Merge branch 'x86/fpu' into x86/urgent
[linux-2.6] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
14
15 #include <asm/e820.h>
16 #include <asm/processor.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 #include <asm/uaccess.h>
20 #include <asm/pgalloc.h>
21 #include <asm/proto.h>
22 #include <asm/pat.h>
23
24 /*
25  * The current flushing context - we pass it instead of 5 arguments:
26  */
27 struct cpa_data {
28         unsigned long   vaddr;
29         pgprot_t        mask_set;
30         pgprot_t        mask_clr;
31         int             numpages;
32         int             flushtlb;
33         unsigned long   pfn;
34         unsigned        force_split : 1;
35 };
36
37 #ifdef CONFIG_PROC_FS
38 static unsigned long direct_pages_count[PG_LEVEL_NUM];
39
40 void update_page_count(int level, unsigned long pages)
41 {
42         unsigned long flags;
43
44         /* Protect against CPA */
45         spin_lock_irqsave(&pgd_lock, flags);
46         direct_pages_count[level] += pages;
47         spin_unlock_irqrestore(&pgd_lock, flags);
48 }
49
50 static void split_page_count(int level)
51 {
52         direct_pages_count[level]--;
53         direct_pages_count[level - 1] += PTRS_PER_PTE;
54 }
55
56 int arch_report_meminfo(char *page)
57 {
58         int n = sprintf(page, "DirectMap4k:  %8lu\n"
59                         "DirectMap2M:  %8lu\n",
60                         direct_pages_count[PG_LEVEL_4K],
61                         direct_pages_count[PG_LEVEL_2M]);
62 #ifdef CONFIG_X86_64
63         n += sprintf(page + n, "DirectMap1G:  %8lu\n",
64                      direct_pages_count[PG_LEVEL_1G]);
65 #endif
66         return n;
67 }
68 #else
69 static inline void split_page_count(int level) { }
70 #endif
71
72 #ifdef CONFIG_X86_64
73
74 static inline unsigned long highmap_start_pfn(void)
75 {
76         return __pa(_text) >> PAGE_SHIFT;
77 }
78
79 static inline unsigned long highmap_end_pfn(void)
80 {
81         return __pa(round_up((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
82 }
83
84 #endif
85
86 #ifdef CONFIG_DEBUG_PAGEALLOC
87 # define debug_pagealloc 1
88 #else
89 # define debug_pagealloc 0
90 #endif
91
92 static inline int
93 within(unsigned long addr, unsigned long start, unsigned long end)
94 {
95         return addr >= start && addr < end;
96 }
97
98 /*
99  * Flushing functions
100  */
101
102 /**
103  * clflush_cache_range - flush a cache range with clflush
104  * @addr:       virtual start address
105  * @size:       number of bytes to flush
106  *
107  * clflush is an unordered instruction which needs fencing with mfence
108  * to avoid ordering issues.
109  */
110 void clflush_cache_range(void *vaddr, unsigned int size)
111 {
112         void *vend = vaddr + size - 1;
113
114         mb();
115
116         for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
117                 clflush(vaddr);
118         /*
119          * Flush any possible final partial cacheline:
120          */
121         clflush(vend);
122
123         mb();
124 }
125
126 static void __cpa_flush_all(void *arg)
127 {
128         unsigned long cache = (unsigned long)arg;
129
130         /*
131          * Flush all to work around Errata in early athlons regarding
132          * large page flushing.
133          */
134         __flush_tlb_all();
135
136         if (cache && boot_cpu_data.x86_model >= 4)
137                 wbinvd();
138 }
139
140 static void cpa_flush_all(unsigned long cache)
141 {
142         BUG_ON(irqs_disabled());
143
144         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
145 }
146
147 static void __cpa_flush_range(void *arg)
148 {
149         /*
150          * We could optimize that further and do individual per page
151          * tlb invalidates for a low number of pages. Caveat: we must
152          * flush the high aliases on 64bit as well.
