2 * Copyright (c) 2003-2007 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include "firmware_exports.h"
38 * t3_wait_op_done_val - wait until an operation is completed
39 * @adapter: the adapter performing the operation
40 * @reg: the register to check for completion
41 * @mask: a single-bit field within @reg that indicates completion
42 * @polarity: the value of the field when the operation is completed
43 * @attempts: number of check iterations
44 * @delay: delay in usecs between iterations
45 * @valp: where to store the value of the register at completion time
47 * Wait until an operation is completed by checking a bit in a register
48 * up to @attempts times. If @valp is not NULL the value of the register
49 * at the time it indicated completion is stored there. Returns 0 if the
50 * operation completes and -EAGAIN otherwise.
53 int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
54 int polarity, int attempts, int delay, u32 *valp)
57 u32 val = t3_read_reg(adapter, reg);
59 if (!!(val & mask) == polarity) {
72 * t3_write_regs - write a bunch of registers
73 * @adapter: the adapter to program
74 * @p: an array of register address/register value pairs
75 * @n: the number of address/value pairs
76 * @offset: register address offset
78 * Takes an array of register address/register value pairs and writes each
79 * value to the corresponding register. Register addresses are adjusted
80 * by the supplied offset.
82 void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
83 int n, unsigned int offset)
86 t3_write_reg(adapter, p->reg_addr + offset, p->val);
92 * t3_set_reg_field - set a register field to a value
93 * @adapter: the adapter to program
94 * @addr: the register address
95 * @mask: specifies the portion of the register to modify
96 * @val: the new value for the register field
98 * Sets a register field specified by the supplied mask to the
101 void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
104 u32 v = t3_read_reg(adapter, addr) & ~mask;
106 t3_write_reg(adapter, addr, v | val);
107 t3_read_reg(adapter, addr); /* flush */
111 * t3_read_indirect - read indirectly addressed registers
113 * @addr_reg: register holding the indirect address
114 * @data_reg: register holding the value of the indirect register
115 * @vals: where the read register values are stored
116 * @start_idx: index of first indirect register to read
117 * @nregs: how many indirect registers to read
119 * Reads registers that are accessed indirectly through an address/data
122 static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
123 unsigned int data_reg, u32 *vals,
124 unsigned int nregs, unsigned int start_idx)
127 t3_write_reg(adap, addr_reg, start_idx);
128 *vals++ = t3_read_reg(adap, data_reg);
134 * t3_mc7_bd_read - read from MC7 through backdoor accesses
135 * @mc7: identifies MC7 to read from
136 * @start: index of first 64-bit word to read
137 * @n: number of 64-bit words to read
138 * @buf: where to store the read result
140 * Read n 64-bit words from MC7 starting at word start, using backdoor
143 int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
146 static const int shift[] = { 0, 0, 16, 24 };
147 static const int step[] = { 0, 32, 16, 8 };
149 unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
150 struct adapter *adap = mc7->adapter;
152 if (start >= size64 || start + n > size64)
155 start *= (8 << mc7->width);
160 for (i = (1 << mc7->width) - 1; i >= 0; --i) {
164 t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
165 t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
166 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
167 while ((val & F_BUSY) && attempts--)
168 val = t3_read_reg(adap,
169 mc7->offset + A_MC7_BD_OP);
173 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
174 if (mc7->width == 0) {
175 val64 = t3_read_reg(adap,
178 val64 |= (u64) val << 32;
181 val >>= shift[mc7->width];
182 val64 |= (u64) val << (step[mc7->width] * i);
194 static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
196 u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
197 u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) |
200 if (!(ai->caps & SUPPORTED_10000baseT_Full))
202 t3_write_reg(adap, A_MI1_CFG, val);
205 #define MDIO_ATTEMPTS 10
208 * MI1 read/write operations for direct-addressed PHYs.
210 static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
211 int reg_addr, unsigned int *valp)
214 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
219 mutex_lock(&adapter->mdio_lock);
220 t3_write_reg(adapter, A_MI1_ADDR, addr);
221 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
222 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
224 *valp = t3_read_reg(adapter, A_MI1_DATA);
225 mutex_unlock(&adapter->mdio_lock);
229 static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
230 int reg_addr, unsigned int val)
233 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
238 mutex_lock(&adapter->mdio_lock);
239 t3_write_reg(adapter, A_MI1_ADDR, addr);
240 t3_write_reg(adapter, A_MI1_DATA, val);
241 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
242 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
243 mutex_unlock(&adapter->mdio_lock);
247 static const struct mdio_ops mi1_mdio_ops = {
253 * MI1 read/write operations for indirect-addressed PHYs.
255 static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
256 int reg_addr, unsigned int *valp)
259 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
261 mutex_lock(&adapter->mdio_lock);
262 t3_write_reg(adapter, A_MI1_ADDR, addr);
263 t3_write_reg(adapter, A_MI1_DATA, reg_addr);
264 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
265 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
267 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
268 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
271 *valp = t3_read_reg(adapter, A_MI1_DATA);
273 mutex_unlock(&adapter->mdio_lock);
277 static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
278 int reg_addr, unsigned int val)
281 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
283 mutex_lock(&adapter->mdio_lock);
284 t3_write_reg(adapter, A_MI1_ADDR, addr);
285 t3_write_reg(adapter, A_MI1_DATA, reg_addr);
286 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
287 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
289 t3_write_reg(adapter, A_MI1_DATA, val);
290 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
291 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
294 mutex_unlock(&adapter->mdio_lock);
298 static const struct mdio_ops mi1_mdio_ext_ops = {
304 * t3_mdio_change_bits - modify the value of a PHY register
305 * @phy: the PHY to operate on
306 * @mmd: the device address
307 * @reg: the register address
308 * @clear: what part of the register value to mask off
309 * @set: what part of the register value to set
311 * Changes the value of a PHY register by applying a mask to its current
312 * value and ORing the result with a new value.
314 int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
320 ret = mdio_read(phy, mmd, reg, &val);
323 ret = mdio_write(phy, mmd, reg, val | set);
329 * t3_phy_reset - reset a PHY block
330 * @phy: the PHY to operate on
331 * @mmd: the device address of the PHY block to reset
332 * @wait: how long to wait for the reset to complete in 1ms increments
334 * Resets a PHY block and optionally waits for the reset to complete.
335 * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
338 int t3_phy_reset(struct cphy *phy, int mmd, int wait)
343 err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
348 err = mdio_read(phy, mmd, MII_BMCR, &ctl);
354 } while (ctl && --wait);
360 * t3_phy_advertise - set the PHY advertisement registers for autoneg
361 * @phy: the PHY to operate on
362 * @advert: bitmap of capabilities the PHY should advertise
364 * Sets a 10/100/1000 PHY's advertisement registers to advertise the
365 * requested capabilities.
367 int t3_phy_advertise(struct cphy *phy, unsigned int advert)
370 unsigned int val = 0;
372 err = mdio_read(phy, 0, MII_CTRL1000, &val);
376 val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
377 if (advert & ADVERTISED_1000baseT_Half)
378 val |= ADVERTISE_1000HALF;
379 if (advert & ADVERTISED_1000baseT_Full)
380 val |= ADVERTISE_1000FULL;
382 err = mdio_write(phy, 0, MII_CTRL1000, val);
387 if (advert & ADVERTISED_10baseT_Half)
388 val |= ADVERTISE_10HALF;
389 if (advert & ADVERTISED_10baseT_Full)
390 val |= ADVERTISE_10FULL;
391 if (advert & ADVERTISED_100baseT_Half)
392 val |= ADVERTISE_100HALF;
393 if (advert & ADVERTISED_100baseT_Full)
394 val |= ADVERTISE_100FULL;
395 if (advert & ADVERTISED_Pause)
396 val |= ADVERTISE_PAUSE_CAP;
397 if (advert & ADVERTISED_Asym_Pause)
398 val |= ADVERTISE_PAUSE_ASYM;
399 return mdio_write(phy, 0, MII_ADVERTISE, val);
403 * t3_set_phy_speed_duplex - force PHY speed and duplex
404 * @phy: the PHY to operate on
405 * @speed: requested PHY speed
406 * @duplex: requested PHY duplex
408 * Force a 10/100/1000 PHY's speed and duplex. This also disables
409 * auto-negotiation except for GigE, where auto-negotiation is mandatory.
411 int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
416 err = mdio_read(phy, 0, MII_BMCR, &ctl);
421 ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
422 if (speed == SPEED_100)
423 ctl |= BMCR_SPEED100;
424 else if (speed == SPEED_1000)
425 ctl |= BMCR_SPEED1000;
428 ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
429 if (duplex == DUPLEX_FULL)
430 ctl |= BMCR_FULLDPLX;
432 if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
433 ctl |= BMCR_ANENABLE;
434 return mdio_write(phy, 0, MII_BMCR, ctl);
437 static const struct adapter_info t3_adap_info[] = {
439 F_GPIO2_OEN | F_GPIO4_OEN |
440 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
442 &mi1_mdio_ops, "Chelsio PE9000"},
444 F_GPIO2_OEN | F_GPIO4_OEN |
445 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
447 &mi1_mdio_ops, "Chelsio T302"},
449 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
450 F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
451 0, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
452 &mi1_mdio_ext_ops, "Chelsio T310"},
454 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
455 F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
456 F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
457 SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
458 &mi1_mdio_ext_ops, "Chelsio T320"},
462 * Return the adapter_info structure with a given index. Out-of-range indices
465 const struct adapter_info *t3_get_adapter_info(unsigned int id)
467 return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
470 #define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \
471 SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII)
472 #define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI)
474 static const struct port_type_info port_types[] = {
476 {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
478 {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
479 "10/100/1000BASE-T"},
480 {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
481 "10/100/1000BASE-T"},
482 {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
483 {NULL, CAPS_10G, "10GBASE-KX4"},
484 {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
485 {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
487 {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
493 #define VPD_ENTRY(name, len) \
494 u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
497 * Partial EEPROM Vital Product Data structure. Includes only the ID and
506 VPD_ENTRY(pn, 16); /* part number */
507 VPD_ENTRY(ec, 16); /* EC level */
508 VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
509 VPD_ENTRY(na, 12); /* MAC address base */
510 VPD_ENTRY(cclk, 6); /* core clock */
511 VPD_ENTRY(mclk, 6); /* mem clock */
512 VPD_ENTRY(uclk, 6); /* uP clk */
513 VPD_ENTRY(mdc, 6); /* MDIO clk */
514 VPD_ENTRY(mt, 2); /* mem timing */
515 VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
516 VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
517 VPD_ENTRY(port0, 2); /* PHY0 complex */
518 VPD_ENTRY(port1, 2); /* PHY1 complex */
519 VPD_ENTRY(port2, 2); /* PHY2 complex */
520 VPD_ENTRY(port3, 2); /* PHY3 complex */
521 VPD_ENTRY(rv, 1); /* csum */
522 u32 pad; /* for multiple-of-4 sizing and alignment */
525 #define EEPROM_MAX_POLL 4
526 #define EEPROM_STAT_ADDR 0x4000
527 #define VPD_BASE 0xc00
530 * t3_seeprom_read - read a VPD EEPROM location
531 * @adapter: adapter to read
532 * @addr: EEPROM address
533 * @data: where to store the read data
535 * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
536 * VPD ROM capability. A zero is written to the flag bit when the
537 * addres is written to the control register. The hardware device will
538 * set the flag to 1 when 4 bytes have been read into the data register.
