4 * This provides a low-level interface to the hardware's Debug Store
5 * feature that is used for branch trace store (BTS) and
6 * precise-event based sampling (PEBS).
9 * - DS and BTS hardware configuration
10 * - buffer overflow handling (to be done)
14 * - security checking (is the caller allowed to trace the task)
15 * - buffer allocation (memory accounting)
18 * Copyright (C) 2007-2009 Intel Corporation.
19 * Markus Metzger <markus.t.metzger@intel.com>, 2007-2009
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
30 #include <linux/kernel.h>
34 * The configuration for a particular DS hardware implementation.
36 struct ds_configuration {
37 /* the name of the configuration */
39 /* the size of one pointer-typed field in the DS structure and
40 in the BTS and PEBS buffers in bytes;
41 this covers the first 8 DS fields related to buffer management. */
42 unsigned char sizeof_field;
43 /* the size of a BTS/PEBS record in bytes */
44 unsigned char sizeof_rec[2];
45 /* a series of bit-masks to control various features indexed
46 * by enum ds_feature */
47 unsigned long ctl[dsf_ctl_max];
49 static DEFINE_PER_CPU(struct ds_configuration, ds_cfg_array);
51 #define ds_cfg per_cpu(ds_cfg_array, smp_processor_id())
53 #define MAX_SIZEOF_DS (12 * 8) /* maximal size of a DS configuration */
54 #define MAX_SIZEOF_BTS (3 * 8) /* maximal size of a BTS record */
55 #define DS_ALIGNMENT (1 << 3) /* BTS and PEBS buffer alignment */
58 (ds_cfg.ctl[dsf_bts] | ds_cfg.ctl[dsf_bts_kernel] | ds_cfg.ctl[dsf_bts_user] |\
59 ds_cfg.ctl[dsf_bts_overflow])
63 * A BTS or PEBS tracer.
65 * This holds the configuration of the tracer and serves as a handle
66 * to identify tracers.
69 /* the DS context (partially) owned by this tracer */
70 struct ds_context *context;
71 /* the buffer provided on ds_request() and its size in bytes */
77 /* the common DS part */
79 /* the trace including the DS configuration */
80 struct bts_trace trace;
81 /* buffer overflow notification function */
82 bts_ovfl_callback_t ovfl;
86 /* the common DS part */
88 /* the trace including the DS configuration */
89 struct pebs_trace trace;
90 /* buffer overflow notification function */
91 pebs_ovfl_callback_t ovfl;
95 * Debug Store (DS) save area configuration (see Intel64 and IA32
96 * Architectures Software Developer's Manual, section 18.5)
98 * The DS configuration consists of the following fields; different
99 * architetures vary in the size of those fields.
100 * - double-word aligned base linear address of the BTS buffer
101 * - write pointer into the BTS buffer
102 * - end linear address of the BTS buffer (one byte beyond the end of
104 * - interrupt pointer into BTS buffer
105 * (interrupt occurs when write pointer passes interrupt pointer)
106 * - double-word aligned base linear address of the PEBS buffer
107 * - write pointer into the PEBS buffer
108 * - end linear address of the PEBS buffer (one byte beyond the end of
110 * - interrupt pointer into PEBS buffer
111 * (interrupt occurs when write pointer passes interrupt pointer)
112 * - value to which counter is reset following counter overflow
114 * Later architectures use 64bit pointers throughout, whereas earlier
115 * architectures use 32bit pointers in 32bit mode.
118 * We compute the base address for the first 8 fields based on:
119 * - the field size stored in the DS configuration
120 * - the relative field position
121 * - an offset giving the start of the respective region
123 * This offset is further used to index various arrays holding
124 * information for BTS and PEBS at the respective index.
126 * On later 32bit processors, we only access the lower 32bit of the
127 * 64bit pointer fields. The upper halves will be zeroed out.
134 ds_interrupt_threshold,
142 static inline unsigned long ds_get(const unsigned char *base,
143 enum ds_qualifier qual, enum ds_field field)
145 base += (ds_cfg.sizeof_field * (field + (4 * qual)));
146 return *(unsigned long *)base;
149 static inline void ds_set(unsigned char *base, enum ds_qualifier qual,
150 enum ds_field field, unsigned long value)
152 base += (ds_cfg.sizeof_field * (field + (4 * qual)));
153 (*(unsigned long *)base) = value;
158 * Locking is done only for allocating BTS or PEBS resources.