153          */
154         __flush_tlb_all();
155 }
156
157 static void cpa_flush_range(unsigned long start, int numpages, int cache)
158 {
159         unsigned int i, level;
160         unsigned long addr;
161
162         BUG_ON(irqs_disabled());
163         WARN_ON(PAGE_ALIGN(start) != start);
164
165         on_each_cpu(__cpa_flush_range, NULL, 1);
166
167         if (!cache)
168                 return;
169
170         /*
171          * We only need to flush on one CPU,
172          * clflush is a MESI-coherent instruction that
173          * will cause all other CPUs to flush the same
174          * cachelines:
175          */
176         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
177                 pte_t *pte = lookup_address(addr, &level);
178
179                 /*
180                  * Only flush present addresses:
181                  */
182                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
183                         clflush_cache_range((void *) addr, PAGE_SIZE);
184         }
185 }
186
187 /*
188  * Certain areas of memory on x86 require very specific protection flags,
189  * for example the BIOS area or kernel text. Callers don't always get this
190  * right (again, ioremap() on BIOS memory is not uncommon) so this function
191  * checks and fixes these known static required protection bits.
192  */
193 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
194                                    unsigned long pfn)
195 {
196         pgprot_t forbidden = __pgprot(0);
197
198         /*
199          * The BIOS area between 640k and 1Mb needs to be executable for
200          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
201          */
202         if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
203                 pgprot_val(forbidden) |= _PAGE_NX;
204
205         /*
206          * The kernel text needs to be executable for obvious reasons
207          * Does not cover __inittext since that is gone later on. On
208          * 64bit we do not enforce !NX on the low mapping
209          */
210         if (within(address, (unsigned long)_text, (unsigned long)_etext))
211                 pgprot_val(forbidden) |= _PAGE_NX;
212
213         /*
214          * The .rodata section needs to be read-only. Using the pfn
215          * catches all aliases.
216          */
217         if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
218                    __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
219                 pgprot_val(forbidden) |= _PAGE_RW;
220
221         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
222
223         return prot;
224 }
225
226 /*
227  * Lookup the page table entry for a virtual address. Return a pointer
228  * to the entry and the level of the mapping.
229  *
230  * Note: We return pud and pmd either when the entry is marked large
231  * or when the present bit is not set. Otherwise we would return a
232  * pointer to a nonexisting mapping.
233  */
234 pte_t *lookup_address(unsigned long address, unsigned int *level)
235 {
236         pgd_t *pgd = pgd_offset_k(address);
237         pud_t *pud;
238         pmd_t *pmd;
239
240         *level = PG_LEVEL_NONE;
241
242         if (pgd_none(*pgd))
243                 return NULL;
244
245         pud = pud_offset(pgd, address);
246         if (pud_none(*pud))
247                 return NULL;
248
249         *level = PG_LEVEL_1G;
250         if (pud_large(*pud) || !pud_present(*pud))
251                 return (pte_t *)pud;
252
253         pmd = pmd_offset(pud, address);
254         if (pmd_none(*pmd))
255                 return NULL;
256
257         *level = PG_LEVEL_2M;
258         if (pmd_large(*pmd) || !pmd_present(*pmd))
259                 return (pte_t *)pmd;
260
261         *level = PG_LEVEL_4K;
262
263         return pte_offset_kernel(pmd, address);
264 }
265 EXPORT_SYMBOL_GPL(lookup_address);
266
267 /*
268  * Set the new pmd in all the pgds we know about:
269  */
270 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
271 {
272         /* change init_mm */
273         set_pte_atomic(kpte, pte);
274 #ifdef CONFIG_X86_32
275         if (!SHARED_KERNEL_PMD) {
276                 struct page *page;
277
278                 list_for_each_entry(page, &pgd_list, lru) {
279                         pgd_t *pgd;
280                         pud_t *pud;
281                         pmd_t *pmd;
282
283                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
284                         pud = pud_offset(pgd, address);
285                         pmd = pmd_offset(pud, address);
286                         set_pte_atomic((pte_t *)pmd, pte);
287                 }
288         }
289 #endif
290 }
291
