losing characters, so we prioritise
728 * interrupt sources a little bit differently than
729 * the SCC would, was it allowed to.
731 if (zs_intreg & CHBRxIP)
732 zs_receive_chars(zport_b);
733 if (zs_intreg & CHARxIP)
734 zs_receive_chars(zport_a);
735 if (zs_intreg & CHBEXT)
736 zs_status_handle(zport_b, zport_a);
737 if (zs_intreg & CHAEXT)
738 zs_status_handle(zport_a, zport_a);
739 if (zs_intreg & CHBTxIP)
740 zs_transmit_chars(zport_b);
741 if (zs_intreg & CHATxIP)
742 zs_transmit_chars(zport_a);
744 status = IRQ_HANDLED;
752 * Finally, routines used to initialize the serial port.
754 static int zs_startup(struct uart_port *uport)
756 struct zs_port *zport = to_zport(uport);
757 struct zs_scc *scc = zport->scc;
762 irq_guard = atomic_add_return(1, &scc->irq_guard);
763 if (irq_guard == 1) {
764 ret = request_irq(zport->port.irq, zs_interrupt,
765 IRQF_SHARED, "scc", scc);
767 atomic_add(-1, &scc->irq_guard);
768 printk(KERN_ERR "zs: can't get irq %d\n",
774 spin_lock_irqsave(&scc->zlock, flags);
776 /* Clear the receive FIFO. */
777 zs_receive_drain(zport);
779 /* Clear the interrupt registers. */
780 write_zsreg(zport, R0, ERR_RES);
781 write_zsreg(zport, R0, RES_Tx_P);
782 /* But Ext only if not being handled already. */
783 if (!(zport->regs[1] & EXT_INT_ENAB))
784 write_zsreg(zport, R0, RES_EXT_INT);
786 /* Finally, enable sequencing and interrupts. */
787 zport->regs[1] &= ~RxINT_MASK;
788 zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
789 zport->regs[3] |= RxENABLE;
790 zport->regs[5] |= TxENAB;
791 zport->regs[15] |= BRKIE;
792 write_zsreg(zport, R1, zport->regs[1]);
793 write_zsreg(zport, R3, zport->regs[3]);
794 write_zsreg(zport, R5, zport->regs[5]);
795 write_zsreg(zport, R15, zport->regs[15]);
797 /* Record the current state of RR0. */
798 zport->mctrl = zs_raw_get_mctrl(zport);
799 zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
801 zport->tx_stopped = 1;
803 spin_unlock_irqrestore(&scc->zlock, flags);
808 static void zs_shutdown(struct uart_port *uport)
810 struct zs_port *zport = to_zport(uport);
811 struct zs_scc *scc = zport->scc;
815 spin_lock_irqsave(&scc->zlock, flags);
817 zport->regs[5] &= ~TxENAB;
818 zport->regs[3] &= ~RxENABLE;
819 write_zsreg(zport, R5, zport->regs[5]);
820 write_zsreg(zport, R3, zport->regs[3]);
822 spin_unlock_irqrestore(&scc->zlock, flags);
824 irq_guard = atomic_add_return(-1, &scc->irq_guard);
826 free_irq(zport->port.irq, scc);
830 static void zs_reset(struct zs_port *zport)
832 struct zs_scc *scc = zport->scc;
836 spin_lock_irqsave(&scc->zlock, flags);
837 irq = !irqs_disabled_flags(flags);
838 if (!scc->initialised) {
839 /* Reset the pointer first, just in case... */
840 read_zsreg(zport, R0);
841 /* And let the current transmission finish. */
842 zs_line_drain(zport, irq);
843 write_zsreg(zport, R9, FHWRES);
845 write_zsreg(zport, R9, 0);
846 scc->initialised = 1;
848 load_zsregs(zport, zport->regs, irq);
849 spin_unlock_irqrestore(&scc->zlock, flags);
852 static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
853 struct ktermios *old_termios)
855 struct zs_port *zport = to_zport(uport);
856 struct zs_scc *scc = zport->scc;
857 struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
859 unsigned int baud, brg;
862 spin_lock_irqsave(&scc->zlock, flags);
863 irq = !irqs_disabled_flags(flags);
866 zport->regs[3] &= ~RxNBITS_MASK;
867 zport->regs[5] &= ~TxNBITS_MASK;
868 switch (termios->c_cflag & CSIZE) {
870 zport->regs[3] |= Rx5;
871 zport->regs[5] |= Tx5;
874 zport->regs[3] |= Rx6;
875 zport->regs[5] |= Tx6;
878 zport->regs[3] |= Rx7;
879 zport->regs[5] |= Tx7;
883 zport->regs[3] |= Rx8;
884 zport->regs[5] |= Tx8;
888 /* Parity and stop bits. */
889 zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
890 if (termios->c_cflag & CSTOPB)
891 zport->regs[4] |= SB2;
893 zport->regs[4] |= SB1;
894 if (termios->c_cflag & PARENB)
895 zport->regs[4] |= PAR_ENA;
896 if (!(termios->c_cflag & PARODD))
897 zport->regs[4] |= PAR_EVEN;
898 switch (zport->clk_mode) {
900 zport->regs[4] |= X64CLK;
903 zport->regs[4] |= X32CLK;
906 zport->regs[4] |= X16CLK;
909 zport->regs[4] |= X1CLK;
915 baud = uart_get_baud_rate(uport, termios, old_termios, 0,
916 uport->uartclk / zport->clk_mode / 4);
918 brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
919 zport->regs[12] = brg & 0xff;
920 zport->regs[13] = (brg >> 8) & 0xff;