160 static DEFINE_SPINLOCK(ds_lock);
164 * We either support (system-wide) per-cpu or per-thread allocation.
165 * We distinguish the two based on the task_struct pointer, where a
166 * NULL pointer indicates per-cpu allocation for the current cpu.
168 * Allocations are use-counted. As soon as resources are allocated,
169 * further allocations must be of the same type (per-cpu or
170 * per-thread). We model this by counting allocations (i.e. the number
171 * of tracers of a certain type) for one type negatively:
173 * >0 number of per-thread tracers
174 * <0 number of per-cpu tracers
176 * Tracers essentially gives the number of ds contexts for a certain
177 * type of allocation.
179 static atomic_t tracers = ATOMIC_INIT(0);
181 static inline void get_tracer(struct task_struct *task)
184 atomic_inc(&tracers);
186 atomic_dec(&tracers);
189 static inline void put_tracer(struct task_struct *task)
192 atomic_dec(&tracers);
194 atomic_inc(&tracers);
197 static inline int check_tracer(struct task_struct *task)
200 (atomic_read(&tracers) >= 0) :
201 (atomic_read(&tracers) <= 0);
206 * The DS context is either attached to a thread or to a cpu:
207 * - in the former case, the thread_struct contains a pointer to the
209 * - in the latter case, we use a static array of per-cpu context
212 * Contexts are use-counted. They are allocated on first access and
213 * deallocated when the last user puts the context.
216 /* pointer to the DS configuration; goes into MSR_IA32_DS_AREA */
217 unsigned char ds[MAX_SIZEOF_DS];
218 /* the owner of the BTS and PEBS configuration, respectively */
219 struct bts_tracer *bts_master;
220 struct pebs_tracer *pebs_master;
223 /* a pointer to the context location inside the thread_struct
224 * or the per_cpu context array */
225 struct ds_context **this;
226 /* a pointer to the task owning this context, or NULL, if the
227 * context is owned by a cpu */
228 struct task_struct *task;
231 static DEFINE_PER_CPU(struct ds_context *, system_context_array);
233 #define system_context per_cpu(system_context_array, smp_processor_id())
236 static inline struct ds_context *ds_get_context(struct task_struct *task)
238 struct ds_context **p_context =
239 (task ? &task->thread.ds_ctx : &system_context);
240 struct ds_context *context = NULL;
241 struct ds_context *new_context = NULL;
244 /* Chances are small that we already have a context. */
245 new_context = kzalloc(sizeof(*new_context), GFP_KERNEL);
249 spin_lock_irqsave(&ds_lock, irq);
251 context = *p_context;
253 context = new_context;
255 context->this = p_context;
256 context->task = task;
260 set_tsk_thread_flag(task, TIF_DS_AREA_MSR);
262 if (!task || (task == current))
263 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)context->ds);
265 *p_context = context;
270 spin_unlock_irqrestore(&ds_lock, irq);
272 if (context != new_context)
278 static inline void ds_put_context(struct ds_context *context)
285 spin_lock_irqsave(&ds_lock, irq);
287 if (--context->count) {
288 spin_unlock_irqrestore(&ds_lock, irq);
292 *(context->this) = NULL;
295 clear_tsk_thread_flag(context->task, TIF_DS_AREA_MSR);
297 if (!context->task || (context->task == current))
298 wrmsrl(MSR_IA32_DS_AREA, 0);
300 spin_unlock_irqrestore(&ds_lock, irq);
307 * Call the tracer's callback on a buffer overflow.
309 * context: the ds context
310 * qual: the buffer type
312 static void ds_overflow(struct ds_context *context, enum ds_qualifier qual)
316 if (context->bts_master &&
317 context->bts_master->ovfl)
318 context->bts_master->ovfl(context->bts_master);
321 if (context->pebs_master &&
322 context->pebs_master->ovfl)
323 context->pebs_master->ovfl(context->pebs_master);
330 * Write raw data into the BTS or PEBS buffer.
332 * The remainder of any partially written record is zeroed out.
334 * context: the DS context
335 * qual: the buffer type
336 * record: the data to write
337 * size: the size of the data
339 static int ds_write(struct ds_context *context, enum ds_qualifier qual,
340 const void *record, size_t size)
342 int bytes_written = 0;
348 unsigned long base, index, end, write_end, int_th;
349 unsigned long write_size, adj_write_size;
352 * write as much as possible without producing an
353 * overflow interrupt.