540 int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
543 int attempts = EEPROM_MAX_POLL;
545 unsigned int base = adapter->params.pci.vpd_cap_addr;
547 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
550 pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
553 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
554 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
556 if (!(val & PCI_VPD_ADDR_F)) {
557 CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
560 pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
561 *data = cpu_to_le32(v);
566 * t3_seeprom_write - write a VPD EEPROM location
567 * @adapter: adapter to write
568 * @addr: EEPROM address
569 * @data: value to write
571 * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
572 * VPD ROM capability.
574 int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
577 int attempts = EEPROM_MAX_POLL;
578 unsigned int base = adapter->params.pci.vpd_cap_addr;
580 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
583 pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
585 pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
586 addr | PCI_VPD_ADDR_F);
589 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
590 } while ((val & PCI_VPD_ADDR_F) && --attempts);
592 if (val & PCI_VPD_ADDR_F) {
593 CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
600 * t3_seeprom_wp - enable/disable EEPROM write protection
601 * @adapter: the adapter
602 * @enable: 1 to enable write protection, 0 to disable it
604 * Enables or disables write protection on the serial EEPROM.
606 int t3_seeprom_wp(struct adapter *adapter, int enable)
608 return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
612 * Convert a character holding a hex digit to a number.
614 static unsigned int hex2int(unsigned char c)
616 return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
620 * get_vpd_params - read VPD parameters from VPD EEPROM
621 * @adapter: adapter to read
622 * @p: where to store the parameters
624 * Reads card parameters stored in VPD EEPROM.
626 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
632 * Card information is normally at VPD_BASE but some early cards had
635 ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
638 addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
640 for (i = 0; i < sizeof(vpd); i += 4) {
641 ret = t3_seeprom_read(adapter, addr + i,
642 (__le32 *)((u8 *)&vpd + i));
647 p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
648 p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
649 p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
650 p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
651 p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
652 memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
654 /* Old eeproms didn't have port information */
655 if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
656 p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
657 p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
659 p->port_type[0] = hex2int(vpd.port0_data[0]);
660 p->port_type[1] = hex2int(vpd.port1_data[0]);
661 p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
662 p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
665 for (i = 0; i < 6; i++)
666 p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
667 hex2int(vpd.na_data[2 * i + 1]);
671 /* serial flash and firmware constants */
673 SF_ATTEMPTS = 5, /* max retries for SF1 operations */
674 SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
675 SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
677 /* flash command opcodes */
678 SF_PROG_PAGE = 2, /* program page */
679 SF_WR_DISABLE = 4, /* disable writes */
680 SF_RD_STATUS = 5, /* read status register */
681 SF_WR_ENABLE = 6, /* enable writes */
682 SF_RD_DATA_FAST = 0xb, /* read flash */
683 SF_ERASE_SECTOR = 0xd8, /* erase sector */
685 FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
686 FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */
687 FW_MIN_SIZE = 8 /* at least version and csum */
691 * sf1_read - read data from the serial flash
692 * @adapter: the adapter
693 * @byte_cnt: number of bytes to read
694 * @cont: whether another operation will be chained
695 * @valp: where to store the read data
697 * Reads up to 4 bytes of data from the serial flash. The location of
698 * the read needs to be specified prior to calling this by issuing the
699 * appropriate commands to the serial flash.
701 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
706 if (!byte_cnt || byte_cnt > 4)
708 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
710 t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
711 ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
713 *valp = t3_read_reg(adapter, A_SF_DATA);
718 * sf1_write - write data to the serial flash
719 * @adapter: the adapter
720 * @byte_cnt: number of bytes to write
721 * @cont: whether another operation will be chained
722 * @val: value to write
724 * Writes up to 4 bytes of data to the serial flash. The location of
725 * the write needs to be specified prior to calling this by issuing the
726 * appropriate commands to the serial flash.
728 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
731 if (!byte_cnt || byte_cnt > 4)
733 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
735 t3_write_reg(adapter, A_SF_DATA, val);
736 t3_write_reg(adapter, A_SF_OP,
737 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
738 return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
742 * flash_wait_op - wait for a flash operation to complete
743 * @adapter: the adapter
744 * @attempts: max number of polls of the status register
745 * @delay: delay between polls in ms
747 * Wait for a flash operation to complete by polling the status register.
749 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
755 if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
756 (ret = sf1_read(adapter, 1, 0, &status)) != 0)
768 * t3_read_flash - read words from serial flash
769 * @adapter: the adapter
770 * @addr: the start address for the read
771 * @nwords: how many 32-bit words to read
772 * @data: where to store the read data
773 * @byte_oriented: whether to store data as bytes or as words
775 * Read the specified number of 32-bit words from the serial flash.
776 * If @byte_oriented is set the read data is stored as a byte array
777 * (i.e., big-endian), otherwise as 32-bit words in the platform's
780 int t3_read_flash(struct adapter *adapter, unsigned int addr,
781 unsigned int nwords, u32 *data, int byte_oriented)
785 if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
788 addr = swab32(addr) | SF_RD_DATA_FAST;
790 if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
791 (ret = sf1_read(adapter, 1, 1, data)) != 0)
794 for (; nwords; nwords--, data++) {
795 ret = sf1_read(adapter, 4, nwords > 1, data);
799 *data = htonl(*data);
805 * t3_write_flash - write up to a page of data to the serial flash
806 * @adapter: the adapter
807 * @addr: the start address to write
808 * @n: length of data to write
809 * @data: the data to write
811 * Writes up to a page of data (256 bytes) to the serial flash starting
812 * at the given address.
814 static int t3_write_flash(struct adapter *adapter, unsigned int addr,
815 unsigned int n, const u8 *data)
819 unsigned int i, c, left, val, offset = addr & 0xff;
821 if (addr + n > SF_SIZE || offset + n > 256)
824 val = swab32(addr) | SF_PROG_PAGE;
826 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
827 (ret = sf1_write(adapter, 4, 1, val)) != 0)
830 for (left = n; left; left -= c) {
832 for (val = 0, i = 0; i < c; ++i)
833 val = (val << 8) + *data++;
835 ret = sf1_write(adapter, c, c != left, val);
839 if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
842 /* Read the page to verify the write succeeded */
843 ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
847 if (memcmp(data - n, (u8 *) buf + offset, n))
853 * t3_get_tp_version - read the tp sram version
854 * @adapter: the adapter
855 * @vers: where to place the version
857 * Reads the protocol sram version from sram.
859 int t3_get_tp_version(struct adapter *adapter, u32 *vers)
863 /* Get version loaded in SRAM */
864 t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
865 ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
870 *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
876 * t3_check_tpsram_version - read the tp sram version
877 * @adapter: the adapter
878 * @must_load: set to 1 if loading a new microcode image is required
880 * Reads the protocol sram version from flash.
882 int t3_check_tpsram_version(struct adapter *adapter, int *must_load)
886 unsigned int major, minor;
888 if (adapter->params.rev == T3_REV_A)
893 ret = t3_get_tp_version(adapter, &vers);
897 major = G_TP_VERSION_MAJOR(vers);
898 minor = G_TP_VERSION_MINOR(vers);
900 if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
903 if (major != TP_VERSION_MAJOR)
904 CH_ERR(adapter, "found wrong TP version (%u.%u), "
905 "driver needs version %d.%d\n", major, minor,
906 TP_VERSION_MAJOR, TP_VERSION_MINOR);
909 CH_ERR(adapter, "found wrong TP version (%u.%u), "
910 "driver compiled for version %d.%d\n", major, minor,
911 TP_VERSION_MAJOR, TP_VERSION_MINOR);
917 * t3_check_tpsram - check if provided protocol SRAM
918 * is compatible with this driver
919 * @adapter: the adapter
920 * @tp_sram: the firmware image to write
923 * Checks if an adapter's tp sram is compatible with the driver.
924 * Returns 0 if the versions are compatible, a negative error otherwise.
926 int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
931 const __be32 *p = (const __be32 *)tp_sram;
933 /* Verify checksum */
934 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
936 if (csum != 0xffffffff) {
937 CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
945 enum fw_version_type {
951 * t3_get_fw_version - read the firmware version
952 * @adapter: the adapter
953 * @vers: where to place the version
955 * Reads the FW version from flash.
957 int t3_get_fw_version(struct adapter *adapter, u32 *vers)
959 return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
963 * t3_check_fw_version - check if the FW is compatible with this driver
964 * @adapter: the adapter
965 * @must_load: set to 1 if loading a new FW image is required
967 * Checks if an adapter's FW is compatible with the driver. Returns 0
968 * if the versions are compatible, a negative error otherwise.
970 int t3_check_fw_version(struct adapter *adapter, int *must_load)
974 unsigned int type, major, minor;
977 ret = t3_get_fw_version(adapter, &vers);
981 type = G_FW_VERSION_TYPE(vers);
982 major = G_FW_VERSION_MAJOR(vers);
983 minor = G_FW_VERSION_MINOR(vers);
985 if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
986 minor == FW_VERSION_MINOR)
989 if (major != FW_VERSION_MAJOR)
990 CH_ERR(adapter, "found wrong FW version(%u.%u), "
991 "driver needs version %u.%u\n", major, minor,
992 FW_VERSION_MAJOR, FW_VERSION_MINOR);
993 else if (minor < FW_VERSION_MINOR) {
995 CH_WARN(adapter, "found old FW minor version(%u.%u), "
996 "driver compiled for version %u.%u\n", major, minor,
997 FW_VERSION_MAJOR, FW_VERSION_MINOR);
999 CH_WARN(adapter, "found newer FW version(%u.%u), "
1000 "driver compiled for version %u.%u\n", major, minor,
1001 FW_VERSION_MAJOR, FW_VERSION_MINOR);
1008 * t3_flash_erase_sectors - erase a range of flash sectors
1009 * @adapter: the adapter
1010 * @start: the first sector to erase
1011 * @end: the last sector to erase
1013 * Erases the sectors in the given range.