292 static int
293 try_preserve_large_page(pte_t *kpte, unsigned long address,
294                         struct cpa_data *cpa)
295 {
296         unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
297         pte_t new_pte, old_pte, *tmp;
298         pgprot_t old_prot, new_prot;
299         int i, do_split = 1;
300         unsigned int level;
301
302         if (cpa->force_split)
303                 return 1;
304
305         spin_lock_irqsave(&pgd_lock, flags);
306         /*
307          * Check for races, another CPU might have split this page
308          * up already:
309          */
310         tmp = lookup_address(address, &level);
311         if (tmp != kpte)
312                 goto out_unlock;
313
314         switch (level) {
315         case PG_LEVEL_2M:
316                 psize = PMD_PAGE_SIZE;
317                 pmask = PMD_PAGE_MASK;
318                 break;
319 #ifdef CONFIG_X86_64
320         case PG_LEVEL_1G:
321                 psize = PUD_PAGE_SIZE;
322                 pmask = PUD_PAGE_MASK;
323                 break;
324 #endif
325         default:
326                 do_split = -EINVAL;
327                 goto out_unlock;
328         }
329
330         /*
331          * Calculate the number of pages, which fit into this large
332          * page starting at address:
333          */
334         nextpage_addr = (address + psize) & pmask;
335         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
336         if (numpages < cpa->numpages)
337                 cpa->numpages = numpages;
338
339         /*
340          * We are safe now. Check whether the new pgprot is the same:
341          */
342         old_pte = *kpte;
343         old_prot = new_prot = pte_pgprot(old_pte);
344
345         pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
346         pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
347
348         /*
349          * old_pte points to the large page base address. So we need
350          * to add the offset of the virtual address:
351          */
352         pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
353         cpa->pfn = pfn;
354
355         new_prot = static_protections(new_prot, address, pfn);
356
357         /*
358          * We need to check the full range, whether
359          * static_protection() requires a different pgprot for one of
360          * the pages in the range we try to preserve:
361          */
362         addr = address + PAGE_SIZE;
363         pfn++;
364         for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
365                 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
366
367                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
368                         goto out_unlock;
369         }
370
371         /*
372          * If there are no changes, return. maxpages has been updated
373          * above:
374          */
375         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
376                 do_split = 0;
377                 goto out_unlock;
378         }
379
380         /*
381          * We need to change the attributes. Check, whether we can
382          * change the large page in one go. We request a split, when
383          * the address is not aligned and the number of pages is
384          * smaller than the number of pages in the large page. Note
385          * that we limited the number of possible pages already to
386          * the number of pages in the large page.
387          */
388         if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
389                 /*
390                  * The address is aligned and the number of pages
391                  * covers the full page.
392                  */
393                 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
394                 __set_pmd_pte(kpte, address, new_pte);
395                 cpa->flushtlb = 1;
396                 do_split = 0;
397         }
398
399 out_unlock:
400         spin_unlock_irqrestore(&pgd_lock, flags);
401
402         return do_split;
403 }
404
405 static LIST_HEAD(page_pool);
406 static unsigned long pool_size, pool_pages, pool_low;
407 static unsigned long pool_used, pool_failed;
408
409 static void cpa_fill_pool(struct page **ret)
410 {
411         gfp_t gfp = GFP_KERNEL;
412         unsigned long flags;
413         struct page *p;
414
415         /*
416          * Avoid recursion (on debug-pagealloc) and also signal
417          * our priority to get to these pagetables:
418          */
419         if (current->flags & PF_MEMALLOC)
420                 return;
421         current->flags |= PF_MEMALLOC;
422
423         /*
424          * Allocate atomically from atomic contexts:
425          */