922 uart_update_timeout(uport, termios->c_cflag, baud);
924 uport->read_status_mask = Rx_OVR;
925 if (termios->c_iflag & INPCK)
926 uport->read_status_mask |= FRM_ERR | PAR_ERR;
927 if (termios->c_iflag & (BRKINT | PARMRK))
928 uport->read_status_mask |= Rx_BRK;
930 uport->ignore_status_mask = 0;
931 if (termios->c_iflag & IGNPAR)
932 uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
933 if (termios->c_iflag & IGNBRK) {
934 uport->ignore_status_mask |= Rx_BRK;
935 if (termios->c_iflag & IGNPAR)
936 uport->ignore_status_mask |= Rx_OVR;
939 if (termios->c_cflag & CREAD)
940 zport->regs[3] |= RxENABLE;
942 zport->regs[3] &= ~RxENABLE;
944 if (zport != zport_a) {
945 if (!(termios->c_cflag & CLOCAL)) {
946 zport->regs[15] |= DCDIE;
948 zport->regs[15] &= ~DCDIE;
949 if (termios->c_cflag & CRTSCTS) {
950 zport->regs[15] |= CTSIE;
952 zport->regs[15] &= ~CTSIE;
953 zs_raw_xor_mctrl(zport);
956 /* Load up the new values. */
957 load_zsregs(zport, zport->regs, irq);
959 spin_unlock_irqrestore(&scc->zlock, flags);
963 static const char *zs_type(struct uart_port *uport)
968 static void zs_release_port(struct uart_port *uport)
970 iounmap(uport->membase);
972 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
975 static int zs_map_port(struct uart_port *uport)
978 uport->membase = ioremap_nocache(uport->mapbase,
980 if (!uport->membase) {
981 printk(KERN_ERR "zs: Cannot map MMIO\n");
987 static int zs_request_port(struct uart_port *uport)
991 if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
992 printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
995 ret = zs_map_port(uport);
997 release_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE);
1003 static void zs_config_port(struct uart_port *uport, int flags)
1005 struct zs_port *zport = to_zport(uport);
1007 if (flags & UART_CONFIG_TYPE) {
1008 if (zs_request_port(uport))
1011 uport->type = PORT_ZS;
1017 static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1019 struct zs_port *zport = to_zport(uport);
1022 if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1024 if (ser->irq != uport->irq)
1026 if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1032 static struct uart_ops zs_ops = {
1033 .tx_empty = zs_tx_empty,
1034 .set_mctrl = zs_set_mctrl,
1035 .get_mctrl = zs_get_mctrl,
1036 .stop_tx = zs_stop_tx,
1037 .start_tx = zs_start_tx,
1038 .stop_rx = zs_stop_rx,
1039 .enable_ms = zs_enable_ms,
1040 .break_ctl = zs_break_ctl,
1041 .startup = zs_startup,
1042 .shutdown = zs_shutdown,
1043 .set_termios = zs_set_termios,
1045 .release_port = zs_release_port,
1046 .request_port = zs_request_port,
1047 .config_port = zs_config_port,
1048 .verify_port = zs_verify_port,
1052 * Initialize Z85C30 port structures.
1054 static int __init zs_probe_sccs(void)
1057 struct zs_parms zs_parms;
1058 int chip, side, irq;
1065 irq = dec_interrupt[DEC_IRQ_SCC0];
1067 zs_parms.scc[n_chips] = IOASIC_SCC0;
1068 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1071 irq = dec_interrupt[DEC_IRQ_SCC1];
1073 zs_parms.scc[n_chips] = IOASIC_SCC1;
1074 zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1082 for (chip = 0; chip < n_chips; chip++) {
1083 spin_lock_init(&zs_sccs[chip].zlock);
1084 for (side = 0; side < ZS_NUM_CHAN; side++) {
1085 struct zs_port *zport = &zs_sccs[chip].zport[side];
1086 struct uart_port *uport = &zport->port;
1088 zport->scc = &zs_sccs[chip];
1089 zport->clk_mode = 16;
1091 uport->irq = zs_parms.irq[chip];
1092 uport->uartclk = ZS_CLOCK;
1093 uport->fifosize = 1;
1094 uport->iotype = UPIO_MEM;
1095 uport->flags = UPF_BOOT_AUTOCONF;
1096 uport->ops = &zs_ops;
1097 uport->line = chip * ZS_NUM_CHAN + side;
1098 uport->mapbase = dec_kn_slot_base +
1099 zs_parms.scc[chip] +
1100 (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1102 for (i = 0; i < ZS_NUM_REGS; i++)
1103 zport->regs[i] = zs_init_regs[i];
1111 #ifdef CONFIG_SERIAL_ZS_CONSOLE
1112 static void zs_console_putchar(struct uart_port *uport, int ch)
1114 struct zs_port *zport = to_zport(uport);
1115 struct zs_scc *scc = zport->scc;
1117 unsigned long flags;
1119 spin_lock_irqsave(&scc->zlock, flags);
1120 irq = !irqs_disabled_flags(flags);
1121 if (zs_transmit_drain(zport, irq))
1122 write_zsdata(zport, ch);
1123 spin_unlock_irqrestore(&scc->zlock, flags);
1127 * Print a string to the serial port trying not to disturb
1128 * any possible real use of the port...