1015 static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
1017 while (start <= end) {
1020 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
1021 (ret = sf1_write(adapter, 4, 0,
1022 SF_ERASE_SECTOR | (start << 8))) != 0 ||
1023 (ret = flash_wait_op(adapter, 5, 500)) != 0)
1031 * t3_load_fw - download firmware
1032 * @adapter: the adapter
1033 * @fw_data: the firmware image to write
1036 * Write the supplied firmware image to the card's serial flash.
1037 * The FW image has the following sections: @size - 8 bytes of code and
1038 * data, followed by 4 bytes of FW version, followed by the 32-bit
1039 * 1's complement checksum of the whole image.
1041 int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
1045 const __be32 *p = (const __be32 *)fw_data;
1046 int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
1048 if ((size & 3) || size < FW_MIN_SIZE)
1050 if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
1053 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1054 csum += ntohl(p[i]);
1055 if (csum != 0xffffffff) {
1056 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1061 ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
1065 size -= 8; /* trim off version and checksum */
1066 for (addr = FW_FLASH_BOOT_ADDR; size;) {
1067 unsigned int chunk_size = min(size, 256U);
1069 ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
1074 fw_data += chunk_size;
1078 ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
1081 CH_ERR(adapter, "firmware download failed, error %d\n", ret);
1085 #define CIM_CTL_BASE 0x2000
1088 * t3_cim_ctl_blk_read - read a block from CIM control region
1090 * @adap: the adapter
1091 * @addr: the start address within the CIM control region
1092 * @n: number of words to read
1093 * @valp: where to store the result
1095 * Reads a block of 4-byte words from the CIM control region.
1097 int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
1098 unsigned int n, unsigned int *valp)
1102 if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1105 for ( ; !ret && n--; addr += 4) {
1106 t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
1107 ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1110 *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
1117 * t3_link_changed - handle interface link changes
1118 * @adapter: the adapter
1119 * @port_id: the port index that changed link state
1121 * Called when a port's link settings change to propagate the new values
1122 * to the associated PHY and MAC. After performing the common tasks it
1123 * invokes an OS-specific handler.
1125 void t3_link_changed(struct adapter *adapter, int port_id)
1127 int link_ok, speed, duplex, fc;
1128 struct port_info *pi = adap2pinfo(adapter, port_id);
1129 struct cphy *phy = &pi->phy;
1130 struct cmac *mac = &pi->mac;
1131 struct link_config *lc = &pi->link_config;
1133 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
1135 if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
1136 uses_xaui(adapter)) {
1139 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
1140 link_ok ? F_TXACTENABLE | F_RXEN : 0);
1142 lc->link_ok = link_ok;
1143 lc->speed = speed < 0 ? SPEED_INVALID : speed;
1144 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
1145 if (lc->requested_fc & PAUSE_AUTONEG)
1146 fc &= lc->requested_fc;
1148 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1150 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
1151 /* Set MAC speed, duplex, and flow control to match PHY. */
1152 t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
1156 t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
1160 * t3_link_start - apply link configuration to MAC/PHY
1161 * @phy: the PHY to setup
1162 * @mac: the MAC to setup
1163 * @lc: the requested link configuration
1165 * Set up a port's MAC and PHY according to a desired link configuration.
1166 * - If the PHY can auto-negotiate first decide what to advertise, then
1167 * enable/disable auto-negotiation as desired, and reset.
1168 * - If the PHY does not auto-negotiate just reset it.
1169 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1170 * otherwise do it later based on the outcome of auto-negotiation.
1172 int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
1174 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1177 if (lc->supported & SUPPORTED_Autoneg) {
1178 lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
1180 lc->advertising |= ADVERTISED_Asym_Pause;
1182 lc->advertising |= ADVERTISED_Pause;
1184 phy->ops->advertise(phy, lc->advertising);
1186 if (lc->autoneg == AUTONEG_DISABLE) {
1187 lc->speed = lc->requested_speed;
1188 lc->duplex = lc->requested_duplex;
1189 lc->fc = (unsigned char)fc;
1190 t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
1192 /* Also disables autoneg */
1193 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
1194 phy->ops->reset(phy, 0);
1196 phy->ops->autoneg_enable(phy);
1198 t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
1199 lc->fc = (unsigned char)fc;
1200 phy->ops->reset(phy, 0);
1206 * t3_set_vlan_accel - control HW VLAN extraction
1207 * @adapter: the adapter
1208 * @ports: bitmap of adapter ports to operate on
1209 * @on: enable (1) or disable (0) HW VLAN extraction
1211 * Enables or disables HW extraction of VLAN tags for the given port.
1213 void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
1215 t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
1216 ports << S_VLANEXTRACTIONENABLE,
1217 on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
1221 unsigned int mask; /* bits to check in interrupt status */
1222 const char *msg; /* message to print or NULL */
1223 short stat_idx; /* stat counter to increment or -1 */
1224 unsigned short fatal:1; /* whether the condition reported is fatal */
1228 * t3_handle_intr_status - table driven interrupt handler
1229 * @adapter: the adapter that generated the interrupt
1230 * @reg: the interrupt status register to process
1231 * @mask: a mask to apply to the interrupt status
1232 * @acts: table of interrupt actions
1233 * @stats: statistics counters tracking interrupt occurences
1235 * A table driven interrupt handler that applies a set of masks to an
1236 * interrupt status word and performs the corresponding actions if the
1237 * interrupts described by the mask have occured. The actions include
1238 * optionally printing a warning or alert message, and optionally
1239 * incrementing a stat counter. The table is terminated by an entry
1240 * specifying mask 0. Returns the number of fatal interrupt conditions.
1242 static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
1244 const struct intr_info *acts,
1245 unsigned long *stats)
1248 unsigned int status = t3_read_reg(adapter, reg) & mask;
1250 for (; acts->mask; ++acts) {
1251 if (!(status & acts->mask))
1255 CH_ALERT(adapter, "%s (0x%x)\n",
1256 acts->msg, status & acts->mask);
1257 } else if (acts->msg)
1258 CH_WARN(adapter, "%s (0x%x)\n",
1259 acts->msg, status & acts->mask);
1260 if (acts->stat_idx >= 0)
1261 stats[acts->stat_idx]++;
1263 if (status) /* clear processed interrupts */
1264 t3_write_reg(adapter, reg, status);
1268 #define SGE_INTR_MASK (F_RSPQDISABLED | \
1269 F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
1270 F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
1271 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
1272 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
1273 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
1275 #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
1276 F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
1278 #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
1279 #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1280 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
1281 F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
1282 #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
1283 F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
1284 F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
1285 F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
1286 V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
1287 V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
1288 #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
1289 F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
1290 /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
1291 F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
1292 F_TXPARERR | V_BISTERR(M_BISTERR))
1293 #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
1294 F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
1295 F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
1296 #define ULPTX_INTR_MASK 0xfc
1297 #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
1298 F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
1299 F_ZERO_SWITCH_ERROR)
1300 #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
1301 F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
1302 F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
1303 F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
1304 F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
1305 F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
1306 F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
1307 F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
1308 #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
1309 V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
1310 V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
1311 #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
1312 V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
1313 V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
1314 #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
1315 V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
1316 V_RXTPPARERRENB(M_RXTPPARERRENB) | \
1317 V_MCAPARERRENB(M_MCAPARERRENB))
1318 #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
1319 F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
1320 F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
1321 F_MPS0 | F_CPL_SWITCH)
1324 * Interrupt handler for the PCIX1 module.
1326 static void pci_intr_handler(struct adapter *adapter)
1328 static const struct intr_info pcix1_intr_info[] = {
1329 {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
1330 {F_SIGTARABT, "PCI signaled target abort", -1, 1},
1331 {F_RCVTARABT, "PCI received target abort", -1, 1},
1332 {F_RCVMSTABT, "PCI received master abort", -1, 1},
1333 {F_SIGSYSERR, "PCI signaled system error", -1, 1},
1334 {F_DETPARERR, "PCI detected parity error", -1, 1},
1335 {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
1336 {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
1337 {F_RCVSPLCMPERR, "PCI received split completion error", -1,
1339 {F_DETCORECCERR, "PCI correctable ECC error",
1340 STAT_PCI_CORR_ECC, 0},
1341 {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
1342 {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1343 {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
1345 {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
1347 {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
1349 {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
1354 if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
1355 pcix1_intr_info, adapter->irq_stats))
1356 t3_fatal_err(adapter);
1360 * Interrupt handler for the PCIE module.
1362 static void pcie_intr_handler(struct adapter *adapter)
1364 static const struct intr_info pcie_intr_info[] = {
1365 {F_PEXERR, "PCI PEX error", -1, 1},
1367 "PCI unexpected split completion DMA read error", -1, 1},
1369 "PCI unexpected split completion DMA command error", -1, 1},
1370 {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1371 {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
1372 {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
1373 {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
1374 {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
1375 "PCI MSI-X table/PBA parity error", -1, 1},
1376 {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
1377 {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
1378 {F_RXPARERR, "PCI Rx parity error", -1, 1},
1379 {F_TXPARERR, "PCI Tx parity error", -1, 1},
1380 {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
1384 if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
1385 CH_ALERT(adapter, "PEX error code 0x%x\n",
1386 t3_read_reg(adapter, A_PCIE_PEX_ERR));
1388 if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
1389 pcie_intr_info, adapter->irq_stats))
1390 t3_fatal_err(adapter);
1394 * TP interrupt handler.
1396 static void tp_intr_handler(struct adapter *adapter)
1398 static const struct intr_info tp_intr_info[] = {
1399 {0xffffff, "TP parity error", -1, 1},
1400 {0x1000000, "TP out of Rx pages", -1, 1},
1401 {0x2000000, "TP out of Tx pages", -1, 1},
1405 static struct intr_info tp_intr_info_t3c[] = {
1406 {0x1fffffff, "TP parity error", -1, 1},
1407 {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
1408 {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
1412 if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
1413 adapter->params.rev < T3_REV_C ?