426         if (in_atomic() || irqs_disabled() || debug_pagealloc)
427                 gfp =  GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN;
428
429         while (pool_pages < pool_size || (ret && !*ret)) {
430                 p = alloc_pages(gfp, 0);
431                 if (!p) {
432                         pool_failed++;
433                         break;
434                 }
435                 /*
436                  * If the call site needs a page right now, provide it:
437                  */
438                 if (ret && !*ret) {
439                         *ret = p;
440                         continue;
441                 }
442                 spin_lock_irqsave(&pgd_lock, flags);
443                 list_add(&p->lru, &page_pool);
444                 pool_pages++;
445                 spin_unlock_irqrestore(&pgd_lock, flags);
446         }
447
448         current->flags &= ~PF_MEMALLOC;
449 }
450
451 #define SHIFT_MB                (20 - PAGE_SHIFT)
452 #define ROUND_MB_GB             ((1 << 10) - 1)
453 #define SHIFT_MB_GB             10
454 #define POOL_PAGES_PER_GB       16
455
456 void __init cpa_init(void)
457 {
458         struct sysinfo si;
459         unsigned long gb;
460
461         si_meminfo(&si);
462         /*
463          * Calculate the number of pool pages:
464          *
465          * Convert totalram (nr of pages) to MiB and round to the next
466          * GiB. Shift MiB to Gib and multiply the result by
467          * POOL_PAGES_PER_GB:
468          */
469         if (debug_pagealloc) {
470                 gb = ((si.totalram >> SHIFT_MB) + ROUND_MB_GB) >> SHIFT_MB_GB;
471                 pool_size = POOL_PAGES_PER_GB * gb;
472         } else {
473                 pool_size = 1;
474         }
475         pool_low = pool_size;
476
477         cpa_fill_pool(NULL);
478         printk(KERN_DEBUG
479                "CPA: page pool initialized %lu of %lu pages preallocated\n",
480                pool_pages, pool_size);
481 }
482
483 static int split_large_page(pte_t *kpte, unsigned long address)
484 {
485         unsigned long flags, pfn, pfninc = 1;
486         unsigned int i, level;
487         pte_t *pbase, *tmp;
488         pgprot_t ref_prot;
489         struct page *base;
490
491         /*
492          * Get a page from the pool. The pool list is protected by the
493          * pgd_lock, which we have to take anyway for the split
494          * operation:
495          */
496         spin_lock_irqsave(&pgd_lock, flags);
497         if (list_empty(&page_pool)) {
498                 spin_unlock_irqrestore(&pgd_lock, flags);
499                 base = NULL;
500                 cpa_fill_pool(&base);
501                 if (!base)
502                         return -ENOMEM;
503                 spin_lock_irqsave(&pgd_lock, flags);
504         } else {
505                 base = list_first_entry(&page_pool, struct page, lru);
506                 list_del(&base->lru);
507                 pool_pages--;
508
509                 if (pool_pages < pool_low)
510                         pool_low = pool_pages;
511         }
512
513         /*
514          * Check for races, another CPU might have split this page
515          * up for us already:
516          */
517         tmp = lookup_address(address, &level);
518         if (tmp != kpte)
519                 goto out_unlock;
520
521         pbase = (pte_t *)page_address(base);
522         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
523         ref_prot = pte_pgprot(pte_clrhuge(*kpte));
524
525 #ifdef CONFIG_X86_64
526         if (level == PG_LEVEL_1G) {
527                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
528                 pgprot_val(ref_prot) |= _PAGE_PSE;
529         }
530 #endif
531
532         /*
533          * Get the target pfn from the original entry:
534          */
535         pfn = pte_pfn(*kpte);
536         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
537                 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
538
539         if (address >= (unsigned long)__va(0) &&
540                 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
541                 split_page_count(level);
542
543 #ifdef CONFIG_X86_64
544         if (address >= (unsigned long)__va(1UL<<32) &&
545                 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
546                 split_page_count(level);
547 #endif
548
549         /*
550          * Install the new, split up pagetable. Important details here:
551          *
552          * On Intel the NX bit of all levels must be cleared to make a
553          * page executable. See section 4.13.2 of Intel 64 and IA-32
554          * Architectures Software Developer's Manual).