355 * interrupt_threshold must either be
356 * - bigger than absolute_maximum or
357 * - point to a record between buffer_base and absolute_maximum
359 * index points to a valid record.
361 base = ds_get(context->ds, qual, ds_buffer_base);
362 index = ds_get(context->ds, qual, ds_index);
363 end = ds_get(context->ds, qual, ds_absolute_maximum);
364 int_th = ds_get(context->ds, qual, ds_interrupt_threshold);
366 write_end = min(end, int_th);
368 /* if we are already beyond the interrupt threshold,
369 * we fill the entire buffer */
370 if (write_end <= index)
373 if (write_end <= index)
376 write_size = min((unsigned long) size, write_end - index);
377 memcpy((void *)index, record, write_size);
379 record = (const char *)record + write_size;
381 bytes_written += write_size;
383 adj_write_size = write_size / ds_cfg.sizeof_rec[qual];
384 adj_write_size *= ds_cfg.sizeof_rec[qual];
386 /* zero out trailing bytes */
387 memset((char *)index + write_size, 0,
388 adj_write_size - write_size);
389 index += adj_write_size;
393 ds_set(context->ds, qual, ds_index, index);
396 ds_overflow(context, qual);
399 return bytes_written;
404 * Branch Trace Store (BTS) uses the following format. Different
405 * architectures vary in the size of those fields.
406 * - source linear address
407 * - destination linear address
410 * Later architectures use 64bit pointers throughout, whereas earlier
411 * architectures use 32bit pointers in 32bit mode.
413 * We compute the base address for the first 8 fields based on:
414 * - the field size stored in the DS configuration
415 * - the relative field position
417 * In order to store additional information in the BTS buffer, we use
418 * a special source address to indicate that the record requires
419 * special interpretation.
421 * Netburst indicated via a bit in the flags field whether the branch
422 * was predicted; this is ignored.
424 * We use two levels of abstraction:
425 * - the raw data level defined here
426 * - an arch-independent level defined in ds.h
435 bts_jiffies = bts_to,
438 bts_qual_mask = (bts_qual_max - 1),
439 bts_escape = ((unsigned long)-1 & ~bts_qual_mask)
442 static inline unsigned long bts_get(const char *base, enum bts_field field)
444 base += (ds_cfg.sizeof_field * field);
445 return *(unsigned long *)base;
448 static inline void bts_set(char *base, enum bts_field field, unsigned long val)
450 base += (ds_cfg.sizeof_field * field);;
451 (*(unsigned long *)base) = val;
456 * The raw BTS data is architecture dependent.
458 * For higher-level users, we give an arch-independent view.
459 * - ds.h defines struct bts_struct
460 * - bts_read translates one raw bts record into a bts_struct
461 * - bts_write translates one bts_struct into the raw format and
462 * writes it into the top of the parameter tracer's buffer.
464 * return: bytes read/written on success; -Eerrno, otherwise
466 static int bts_read(struct bts_tracer *tracer, const void *at,
467 struct bts_struct *out)
472 if (at < tracer->trace.ds.begin)
475 if (tracer->trace.ds.end < (at + tracer->trace.ds.size))
478 memset(out, 0, sizeof(*out));
479 if ((bts_get(at, bts_qual) & ~bts_qual_mask) == bts_escape) {
480 out->qualifier = (bts_get(at, bts_qual) & bts_qual_mask);
481 out->variant.timestamp.jiffies = bts_get(at, bts_jiffies);
482 out->variant.timestamp.pid = bts_get(at, bts_pid);
484 out->qualifier = bts_branch;
485 out->variant.lbr.from = bts_get(at, bts_from);