1414 tp_intr_info : tp_intr_info_t3c, NULL))
1415 t3_fatal_err(adapter);
1419 * CIM interrupt handler.
1421 static void cim_intr_handler(struct adapter *adapter)
1423 static const struct intr_info cim_intr_info[] = {
1424 {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
1425 {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
1426 {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
1427 {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
1428 {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
1429 {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
1430 {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
1431 {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
1432 {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
1433 {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
1434 {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
1435 {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
1436 {F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
1437 {F_ICACHEPARERR, "CIM icache parity error", -1, 1},
1438 {F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
1439 {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
1440 {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
1441 {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
1442 {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
1443 {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
1444 {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
1445 {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
1446 {F_ITAGPARERR, "CIM itag parity error", -1, 1},
1447 {F_DTAGPARERR, "CIM dtag parity error", -1, 1},
1451 if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
1452 cim_intr_info, NULL))
1453 t3_fatal_err(adapter);
1457 * ULP RX interrupt handler.
1459 static void ulprx_intr_handler(struct adapter *adapter)
1461 static const struct intr_info ulprx_intr_info[] = {
1462 {F_PARERRDATA, "ULP RX data parity error", -1, 1},
1463 {F_PARERRPCMD, "ULP RX command parity error", -1, 1},
1464 {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
1465 {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
1466 {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
1467 {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
1468 {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
1469 {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
1473 if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
1474 ulprx_intr_info, NULL))
1475 t3_fatal_err(adapter);
1479 * ULP TX interrupt handler.
1481 static void ulptx_intr_handler(struct adapter *adapter)
1483 static const struct intr_info ulptx_intr_info[] = {
1484 {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
1485 STAT_ULP_CH0_PBL_OOB, 0},
1486 {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
1487 STAT_ULP_CH1_PBL_OOB, 0},
1488 {0xfc, "ULP TX parity error", -1, 1},
1492 if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
1493 ulptx_intr_info, adapter->irq_stats))
1494 t3_fatal_err(adapter);
1497 #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
1498 F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
1499 F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
1500 F_ICSPI1_TX_FRAMING_ERROR)
1501 #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
1502 F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
1503 F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
1504 F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
1507 * PM TX interrupt handler.
1509 static void pmtx_intr_handler(struct adapter *adapter)
1511 static const struct intr_info pmtx_intr_info[] = {
1512 {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
1513 {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
1514 {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
1515 {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
1516 "PMTX ispi parity error", -1, 1},
1517 {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
1518 "PMTX ospi parity error", -1, 1},
1522 if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
1523 pmtx_intr_info, NULL))
1524 t3_fatal_err(adapter);
1527 #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
1528 F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
1529 F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
1530 F_IESPI1_TX_FRAMING_ERROR)
1531 #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
1532 F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
1533 F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
1534 F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
1537 * PM RX interrupt handler.
1539 static void pmrx_intr_handler(struct adapter *adapter)
1541 static const struct intr_info pmrx_intr_info[] = {
1542 {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
1543 {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
1544 {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
1545 {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
1546 "PMRX ispi parity error", -1, 1},
1547 {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
1548 "PMRX ospi parity error", -1, 1},
1552 if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
1553 pmrx_intr_info, NULL))
1554 t3_fatal_err(adapter);
1558 * CPL switch interrupt handler.
1560 static void cplsw_intr_handler(struct adapter *adapter)
1562 static const struct intr_info cplsw_intr_info[] = {
1563 {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
1564 {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
1565 {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
1566 {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
1567 {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
1568 {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
1572 if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
1573 cplsw_intr_info, NULL))
1574 t3_fatal_err(adapter);
1578 * MPS interrupt handler.
1580 static void mps_intr_handler(struct adapter *adapter)
1582 static const struct intr_info mps_intr_info[] = {
1583 {0x1ff, "MPS parity error", -1, 1},
1587 if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
1588 mps_intr_info, NULL))
1589 t3_fatal_err(adapter);
1592 #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
1595 * MC7 interrupt handler.
1597 static void mc7_intr_handler(struct mc7 *mc7)
1599 struct adapter *adapter = mc7->adapter;
1600 u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
1603 mc7->stats.corr_err++;
1604 CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
1605 "data 0x%x 0x%x 0x%x\n", mc7->name,
1606 t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
1607 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
1608 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
1609 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
1613 mc7->stats.uncorr_err++;
1614 CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
1615 "data 0x%x 0x%x 0x%x\n", mc7->name,
1616 t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
1617 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
1618 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
1619 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
1623 mc7->stats.parity_err++;
1624 CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
1625 mc7->name, G_PE(cause));
1631 if (adapter->params.rev > 0)
1632 addr = t3_read_reg(adapter,
1633 mc7->offset + A_MC7_ERR_ADDR);
1634 mc7->stats.addr_err++;
1635 CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
1639 if (cause & MC7_INTR_FATAL)
1640 t3_fatal_err(adapter);
1642 t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
1645 #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1646 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
1648 * XGMAC interrupt handler.
1650 static int mac_intr_handler(struct adapter *adap, unsigned int idx)
1652 struct cmac *mac = &adap2pinfo(adap, idx)->mac;
1653 u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
1655 if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
1656 mac->stats.tx_fifo_parity_err++;
1657 CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
1659 if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
1660 mac->stats.rx_fifo_parity_err++;
1661 CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
1663 if (cause & F_TXFIFO_UNDERRUN)
1664 mac->stats.tx_fifo_urun++;
1665 if (cause & F_RXFIFO_OVERFLOW)
1666 mac->stats.rx_fifo_ovfl++;
1667 if (cause & V_SERDES_LOS(M_SERDES_LOS))
1668 mac->stats.serdes_signal_loss++;
1669 if (cause & F_XAUIPCSCTCERR)
1670 mac->stats.xaui_pcs_ctc_err++;
1671 if (cause & F_XAUIPCSALIGNCHANGE)
1672 mac->stats.xaui_pcs_align_change++;
1674 t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
1675 if (cause & XGM_INTR_FATAL)
1681 * Interrupt handler for PHY events.
1683 int t3_phy_intr_handler(struct adapter *adapter)
1685 u32 mask, gpi = adapter_info(adapter)->gpio_intr;
1686 u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
1688 for_each_port(adapter, i) {
1689 struct port_info *p = adap2pinfo(adapter, i);
1691 mask = gpi - (gpi & (gpi - 1));
1694 if (!(p->port_type->caps & SUPPORTED_IRQ))
1698 int phy_cause = p->phy.ops->intr_handler(&p->phy);
1700 if (phy_cause & cphy_cause_link_change)
1701 t3_link_changed(adapter, i);
1702 if (phy_cause & cphy_cause_fifo_error)
1703 p->phy.fifo_errors++;
1707 t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
1712 * T3 slow path (non-data) interrupt handler.
1714 int t3_slow_intr_handler(struct adapter *adapter)
1716 u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
1718 cause &= adapter->slow_intr_mask;
1721 if (cause & F_PCIM0) {
1722 if (is_pcie(adapter))
1723 pcie_intr_handler(adapter);
1725 pci_intr_handler(adapter);
1728 t3_sge_err_intr_handler(adapter);
1729 if (cause & F_MC7_PMRX)
1730 mc7_intr_handler(&adapter->pmrx);
1731 if (cause & F_MC7_PMTX)
1732 mc7_intr_handler(&adapter->pmtx);
1733 if (cause & F_MC7_CM)
1734 mc7_intr_handler(&adapter->cm);
1736 cim_intr_handler(adapter);
1738 tp_intr_handler(adapter);
1739 if (cause & F_ULP2_RX)
1740 ulprx_intr_handler(adapter);
1741 if (cause & F_ULP2_TX)
1742 ulptx_intr_handler(adapter);
1743 if (cause & F_PM1_RX)
1744 pmrx_intr_handler(adapter);
1745 if (cause & F_PM1_TX)
1746 pmtx_intr_handler(adapter);
1747 if (cause & F_CPL_SWITCH)
1748 cplsw_intr_handler(adapter);
1750 mps_intr_handler(adapter);
1752 t3_mc5_intr_handler(&adapter->mc5);
1753 if (cause & F_XGMAC0_0)
1754 mac_intr_handler(adapter, 0);
1755 if (cause & F_XGMAC0_1)
1756 mac_intr_handler(adapter, 1);
1757 if (cause & F_T3DBG)
1758 t3_os_ext_intr_handler(adapter);
1760 /* Clear the interrupts just processed. */
1761 t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
1762 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
1767 * t3_intr_enable - enable interrupts
1768 * @adapter: the adapter whose interrupts should be enabled
1770 * Enable interrupts by setting the interrupt enable registers of the
1771 * various HW modules and then enabling the top-level interrupt
1774 void t3_intr_enable(struct adapter *adapter)
1776 static const struct addr_val_pair intr_en_avp[] = {
1777 {A_SG_INT_ENABLE, SGE_INTR_MASK},
1778 {A_MC7_INT_ENABLE, MC7_INTR_MASK},
1779 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
1781 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
1783 {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
1784 {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
1785 {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
1786 {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
1787 {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
1788 {A_MPS_INT_ENABLE, MPS_INTR_MASK},
1791 adapter->slow_intr_mask = PL_INTR_MASK;
1793 t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
1794 t3_write_reg(adapter, A_TP_INT_ENABLE,
1795 adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
1797 if (adapter->params.rev > 0) {
1798 t3_write_reg(adapter, A_CPL_INTR_ENABLE,
1799 CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
1800 t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
1801 ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
1802 F_PBL_BOUND_ERR_CH1);
1804 t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
1805 t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
1808 t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW,
1809 adapter_info(adapter)->gpio_intr);
1810 t3_write_reg(adapter, A_T3DBG_INT_ENABLE,
1811 adapter_info(adapter)->gpio_intr);
1812 if (is_pcie(adapter))
1813 t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
1815 t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
1816 t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
1817 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
1821 * t3_intr_disable - disable a card's interrupts
1822 * @adapter: the adapter whose interrupts should be disabled
1824 * Disable interrupts. We only disable the top-level interrupt
1825 * concentrator and the SGE data interrupts.