555          *
556          * Mark the entry present. The current mapping might be
557          * set to not present, which we preserved above.
558          */
559         ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
560         pgprot_val(ref_prot) |= _PAGE_PRESENT;
561         __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
562         base = NULL;
563
564 out_unlock:
565         /*
566          * If we dropped out via the lookup_address check under
567          * pgd_lock then stick the page back into the pool:
568          */
569         if (base) {
570                 list_add(&base->lru, &page_pool);
571                 pool_pages++;
572         } else
573                 pool_used++;
574         spin_unlock_irqrestore(&pgd_lock, flags);
575
576         return 0;
577 }
578
579 static int __change_page_attr(struct cpa_data *cpa, int primary)
580 {
581         unsigned long address = cpa->vaddr;
582         int do_split, err;
583         unsigned int level;
584         pte_t *kpte, old_pte;
585
586 repeat:
587         kpte = lookup_address(address, &level);
588         if (!kpte)
589                 return 0;
590
591         old_pte = *kpte;
592         if (!pte_val(old_pte)) {
593                 if (!primary)
594                         return 0;
595                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
596                        "vaddr = %lx cpa->vaddr = %lx\n", address,
597                        cpa->vaddr);
598                 return -EINVAL;
599         }
600
601         if (level == PG_LEVEL_4K) {
602                 pte_t new_pte;
603                 pgprot_t new_prot = pte_pgprot(old_pte);
604                 unsigned long pfn = pte_pfn(old_pte);
605
606                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
607                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
608
609                 new_prot = static_protections(new_prot, address, pfn);
610
611                 /*
612                  * We need to keep the pfn from the existing PTE,
613                  * after all we're only going to change it's attributes
614                  * not the memory it points to
615                  */
616                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
617                 cpa->pfn = pfn;
618                 /*
619                  * Do we really change anything ?
620                  */
621                 if (pte_val(old_pte) != pte_val(new_pte)) {
622                         set_pte_atomic(kpte, new_pte);
623                         cpa->flushtlb = 1;
624                 }
625                 cpa->numpages = 1;
626                 return 0;
627         }
628
629         /*
630          * Check, whether we can keep the large page intact
631          * and just change the pte:
632          */
633         do_split = try_preserve_large_page(kpte, address, cpa);
634         /*
635          * When the range fits into the existing large page,
636          * return. cp->numpages and cpa->tlbflush have been updated in
637          * try_large_page:
638          */
639         if (do_split <= 0)
640                 return do_split;
641
642         /*
643          * We have to split the large page:
644          */
645         err = split_large_page(kpte, address);
646         if (!err) {
647                 cpa->flushtlb = 1;
648                 goto repeat;
649         }
650
651         return err;
652 }
653
654 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
655
656 static int cpa_process_alias(struct cpa_data *cpa)
657 {
658         struct cpa_data alias_cpa;
659         int ret = 0;
660
661         if (cpa->pfn >= max_pfn_mapped)
662                 return 0;
663
664 #ifdef CONFIG_X86_64
665         if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
666                 return 0;
667 #endif
668         /*
669          * No need to redo, when the primary call touched the direct
670          * mapping already:
671          */
672         if (!(within(cpa->vaddr, PAGE_OFFSET,
673                     PAGE_OFFSET + (max_low_pfn_mapped << PAGE_SHIFT))
674 #ifdef CONFIG_X86_64
675                 || within(cpa->vaddr, PAGE_OFFSET + (1UL<<32),
676                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))
677 #endif
678         )) {
679
680                 alias_cpa = *cpa;
681                 alias_cpa.vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
682
683                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
684         }
685
686 #ifdef CONFIG_X86_64
687         if (ret)
688                 return ret;
689         /*
690          * No need to redo, when the primary call touched the high
691          * mapping already:
692          */
693         if (within(cpa->vaddr, (unsigned long) _text, (unsigned long) _end))
694                 return 0;
695
696         /*
697          * If the physical address is inside the kernel map, we need
698          * to touch the high mapped kernel as well:
699          */
700         if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
701                 return 0;
702
703         alias_cpa = *cpa;
704         alias_cpa.vaddr =
705                 (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
706
707         /*
708          * The high mapping range is imprecise, so ignore the return value.