486 out->variant.lbr.to = bts_get(at, bts_to);
488 if (!out->variant.lbr.from && !out->variant.lbr.to)
489 out->qualifier = bts_invalid;
492 return ds_cfg.sizeof_rec[ds_bts];
495 static int bts_write(struct bts_tracer *tracer, const struct bts_struct *in)
497 unsigned char raw[MAX_SIZEOF_BTS];
502 if (MAX_SIZEOF_BTS < ds_cfg.sizeof_rec[ds_bts])
505 switch (in->qualifier) {
507 bts_set(raw, bts_from, 0);
508 bts_set(raw, bts_to, 0);
509 bts_set(raw, bts_flags, 0);
512 bts_set(raw, bts_from, in->variant.lbr.from);
513 bts_set(raw, bts_to, in->variant.lbr.to);
514 bts_set(raw, bts_flags, 0);
516 case bts_task_arrives:
517 case bts_task_departs:
518 bts_set(raw, bts_qual, (bts_escape | in->qualifier));
519 bts_set(raw, bts_jiffies, in->variant.timestamp.jiffies);
520 bts_set(raw, bts_pid, in->variant.timestamp.pid);
526 return ds_write(tracer->ds.context, ds_bts, raw,
527 ds_cfg.sizeof_rec[ds_bts]);
531 static void ds_write_config(struct ds_context *context,
532 struct ds_trace *cfg, enum ds_qualifier qual)
534 unsigned char *ds = context->ds;
536 ds_set(ds, qual, ds_buffer_base, (unsigned long)cfg->begin);
537 ds_set(ds, qual, ds_index, (unsigned long)cfg->top);
538 ds_set(ds, qual, ds_absolute_maximum, (unsigned long)cfg->end);
539 ds_set(ds, qual, ds_interrupt_threshold, (unsigned long)cfg->ith);
542 static void ds_read_config(struct ds_context *context,
543 struct ds_trace *cfg, enum ds_qualifier qual)
545 unsigned char *ds = context->ds;
547 cfg->begin = (void *)ds_get(ds, qual, ds_buffer_base);
548 cfg->top = (void *)ds_get(ds, qual, ds_index);
549 cfg->end = (void *)ds_get(ds, qual, ds_absolute_maximum);
550 cfg->ith = (void *)ds_get(ds, qual, ds_interrupt_threshold);
553 static void ds_init_ds_trace(struct ds_trace *trace, enum ds_qualifier qual,
554 void *base, size_t size, size_t ith,
555 unsigned int flags) {
556 unsigned long buffer, adj;
558 /* adjust the buffer address and size to meet alignment
560 * - buffer is double-word aligned
561 * - size is multiple of record size
563 * We checked the size at the very beginning; we have enough
564 * space to do the adjustment.
566 buffer = (unsigned long)base;
568 adj = ALIGN(buffer, DS_ALIGNMENT) - buffer;
572 trace->n = size / ds_cfg.sizeof_rec[qual];
573 trace->size = ds_cfg.sizeof_rec[qual];
575 size = (trace->n * trace->size);
577 trace->begin = (void *)buffer;
578 trace->top = trace->begin;
579 trace->end = (void *)(buffer + size);
580 /* The value for 'no threshold' is -1, which will set the
581 * threshold outside of the buffer, just like we want it.
583 trace->ith = (void *)(buffer + size - ith);
585 trace->flags = flags;
589 static int ds_request(struct ds_tracer *tracer, struct ds_trace *trace,
590 enum ds_qualifier qual, struct task_struct *task,
591 void *base, size_t size, size_t th, unsigned int flags)
593 struct ds_context *context;
600 /* we require some space to do alignment adjustments below */
602 if (size < (DS_ALIGNMENT + ds_cfg.sizeof_rec[qual]))
605 if (th != (size_t)-1) {
606 th *= ds_cfg.sizeof_rec[qual];
613 tracer->buffer = base;
617 context = ds_get_context(task);
620 tracer->context = context;
622 ds_init_ds_trace(trace, qual, base, size, th, flags);
629 struct bts_tracer *ds_request_bts(struct task_struct *task,
630 void *base, size_t size,
631 bts_ovfl_callback_t ovfl, size_t th,
634 struct bts_tracer *tracer;
639 if (!ds_cfg.ctl[dsf_bts])