1827 void t3_intr_disable(struct adapter *adapter)
1829 t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
1830 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
1831 adapter->slow_intr_mask = 0;
1835 * t3_intr_clear - clear all interrupts
1836 * @adapter: the adapter whose interrupts should be cleared
1838 * Clears all interrupts.
1840 void t3_intr_clear(struct adapter *adapter)
1842 static const unsigned int cause_reg_addr[] = {
1844 A_SG_RSPQ_FL_STATUS,
1847 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
1848 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
1849 A_CIM_HOST_INT_CAUSE,
1862 /* Clear PHY and MAC interrupts for each port. */
1863 for_each_port(adapter, i)
1864 t3_port_intr_clear(adapter, i);
1866 for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
1867 t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
1869 if (is_pcie(adapter))
1870 t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
1871 t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
1872 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
1876 * t3_port_intr_enable - enable port-specific interrupts
1877 * @adapter: associated adapter
1878 * @idx: index of port whose interrupts should be enabled
1880 * Enable port-specific (i.e., MAC and PHY) interrupts for the given
1883 void t3_port_intr_enable(struct adapter *adapter, int idx)
1885 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
1887 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
1888 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
1889 phy->ops->intr_enable(phy);
1893 * t3_port_intr_disable - disable port-specific interrupts
1894 * @adapter: associated adapter
1895 * @idx: index of port whose interrupts should be disabled
1897 * Disable port-specific (i.e., MAC and PHY) interrupts for the given
1900 void t3_port_intr_disable(struct adapter *adapter, int idx)
1902 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
1904 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
1905 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
1906 phy->ops->intr_disable(phy);
1910 * t3_port_intr_clear - clear port-specific interrupts
1911 * @adapter: associated adapter
1912 * @idx: index of port whose interrupts to clear
1914 * Clear port-specific (i.e., MAC and PHY) interrupts for the given
1917 void t3_port_intr_clear(struct adapter *adapter, int idx)
1919 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
1921 t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
1922 t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
1923 phy->ops->intr_clear(phy);
1926 #define SG_CONTEXT_CMD_ATTEMPTS 100
1929 * t3_sge_write_context - write an SGE context
1930 * @adapter: the adapter
1931 * @id: the context id
1932 * @type: the context type
1934 * Program an SGE context with the values already loaded in the
1935 * CONTEXT_DATA? registers.
1937 static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
1940 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
1941 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
1942 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
1943 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
1944 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
1945 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
1946 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
1947 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
1950 static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
1953 t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
1954 t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
1955 t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
1956 t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
1957 return t3_sge_write_context(adap, id, type);
1961 * t3_sge_init_ecntxt - initialize an SGE egress context
1962 * @adapter: the adapter to configure
1963 * @id: the context id
1964 * @gts_enable: whether to enable GTS for the context
1965 * @type: the egress context type
1966 * @respq: associated response queue
1967 * @base_addr: base address of queue
1968 * @size: number of queue entries
1970 * @gen: initial generation value for the context
1971 * @cidx: consumer pointer
1973 * Initialize an SGE egress context and make it ready for use. If the
1974 * platform allows concurrent context operations, the caller is
1975 * responsible for appropriate locking.
1977 int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
1978 enum sge_context_type type, int respq, u64 base_addr,
1979 unsigned int size, unsigned int token, int gen,
1982 unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
1984 if (base_addr & 0xfff) /* must be 4K aligned */
1986 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
1990 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
1991 V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
1992 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
1993 V_EC_BASE_LO(base_addr & 0xffff));
1995 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
1997 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
1998 V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
1999 V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
2001 return t3_sge_write_context(adapter, id, F_EGRESS);
2005 * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
2006 * @adapter: the adapter to configure
2007 * @id: the context id
2008 * @gts_enable: whether to enable GTS for the context
2009 * @base_addr: base address of queue
2010 * @size: number of queue entries
2011 * @bsize: size of each buffer for this queue
2012 * @cong_thres: threshold to signal congestion to upstream producers
2013 * @gen: initial generation value for the context
2014 * @cidx: consumer pointer
2016 * Initialize an SGE free list context and make it ready for use. The
2017 * caller is responsible for ensuring only one context operation occurs
2020 int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
2021 int gts_enable, u64 base_addr, unsigned int size,
2022 unsigned int bsize, unsigned int cong_thres, int gen,
2025 if (base_addr & 0xfff) /* must be 4K aligned */
2027 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2031 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
2033 t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
2034 V_FL_BASE_HI((u32) base_addr) |
2035 V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
2036 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
2037 V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
2038 V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
2039 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
2040 V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
2041 V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
2042 return t3_sge_write_context(adapter, id, F_FREELIST);
2046 * t3_sge_init_rspcntxt - initialize an SGE response queue context
2047 * @adapter: the adapter to configure
2048 * @id: the context id
2049 * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
2050 * @base_addr: base address of queue
2051 * @size: number of queue entries
2052 * @fl_thres: threshold for selecting the normal or jumbo free list
2053 * @gen: initial generation value for the context
2054 * @cidx: consumer pointer
2056 * Initialize an SGE response queue context and make it ready for use.
2057 * The caller is responsible for ensuring only one context operation
2060 int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
2061 int irq_vec_idx, u64 base_addr, unsigned int size,
2062 unsigned int fl_thres, int gen, unsigned int cidx)
2064 unsigned int intr = 0;
2066 if (base_addr & 0xfff) /* must be 4K aligned */
2068 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2072 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
2074 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2076 if (irq_vec_idx >= 0)
2077 intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
2078 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2079 V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
2080 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
2081 return t3_sge_write_context(adapter, id, F_RESPONSEQ);
2085 * t3_sge_init_cqcntxt - initialize an SGE completion queue context
2086 * @adapter: the adapter to configure
2087 * @id: the context id
2088 * @base_addr: base address of queue
2089 * @size: number of queue entries
2090 * @rspq: response queue for async notifications
2091 * @ovfl_mode: CQ overflow mode
2092 * @credits: completion queue credits
2093 * @credit_thres: the credit threshold
2095 * Initialize an SGE completion queue context and make it ready for use.
2096 * The caller is responsible for ensuring only one context operation
2099 int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
2100 unsigned int size, int rspq, int ovfl_mode,
2101 unsigned int credits, unsigned int credit_thres)
2103 if (base_addr & 0xfff) /* must be 4K aligned */
2105 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2109 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
2110 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
2112 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
2113 V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
2114 V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
2115 V_CQ_ERR(ovfl_mode));
2116 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
2117 V_CQ_CREDIT_THRES(credit_thres));
2118 return t3_sge_write_context(adapter, id, F_CQ);
2122 * t3_sge_enable_ecntxt - enable/disable an SGE egress context
2123 * @adapter: the adapter
2124 * @id: the egress context id
2125 * @enable: enable (1) or disable (0) the context
2127 * Enable or disable an SGE egress context. The caller is responsible for
2128 * ensuring only one context operation occurs at a time.
2130 int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
2132 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2135 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2136 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2137 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2138 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
2139 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
2140 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2141 V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
2142 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2143 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2147 * t3_sge_disable_fl - disable an SGE free-buffer list
2148 * @adapter: the adapter
2149 * @id: the free list context id
2151 * Disable an SGE free-buffer list. The caller is responsible for
2152 * ensuring only one context operation occurs at a time.
2154 int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
2156 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2159 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
2160 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2161 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
2162 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2163 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
2164 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2165 V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
2166 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2167 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2171 * t3_sge_disable_rspcntxt - disable an SGE response queue
2172 * @adapter: the adapter
2173 * @id: the response queue context id
2175 * Disable an SGE response queue. The caller is responsible for
2176 * ensuring only one context operation occurs at a time.
2178 int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
2180 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2183 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2184 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2185 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2186 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2187 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2188 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2189 V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
2190 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2191 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2195 * t3_sge_disable_cqcntxt - disable an SGE completion queue
2196 * @adapter: the adapter
2197 * @id: the completion queue context id
2199 * Disable an SGE completion queue. The caller is responsible for
2200 * ensuring only one context operation occurs at a time.
2202 int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
2204 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2207 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2208 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2209 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2210 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2211 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2212 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2213 V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
2214 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2215 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
2219 * t3_sge_cqcntxt_op - perform an operation on a completion queue context
2220 * @adapter: the adapter
2221 * @id: the context id
2222 * @op: the operation to perform
2224 * Perform the selected operation on an SGE completion queue context.
2225 * The caller is responsible for ensuring only one context operation
2228 int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
2229 unsigned int credits)
2233 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2236 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
2237 t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
2238 V_CONTEXT(id) | F_CQ);
2239 if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2240 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
2243 if (op >= 2 && op < 7) {
2244 if (adapter->params.rev > 0)
2245 return G_CQ_INDEX(val);
2247 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2248 V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
2249 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
2250 F_CONTEXT_CMD_BUSY, 0,
2251 SG_CONTEXT_CMD_ATTEMPTS, 1))
2253 return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
2259 * t3_sge_read_context - read an SGE context
2260 * @type: the context type
2261 * @adapter: the adapter
2262 * @id: the context id
2263 * @data: holds the retrieved context
2265 * Read an SGE egress context. The caller is responsible for ensuring
2266 * only one context operation occurs at a time.
2268 static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
2269 unsigned int id, u32 data[4])
2271 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2274 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2275 V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
2276 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
2277 SG_CONTEXT_CMD_ATTEMPTS, 1))
2279 data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
2280 data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
2281 data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
2282 data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
2287 * t3_sge_read_ecntxt - read an SGE egress context
2288 * @adapter: the adapter
2289 * @id: the context id
2290 * @data: holds the retrieved context
2292 * Read an SGE egress context. The caller is responsible for ensuring
2293 * only one context operation occurs at a time.
2295 int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
2299 return t3_sge_read_context(F_EGRESS, adapter, id, data);
2303 * t3_sge_read_cq - read an SGE CQ context
2304 * @adapter: the adapter
2305 * @id: the context id
2306 * @data: holds the retrieved context
2308 * Read an SGE CQ context. The caller is responsible for ensuring
2309 * only one context operation occurs at a time.
2311 int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
2315 return t3_sge_read_context(F_CQ, adapter, id, data);
2319 * t3_sge_read_fl - read an SGE free-list context
2320 * @adapter: the adapter
2321 * @id: the context id
2322 * @data: holds the retrieved context
2324 * Read an SGE free-list context. The caller is responsible for ensuring
2325 * only one context operation occurs at a time.