709          */
710         __change_page_attr_set_clr(&alias_cpa, 0);
711 #endif
712         return ret;
713 }
714
715 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
716 {
717         int ret, numpages = cpa->numpages;
718
719         while (numpages) {
720                 /*
721                  * Store the remaining nr of pages for the large page
722                  * preservation check.
723                  */
724                 cpa->numpages = numpages;
725
726                 ret = __change_page_attr(cpa, checkalias);
727                 if (ret)
728                         return ret;
729
730                 if (checkalias) {
731                         ret = cpa_process_alias(cpa);
732                         if (ret)
733                                 return ret;
734                 }
735
736                 /*
737                  * Adjust the number of pages with the result of the
738                  * CPA operation. Either a large page has been
739                  * preserved or a single page update happened.
740                  */
741                 BUG_ON(cpa->numpages > numpages);
742                 numpages -= cpa->numpages;
743                 cpa->vaddr += cpa->numpages * PAGE_SIZE;
744         }
745         return 0;
746 }
747
748 static inline int cache_attr(pgprot_t attr)
749 {
750         return pgprot_val(attr) &
751                 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
752 }
753
754 static int change_page_attr_set_clr(unsigned long addr, int numpages,
755                                     pgprot_t mask_set, pgprot_t mask_clr,
756                                     int force_split)
757 {
758         struct cpa_data cpa;
759         int ret, cache, checkalias;
760
761         /*
762          * Check, if we are requested to change a not supported
763          * feature:
764          */
765         mask_set = canon_pgprot(mask_set);
766         mask_clr = canon_pgprot(mask_clr);
767         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
768                 return 0;
769
770         /* Ensure we are PAGE_SIZE aligned */
771         if (addr & ~PAGE_MASK) {
772                 addr &= PAGE_MASK;
773                 /*
774                  * People should not be passing in unaligned addresses:
775                  */
776                 WARN_ON_ONCE(1);
777         }
778
779         cpa.vaddr = addr;
780         cpa.numpages = numpages;
781         cpa.mask_set = mask_set;
782         cpa.mask_clr = mask_clr;
783         cpa.flushtlb = 0;
784         cpa.force_split = force_split;
785
786         /* No alias checking for _NX bit modifications */
787         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
788
789         ret = __change_page_attr_set_clr(&cpa, checkalias);
790
791         /*
792          * Check whether we really changed something:
793          */
794         if (!cpa.flushtlb)
795                 goto out;
796
797         /*
798          * No need to flush, when we did not set any of the caching
799          * attributes:
800          */
801         cache = cache_attr(mask_set);
802
803         /*
804          * On success we use clflush, when the CPU supports it to
805          * avoid the wbindv. If the CPU does not support it and in the
806          * error case we fall back to cpa_flush_all (which uses
807          * wbindv):
808          */
809         if (!ret && cpu_has_clflush)
810                 cpa_flush_range(addr, numpages, cache);
811         else
812                 cpa_flush_all(cache);
813
814 out:
815         cpa_fill_pool(NULL);
816
817         return ret;
818 }
819
820 static inline int change_page_attr_set(unsigned long addr, int numpages,
821                                        pgprot_t mask)
822 {
823         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0);
824 }
825
826 static inline int change_page_attr_clear(unsigned long addr, int numpages,
827                                          pgprot_t mask)
828 {
829         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0);
830 }
831
832 int _set_memory_uc(unsigned long addr, int numpages)
833 {
834         /*
835          * for now UC MINUS. see comments in ioremap_nocache()
836          */
837         return change_page_attr_set(addr, numpages,
838                                     __pgprot(_PAGE_CACHE_UC_MINUS));
839 }
840
841 int set_memory_uc(unsigned long addr, int numpages)
842 {
843         /*
844          * for now UC MINUS. see comments in ioremap_nocache()
845          */
846         if (reserve_memtype(addr, addr + numpages * PAGE_SIZE,
847                             _PAGE_CACHE_UC_MINUS, NULL))
848                 return -EINVAL;
849
850         return _set_memory_uc(addr, numpages);
851 }