1130 static void zs_console_write(struct console *co, const char *s,
1133 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1134 struct zs_port *zport = &zs_sccs[chip].zport[side];
1135 struct zs_scc *scc = zport->scc;
1136 unsigned long flags;
1140 /* Disable transmit interrupts and enable the transmitter. */
1141 spin_lock_irqsave(&scc->zlock, flags);
1142 txint = zport->regs[1];
1143 txenb = zport->regs[5];
1144 if (txint & TxINT_ENAB) {
1145 zport->regs[1] = txint & ~TxINT_ENAB;
1146 write_zsreg(zport, R1, zport->regs[1]);
1148 if (!(txenb & TxENAB)) {
1149 zport->regs[5] = txenb | TxENAB;
1150 write_zsreg(zport, R5, zport->regs[5]);
1152 spin_unlock_irqrestore(&scc->zlock, flags);
1154 uart_console_write(&zport->port, s, count, zs_console_putchar);
1156 /* Restore transmit interrupts and the transmitter enable. */
1157 spin_lock_irqsave(&scc->zlock, flags);
1158 irq = !irqs_disabled_flags(flags);
1159 zs_line_drain(zport, irq);
1160 if (!(txenb & TxENAB)) {
1161 zport->regs[5] &= ~TxENAB;
1162 write_zsreg(zport, R5, zport->regs[5]);
1164 if (txint & TxINT_ENAB) {
1165 zport->regs[1] |= TxINT_ENAB;
1166 write_zsreg(zport, R1, zport->regs[1]);
1168 spin_unlock_irqrestore(&scc->zlock, flags);
1172 * Setup serial console baud/bits/parity. We do two things here:
1173 * - construct a cflag setting for the first uart_open()
1174 * - initialise the serial port
1175 * Return non-zero if we didn't find a serial port.
1177 static int __init zs_console_setup(struct console *co, char *options)
1179 int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1180 struct zs_port *zport = &zs_sccs[chip].zport[side];
1181 struct uart_port *uport = &zport->port;
1188 ret = zs_map_port(uport);
1195 uart_parse_options(options, &baud, &parity, &bits, &flow);
1196 return uart_set_options(uport, co, baud, parity, bits, flow);
1199 static struct uart_driver zs_reg;
1200 static struct console zs_console = {
1202 .write = zs_console_write,
1203 .device = uart_console_device,
1204 .setup = zs_console_setup,
1205 .flags = CON_PRINTBUFFER,
1213 static int __init zs_serial_console_init(void)
1217 ret = zs_probe_sccs();
1220 register_console(&zs_console);
1225 console_initcall(zs_serial_console_init);
1227 #define SERIAL_ZS_CONSOLE &zs_console
1229 #define SERIAL_ZS_CONSOLE NULL
1230 #endif /* CONFIG_SERIAL_ZS_CONSOLE */
1232 static struct uart_driver zs_reg = {
1233 .owner = THIS_MODULE,
1234 .driver_name = "serial",
1238 .nr = ZS_NUM_SCCS * ZS_NUM_CHAN,
1239 .cons = SERIAL_ZS_CONSOLE,
1242 /* zs_init inits the driver. */
1243 static int __init zs_init(void)
1247 pr_info("%s%s\n", zs_name, zs_version);
1249 /* Find out how many Z85C30 SCCs we have. */
1250 ret = zs_probe_sccs();
1254 ret = uart_register_driver(&zs_reg);
1258 for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1259 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1260 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1261 struct uart_port *uport = &zport->port;
1264 uart_add_one_port(&zs_reg, uport);
1270 static void __exit zs_exit(void)
1274 for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1275 struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1276 struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1277 struct uart_port *uport = &zport->port;
1280 uart_remove_one_port(&zs_reg, uport);
1283 uart_unregister_driver(&zs_reg);
1286 module_init(zs_init);
1287 module_exit(zs_exit);