2327 int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
2329 if (id >= SGE_QSETS * 2)
2331 return t3_sge_read_context(F_FREELIST, adapter, id, data);
2335 * t3_sge_read_rspq - read an SGE response queue context
2336 * @adapter: the adapter
2337 * @id: the context id
2338 * @data: holds the retrieved context
2340 * Read an SGE response queue context. The caller is responsible for
2341 * ensuring only one context operation occurs at a time.
2343 int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
2345 if (id >= SGE_QSETS)
2347 return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
2351 * t3_config_rss - configure Rx packet steering
2352 * @adapter: the adapter
2353 * @rss_config: RSS settings (written to TP_RSS_CONFIG)
2354 * @cpus: values for the CPU lookup table (0xff terminated)
2355 * @rspq: values for the response queue lookup table (0xffff terminated)
2357 * Programs the receive packet steering logic. @cpus and @rspq provide
2358 * the values for the CPU and response queue lookup tables. If they
2359 * provide fewer values than the size of the tables the supplied values
2360 * are used repeatedly until the tables are fully populated.
2362 void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
2363 const u8 * cpus, const u16 *rspq)
2365 int i, j, cpu_idx = 0, q_idx = 0;
2368 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2371 for (j = 0; j < 2; ++j) {
2372 val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
2373 if (cpus[cpu_idx] == 0xff)
2376 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
2380 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2381 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
2382 (i << 16) | rspq[q_idx++]);
2383 if (rspq[q_idx] == 0xffff)
2387 t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
2391 * t3_read_rss - read the contents of the RSS tables
2392 * @adapter: the adapter
2393 * @lkup: holds the contents of the RSS lookup table
2394 * @map: holds the contents of the RSS map table
2396 * Reads the contents of the receive packet steering tables.
2398 int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
2404 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2405 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
2407 val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
2408 if (!(val & 0x80000000))
2411 *lkup++ = (val >> 8);
2415 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2416 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
2418 val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
2419 if (!(val & 0x80000000))
2427 * t3_tp_set_offload_mode - put TP in NIC/offload mode
2428 * @adap: the adapter
2429 * @enable: 1 to select offload mode, 0 for regular NIC
2431 * Switches TP to NIC/offload mode.
2433 void t3_tp_set_offload_mode(struct adapter *adap, int enable)
2435 if (is_offload(adap) || !enable)
2436 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
2437 V_NICMODE(!enable));
2441 * pm_num_pages - calculate the number of pages of the payload memory
2442 * @mem_size: the size of the payload memory
2443 * @pg_size: the size of each payload memory page
2445 * Calculate the number of pages, each of the given size, that fit in a
2446 * memory of the specified size, respecting the HW requirement that the
2447 * number of pages must be a multiple of 24.
2449 static inline unsigned int pm_num_pages(unsigned int mem_size,
2450 unsigned int pg_size)
2452 unsigned int n = mem_size / pg_size;
2457 #define mem_region(adap, start, size, reg) \
2458 t3_write_reg((adap), A_ ## reg, (start)); \
2462 * partition_mem - partition memory and configure TP memory settings
2463 * @adap: the adapter
2464 * @p: the TP parameters
2466 * Partitions context and payload memory and configures TP's memory
2469 static void partition_mem(struct adapter *adap, const struct tp_params *p)
2471 unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
2472 unsigned int timers = 0, timers_shift = 22;
2474 if (adap->params.rev > 0) {
2475 if (tids <= 16 * 1024) {
2478 } else if (tids <= 64 * 1024) {
2481 } else if (tids <= 256 * 1024) {
2487 t3_write_reg(adap, A_TP_PMM_SIZE,
2488 p->chan_rx_size | (p->chan_tx_size >> 16));
2490 t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
2491 t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
2492 t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
2493 t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
2494 V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
2496 t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
2497 t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
2498 t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
2500 pstructs = p->rx_num_pgs + p->tx_num_pgs;
2501 /* Add a bit of headroom and make multiple of 24 */
2503 pstructs -= pstructs % 24;
2504 t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
2506 m = tids * TCB_SIZE;
2507 mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
2508 mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
2509 t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
2510 m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
2511 mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
2512 mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
2513 mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
2514 mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
2516 m = (m + 4095) & ~0xfff;
2517 t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
2518 t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
2520 tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
2521 m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
2522 adap->params.mc5.nfilters - adap->params.mc5.nroutes;
2524 adap->params.mc5.nservers += m - tids;
2527 static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
2530 t3_write_reg(adap, A_TP_PIO_ADDR, addr);
2531 t3_write_reg(adap, A_TP_PIO_DATA, val);
2534 static void tp_config(struct adapter *adap, const struct tp_params *p)
2536 t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
2537 F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
2538 F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
2539 t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
2540 F_MTUENABLE | V_WINDOWSCALEMODE(1) |
2541 V_TIMESTAMPSMODE(0) | V_SACKMODE(1) | V_SACKRX(1));
2542 t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
2543 V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
2544 V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
2545 F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
2546 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
2547 F_IPV6ENABLE | F_NICMODE);
2548 t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
2549 t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
2550 t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
2551 adap->params.rev > 0 ? F_ENABLEESND :
2554 t3_set_reg_field(adap, A_TP_PC_CONFIG,
2556 F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
2557 F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
2558 t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
2559 F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
2560 F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
2561 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
2562 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
2564 if (adap->params.rev > 0) {
2565 tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
2566 t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
2568 t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
2569 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
2571 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
2573 if (adap->params.rev == T3_REV_C)
2574 t3_set_reg_field(adap, A_TP_PC_CONFIG,
2575 V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
2576 V_TABLELATENCYDELTA(4));
2578 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
2579 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
2580 t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
2581 t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
2584 /* Desired TP timer resolution in usec */
2585 #define TP_TMR_RES 50
2587 /* TCP timer values in ms */
2588 #define TP_DACK_TIMER 50
2589 #define TP_RTO_MIN 250
2592 * tp_set_timers - set TP timing parameters
2593 * @adap: the adapter to set
2594 * @core_clk: the core clock frequency in Hz
2596 * Set TP's timing parameters, such as the various timer resolutions and
2597 * the TCP timer values.
2599 static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
2601 unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
2602 unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
2603 unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
2604 unsigned int tps = core_clk >> tre;
2606 t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
2607 V_DELAYEDACKRESOLUTION(dack_re) |
2608 V_TIMESTAMPRESOLUTION(tstamp_re));
2609 t3_write_reg(adap, A_TP_DACK_TIMER,
2610 (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
2611 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
2612 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
2613 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
2614 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
2615 t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
2616 V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
2617 V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
2620 #define SECONDS * tps
2622 t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
2623 t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
2624 t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
2625 t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
2626 t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
2627 t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
2628 t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
2629 t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
2630 t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
2636 * t3_tp_set_coalescing_size - set receive coalescing size
2637 * @adap: the adapter
2638 * @size: the receive coalescing size
2639 * @psh: whether a set PSH bit should deliver coalesced data
2641 * Set the receive coalescing size and PSH bit handling.
2643 int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
2647 if (size > MAX_RX_COALESCING_LEN)
2650 val = t3_read_reg(adap, A_TP_PARA_REG3);
2651 val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
2654 val |= F_RXCOALESCEENABLE;
2656 val |= F_RXCOALESCEPSHEN;
2657 size = min(MAX_RX_COALESCING_LEN, size);
2658 t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
2659 V_MAXRXDATA(MAX_RX_COALESCING_LEN));
2661 t3_write_reg(adap, A_TP_PARA_REG3, val);
2666 * t3_tp_set_max_rxsize - set the max receive size
2667 * @adap: the adapter
2668 * @size: the max receive size
2670 * Set TP's max receive size. This is the limit that applies when
2671 * receive coalescing is disabled.
2673 void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
2675 t3_write_reg(adap, A_TP_PARA_REG7,
2676 V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
2679 static void init_mtus(unsigned short mtus[])
2682 * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
2683 * it can accomodate max size TCP/IP headers when SACK and timestamps
2684 * are enabled and still have at least 8 bytes of payload.
2705 * Initial congestion control parameters.
2707 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
2709 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
2734 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
2737 b[13] = b[14] = b[15] = b[16] = 3;
2738 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
2739 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
2744 /* The minimum additive increment value for the congestion control table */
2745 #define CC_MIN_INCR 2U
2748 * t3_load_mtus - write the MTU and congestion control HW tables
2749 * @adap: the adapter
2750 * @mtus: the unrestricted values for the MTU table
2751 * @alphs: the values for the congestion control alpha parameter
2752 * @beta: the values for the congestion control beta parameter
2753 * @mtu_cap: the maximum permitted effective MTU
2755 * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
2756 * Update the high-speed congestion control table with the supplied alpha,
2759 void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
2760 unsigned short alpha[NCCTRL_WIN],
2761 unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
2763 static const unsigned int avg_pkts[NCCTRL_WIN] = {
2764 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
2765 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
2766 28672, 40960, 57344, 81920, 114688, 163840, 229376
2771 for (i = 0; i < NMTUS; ++i) {
2772 unsigned int mtu = min(mtus[i], mtu_cap);
2773 unsigned int log2 = fls(mtu);
2775 if (!(mtu & ((1 << log2) >> 2))) /* round */
2777 t3_write_reg(adap, A_TP_MTU_TABLE,
2778 (i << 24) | (log2 << 16) | mtu);
2780 for (w = 0; w < NCCTRL_WIN; ++w) {
2783 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
2786 t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
2787 (w << 16) | (beta[w] << 13) | inc);
2793 * t3_read_hw_mtus - returns the values in the HW MTU table
2794 * @adap: the adapter
2795 * @mtus: where to store the HW MTU values
2797 * Reads the HW MTU table.
2799 void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
2803 for (i = 0; i < NMTUS; ++i) {
2806 t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
2807 val = t3_read_reg(adap, A_TP_MTU_TABLE);
2808 mtus[i] = val & 0x3fff;
2813 * t3_get_cong_cntl_tab - reads the congestion control table
2814 * @adap: the adapter
2815 * @incr: where to store the alpha values
2817 * Reads the additive increments programmed into the HW congestion
2820 void t3_get_cong_cntl_tab(struct adapter *adap,
2821 unsigned short incr[NMTUS][NCCTRL_WIN])
2823 unsigned int mtu, w;
2825 for (mtu = 0; mtu < NMTUS; ++mtu)
2826 for (w = 0; w < NCCTRL_WIN; ++w) {
2827 t3_write_reg(adap, A_TP_CCTRL_TABLE,
2828 0xffff0000 | (mtu << 5) | w);
2829 incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
2835 * t3_tp_get_mib_stats - read TP's MIB counters
2836 * @adap: the adapter
2837 * @tps: holds the returned counter values
2839 * Returns the values of TP's MIB counters.