642 /* buffer overflow notification is not yet implemented */
648 tracer = kzalloc(sizeof(*tracer), GFP_KERNEL);
653 error = ds_request(&tracer->ds, &tracer->trace.ds,
654 ds_bts, task, base, size, th, flags);
659 spin_lock_irqsave(&ds_lock, irq);
662 if (!check_tracer(task))
667 if (tracer->ds.context->bts_master)
669 tracer->ds.context->bts_master = tracer;
671 spin_unlock_irqrestore(&ds_lock, irq);
674 tracer->trace.read = bts_read;
675 tracer->trace.write = bts_write;
677 ds_write_config(tracer->ds.context, &tracer->trace.ds, ds_bts);
678 ds_resume_bts(tracer);
685 spin_unlock_irqrestore(&ds_lock, irq);
686 ds_put_context(tracer->ds.context);
690 return ERR_PTR(error);
693 struct pebs_tracer *ds_request_pebs(struct task_struct *task,
694 void *base, size_t size,
695 pebs_ovfl_callback_t ovfl, size_t th,
698 struct pebs_tracer *tracer;
702 /* buffer overflow notification is not yet implemented */
708 tracer = kzalloc(sizeof(*tracer), GFP_KERNEL);
713 error = ds_request(&tracer->ds, &tracer->trace.ds,
714 ds_pebs, task, base, size, th, flags);
718 spin_lock_irqsave(&ds_lock, irq);
721 if (!check_tracer(task))
726 if (tracer->ds.context->pebs_master)
728 tracer->ds.context->pebs_master = tracer;
730 spin_unlock_irqrestore(&ds_lock, irq);
732 ds_write_config(tracer->ds.context, &tracer->trace.ds, ds_pebs);
733 ds_resume_pebs(tracer);
740 spin_unlock_irqrestore(&ds_lock, irq);
741 ds_put_context(tracer->ds.context);
745 return ERR_PTR(error);
748 void ds_release_bts(struct bts_tracer *tracer)
753 ds_suspend_bts(tracer);
755 WARN_ON_ONCE(tracer->ds.context->bts_master != tracer);
756 tracer->ds.context->bts_master = NULL;
758 put_tracer(tracer->ds.context->task);
759 ds_put_context(tracer->ds.context);
764 void ds_suspend_bts(struct bts_tracer *tracer)
766 struct task_struct *task;
771 task = tracer->ds.context->task;
773 if (!task || (task == current))
774 update_debugctlmsr(get_debugctlmsr() & ~BTS_CONTROL);
777 task->thread.debugctlmsr &= ~BTS_CONTROL;
779 if (!task->thread.debugctlmsr)
780 clear_tsk_thread_flag(task, TIF_DEBUGCTLMSR);
784 void ds_resume_bts(struct bts_tracer *tracer)
786 struct task_struct *task;
787 unsigned long control;
792 task = tracer->ds.context->task;
794 control = ds_cfg.ctl[dsf_bts];
795 if (!(tracer->trace.ds.flags & BTS_KERNEL))
796 control |= ds_cfg.ctl[dsf_bts_kernel];
797 if (!(tracer->trace.ds.flags & BTS_USER))
798 control |= ds_cfg.ctl[dsf_bts_user];
801 task->thread.debugctlmsr |= control;
802 set_tsk_thread_flag(task, TIF_DEBUGCTLMSR);
805 if (!task || (task == current))
806 update_debugctlmsr(get_debugctlmsr() | control);
809 void ds_release_pebs(struct pebs_tracer *tracer)
814 ds_suspend_pebs(tracer);
816 WARN_ON_ONCE(tracer->ds.context->pebs_master != tracer);
817 tracer->ds.context->pebs_master = NULL;
819 put_tracer(tracer->ds.context->task);
820 ds_put_context(tracer->ds.context);
825 void ds_suspend_pebs(struct pebs_tracer *tracer)
830 void ds_resume_pebs(struct pebs_tracer *tracer)
835 const struct bts_trace *ds_read_bts(struct bts_tracer *tracer)
840 ds_read_config(tracer->ds.context, &tracer->trace.ds, ds_bts);
841 return &tracer->trace;
844 const struct pebs_trace *ds_read_pebs(struct pebs_tracer *tracer)
849 ds_read_config(tracer->ds.context, &tracer->trace.ds, ds_pebs);
850 tracer->trace.reset_value =
851 *(u64 *)(tracer->ds.context->ds + (ds_cfg.sizeof_field * 8));
853 return &tracer->trace;