852 EXPORT_SYMBOL(set_memory_uc);
853
854 int _set_memory_wc(unsigned long addr, int numpages)
855 {
856         return change_page_attr_set(addr, numpages,
857                                     __pgprot(_PAGE_CACHE_WC));
858 }
859
860 int set_memory_wc(unsigned long addr, int numpages)
861 {
862         if (!pat_enabled)
863                 return set_memory_uc(addr, numpages);
864
865         if (reserve_memtype(addr, addr + numpages * PAGE_SIZE,
866                 _PAGE_CACHE_WC, NULL))
867                 return -EINVAL;
868
869         return _set_memory_wc(addr, numpages);
870 }
871 EXPORT_SYMBOL(set_memory_wc);
872
873 int _set_memory_wb(unsigned long addr, int numpages)
874 {
875         return change_page_attr_clear(addr, numpages,
876                                       __pgprot(_PAGE_CACHE_MASK));
877 }
878
879 int set_memory_wb(unsigned long addr, int numpages)
880 {
881         free_memtype(addr, addr + numpages * PAGE_SIZE);
882
883         return _set_memory_wb(addr, numpages);
884 }
885 EXPORT_SYMBOL(set_memory_wb);
886
887 int set_memory_x(unsigned long addr, int numpages)
888 {
889         return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
890 }
891 EXPORT_SYMBOL(set_memory_x);
892
893 int set_memory_nx(unsigned long addr, int numpages)
894 {
895         return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
896 }
897 EXPORT_SYMBOL(set_memory_nx);
898
899 int set_memory_ro(unsigned long addr, int numpages)
900 {
901         return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
902 }
903
904 int set_memory_rw(unsigned long addr, int numpages)
905 {
906         return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
907 }
908
909 int set_memory_np(unsigned long addr, int numpages)
910 {
911         return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
912 }
913
914 int set_memory_4k(unsigned long addr, int numpages)
915 {
916         return change_page_attr_set_clr(addr, numpages, __pgprot(0),
917                                         __pgprot(0), 1);
918 }
919
920 int set_pages_uc(struct page *page, int numpages)
921 {
922         unsigned long addr = (unsigned long)page_address(page);
923
924         return set_memory_uc(addr, numpages);
925 }
926 EXPORT_SYMBOL(set_pages_uc);
927
928 int set_pages_wb(struct page *page, int numpages)
929 {
930         unsigned long addr = (unsigned long)page_address(page);
931
932         return set_memory_wb(addr, numpages);
933 }
934 EXPORT_SYMBOL(set_pages_wb);
935
936 int set_pages_x(struct page *page, int numpages)
937 {
938         unsigned long addr = (unsigned long)page_address(page);
939
940         return set_memory_x(addr, numpages);
941 }
942 EXPORT_SYMBOL(set_pages_x);
943
944 int set_pages_nx(struct page *page, int numpages)
945 {
946         unsigned long addr = (unsigned long)page_address(page);
947
948         return set_memory_nx(addr, numpages);
949 }
950 EXPORT_SYMBOL(set_pages_nx);
951
952 int set_pages_ro(struct page *page, int numpages)
953 {
954         unsigned long addr = (unsigned long)page_address(page);
955
956         return set_memory_ro(addr, numpages);
957 }
958
959 int set_pages_rw(struct page *page, int numpages)
960 {
961         unsigned long addr = (unsigned long)page_address(page);
962
963         return set_memory_rw(addr, numpages);
964 }
965
966 #ifdef CONFIG_DEBUG_PAGEALLOC
967
968 static int __set_pages_p(struct page *page, int numpages)
969 {
970         struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
971                                 .numpages = numpages,
972                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
973                                 .mask_clr = __pgprot(0)};
974
975         return __change_page_attr_set_clr(&cpa, 1);
976 }
977
978 static int __set_pages_np(struct page *page, int numpages)
979 {
980         struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
981                                 .numpages = numpages,
982                                 .mask_set = __pgprot(0),
983                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
984
985         return __change_page_attr_set_clr(&cpa, 1);
986 }
987
988 void kernel_map_pages(struct page *page, int numpages, int enable)
989 {
990         if (PageHighMem(page))
991                 return;
992         if (!enable) {
993                 debug_check_no_locks_freed(page_address(page),
994                                            numpages * PAGE_SIZE);
995         }
996
997         /*
998          * If page allocator is not up yet then do not call c_p_a():
999          */
1000         if (!debug_pagealloc_enabled)
1001                 return;
1002
1003         /*
1004          * The return value is ignored as the calls cannot fail.