2841 void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
2843 t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
2844 sizeof(*tps) / sizeof(u32), 0);
2847 #define ulp_region(adap, name, start, len) \
2848 t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
2849 t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
2850 (start) + (len) - 1); \
2853 #define ulptx_region(adap, name, start, len) \
2854 t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
2855 t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
2856 (start) + (len) - 1)
2858 static void ulp_config(struct adapter *adap, const struct tp_params *p)
2860 unsigned int m = p->chan_rx_size;
2862 ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
2863 ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
2864 ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
2865 ulp_region(adap, STAG, m, p->chan_rx_size / 4);
2866 ulp_region(adap, RQ, m, p->chan_rx_size / 4);
2867 ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
2868 ulp_region(adap, PBL, m, p->chan_rx_size / 4);
2869 t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
2873 * t3_set_proto_sram - set the contents of the protocol sram
2874 * @adapter: the adapter
2875 * @data: the protocol image
2877 * Write the contents of the protocol SRAM.
2879 int t3_set_proto_sram(struct adapter *adap, const u8 *data)
2882 const __be32 *buf = (const __be32 *)data;
2884 for (i = 0; i < PROTO_SRAM_LINES; i++) {
2885 t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
2886 t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
2887 t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
2888 t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
2889 t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
2891 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
2892 if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
2895 t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
2900 void t3_config_trace_filter(struct adapter *adapter,
2901 const struct trace_params *tp, int filter_index,
2902 int invert, int enable)
2904 u32 addr, key[4], mask[4];
2906 key[0] = tp->sport | (tp->sip << 16);
2907 key[1] = (tp->sip >> 16) | (tp->dport << 16);
2909 key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
2911 mask[0] = tp->sport_mask | (tp->sip_mask << 16);
2912 mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
2913 mask[2] = tp->dip_mask;
2914 mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
2917 key[3] |= (1 << 29);
2919 key[3] |= (1 << 28);
2921 addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
2922 tp_wr_indirect(adapter, addr++, key[0]);
2923 tp_wr_indirect(adapter, addr++, mask[0]);
2924 tp_wr_indirect(adapter, addr++, key[1]);
2925 tp_wr_indirect(adapter, addr++, mask[1]);
2926 tp_wr_indirect(adapter, addr++, key[2]);
2927 tp_wr_indirect(adapter, addr++, mask[2]);
2928 tp_wr_indirect(adapter, addr++, key[3]);
2929 tp_wr_indirect(adapter, addr, mask[3]);
2930 t3_read_reg(adapter, A_TP_PIO_DATA);
2934 * t3_config_sched - configure a HW traffic scheduler
2935 * @adap: the adapter
2936 * @kbps: target rate in Kbps
2937 * @sched: the scheduler index
2939 * Configure a HW scheduler for the target rate
2941 int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
2943 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
2944 unsigned int clk = adap->params.vpd.cclk * 1000;
2945 unsigned int selected_cpt = 0, selected_bpt = 0;
2948 kbps *= 125; /* -> bytes */
2949 for (cpt = 1; cpt <= 255; cpt++) {
2951 bpt = (kbps + tps / 2) / tps;
2952 if (bpt > 0 && bpt <= 255) {
2954 delta = v >= kbps ? v - kbps : kbps - v;
2955 if (delta <= mindelta) {
2960 } else if (selected_cpt)
2966 t3_write_reg(adap, A_TP_TM_PIO_ADDR,
2967 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
2968 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
2970 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
2972 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
2973 t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
2977 static int tp_init(struct adapter *adap, const struct tp_params *p)
2982 t3_set_vlan_accel(adap, 3, 0);
2984 if (is_offload(adap)) {
2985 tp_set_timers(adap, adap->params.vpd.cclk * 1000);
2986 t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
2987 busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
2990 CH_ERR(adap, "TP initialization timed out\n");
2994 t3_write_reg(adap, A_TP_RESET, F_TPRESET);
2998 int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
3000 if (port_mask & ~((1 << adap->params.nports) - 1))
3002 t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
3003 port_mask << S_PORT0ACTIVE);
3008 * Perform the bits of HW initialization that are dependent on the number
3009 * of available ports.
3011 static void init_hw_for_avail_ports(struct adapter *adap, int nports)
3016 t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
3017 t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
3018 t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
3019 F_PORT0ACTIVE | F_ENFORCEPKT);
3020 t3_write_reg(adap, A_PM1_TX_CFG, 0xffffffff);
3022 t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
3023 t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
3024 t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
3025 V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
3026 t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
3027 F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
3029 t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
3030 t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
3031 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
3032 V_TX_MOD_QUEUE_REQ_MAP(0xaa));
3033 for (i = 0; i < 16; i++)
3034 t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
3035 (i << 16) | 0x1010);
3039 static int calibrate_xgm(struct adapter *adapter)
3041 if (uses_xaui(adapter)) {
3044 for (i = 0; i < 5; ++i) {
3045 t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
3046 t3_read_reg(adapter, A_XGM_XAUI_IMP);
3048 v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
3049 if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
3050 t3_write_reg(adapter, A_XGM_XAUI_IMP,
3051 V_XAUIIMP(G_CALIMP(v) >> 2));
3055 CH_ERR(adapter, "MAC calibration failed\n");
3058 t3_write_reg(adapter, A_XGM_RGMII_IMP,
3059 V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
3060 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
3061 F_XGM_IMPSETUPDATE);
3066 static void calibrate_xgm_t3b(struct adapter *adapter)
3068 if (!uses_xaui(adapter)) {
3069 t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
3070 F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
3071 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
3072 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
3073 F_XGM_IMPSETUPDATE);
3074 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
3076 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
3077 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
3081 struct mc7_timing_params {
3082 unsigned char ActToPreDly;
3083 unsigned char ActToRdWrDly;
3084 unsigned char PreCyc;
3085 unsigned char RefCyc[5];
3086 unsigned char BkCyc;
3087 unsigned char WrToRdDly;
3088 unsigned char RdToWrDly;
3092 * Write a value to a register and check that the write completed. These
3093 * writes normally complete in a cycle or two, so one read should suffice.
3094 * The very first read exists to flush the posted write to the device.
3096 static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
3098 t3_write_reg(adapter, addr, val);
3099 t3_read_reg(adapter, addr); /* flush */
3100 if (!(t3_read_reg(adapter, addr) & F_BUSY))
3102 CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
3106 static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
3108 static const unsigned int mc7_mode[] = {
3109 0x632, 0x642, 0x652, 0x432, 0x442
3111 static const struct mc7_timing_params mc7_timings[] = {
3112 {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
3113 {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
3114 {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
3115 {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
3116 {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
3120 unsigned int width, density, slow, attempts;
3121 struct adapter *adapter = mc7->adapter;
3122 const struct mc7_timing_params *p = &mc7_timings[mem_type];
3127 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
3128 slow = val & F_SLOW;
3129 width = G_WIDTH(val);
3130 density = G_DEN(val);
3132 t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
3133 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
3137 t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
3138 t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
3140 if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
3141 (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
3142 CH_ERR(adapter, "%s MC7 calibration timed out\n",
3148 t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
3149 V_ACTTOPREDLY(p->ActToPreDly) |
3150 V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
3151 V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
3152 V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
3154 t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
3155 val | F_CLKEN | F_TERM150);
3156 t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
3159 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
3164 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3165 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
3166 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
3167 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3171 t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
3172 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
3176 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
3177 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3178 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
3179 wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
3180 mc7_mode[mem_type]) ||
3181 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
3182 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
3185 /* clock value is in KHz */
3186 mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
3187 mc7_clock /= 1000000; /* KHz->MHz, ns->us */
3189 t3_write_reg(adapter, mc7->offset + A_MC7_REF,
3190 F_PERREFEN | V_PREREFDIV(mc7_clock));
3191 t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
3193 t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
3194 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
3195 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
3196 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
3197 (mc7->size << width) - 1);
3198 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
3199 t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
3204 val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
3205 } while ((val & F_BUSY) && --attempts);
3207 CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
3211 /* Enable normal memory accesses. */
3212 t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
3219 static void config_pcie(struct adapter *adap)
3221 static const u16 ack_lat[4][6] = {
3222 {237, 416, 559, 1071, 2095, 4143},
3223 {128, 217, 289, 545, 1057, 2081},
3224 {73, 118, 154, 282, 538, 1050},
3225 {67, 107, 86, 150, 278, 534}
3227 static const u16 rpl_tmr[4][6] = {
3228 {711, 1248, 1677, 3213, 6285, 12429},
3229 {384, 651, 867, 1635, 3171, 6243},
3230 {219, 354, 462, 846, 1614, 3150},
3231 {201, 321, 258, 450, 834, 1602}
3235 unsigned int log2_width, pldsize;
3236 unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
3238 pci_read_config_word(adap->pdev,
3239 adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
3241 pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
3242 pci_read_config_word(adap->pdev,
3243 adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
3246 fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
3247 fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
3248 G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
3249 log2_width = fls(adap->params.pci.width) - 1;
3250 acklat = ack_lat[log2_width][pldsize];
3251 if (val & 1) /* check LOsEnable */
3252 acklat += fst_trn_tx * 4;
3253 rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
3255 if (adap->params.rev == 0)
3256 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
3257 V_T3A_ACKLAT(M_T3A_ACKLAT),
3258 V_T3A_ACKLAT(acklat));
3260 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
3263 t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
3264 V_REPLAYLMT(rpllmt));
3266 t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
3267 t3_set_reg_field(adap, A_PCIE_CFG, 0,
3268 F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
3269 F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
3273 * Initialize and configure T3 HW modules. This performs the
3274 * initialization steps that need to be done once after a card is reset.
3275 * MAC and PHY initialization is handled separarely whenever a port is enabled.
3277 * fw_params are passed to FW and their value is platform dependent. Only the
3278 * top 8 bits are available for use, the rest must be 0.