856 int ds_reset_bts(struct bts_tracer *tracer)
861 tracer->trace.ds.top = tracer->trace.ds.begin;
863 ds_set(tracer->ds.context->ds, ds_bts, ds_index,
864 (unsigned long)tracer->trace.ds.top);
869 int ds_reset_pebs(struct pebs_tracer *tracer)
874 tracer->trace.ds.top = tracer->trace.ds.begin;
876 ds_set(tracer->ds.context->ds, ds_bts, ds_index,
877 (unsigned long)tracer->trace.ds.top);
882 int ds_set_pebs_reset(struct pebs_tracer *tracer, u64 value)
887 *(u64 *)(tracer->ds.context->ds + (ds_cfg.sizeof_field * 8)) = value;
892 static const struct ds_configuration ds_cfg_netburst = {
894 .ctl[dsf_bts] = (1 << 2) | (1 << 3),
895 .ctl[dsf_bts_kernel] = (1 << 5),
896 .ctl[dsf_bts_user] = (1 << 6),
898 .sizeof_field = sizeof(long),
899 .sizeof_rec[ds_bts] = sizeof(long) * 3,
901 .sizeof_rec[ds_pebs] = sizeof(long) * 10,
903 .sizeof_rec[ds_pebs] = sizeof(long) * 18,
906 static const struct ds_configuration ds_cfg_pentium_m = {
908 .ctl[dsf_bts] = (1 << 6) | (1 << 7),
910 .sizeof_field = sizeof(long),
911 .sizeof_rec[ds_bts] = sizeof(long) * 3,
913 .sizeof_rec[ds_pebs] = sizeof(long) * 10,
915 .sizeof_rec[ds_pebs] = sizeof(long) * 18,
918 static const struct ds_configuration ds_cfg_core2_atom = {
919 .name = "Core 2/Atom",
920 .ctl[dsf_bts] = (1 << 6) | (1 << 7),
921 .ctl[dsf_bts_kernel] = (1 << 9),
922 .ctl[dsf_bts_user] = (1 << 10),
925 .sizeof_rec[ds_bts] = 8 * 3,
926 .sizeof_rec[ds_pebs] = 8 * 18,
930 ds_configure(const struct ds_configuration *cfg)
932 memset(&ds_cfg, 0, sizeof(ds_cfg));
935 printk(KERN_INFO "[ds] using %s configuration\n", ds_cfg.name);
938 ds_cfg.ctl[dsf_bts] = 0;
939 printk(KERN_INFO "[ds] bts not available\n");
942 printk(KERN_INFO "[ds] pebs not available\n");
944 WARN_ON_ONCE(MAX_SIZEOF_DS < (12 * ds_cfg.sizeof_field));
947 void __cpuinit ds_init_intel(struct cpuinfo_x86 *c)
951 switch (c->x86_model) {
953 case 0xd: /* Pentium M */
954 ds_configure(&ds_cfg_pentium_m);
957 case 0x17: /* Core2 */
958 case 0x1c: /* Atom */
959 ds_configure(&ds_cfg_core2_atom);
963 /* sorry, don't know about them */
968 switch (c->x86_model) {
971 case 0x2: /* Netburst */
972 ds_configure(&ds_cfg_netburst);
975 /* sorry, don't know about them */
980 /* sorry, don't know about them */
986 * Change the DS configuration from tracing prev to tracing next.
988 void ds_switch_to(struct task_struct *prev, struct task_struct *next)
990 struct ds_context *prev_ctx = prev->thread.ds_ctx;
991 struct ds_context *next_ctx = next->thread.ds_ctx;
994 update_debugctlmsr(0);
996 if (prev_ctx->bts_master &&
997 (prev_ctx->bts_master->trace.ds.flags & BTS_TIMESTAMPS)) {
998 struct bts_struct ts = {
999 .qualifier = bts_task_departs,
1000 .variant.timestamp.jiffies = jiffies_64,
1001 .variant.timestamp.pid = prev->pid
1003 bts_write(prev_ctx->bts_master, &ts);
1008 if (next_ctx->bts_master &&
1009 (next_ctx->bts_master->trace.ds.flags & BTS_TIMESTAMPS)) {
1010 struct bts_struct ts = {
1011 .qualifier = bts_task_arrives,
1012 .variant.timestamp.jiffies = jiffies_64,
1013 .variant.timestamp.pid = next->pid
1015 bts_write(next_ctx->bts_master, &ts);
1018 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)next_ctx->ds);
1021 update_debugctlmsr(next->thread.debugctlmsr);
1024 void ds_copy_thread(struct task_struct *tsk, struct task_struct *father)
1026 clear_tsk_thread_flag(tsk, TIF_DS_AREA_MSR);
1027 tsk->thread.ds_ctx = NULL;
1030 void ds_exit_thread(struct task_struct *tsk)