1005          * Large pages are kept enabled at boot time, and are
1006          * split up quickly with DEBUG_PAGEALLOC. If a splitup
1007          * fails here (due to temporary memory shortage) no damage
1008          * is done because we just keep the largepage intact up
1009          * to the next attempt when it will likely be split up:
1010          */
1011         if (enable)
1012                 __set_pages_p(page, numpages);
1013         else
1014                 __set_pages_np(page, numpages);
1015
1016         /*
1017          * We should perform an IPI and flush all tlbs,
1018          * but that can deadlock->flush only current cpu:
1019          */
1020         __flush_tlb_all();
1021
1022         /*
1023          * Try to refill the page pool here. We can do this only after
1024          * the tlb flush.
1025          */
1026         cpa_fill_pool(NULL);
1027 }
1028
1029 #ifdef CONFIG_DEBUG_FS
1030 static int dpa_show(struct seq_file *m, void *v)
1031 {
1032         seq_puts(m, "DEBUG_PAGEALLOC\n");
1033         seq_printf(m, "pool_size     : %lu\n", pool_size);
1034         seq_printf(m, "pool_pages    : %lu\n", pool_pages);
1035         seq_printf(m, "pool_low      : %lu\n", pool_low);
1036         seq_printf(m, "pool_used     : %lu\n", pool_used);
1037         seq_printf(m, "pool_failed   : %lu\n", pool_failed);
1038
1039         return 0;
1040 }
1041
1042 static int dpa_open(struct inode *inode, struct file *filp)
1043 {
1044         return single_open(filp, dpa_show, NULL);
1045 }
1046
1047 static const struct file_operations dpa_fops = {
1048         .open           = dpa_open,
1049         .read           = seq_read,
1050         .llseek         = seq_lseek,
1051         .release        = single_release,
1052 };
1053
1054 static int __init debug_pagealloc_proc_init(void)
1055 {
1056         struct dentry *de;
1057
1058         de = debugfs_create_file("debug_pagealloc", 0600, NULL, NULL,
1059                                  &dpa_fops);
1060         if (!de)
1061                 return -ENOMEM;
1062
1063         return 0;
1064 }
1065 __initcall(debug_pagealloc_proc_init);
1066 #endif
1067
1068 #ifdef CONFIG_HIBERNATION
1069
1070 bool kernel_page_present(struct page *page)
1071 {
1072         unsigned int level;
1073         pte_t *pte;
1074
1075         if (PageHighMem(page))
1076                 return false;
1077
1078         pte = lookup_address((unsigned long)page_address(page), &level);
1079         return (pte_val(*pte) & _PAGE_PRESENT);
1080 }
1081
1082 #endif /* CONFIG_HIBERNATION */
1083
1084 #endif /* CONFIG_DEBUG_PAGEALLOC */
1085
1086 /*
1087  * The testcases use internal knowledge of the implementation that shouldn't
1088  * be exposed to the rest of the kernel. Include these directly here.
1089  */
1090 #ifdef CONFIG_CPA_DEBUG
1091 #include "pageattr-test.c"
1092 #endif