3280 int t3_init_hw(struct adapter *adapter, u32 fw_params)
3282 int err = -EIO, attempts, i;
3283 const struct vpd_params *vpd = &adapter->params.vpd;
3285 if (adapter->params.rev > 0)
3286 calibrate_xgm_t3b(adapter);
3287 else if (calibrate_xgm(adapter))
3291 partition_mem(adapter, &adapter->params.tp);
3293 if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
3294 mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
3295 mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
3296 t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
3297 adapter->params.mc5.nfilters,
3298 adapter->params.mc5.nroutes))
3301 for (i = 0; i < 32; i++)
3302 if (clear_sge_ctxt(adapter, i, F_CQ))
3306 if (tp_init(adapter, &adapter->params.tp))
3309 t3_tp_set_coalescing_size(adapter,
3310 min(adapter->params.sge.max_pkt_size,
3311 MAX_RX_COALESCING_LEN), 1);
3312 t3_tp_set_max_rxsize(adapter,
3313 min(adapter->params.sge.max_pkt_size, 16384U));
3314 ulp_config(adapter, &adapter->params.tp);
3316 if (is_pcie(adapter))
3317 config_pcie(adapter);
3319 t3_set_reg_field(adapter, A_PCIX_CFG, 0,
3320 F_DMASTOPEN | F_CLIDECEN);
3322 if (adapter->params.rev == T3_REV_C)
3323 t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
3324 F_CFG_CQE_SOP_MASK);
3326 t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
3327 t3_write_reg(adapter, A_PM1_RX_MODE, 0);
3328 t3_write_reg(adapter, A_PM1_TX_MODE, 0);
3329 init_hw_for_avail_ports(adapter, adapter->params.nports);
3330 t3_sge_init(adapter, &adapter->params.sge);
3332 t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
3333 t3_write_reg(adapter, A_CIM_BOOT_CFG,
3334 V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
3335 t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
3338 do { /* wait for uP to initialize */
3340 } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
3342 CH_ERR(adapter, "uP initialization timed out\n");
3352 * get_pci_mode - determine a card's PCI mode
3353 * @adapter: the adapter
3354 * @p: where to store the PCI settings
3356 * Determines a card's PCI mode and associated parameters, such as speed
3359 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
3361 static unsigned short speed_map[] = { 33, 66, 100, 133 };
3362 u32 pci_mode, pcie_cap;
3364 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
3368 p->variant = PCI_VARIANT_PCIE;
3369 p->pcie_cap_addr = pcie_cap;
3370 pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
3372 p->width = (val >> 4) & 0x3f;
3376 pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
3377 p->speed = speed_map[G_PCLKRANGE(pci_mode)];
3378 p->width = (pci_mode & F_64BIT) ? 64 : 32;
3379 pci_mode = G_PCIXINITPAT(pci_mode);
3381 p->variant = PCI_VARIANT_PCI;
3382 else if (pci_mode < 4)
3383 p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
3384 else if (pci_mode < 8)
3385 p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
3387 p->variant = PCI_VARIANT_PCIX_266_MODE2;
3391 * init_link_config - initialize a link's SW state
3392 * @lc: structure holding the link state
3393 * @ai: information about the current card
3395 * Initializes the SW state maintained for each link, including the link's
3396 * capabilities and default speed/duplex/flow-control/autonegotiation
3399 static void init_link_config(struct link_config *lc, unsigned int caps)
3401 lc->supported = caps;
3402 lc->requested_speed = lc->speed = SPEED_INVALID;
3403 lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
3404 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
3405 if (lc->supported & SUPPORTED_Autoneg) {
3406 lc->advertising = lc->supported;
3407 lc->autoneg = AUTONEG_ENABLE;
3408 lc->requested_fc |= PAUSE_AUTONEG;
3410 lc->advertising = 0;
3411 lc->autoneg = AUTONEG_DISABLE;
3416 * mc7_calc_size - calculate MC7 memory size
3417 * @cfg: the MC7 configuration
3419 * Calculates the size of an MC7 memory in bytes from the value of its
3420 * configuration register.
3422 static unsigned int mc7_calc_size(u32 cfg)
3424 unsigned int width = G_WIDTH(cfg);
3425 unsigned int banks = !!(cfg & F_BKS) + 1;
3426 unsigned int org = !!(cfg & F_ORG) + 1;
3427 unsigned int density = G_DEN(cfg);
3428 unsigned int MBs = ((256 << density) * banks) / (org << width);
3433 static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
3434 unsigned int base_addr, const char *name)
3438 mc7->adapter = adapter;
3440 mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
3441 cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
3442 mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
3443 mc7->width = G_WIDTH(cfg);
3446 void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
3448 mac->adapter = adapter;
3449 mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
3452 if (adapter->params.rev == 0 && uses_xaui(adapter)) {
3453 t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
3454 is_10G(adapter) ? 0x2901c04 : 0x2301c04);
3455 t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
3460 void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
3462 u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
3464 mi1_init(adapter, ai);
3465 t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
3466 V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
3467 t3_write_reg(adapter, A_T3DBG_GPIO_EN,
3468 ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
3469 t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
3470 t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
3472 if (adapter->params.rev == 0 || !uses_xaui(adapter))
3475 /* Enable MAC clocks so we can access the registers */
3476 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3477 t3_read_reg(adapter, A_XGM_PORT_CFG);
3479 val |= F_CLKDIVRESET_;
3480 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3481 t3_read_reg(adapter, A_XGM_PORT_CFG);
3482 t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
3483 t3_read_reg(adapter, A_XGM_PORT_CFG);
3487 * Reset the adapter.
3488 * Older PCIe cards lose their config space during reset, PCI-X
3491 static int t3_reset_adapter(struct adapter *adapter)
3493 int i, save_and_restore_pcie =
3494 adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
3497 if (save_and_restore_pcie)
3498 pci_save_state(adapter->pdev);
3499 t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
3502 * Delay. Give Some time to device to reset fully.
3503 * XXX The delay time should be modified.
3505 for (i = 0; i < 10; i++) {
3507 pci_read_config_word(adapter->pdev, 0x00, &devid);
3508 if (devid == 0x1425)
3512 if (devid != 0x1425)
3515 if (save_and_restore_pcie)
3516 pci_restore_state(adapter->pdev);
3520 static int init_parity(struct adapter *adap)
3524 if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
3527 for (err = i = 0; !err && i < 16; i++)
3528 err = clear_sge_ctxt(adap, i, F_EGRESS);
3529 for (i = 0xfff0; !err && i <= 0xffff; i++)
3530 err = clear_sge_ctxt(adap, i, F_EGRESS);
3531 for (i = 0; !err && i < SGE_QSETS; i++)
3532 err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
3536 t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
3537 for (i = 0; i < 4; i++)
3538 for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
3539 t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
3540 F_IBQDBGWR | V_IBQDBGQID(i) |
3541 V_IBQDBGADDR(addr));
3542 err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
3543 F_IBQDBGBUSY, 0, 2, 1);
3551 * Initialize adapter SW state for the various HW modules, set initial values
3552 * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
3555 int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
3559 unsigned int i, j = 0;
3561 get_pci_mode(adapter, &adapter->params.pci);
3563 adapter->params.info = ai;
3564 adapter->params.nports = ai->nports;
3565 adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
3566 adapter->params.linkpoll_period = 0;
3567 adapter->params.stats_update_period = is_10G(adapter) ?
3568 MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
3569 adapter->params.pci.vpd_cap_addr =
3570 pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
3571 ret = get_vpd_params(adapter, &adapter->params.vpd);
3575 if (reset && t3_reset_adapter(adapter))
3578 t3_sge_prep(adapter, &adapter->params.sge);
3580 if (adapter->params.vpd.mclk) {
3581 struct tp_params *p = &adapter->params.tp;
3583 mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
3584 mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
3585 mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
3587 p->nchan = ai->nports;
3588 p->pmrx_size = t3_mc7_size(&adapter->pmrx);
3589 p->pmtx_size = t3_mc7_size(&adapter->pmtx);
3590 p->cm_size = t3_mc7_size(&adapter->cm);
3591 p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
3592 p->chan_tx_size = p->pmtx_size / p->nchan;
3593 p->rx_pg_size = 64 * 1024;
3594 p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
3595 p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
3596 p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
3597 p->ntimer_qs = p->cm_size >= (128 << 20) ||
3598 adapter->params.rev > 0 ? 12 : 6;
3601 adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
3602 t3_mc7_size(&adapter->pmtx) &&
3603 t3_mc7_size(&adapter->cm);
3605 if (is_offload(adapter)) {
3606 adapter->params.mc5.nservers = DEFAULT_NSERVERS;
3607 adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
3608 DEFAULT_NFILTERS : 0;
3609 adapter->params.mc5.nroutes = 0;
3610 t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
3612 init_mtus(adapter->params.mtus);
3613 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
3616 early_hw_init(adapter, ai);
3617 ret = init_parity(adapter);
3621 for_each_port(adapter, i) {
3623 struct port_info *p = adap2pinfo(adapter, i);
3625 while (!adapter->params.vpd.port_type[j])
3628 p->port_type = &port_types[adapter->params.vpd.port_type[j]];
3629 p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
3631 mac_prep(&p->mac, adapter, j);
3635 * The VPD EEPROM stores the base Ethernet address for the
3636 * card. A port's address is derived from the base by adding
3637 * the port's index to the base's low octet.
3639 memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
3640 hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
3642 memcpy(adapter->port[i]->dev_addr, hw_addr,
3644 memcpy(adapter->port[i]->perm_addr, hw_addr,
3646 init_link_config(&p->link_config, p->port_type->caps);
3647 p->phy.ops->power_down(&p->phy, 1);
3648 if (!(p->port_type->caps & SUPPORTED_IRQ))
3649 adapter->params.linkpoll_period = 10;
3655 void t3_led_ready(struct adapter *adapter)
3657 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
3661 int t3_replay_prep_adapter(struct adapter *adapter)
3663 const struct adapter_info *ai = adapter->params.info;
3664 unsigned int i, j = 0;
3667 early_hw_init(adapter, ai);
3668 ret = init_parity(adapter);
3672 for_each_port(adapter, i) {
3673 struct port_info *p = adap2pinfo(adapter, i);
3674 while (!adapter->params.vpd.port_type[j])
3677 p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
3680 p->phy.ops->power_down(&p->phy, 1);